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A Recursive Least M-Estimate (RLM) Adaptive
Filter for Robust Filtering in Impulse Noise

Y. Zou, S. C. Chan, and T. S. Ng

Abstract—This paper proposes a recursive least M-estimate
(RLM) algorithm for robust adaptive filtering in impulse noise. It
employs an M-estimate cost function, which is able to suppress the
effect of impulses on the filter weights. Simulation results showed
that the RLM algorithm performs better than the conventional
RLS, NRLS, and the OSFKF algorithms when the desired and
input signals are corrupted by impulses. Its initial convergence,
steady-state error, computational complexity, and robustness to
sudden system change are comparable to the conventional RLS
algorithm in the presence of Gaussian noise alone.

Index Terms—Adaptive filter, impulse noise suppression, recur-
sive least M-estimate algorithm, robust statistics, system identifi-
cation.

I. INTRODUCTION

T HE performance of conventional linear adaptive filters
can deteriorate significantly when the desired or the

input signal is corrupted by impulse noise. Several nonlinear
algorithms, such as the order statistic least mean square
(OSLMS) [1], the order statistic fast Kalman filtering (OSFKF)
[2], the adaptive threshold nonlinear (ATNA) [3], the ro-
bust mixed-norm (RMN) [4], and the nonlinear recursive
least square (NRLS) algorithms [5] have been developed to
combat the adverse effects due to impulses. In this paper,
an RLS-like algorithm called the recursive least M-estimate
(RLM) algorithm and a systematic method for estimating its
threshold parameters are proposed. It employs an M-estimate
cost function, which is able to suppress the hostile effect of
large estimation error, due to impulses, on the filter weights.
Simulation results showed that the performance of the RLM
algorithm is better than the conventional RLS, NRLS, and
OSFKF algorithms, when the desired and input signals are
corrupted by impulses. The initial convergence, steady-state
error, computational complexity, and the robustness to sudden
system change of the RLM algorithm are also found to be
comparable to the conventional RLS algorithm with Gaussian
noise alone. The RLM algorithm differs from the Huber
adaptive filter recently reported in [6] in the following ways.
The Huber adaptive filter suppresses the adverse effect of the
impulses in the input signal on the general M-estimator ([7,
p. 12]) by down-weighting the distortion measure when the
input signal amplitude is large. Also, it is not recursive in
nature and a system of nonlinear equations must be solved for
each data block. The proposed RLM algorithm on the other
hand, is a recursive algorithm with a much lower complexity
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Fig. 1. System identification structure.

of per iteration. Furthermore, LMS and transform
domain LMS-like generalizations of the proposed algorithm
with complexity per iteration have also been proposed
recently by the authors [8], [9].

II. ROBUST M-ESTIMATE ADAPTIVE FILTER

Let us consider the system identification problem in
Fig. 1. The signals and are, respectively, the
input and output of the adaptive linear transversal filter.
The estimation error at time instant is given by

, where
and are the weight
vector and the input signal vector, respectively. is
the desired signal, which consists of the output of the un-
known system and the additive interference , i.e.,

. Instead of the commonly used least
square (LS) cost function , the
following M-estimate cost function is proposed:

(1)

where is a forgetting factor and is an M-estimate function.
In this paper, the Hampel’s three-part redescending M-estimate
function ([7, p. 148]) is considered due to its computational sim-
plicity and more flexibility in choosing the interval parameters
for impulse noise suppression

,

(2)
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where is a real-valued even function and is quadratic when
is smaller than . For values of in [ ], the function is

linear. For values of greater than , the function is equal to
a constant. The M-estimator is capable of suppressing outliers
with large amplitude, and the threshold parameters, , and

are used to control the degree of suppression of the outliers.
The smaller the values of, , and , the greater the suppres-
sion will be of the outliers. The threshold parameters are usually
estimated continuously. The cost function is therefore ca-
pable of smoothing out momentary fluctuation caused by im-
pulses. The optimal weight vector can be obtained by setting
the first order partial derivatives of with respect to
to zero. This yields

where

(3)

and . The first equation in (3)
is referred to as the M-estimate normal equation, and

are called the M-estimate correlation matrix of ,
and the M-estimate cross-correlation vector of and ,
respectively. They serve similar purposes as the conventional
correlation matrix of and the cross-correlation vector of

and in the RLS algorithm. In the following section, a
recursive algorithm, called the RLM algorithm, will be derived
for solving (3).

III. RECURSIVELEAST M-ESTIMATE (RLM) ALGORITHM

Apply the matrix inversion lemma
to (3) and letting

, , and ,
can be computed recursively as

(4)

where is the M-estimate gain vector. Using (3) and (4), the
filter weights can be updated by

. Therefore, when is smaller than
, is equal to one, and (4) is identical to the gain vector

in the conventional RLS algorithm. When is larger than ,
starts to reduce and is equal to zero when .

The latter property makes the proposed algorithm more robust
to consecutive impulses than the NRLS algorithm [5]. In fact,
the corrupted in the NRLS algorithm, though limited by
the clipping devices, will also be added to , which makes
them sensitive to consecutive impulses. In contrast, for the RLM
algorithm, if an impulse is detected ( ), is
set to zero, and is not updated. If , the
contribution of to will be reduced as well.

IV. PARAMETER ESTIMATION

To provide robust estimation under impulse noise envi-
ronment, the threshold parameters, , and need to
be estimated continuously. Although the distribution of the
error signal is in general unknown due to the presence
of impulses, it can be assumed, for simplicity, to be Gaussian
distributed but corrupted by additive impulses. By estimating
the variance of “impulse-free” estimation error , it is
possible to detect and reject the impulses in . Specifically,
the probability of greater than a given threshold is

[10], where
is the complementary error func-

tion, and is the standard deviation of the “impulse-free”
estimation error. Using a different threshold parameter, one
can detect the impulse noise with different degrees of confi-
dence. Let , ,
and be the probabilities that
is greater than , , and , respectively. If , , and

are chosen to be 0.05, 0.025, and 0.01, respectively, we
have 95% confidence to down weight the error in the interval
[ ], 97.5% confidence to down weight the error signal
in the interval [ ] and 99% confidence to reject it
when . Then, the thresholds are determined to
be , ,

. The commonly used estimator
[5] is not used here

due to its sensitivity to impulses with large amplitude. A more
robust estimator using the median of the absolute deviation
is given in [7, p. 45]. Its complexity, however, is rather high
because of the considerable amount of median operations
required. In this paper, a new recursive estimator for is
proposed as follows:

(5)

where

;
length of the estimation
window;
forgetting factor;
finite sample correction
factor [7, p. 44].

Due to the recursive nature and the median operation in (5), this
estimator provides more stable estimation of the variance .
It can be seen from the above derivation that the arithmetic com-
plexity of the proposed RLM algorithm is comparable to that of
the conventional RLS algorithm, except for themore multi-
plications in (4) and operations required in (5).

V. SIMULATION RESULTS

The performance of the proposed RLM algorithm is evalu-
ated and compared with the RLS, NRLS [5], and the OSFKF
[2] algorithms for the system identification problem shown
in Fig. 1. The impulse response of the unknown system is

,
which is changed to at 5500 to evaluate its robustness
to sudden system change. is colored and is gener-
ated by passing a zero-mean, unit variance white Gaussian
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Fig. 2. MSE performance of the various algorithms under different impulsive
interference (Example 1). (1) RLM (bold circle); (2) NRLS (triangle); (3) RLS
(plus); (4) OSFKF (diamond).N = 9, SNR= 35 dB,� = � = 0.99,�̂ (0) =
d (0),www(0) = PPP (0) = OOO, VVV (0) = 20III , andN = 14 in (5), [D(n), and
I(n) indicate the locations of the impulses in the desired and the input signals
at time instantn, respectively.S(n) indicates the time instant when the system
changes suddenly.

process through a linear time-invariant filter with coefficients
is modeled as the frequently used con-

taminated Gaussian (CG) noise
[1], [2], where and are independently identically
distributed (i.i.d.) zero mean Gaussian noises with variance

and , respectively, and is an i.i.d Bernoulli random
variable with occurrence probability . The
ratio determines the impulsive
characteristic of . For fixed value of , the larger the

, the more impulsive becomes. The SNR at the
system output is defined as SNR , where

is the variance of . Simulation parameters and the
initial values for various algorithms are shown in Fig. 2. The
constant 20 in is chosen to ensure that consists of
reasonable values. For illustration purposes, from 1–1549,
and 2801–7000, is used, whereas from
1550–2800, with 0.005 and

300 is used. To visualize clearly the effect of impulses
in , their locations generated by are fixed and marked
in Fig 2, but their amplitudes are varied according to ,
which is generated statistically independent in each run. Also,
for simplicity in visualizing the effect of impulses in ,
only one impulse is added to at 3350. 14
is used for the OSFKF algorithm. The MSE results averaged
over 100 independent runs are plotted in Fig. 2. The RLM,
NRLS, and the RLS algorithms have almost identical initial
convergence speed, lower steady-state error, and robustness to
sudden system change. The RLS algorithm, however, is not
robust to any impulse, and the NRLS algorithm is sensitive
to impulses in and . The performances of the RLS
and the OSFKF algorithms are also deteriorated significantly
by the impulse in at 3350, which lasts for several
hundred iterations. On the other hand, the RLM algorithm is
able to recover very quickly in about 3 iterations. We also
observed that the OSFKF algorithm has a slower convergence
speed, slower response to sudden system change, and higher
steady-state error than other algorithms. Other experiments
have been performed to evaluate the influence of SNR,and

, , and on the performance of the RLM algorithm.

The details are omitted here due to space limitation. We only
summarize the observations here. First, compared with other
robust RLS-like algorithms, the RLM algorithm has better
performance at different SNR and impulse density. Second,
the performance of the RLM algorithm is not sensitive to the
choices of , , and , provided that they are not much
larger than that suggested in Section IV. Comparisons with
other robust LMS-like algorithms, such as ATNA, RMN, and
the OSLMS algorithms, have also been performed. The RLM
algorithm is found to have faster initial convergence, lower
steady-state error, and better robustness to sudden system
change than those algorithms due to its RLS-like nature. In
addition, the authors have evaluated the mean and mean square
convergence of the RLM algorithm using the CG noise model.
Results show that the theoretical and simulation results agree
with each other. Interested readers are referred to [8], [9], and
[11] for details.

VI. CONCLUSION

An RLM algorithm for robust filtering in impulse noise is pre-
sented. It employs an M-estimate cost function, which is able to
suppress the adverse effect of impulses on the filter weights.
Simulation results showed that the performance of the RLM
algorithm is better than the conventional RLS, NRLS, and the
OSFKF algorithms in impulse noise environment. Its initial con-
vergence, steady-state error, computational complexity, and ro-
bustness to sudden system change are also found to be com-
parable to the conventional RLS algorithm in Gaussian noise
alone.
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