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An Intelligent Mobile Vehicle Navigator Based
on Fuzzy Logic and Reinforcement Learning

Nelson H. C. Yung and Cang Ye

Abstract—in this paper, an alternative training approach to the EEM-
based training method is presented and a fuzzy reactive navigation
architecture is described. The new training method is 270 times faster in
learning speed; and is only 4% of the learning cost of the EEM method.
It also has very reliable convergence of learning; very high number of
learned rules (98.8%); and high adaptability. Using the rule base learned
from the new method, the proposed fuzzy reactive navigator fuses the
obstacle avoidance behavior and goal seeking behavior to determine
its control actions, where adaptability is achieved with the aid of an
environment evaluator. A comparison of this navigator using the rule
bases obtained from the new training method and the EEM method,
shows that the new navigator guarantees a solution and its solution is
more acceptable.

Index Terms—Behavior fusion, fuzzy logic, goal seeking, neural net-
work, obstacle avoidance, reinforcement learning, vehicle navigation.

Fig. 8. X.,Y components of the estimated velocity field for the multiple
object image sequence.

I. INTRODUCTION
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tends to cause unstable motion in the presence of obstacles; and third,
it is difficult to find the force coefficients influencing the vehicle’s
velocity and direction in an unknown environment. The practicality
of the potential field method therefore hinges on how well these " obstacle
problems can be resolved. One of the possible solutions that has the o : 58 , ’
potential to overcome these problems is tbactive systerproposed ) s
in [6]. The key idea of it is to build a mapping from the perceived 56 a '
situations to the correct actions and iterate the mapping until a goal .
is reached. As previous reactive systems are not able to learn and S, sgr
. . . . . 525 . | - ' .SZ _ S > x
acquire situation-action rules [6]—[8], neural network and fuzzy logic 4 o
approaches offer an attractive alternative for building reactive systems Yo pRo ST
in recent times [9]-[13]. e
Fuzzy logic approaclseems quite promising in tackling the prob+ig. 1. Diagram of the mobile vehicle and the arrangement of the ultrasonic
lem of obstacle avoidance, as it deals with various situations withdGig1sors.
requiring to construct an analytical model of the environment. While
compared with the neural network approach, it has. another ,diSti%%Fyantages over the existing EEM:
advantage that each rule of the rule base has a physical meaning. Thﬁ . . . .
. . . ) 270 times faster in learning speed,;
makes it possible to tune the rules by using expert’'s knowledge. For, : )
. . ; . 2) only 4% of the learning cost;
instance, Tunstel [10] proposed a hierarchical fuzzy behavior control X .
: L . . .~ 3) very reliable convergence of learning;
for indoor navigation, in which the rule base for each behavior is .
. . ) 98.8% of learned rules;
constructed based on expert's knowledge. However, in the case o

navigating the mobile vehicle in complex environments, the above ) high adaptability.

method have two severe limitations that it is difficult to consistentlySing the rule base learned from the new method, the fuzzy reactive
construct the rules since there are many situations to be handig@vigator fuses the sensor information from the sensor groups, the

and it is time consuming to tune the constructed rules. Song and $Aptacle avoidance behavior and goal seeking behavior to determine

[11] tried to palliate the load on the construction of the rule baé]es control actions, where adaptability is achieved with the aid of an

by separating the fuzzy controller into left and right and made theﬁpv!ronme_nt evaluator_. Numerqus s!mulat_lc_)n runs show that this new
work in collaboration. navigator is characterized by first, its ability to tackle an unknown

To tackle some of these drawbacks, supervised learning meth qyironment without having to explore it beforehand; second, its

using neural networks were proposed in [12] and [13]. Unfortunatel ree of local minimum; third, it has smooth changes of velocity and

these methods require a substantially large set of representa \t/eéeri.ng qngle; fourth, its. planned path i.s close to the shortest path;
patterns to characterize the environment during training. Besides, if"@d fifth, it is both nearsighted and farsighted.

also difficult to obtain these training patterns which contain no con-

tradictory input/output pairs. Thus, reinforcement learning requiring Il. OVERVIEW OF THE NAVIGATOR

only a scalar reinforcement signal as a performance feedback from

the environment seems to be quite attractive when learning collisioh- Vehicle Model and Sensor Arrangement

free navigation is concerned. This reinforcement signal enablesthe model of the vehicle used is a cylindrical mobile platform
the navigator to tune its performance to some extent. HoweVvgkiven by three active wheels. The radius of the mobile vehiBle,
reinforcement learning method has theoretically limited learning approximately 20 cm, and is equipped with an ultrasonic sensor ring
ability as it requires heavy learning phases and in some casegdtdepicted in Fig. 1. Assume there a¥esensors evenly distributed
might not be able to completely capture the complex features of gng the ring and they are divided into eight groups where each
environment. Kése and van Dam [14] used Kohonen maps to spiifroup has at least one sensor (i#.,> 8 ). For obstacle detection
the sensory input space into clusters, and associate an appropeEd§ avoidance purposes, five sensor groups are selected from the eight
action to it through reinforcement learning. In theory, its performanggoups. The remaining sensors are used by the navigation supervisor
improves with learning, although there is no criterion derived t@here a sensor group is dynamically configured to determine the
evaluate the convergence of the learning process. Beom and Giiimum distance to the obstacle located along the relative goal
[15] proposed a scheme in which fuzzy logic was used to map thector during navigation.
sensor input space to the action space and reinforcement learning wag this research, a ring of 24 ultrasonic sensors is assumed to
employed to construct the fuzzy rules automatically. They proposgile an angular spatial resolution of ®\5Each sensors; for i =
no criterion to evaluate the convergence either. Furthermore, bath... 24 gives a distance to the obstacle, in its field of view,
of these methods are based on the environment exploration methgfkre 8 cm< I, < 400 cm and each sensor covers an angular view
(EEM) which explores a complex environment to obtain the corregt 10°. The five sensor groups are denotedsgsfori = 1, ---, 5,
situation—action mapping. The theoretical limitation of reinforcementhere each group is composed of three neighboring sensors. With
learning inevitably results in a slow and uncertain convergenggis sensor arrangement, the distante measured by théth sensor
due to the EEM and an insufficiently learned rule base in mogtoup from the center of the vehicle to the obstacle is expressed as
cases. It is this limitation that motivates us to search for a better
training method that has a definite and fast convergence, and =
overall navigation architecture that can tackle complex and unknown
environments. B. Coordinate Systems and Navigation Task

In this paper, an alternative training approach to the EEM-basedThe coordinate systems and the control variables of the vehicle
training method is presented and a fuzzy reactive navigation archre depicted in Fig. 2. The two coordinate systems are the world
tecture is described. The new training method employs a simpleordinate denoted byx WY, and the vehicle coordinate given by
environment for constructing the fuzzy rule base and has five distinety. Based on these two coordinate systems, a navigation task is

»

R,+min(I;|j =3i-2,3i—1,3i); fori=1,---,5. (1)
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vy and Ad, for the behavior of goal seeking. These two behavioral
Fig. 2. Diagram of the coordinate system and the control variables. modules work independently and their actions are fused by the NS

to producev and Aé for the eventual navigation. The role of the

environment evaluators vital here. It's purpose is to perform an

Obstacle Avoider Navigation Supervisor o G Sedker evaluation of the environment based on the distances sensed by the

= : ultrasonic sensors and determine the appropriate valué dfased
on the sensor readings, whefE is used for fuzzification by the
fuzzy quantization inside the OA. With this ability, the navigator is
able to develop both nearsighted and farsighted decisions. It is also
due to the EE that the rule base used by the OA can be learned
using a simple corridor-like training environment, where the training
converges quickly with extremely small number of blank rules.
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* | Decision Ml king

¢ [ Decision Meking
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v,,A0, : n
¥ Behavior l'usion
I Ossmacte Avooe
L] Bavironment Fvaluator je—a——— Mobile Vericle | &f The OA is a reactive fuzzy controller, in which the fuzzy rule
_ _ _ base determines the vehicle’s action,andAd,, based on the input
Fig. 3. Diagram of the proposed navigator. sensor readingd; for i = 1, ---, 5. Being a reactive system, the

key to the OA is the construction of the rule base.

defined as navigating the vehicle from a start coordinate to its goal
without colliding with the obstacles in between. Each navigation tagk Fuzzy Control of Obstacle Avoidance
is specified in the world coordinate, where the vehicle configurationAs depicted in Fig. 3, the input variables of the OA are the sensor
. ot T - i . .3,
Is represented by = (XYo)", whereX, andY, are coordinate of i, yariables;, while the control outputs are, and Aé,. The
tht_a vehicle’s (_:ent_er, anfdstanc_is for the hgadlng angle of the Veh'C|edesign steps of this module are as follows:
Without considering the vehicle dynamics, we assume the control
variables are its linear velocity and the change in the heading angle
(steering angle)Ad.

In order to navigate the mobile vehicle to it's goal, it is assumed . )

) : - LY 4) fuzzy inference;
that the current configuration of the mobile vehicle is always known e .
. o . . 5) defuzzification of the output variables.

at each time step. Therefore, a navigation task is to obtain the ) ) ) ) )
environment informationd; and P,(X,. Y,), and the vehicle's _The membership functions of the input and output variables are given

configurationS(¢) at each time step, wheret = 0, 1, -+, k, ..., in Fig. 4.

determine the output variables(t) and A#(t); then update the In Fig. 4(a), the crisp value of ?af:h [nput variabie,i.s fuzzified
vehicle’s configuration; and iterate this situation—action mappirRd expressed by the fuzzy sets=V, N'R, F'R, referring to very

1) definition of membership functions;
2) fuzzification of the input variables;
3) rule base construction through reinforcement learning;

process until the goal is achieved. near, near, and far, respectively. The universe of discourse of each
fuzzy set is determined b2 andW. Here,R = R, + Imin, Where
) . lmin = 8 cm is the minimum distance that the ultrasonic sensor
C. Architecture of the Navigator can detect and?, = 20 cm is the radius of the vehicle. Therefore,

A navigation task can be achieved by two behaviabstacle the fuzzy sets are fully determined by the variali®, Each sensor
avoidance and goal seeking.The former behavior is inherently reading, d; is mapped to a set of different membership function
nearsightedas it only considers how to avoid obstacles and ignoreslues and further mapped to a different action for a diffefént
whether it causes the vehicle to deviate from the goal; whereas theaccordance with the fuzzification of the input variablés, the
latter behavior is inherentlfarsightedas it enables the vehicle movesfuzzy rule base consists of 243 rules and it requires 243 fuzzy sets,
toward the goal and neglects if it causes a collision. When the vehidle(; = 1, ---, 243), to represent the velocity.; and 243 fuzzy
encounters a obstacle which obstructs the goal, these two behavaats, A, (j = 1, ---, 243), to represent the steering ange,,.
are in conflict, where an arbitrator is required to mediate betwe@ine fuzzy sets of the output variables and A¢,, take the triangular
the two behaviors. To resolve this conflict, an overall navigatiomembership functions as shown in Fig. 4(b) and (c), respectively,
architecture is depicted in Fig. 3 [17]. while their center positiond);; and bz; for j = 1, ---, 243, are

It consists of four main modules: apbstacle avoidefOA), a determined by the reinforcement learning. The upper bound of the
goal seeke(GS), anavigation superviso(NS), and arenvironment velocity for the reinforcement learning 18, max-
evaluator (EE). The OA determines the action, and Ad,, for the The fuzzy rule base plays a central role in mapping the sensor
behavior of obstacle avoidance, while the GS determines the actiomut spacel; to the mobile vehicle’'s action spaee and A4, . It



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999 317

stept = k. The whole process, until a collision occurred, is called
d a trial and the time step, (¢t > 0) is called thet™ learning step.
For instance, if a trial ends at= k where a collision occurs, then
a failure signal is fed back to the learning network, and the rules
which were used at the previous time stépsk — 1, & — 2, that
have contributed to this failure would be changed in order to get
an improvement on the vehicle’s performance. In Fig. 5, this task is
accomplished by two adaptive neuron-like elements in which one is
. for updating the rules concerningand the other one for updating the
: —— ' Y rules concerning\d. Each element consists of an associative search
l DefuAfication element (ASE) and an associative critic element (ACE) [17]. After
Fig. 5. Diagram of the neural network to learn obstacle avoidance.  the rules are updated, a new trial begins at(the: 1)"" leaming step.
The process is iterated and terminated until no more collisions occur.
Suppose that the current configuration of the vehicl&(s) =

w —"I Fuzzy Quantization

consists of 243 fuzzy rules, each of which is denoted by (X,(1)Y,(t)6(t))", and the five sensor group readings are encoded
Rulej: IF d; isDj; AND --- AND ds is Djs into g;. (In) order to give the associativity in learning the rules, the
. trace,z; (¢) of the firedjth rule, is used. The trace at time steg; 1
THEN v, is V;, Af, is AQ; is given by
forj =1, ---, 243, whereDj; fori =1, ---, 5, are the fuzzy sets
for d; in the jth rule, which take the linguistic value & N, NR or it +1) = A () + (1= A\)p; () (5)

FR; v, and A8, denote the output variables; ah@ and A©; are ) )
the fuzzy sets fow, and Ad, in the jth rule. Let the fire strength Where, 0 < A < 1, is the trace decay rate. Each ACE receives

of the jth rule be denoted by:;. For the inputsd; = d;, the fire the external reinforcement signal,.(t) (m = 1, 2), as a perfor-

strength of thejth rule, i; can be written as mance feed back from the environment, and generates the internal
, o . , reinforcement signalsi,..(t) (m = 1, 2), which are fed into the
1 = 10 (A1) A sy (da) A po s (ds) A o g (da) ASE for updating their weights. The external reinforcement signal
A pp s (ds). (2) is determined by
If the Mamdani’s minimum operation [16] is used for fuzzy —-1, ifmin(di|i=1,2,---,5)
implication, the memberships of the inferred fuzzy control action, ;. ()= / <Ro+Vimax x AT form=1,2 (6)
V and A© are calculated by 0. otherwise ‘
243
pv(ve) = U 1 A v, (va) where,AT is the time interval between two learning steps. In order
j=1 to define the internal reinforcement signal, the temporal difference
and learning theory is used [19], where if the external reinforcement
243 signal isr,(t) at time stept, then P,(¢) may be used to predict
pae(Aa) = s A pae, (A6.). (3) the discounted sum
J=1
For the reason of limiting the computing cost, the method of height 2 (t) = Z »ﬁ'*%m(t’ +1) (7)
defuzzification is used. The crisp control action is given by —t
§ . where the discount-rate parameter0 < v < 1, determines the
— Hab1s extent of the prediction. If the predictions are accurate, then from
Ve = (7) we have:
D ni
=1 Pm (t - 1) =Tm (t) + YPm (f) (8)
and . -
243 In practice, the ACE learns to make the predictions whexét)
Z"fb?f is implemented as a weighted sumof(¢) and given by
Ab, = = (4) 243
243
Z 1y pm(t) =G (Z “W“Wﬂﬂ) 9)
. Jj=1
=1
where G(z) = 2/(1 + ¢ **) — 1. Thus the mismatch or time

B. Rule Learning for Obstacle Avoidance difference error between the two sides of (8) is defined as the internal

In essence, the problem engaged in constructing the rule basgforcement signal and can be expressed as
is to determine the values fdr; andb2;. In the case of learning

to avoid obstacle, the input/output pairs are not available, thus this Fon (1) = 7o (1) + YD () = Do (t — 1) (10)

becomes an unsupervised learning problem. In this paper, we employ

the reinforcement learning method using the Sutton and Barto's modelere v,,,; for m = 1, 2; j = 1, ---, 243, are the weights of the

[18] to fulfill this learning requirement (Fig. 5). ACE. In order to predicp., () correctly, the weights of ACE must
In principle, the vehicle begins the learning with an initiend be updated, which can be expressed as

A# at time stept = 0, then the vehicle moves into a new position

at time stept = 1, and so on, until a collision occurs at the time Vi (t + 1) = 05 () + 87 (0, (1) (11)
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where 3 is a positive constant determining the rate of change of
vmj. Similarly, the weights of the ASEy,,; for m =1, 2; j = 4
1, ---, 243, are updated by

Wi (4 1) = wm; () + afm(t)em;(t) (12)

wherea, 0 < « < 1, determines the learning rate, and;(¢) is the
eligibility trace of thejth rule at timet, which is updated by collision -

ems(t4+1) = bemi(t) + (L= 8)ym (£)p;(t) (13) |- point B

start point A
where$, 0 < 6 < 1, is the decay rate of the eligibility. The eligibility
trace is a trace of what rules have been used and what control actions
have been applied to the vehicle. Hegg(t), are the control action
defined agy1(t) y2(t))" = (va Af,)". The center positions of the
fuzzy sets at each time step are determined by

trap situation

» X
Do (1) fm Fig. 6. Training by the EEMW = 60 cm, size 1000 cnx 800 cm).

bm (1) =bim + k max (|wi; (8)]) + |wm ()] -

. o - ~ the difference in parameter values should not have any significant
whereb; is the initial center position for the fuzzy sef§;; b2 IS offect on the simulation results.
the initial center position for the fuzzy setdf;; f.. is a positive At the start,v..;(t) are set to some small nonzero values, while
constant that determines the rangé.of (#); and the positive constant winj (), T (1), pm'(t‘_ 1), em;(t) are set to zero. The vehicle begins
k is used to guarantee the fuzzy sets of the output variables 40, arbitrary initial configuration &#(0) with nonzero initial control
be within their universe of discourse. According to (1#),;(t) €  action. In order to facilitate the learing process, a prespecified rule
[ = fon /(14 F), b+ fra /(1 4 K)] @nd Vi max 1S (b1 + f1). 0 the rule base is used which is I = FR fori = 1,---, 5,
With known control actions of the current time step, the vehicleygy b1, 245 = 27.5 cm/s andbs, 245 = 0. The learning process is
configuration at the next time step is updated by iterated as follows: 1) the current distance readings from the five
8(t) + Ada(t) sensor groups are_fed into th(_a fuzzy quantization module, where
S(t+1) = | Xo(t) + va(H)AT cos (8(t) + Ab. () |.  (15) they are encodgd inte;(¢); 2) if max (Jwm;(f)]) = 0, then the
‘ v (t) 4w (f,)AT sin ((t) + A '(t)) initial _con_trol actions,v, e_md A#d,, are used as the control outputs
¢ “ “ for this situation; otherwise the control outputs are determined by

Eventually, if the rules are sufficiently learned in a specific enviro4); 3) the extermnal reinforcement signal is calculated by (6), the
ment, the weights of the ASE converge to a set of fixed values. Whefrent prediction valug.. () is calculated by (9), and the internal

the learning process is terminated, the learned sét,ofis used as einforcement signal is calculated by (10); 4) the weights of the ACE
the rule base for the OA. and ASE are updated by (11) and (12), while the trace of the rule

and the eligibility trace are updated by (5) and (13), respectively;
and 5) finally, if there is no collision, the configuration of the vehicle

C. Simulation of Rule Learning for Obstacle Avoidance is changed by (15) and the learning process returns to Step 1. If a
collision occurs, i.e.ym(t) = —1; v (t), fi; (), pm(t — 1) and

In a reinforcement learning problem, the only piece of available ;) are reset to zero. The vehicle is backtracked 4 steps and its

information is presented by the reinforcement signal received froﬁ%ading direction is reversed. The weights of the ASE; (#) which
. S (t

the environment. To obtain the gradient information, a reinforcemegly |earmed just before the collision are then used for the next trial.

system probes the environment through the combined use of triq\ﬁe next trial begins by repeating Step 1 through Step 5 again.
and errors and delayed reward. This form of exploration searches forAS the learning process continues, the center positions of the

directional information on the basis of the environment propertiegempership functions of the output fuzzy sets are tuned from the
In so doing, however, the reinforcement learning system is Slowﬁﬁtial values,b; and b, to the correct valuess,; and bs;. In the

down. Thi§ phenomenon_is known as the conflict betw_een exploratig;gample shown in Fig. 6, the start configuration of (280 cm 196 cm
and exploitation [20], which can be stated as a conflict between —45°)" was used. After a number of learning steps, the vehicle went
1) the desire to use the rule base already learned; into a trap situation and failed to get out. Then the vehicle was moved
2) the desire to acquire more knowledge about the consequengeg new start configuration of (520 cm 240 &) manually and a
of the actions so as to make further improvement on the rulsw trial began. The weights of the ASE were tuned as the learning
base in the future. process continued. If we consider the change of the ACE’s weights
For efficient learning, a tradeoff between exploration and exploitati@re calculatedAw,,;(t) = wum,;(t + 1) — wym;(¢), the norms of the
should be achieved to maximize the effect of learning and minimizector Aw,, = (Awni, =\ Ay -+ Awpmaaz)’, [|Awn, is
the costs of exploration. large when there is a collision, and small otherwise. Therefore, it is
1) Environment Exploration MethodThe EEM is a straightfor- not viable to determine the convergence using this term. Neither is it
ward and simple method. It explores and converges slowly inraliable to set a large number of learning steps as extensive simulation
complex environment for learning and compiling the rule basshows that the EEM still has collision at up to 100000 steps.
For the purpose of simulation, a slightly more complex, computer In order to study the impact df" on the learned rule bases, the
generated environment is used (Fig. 6). The parameters used tiymination condition was set at 100000 learning step. Simulation
the simulation are shown in Table I. It is possible that other setsns were conducted under the same set of parameters but of different
of parameters could be used for this purpose. As the new trainiflg. The impact ofi¥ is that a smalledV maps all the five sensor
method is compared with the EEM on the same set of parameteeadings to a situation ofivn(d;) = 0, pnr(d;) = 0, and
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TABLE |
PARAMETERS USED FOR SIMULATION
R =28cm AT =03 A=05 b, =15cmls b, =0 p= a=08
W =20cm &5 =085 y =095 fi=15emis | f,=nm12 k= £=15
Y Y

Starting point A Collision Starting point B

Fig. 7. Learning in a simple environmerit{ = 20 cm).

rrr(d;) =1 more frequently meaning that only;,, 245(¢) of each
ASE is updated. On the contrary, a largét reduces the values of
wrr(d;). If any one of them is reduced to zero, the associated rule
is not updated and therefore, more blank rules are produced with th
increase of the value of’. In an extreme situation in which the
value of W causesuvn(d;) = 1 for all the five sensor readings
throughout the whole training process, then anly, 1 (¢) is learned.

We have also observe that: first, in the case thaandd; are F'R
andurr(de) = prr(ds) = prr(ds) = 1, v is very small andAé
is large. This action could cause the vehicle to turn around withodirection. The CW direction training phase starts at configuration
being able to move in an unobstructed situation. Second, in the c&€226 cm, 60 cm, 99 from which, after two collisions, the
thatd, andds; areV N andunr(ds) = uvr(ds) = pvr(ds) =1,  vehicle navigated successfully. The learning process converged at 360
v is very large and\# is nearly zero; also, whety andds areV N learning steps with 11 collision, while the convergence of the learning
andurr(de) = prr(ds) = prr(ds) = 1, vis very large and\d is  process of the EEM method is uncertain at up to 100000 learning
very small. These actions could cause a collision easily. Third, wheteps with 267 collision. Therefore, the new training method is able
W increases, the above-mentioned problems improved. The furtih@rconstruct the rule base with less cost and less time. If the number
findings of the simulation are: 1) no matter whit€h is used, the of learning steps taken before a collision is used to measure the
vehicle frequently goes into trap situation and 2) the learned rulpsrformance of a learning process. The rules were almost sufficiently
are difference if different start configurations are used. This indicateesirned (1.2% of the rules were blank) in our method after 13 trials.
that the convergence of the learning method is not unique. On the other hand, the rules of the EEM were far from sufficiently

2) New Training Method:Instead of using a complex traininglearned (30% of the rules were blank) up to 76 trials and it collided
environment, the new training method was conducted in a simpte less than 6000 steps.
corridor-like environment as depicted in Fig. 7. As the environment is
regular, the vehicle trajectory remains unchanged while the learning
process converges, where the criterion for terminating the training IV. PERFORMANCE ANALYSIS
process can be based upon. The new training method is dividedo further evaluate the performance of the navigator, it was
into two phases according to the moving direction of the vehiclembedded in a fully integrated and interactive simulator developed
First, the vehicle begins its training from an arbitrarily chosen stash the SGI IRIX operating system and the Openinventor platform.
configuration, where the vehicle moves in a clockwise (CW) Orhe environment is an indoor floor space including offices and labo-
counter-clockwise (CCW) direction. In this phase, the learning iaitories. Scene objects including tables, chairs, book shelves, human
iterated as in the EEM. This training phase is completed whéyeings, and other mobile vehicles have been constructed according
the vehicle maintains a constant trajectory without collision. In it® the true dimensions of these objects and incorporated into it. The
second phase, the vehicle then learns to navigate in the oppositaulator displays a top view of the complete environment, and a
direction with a new start configuration. Upon collision, the vehicléhree-dimensional (3-D) camera view on top of the vehicle. The start
backtracks 40 steps and turns an additional steering &rgt¢30) if  and goal configurations for each navigation task can be defined by the
in CW direction or(x/30) if in CCW direction. This training phase mouse keys and/or the keyboard. In Fig. 8, the vehicle trajectory from
is completed when the vehicle keeps a constant trajectory withoytto g, is shown by the dotted line drawn after the navigation task
collision. has completedt; ). Three cases are compared in Fig. 8, wherand

The set of parameters given in Table | is also used in this are the trajectories determined by the vehicle while using the rule
simulation. WithT = 20 cm, it is found that a high number of base constructed by the new training method with and without the EE,
learned rules (only three rules blank) was obtained when the widtsspectively; and; is the trajectory determined by the vehicle while
of the corridor is 72 cm. From the start configuration A of (60 cmysing the rule base constructed by the EEM (terminated at 100 000
70 cm, 0), after 11 collisions, it navigated successfully in the CCWearning step withiV’ = 60 cm).

Fig. 8. Top view of a laboratory and the trajectory frem to ¢; .
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TABLE 1l

NAVIGATION UNDER THE RULE BASE CONSTRUCTED BY THENEW METHOD
T| p/fem | pfem | E, average d,, | max.d,, | time | obstacles | collision.

1] 833.7 | 785.6 +6,1% 14.8cm 40.1cm T738s |7 0

2]795.0 | 7598 | +4.6% | 9.Bem 338m |702s |6 0

3] 6825 [ 660.1 | +3.4% [ 7.6ecm J86ecm | 62.1s |5 0

4| 5843 | 573.0 | +2.0% | 4.3cm 13.2cm 546s |4 0

5] 493.7 [ 4850 | +1.8% [ 3.8cm 10.0cm | 4955 |2 0

6] 424.1 | 4229 | +12% | 3.lem 8.5cm 456s |0 0

JEJ 50 100 150 200 253 'ﬂ;i ks 160 50 e 250
Time step {0.35) Time siep (0 35 TABLE Il
NAVIGATION UNDER THE RULE BASE CONSTRUCTED BY THEEEM
Fig. 9. \elocity and steering angle functions 1qf.

T| p/cm | p/em | E, average d,, | max.d,, | time obstacles | collision.

1]834.0 7856 | +62% | 13.lem 35.1ecm | 780s |7 1

P : : 794.0 | 759.8 | +4.5% |259cm 95.5cm | 732s | 6 1

Fromt,, itis observegl that t.he velocity and steerlng.angle change% 0 T T 555 T 5 St e T3 1

are smooth. To study this particular property, the velocity and steering[=gzao (5730 | +1.9% | 4.1cm 29ecm | 3645 |2 )

angle functions are plotted in Fig. 9. At poist, the vehicle was at 5[ 493.7 4850 | +1.8% | 3.8cm 10.0cm | 504s | 2 0

a velocity of about 14 cm/s. When it reached time step “a,” thefl 4241 [ 4229 | +12% |3 lcm 85em | 4565 | O 0

vehicle turned its heading direction slightly toward the ggalith

a small drop in velocity. After this turn, it accelerated and passed
by the door on its right at “b.” Its velocity dropped slightly when it
was near the door. Beyond this point, it encountered another AMV . L )
at “c.” which caused the vehicle to slow down to below 12 cm/s 3) the relative error and the path deviation are proportional to the
before making a relatively large steering change to avoid the AMV. number of obstacles.

It then accelerated to top speed when passing the table (TB) at «gor the first point, the largest relative error is only 6.1% for Task

It continued to travel at this speed with little change in its steerin%eWhereas the smallest error is 1.2% when there is no obstacle. For
angle before encountering the human being (HB1) at “e.” The vehidlee second point, we can see that the relative error decreases as the
detected the presence of the human being, decelerated, and stedpgaper of obstacles decreases. For the third point, the trend is clear
to the left. It accelerated when passing the bookshelf (BS) at «that the navigated path deviates a !ot more frpm the shortgst_ path if
and decelerated when approaching the two human beings at “g.” there are more obstacles present in the en\_/lronment. Th|§ is to be
vehicle slowed down to about 9 cm/s when it was directly in front gP*Pected because of the use of the EE which tends to give larger
HB3, before making a turn to the right, approaching “h.” At this poin{c'éarance from the obstacle. ) o

it selected the path between HB2 and HB3 and navigated throughFOr comparison purpose, the same six navigation tasks were

When the vehicle approached the goal, it decelerated gradually ufgiPeated using the rule base constructed by the EEM, and the results
coming to a stop at poinj. are given in Table Ill. It is observed that collision occurred for the

From Fig. 9, it can be observed that first three tasks, while_the remgining three tas_ks were succgssfuI: It
] o ) is also observed that first, the time consumed in each case is similar
1) the range of acceleration/deceleration is small w_he_n it passgShe preceding cases. Second, there is a large deviation (95.5 cm)
by an obstacle but large when the obstacles are in its path; from the shortest path due to a wrong turn the vehicle made at one
2) there is no abrupt change of velocitt& cm/s); point of the path. It subsequently navigated back on course. Third,
3) there is no abrupt change in the steering angi1(5’). for the rest of the tasks, the values for, E,, averagel,, and max.
These properties have obvious benefit for practical application whén. are roughly the same as the preceding cases.
the vehicle’s dynamics become an important considerationz:0On
the velocity and steering angle functions are very similat;teven V. CONCLUSION
though the EE was not used. As foy, it is found that the changes

2) the less obstacles the vehicle tackled, the closer the path is to
the shortest path;

We have presented a fuzzy navigator that performs well in complex

in_velocity and stegring gngle are more abrupt tharand_ t2. N and unknown environments, using a rule base that is learned from
this case, the velocity varied betwess cm/s and the steering angle, gimple corridor-like environment. The principle of the navigator
varied between +40and—29". Although these cannot be considereds it on the fusion of the obstacle avoidance and goal seeking

as large changes, and their impact to the vehicle dynamics cannopfaviors aided by an environment evaluator to tune the universe of
ascertained, smooth and small changes are desired. On an imporaltyrse of the input sensor readings and enhance its adaptability.
note, the vehicle collided with HB3 at. ) For this reason, the navigator has been able to learn extremely
To evaluate the path quality determined by the navigator, tgickly in a simple environment, and then operate in an unknown
visibility graph method [21] was used to find the shortest path for ea@ﬂvironment, where exploration is not required at all.
navigation task which is shown by the solid line in Fig. 8. At each gpecifically, the rule base for obstacle avoidance has been con-
time step, the deviation of the vehicle’s position from the shortegfrycted through reinforcement learning using a cost-effective new
path is denoted by... The length of the actual path and the shortegtajning method. The new method is reliable and has no uncertainty
path are represented by, and p., respectively, and the relative of convergence compared with the EEM. In addition, the new training
error between the actual path length and the shortest path lengifathod has five distinct advantages over the existing EEM:
(pa—p.)/p. is denoted byE,.. On the same floor plan, six navigation 1) 270 times faster in learning speed:
tasks were conducted and the errors are tabulated (Table I1). 2) only 4% of the learning cost; '

It can be seen that 3) very reliable convergence of learning;
1) the navigator achieves a path reasonably close to the shortest) 98.8% of learned rules;
path; 5) high adaptability.
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Numerous simulation runs show that this new navigator is charac- Network-Based Approach to
terized by first, it's ability to tackle an unknown environment without Online Cursive Script Recognition
having to explore it beforehand or being supervised; second, it's free
of local minimum; third, its smooth changes of velocity and steering Bong-Kee Sin, Jin-Yong Ha, Se-Chang Oh, and Jin H. Kim
angle; fourth, its planned path is close to the shortest path; and fifth,
it's both nearsighted and farsighted. A comparison of the navigator

using the rule base obtained from the new training method and th

@bstract—The idea of combining the network of HMM'’s and the dy-
amic programming-based search is highly relevant to online handwriting

EEM, shows thgt th_e new naviga_ltor guarantees a solution when ]Ebgognition. The word model of HMM network can be systematically
EEM-based navigation fails and its solution is more acceptable. constructed by concatenating letter and ligature HMM's while sharing

common ones. Character recognition in such a network can be defined
ACKNOWLEDGMENT as the task of best aligning a given input sequence to the best path in
the network. One distinguishing feature of the approach is that letter

The 3-D real-time simulator used in this research work weaegmentation is obtained simultaneously with recognition but no extra-
developed by a number of students involved with tl@ECTATIONS ~ Computation is required.
project, of which the contributions of F. P. Fong and Y. L. Lee are Index Terms—Cursive script, hidden Markov model, ligature, network

acknowledged. search, online character recognition, segmentation, Viterbi algorithm.
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