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A Class of -Channel Linear-Phase Biorthogonal Filter
Banks and Their Applications to Subband Coding

S. C. Chan, A. Nallanathan, T. S. Ng, and P. C. K. Kwok

Abstract—This correspondence presents a new factorization for linear-
phase biorthogonal perfect reconstruction (PR) FIR filter banks. Using
this factorization, we propose a new family of lapped transform called
the generalized lapped transform (GLT). Since the analysis and synthesis
filters of the GLT are not restricted to be the time reverses of each other,
they can offer more freedom to avoid blocking artifacts and improve
coding gain in subband coding applications. The GLT is found to have
higher coding gain and smoother synthesis basis functions than the lapped
orthogonal transform (LOT). Simulation results also demonstrated that
the GLT has significantly less blocking artifacts, higher peak signal-to-
noise ratio (PSNR), and better visual quality than the LOT in image
coding. Simplified GLT with different complexity/performance tradeoff
is also studied.

Index Terms—Filter banks, signal processing, transforms.

I. INTRODUCTION

Subband and transform coding are two most widely used methods
for data compression of image and audio signals. The performance of
a subband coding system is significantly affected by the filter bank
and the quantization scheme used. The theory and design ofM -
channel FIR filter banks have been studied extensively [7]. Due to
the large number of parameters and constraints in the optimization
problem, the design of generalM -channel FIR filter banks is usually
very difficult and time consuming. More recently, efficient filter bank
structures such as the modulated lapped transform (MLT) [18], the
cosine modulated filter banks (CMFB’s) [17], the extended lapped
transform (ELT) [3], and the lapped orthogonal transform (LOT) [2]
have been proposed to reduce the design and arithmetic complexities
of PR FIR filter banks. Most of these filter structures considered
are orthogonal in nature, and the analysis and synthesis filters must
be time reverse of each other. It has been observed by Aase and
Ramstad [13] that for image coding, the functions of the analysis filter
bank should maximize the energy compaction, whereas the synthesis
filter bank should provide blocking-free reconstruction. In addition,
the synthesis filters should be short to avoid excessive ringing and
should be smooth enough to reduce blocking effects. Since the
analysis and synthesis filters of an orthogonal system must be the time
reverse of each other, it is very difficult to achieve these objectives
simultaneously. On the other hand, biorthogonal filter banks do not
suffer from this restriction, and they are more appropriate for this
application.

In this correspondence, we propose a new factorization of linear-
phase biorthogonal perfect reconstruction (PR) FIR filter banks. Using
this factorization, it is possible to obtain linear-phase orthogonal and
biorthogonal lapped transform with greater overlap. We also propose
a new family of biorthogonal lapped transform called the generalized
lapped transform (GLT) for subband coding applications. Like the
LOT, the GLT has relatively low complexity of implementation and
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is based on the well-known discrete cosine transform (DCT), where
many fast algorithms are also available [10], [11]. It should be noted
that complete factorization of the orthogonal linear-phase PR filter
banks has previously been obtained by Somanet al. [6]. Using this
factorization, Queirozet al. [5] have extended the LOT to length
greater than2M: The paper is organized as follows. In Section II,
we will introduce the factorization for linear-phase biorthogonal PR
filter banks. The family of biorthogonal lapped transform and the
generalized lapped transform (GLT) are discussed in Section III.
Section IV is devoted to the design of the GLT and the design
examples. The performance of the GLT for image coding will be
presented in Section V. Finally, we summarize our work in the
conclusion.

II. THE LINEAR-PHASE PR CASCADE

Fig. 1 shows the structure of anM -channel uniform filter bank
(or analysis-synthesis system) withfi(n) and gi(n) the analysis
and synthesis filters, respectively. The incoming signal is split into
frequency bands by filtering with the analysis filters. Each subband
signal is then maximally decimated by a factor ofM: After processing
in the subband domain, theM decimated signals will be interpolated,
filtered by the synthesis filters, and added together to reconstruct the
signal. In a perfect reconstruction (PR) filter bank, the input and
output are identical, except for some delay [i.e.,y(n) = x(n�nd)].
For perfect reconstruction,fi(n) and gi(n) have to satisfy certain
conditions. LetFi;k(zM) and Gi;k(z

M) be the type-I and type-II
polyphase components ofFi(z) andGi(z), respectively.

Fi(z) =

M�1

k=0

z
�k
Fi;k(z

M)

Gi(z) =

M�1

k=0

z
�(M�k�1)

Gi;k(z
M): (2.1)

The filter bank is PR if [7]

RRR(z)EEE(z) = z
�d
IIIM (2.2)

whered is a constant,IIIM is the(M �M) identity matrix, andEEE(z)
and RRR(z) are the polyphase matrix of the analysis and synthesis
filters and are given by

[EEE(z)]i;k = Fi;k(z); [RRR(z)]i;k = Gi;k(z): (2.3)

In paraunitary FIR filter banks, bothEEE(z) and RRR(z) are FIR
matrices, andRRR(z) is chosen to be~EEE(z) = EEET

�
(z�1), where� and

T denote the conjugation of coefficients and matrix transposition,
respectively. Therefore, the impulse responses of the analysis and
synthesis filters are the time reverses of each other. In biorthogonal
FIR filter banks, bothEEE(z) andRRR(z) are FIR matrices satisfying the
PR condition. In addition, the analysis and synthesis filters are not
restricted to be time reverses of each other. This provides additional
freedom in coding applications, as we shall see in Section V. In addi-
tion, they can usually provide higher coding gain than their orthogonal
counterparts. The linear-phase structural PR cascade introduced here
[9] is motivated from the structure of the cosine modulated filter
banks (CMFB’s) in [3] and [17]. In CMFB’s, the analysis filters
fk(n) and the synthesis filtersgk(n) are obtained by modulating
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Fig. 1. M -channel uniform filter bank.

(a)

(b)

Fig. 2. (a) Flowgraph of the forward GLT. (b) Flowgraph of the inverse GLT.

TABLE I
CODING GAIN COMPARISON OF LOT AND GLT’S

prototype filtersh(n) ands(n) with the modulation sequencesck;n
and ck;n, respectively:

fk(n) =h(n)ck;n

gk(n) = s(n)ck;n; k = 0; 1; � � � ;M � 1

n = 0; 1; � � � ; N � 1 (2.4)

whereM is the number of channels, andN is the length of the filters.

Two possible modulations are given by

ck;n =2cos (2k+ 1)
�

M
n�

N � 1

2
+ (�1)k

k

4
(2.5a)

or

ck;n =
2

M
cos (2k+ 1)

�

M
n+

M + 1

2
: (2.5b)

Equation (2.5a) is the CMFB proposed in [17], whereas (2.5b) is
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(c) (d)
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Fig. 3. Eight-channel GLT. (a) Impulse response of analysis filterf0(n). (b) Impulse response of analysis filterf1(n). (c) Impulse response of synthesis
filter g0(n). (d) Impulse response of synthesis filterg1(n). (e) Frequency response of analysis filters. (f) Frequency response of synthesis filters.

the extended lapped transform (ELT) proposed in [3]. The analysis
and synthesis modulations are time reverses of each other. Due to
the special structure of the CMFB, it has very low design and
implementation complexity. LetH(z) = �2M�1q=0 z�qHq(z

2M) be
the type I polyphase decomposition of the prototype filter. It can be
shown that the polyphase matrix of the CMFB can be written in the
form

EEE(z) =
p
MUUUM [ppp(z) + JJJMqqq(z)] =

p
MUUUM� (2.6)

where

ppp(z) =hhh0(z
2)� z�1hhh1(z

2)

qqq(z) =�(�1)m(hhh0(z2)� z�1hhh1(z
2))

hhh0(z) = diag[H0(�z); H1(�z) � � �HM�1(�z)]; and

hhh1(z) = diag[HM (�z);HM+1(�z) � � �H2M�1(�z)]:
Here,IIInnn andJJJnnn stand, respectively, for the(n�n) identity matrix

and the counter identity matrix.UUUM is a unitary matrix related to the
modulation used. Asppp(z) and qqq(z) are diagonal matrices, matrix
� is zero except only along its diagonal and anti-diagonal entries.

Therefore, rows (columns)k andM � k of � are orthogonal to the
remaining rows (columns), and the PR condition can be simplified
considerably. Without loss of generality, we assume thatM is even.
Results for oddM are similar. Letpk;k(z) and pk;k(z) be the
kth diagonal elements ofppp(z) and qqq(z): The system is PR if the
determinant of the following submatrices is equal to some delay

SSSk =
�k;k �k;M�k�1

�M�k�1;k �M�k�1;M�k�1

=
pk;k(z) qM�k�1;M�k�1
qk;k(z) pM�k�1;M�k�1

: (2.7)

Equivalently, we have

detSSSk = z�� ; k = 0; � � � ; (M=2)� 1: (2.8)

This is equivalent to the PR conditions of a set of two-channel PR
filter banks. Ifh(n) is linear phase, thenSSSk, and it can be shown
that is lossless. Therefore, it is possible to implementSSSk with a two-
channel lattice structure [17]. For general values ofppp(z) andqqq(k), we
have the biorthogonal CMFB [19], [22], [23]. If the lossless condition
on SSSk is relaxed, then it is possible to use other lattice structures,
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Fig. 4. Sixteen-channel GLT. (a) Impulse response of analysis filterf0(n). (b) Impulse response of analysis filterf1(n). (c) Impulse response of synthesis
filter g0(n). (d) Impulse response of synthesis filterg1(n). (e) Frequency response of analysis filters. (f) Frequency response of synthesis filters.

such as the linear-phase lattice [21], as

Sk(z) =
1 1
1 �1

K�1

`=1

1 0
0 z�1

1 �(k)

�
(k)
` 1

: (2.9)

The use of the linear-phase factorization does not guarantee that
the analysis filters will be linear phase. In fact, the polyphase matrix
has to satisfy the following linear-phase test [20]:

IIIM=2 0

0 �IIIM=2
� [z�nEEE(z�1)] � JJJM = EEE(z) (2.10)

for some positive integern: Clearly, the matrix� satisfies the linear-
phase test if the factorizations in (2.9) is used. In order forEEE(z) to
satisfy (2.10), we must have

IIIM=2 0

0 �IIIM=2
UUUM

IIIM=2 0

0 �IIIM=2
= UUUM : (2.11)

This is only possible ifUUUM is a block diagonal matrix

UUUM = diagfUUU00; UUU11g

whereUUU00 andUUU11 are(M=2)� (M=2) invertible matrices. This is
rather restrictive. Fortunately, several such factors can be cascaded
together to form a more general linear-phase system. Suppose that the
polyphase matrixEEE0(z) is linear phase and PR. We want to determine
the condition on matrixHHH(z) such that the cascadeUUUMHHH(z)EEE0(z);
is also linear-phase and PR. Using the linear-phase test, we get

IIIM=2 0

0 �IIIM=2

UUU00 0

0 UUU11
z�n HHH(z�1)EEE0(z�1)JJJM

=
UUU00 0

0 UUU11
HHH(z)EEE0(z) (2.12)

for some positive integernd: PartitioningHHH(z) into four submatrices,
(2.12) can be rewritten as

z�(n �n) IIIM=2 0

0 �IIIM=2

HHH00(z
�1) HHH01(z

�1)
HHH10(z

�1) HHH11(z
�1)

�
IIIM=2 0

0 �IIIM=2
=

HHH00(z) H01(z)
HHH10(z) HHH11(z)

: (2.13)
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Fig. 5. Thirty-two-channel GLT. (a) Impulse response of analysis filterf0(n). (b) Impulse response of analysis filterf1(n). (c) Impulse response of synthesis
filter g0(n). (d) Impulse response of synthesis filterg1(n). (e) Frequency response of analysis filters. (f) Frequency response of synthesis filters.

TABLE II
OPTIMIZED NORMALIZATION FACTORS OF THE SIMPLIFIED 8-CHANNEL GLT

From (2.13), we obtain the required condition on the submatrices as

z�(n �n)HHH00(z
�1) =HHH00(z)

z�(n �n)HHH01(z
�1) =�HHH01(z)

z�(n �n)HHH10(z
�1) =�HHH10(z)

z�(n �n)HHH11(z
�1) =HHH11(z): (2.14)

Using the concept of structural constraints as in Section II, we let
HHHij(z) be diagonal matrices. Since thekth and the(k + M=2)th

rows (columns) ofHHH(z) are orthogonal to all other rows (columns),
the PR condition is simplified to the PR condition of the following
submatrices:

RRRk(z) =
Hk

00(z) Hk
01(k)

Hk
10(z) Hk

11(z)
; k = 0; 1; � � � ;M=2 (2.15)

whereHk
ij(z) are thekth diagonal element ofHHHij(z): It can be
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shown that a possible solution ofRRRk(z) is

RRRk(z) =
1 1
1 �1

SSSTk (z) and

HHH(z) =
IIIM=2 IIIM=2

IIIM=2 �IIIM=2
�T (z) (2.16)

where the(k; k); (k; k +M=2); (k +M=2; k); and (k +M=2; k +
M=2) entries of �T (z) are obtained from matrixSSSk(z): Using
(2.16), we can cascade several of these factors together to obtain
the factorization

EEE(z) =

K�1

`=0

UUU `
00 0

0 UUU `
00

�
IIIM=2 IIIM=2

IIIM=2 �IIIM=2
�T` (z) EEE0(z): (2.17)

A simple matrix forEEE0(z) is

EEE0(z) =
IIIM=2 JJJM=2

IIIM=2 �JJJM=2
RRR (2.18)

whereRRR is a persymmetric matrix satisfyingRRR = JJJRRRJJJ: If �`(z) is
obtained from (2.9) withK = 2, (2.17) represents a cascade structure
of linear-phase PR filter bank

EEE(z) =

K�1

`=0

UUU `
00 0

0 UUU `
00

IIIM=2 IIIM=2

IIIM=2 �IIIM=2

�
IIIM=2 AAAM=2

AAAM=2 �IIIM=2

�
IIIM=2 0

0 z�1IIIM=2

IIIM=2 IIIM=2

IIIM=2 �IIIM=2

�
IIIM=2 JJJM=2

IIIM=2 �JJJM=2
RRR (2.19)

whereAAAM=2 are diagonal matrices containing the multipliers�’s. It
can be shown that the matrix

IIIM=2 AAAM=2

AAAM=2 �IIIM=2

can be absorbed into the block diagonal matrix diag[UUU `
00UUU

`
11]: There-

fore, it can be removed from (2.19). Furthermore, ifUUU `
ii; i = 1; 2

are unitary (orthogonal) matrices, the filter bank will be paraunitary
(orthogonal) as well. In next section, we shall propose a family of
biorthogonal lapped transforms using this factorization.

III. A F AMILY OF BIORTHOGONAL LAPPED TRANSFORM

An example of the orthogonal representation in (2.19) is the lapped
orthogonal transform (LOT), which is an orthogonal filter bank with
length2M: The LOT was originally proposed to reduce the blocking
artifacts in traditional transform coding of images using the discrete
cosine transform (DCT). The corresponding polyphase matrix is given
by

EEE(z) =
1

2
PPP

IIIM=2 0M=2

0M=2 (CCCII
M=2SSS

IV
M=2)

T
IIIM=2 IIIM=2

IIIM=2 �IIIM=2

�
IIIM=2 0M=2

0M=2 z�1IIIM=2
RRR0 (3.1)

whereRRR0 = PPP 0diagfBBB2; � � � ;BBB2gCCC
II
MJJJM ; and

BBB2 =
1 1
1 �1

:

CCCk
M andSSSkM denote the type-k length-M discrete cosine and sine

transforms, respectively.PPP is a permutation matrix that permutes

Fig. 6. PSNR comparison of JPEG, DCT (with bit allocation), LOT and
GLT for coding the image “Lena.”

the kth and the(k + M=2)th rows to the(2k)th and (2k + 1)th
(k = 0; � � � ;M=2 � 1) rows, respectively.PPP 0 is a permutation
matrix that permutes the(2k)th and (2k + 1)th rows to thekth
and (k +M=2)th (k = 0; � � � ;M=2 � 1) rows, respectively. Using
the linear-phase factorization in (2.19), we introduce a biorthogonal
generalization of the LOT called the generalized lapped transform
(GLT). The polyphase matrix of the GLT is defined as

EEE(z) =
1

2
PPP

UUU00 0M=2

0M=2 UUU11

IIIM=2 0M=2

0M=2 (CCCII
M=2SSS

IV
M=2

�
IIIM=2 IIIM=2

IIIM=2 �IIIM=2

IIIM=2 0M=2

0M=2 z�1IIIM=2
RRRI (3.2)

whereUUU00 andUUU11 are block diagonal invertible matricesRRR1 =
PPP 0diagfBBB2 � � �BBB2gDDDCCC

II
MJJJM , andDDD is a diagonal matrix.

The lapped transform with greater overlap can similarly be defined.
In this correspondence, we parameterize the matrixUUU ii by products
of block diagonal(2 � 2) invertible matrices

UUU ii =

M=2�1

k=1

vvvik (3.3)

where

vvvik =

IIIk�1 0

xik yik
yik xik

0 IIIM�k�1

and

(vvvik)
�1 =

1

((xik)
2 � (yik)

2)

�

IIIk�1 0

xik �yik
�yik xik

0 IIIM�k�1

:

The signal flow graphs for theM -channel length2M forward
and inverse GLT are shown in Fig. 2(a) and (b). Parameterization
using the LU and Gauss–Jordan factorizations are also possible, but
the present choice has the advantage thatUUU ii is simple and diagonal
dominance. The parametersxik; y

i
k; dii (normalization factors) can be

used to maximize the objective function such as the coding gain.

IV. DESIGN PROCEDURE AND EXAMPLES

An important issue in transform and subband coding is the effi-
ciency of the transform or filter bank employed. The coding gain is
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(a) (b)

(c) (d)

Fig. 7. Performance of different algorithms on image “Lena.” (a) Original. (b) 0.3 b/pixel using DCT. (c) 0.3 b/pixel using LOT. (d) 0.3 b/pixel
using GLT (ND = 8):

frequently used as an effective measure of transform efficiency. For
the orthogonal transform, the coding gainGTC is given by

GTC =

1

M

M�1

i=0

�2i

M�1

i=0

�2i

1=M
(4.1)

where�2i is the variance of theith transform coefficients. For image
coding, the input is usually modeled as a first-order autoregressive
process. The corresponding covariance matrixRRRxx is given by

[RRRxx]ij = �ji�jj; 0 � i; j �M � 1 (4.2)

where� is the correlation coefficient, which is usually taken as 0.95.
For biorthogonal filter bank, the coding gain formula [15] is

GSBC =
1

M

M�1

k=0

AkBk

1=M
(4.3)

where

Ak =

L�1

i=0

L�1

j=0

hk(i)lhk(j)�
ji�jj

and

Bk =
1

M

L�1

j=0

g2k(j) 0 � k �M � 1:

hk(n) and gk(n) are the impulse responses of thekth analysis and
synthesis filters of lengthL: In addition to the coding gain, we
can incorporate other desirable properties in the design process. For
example, it is possible to reduce the blocking effects by minimizing
the stopband energies of the synthesis lowpass filterg0(n) with an
interval of�I (e.g., 0.002) at frequencies(i=M); i = 1; � � � ;M=2
[14]. We can also force the synthesis filters to assume small values
at the ends of the impulse responses to improve their smoothness.
Next, we shall present some design examples to be used in subband
coding of images and audio.

All examples presented here were obtained using the constrained
optimization program,NCONF, in theIMSL library. For audio coding,
the number of channels can be as large as 32. Therefore, we present
the design of GLT for eight, 16, 32, and 64 channels. In each case,
the coding gain is calculated using an AR(1) process with correlation
coefficient� = 0:95: The parametersxik; y

i
k; anddii are obtained by

maximizing the coding gain of the system. Table I shows the resulting
coding gains(GSBC) after the optimization. The coding gain of the
LOT is also given as a comparison.
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It can be seen that the GLT has a higher coding gain than the
LOT. Figs. 3–5 show the impulse responses of the first two analysis
and synthesis filters and the frequency responses of the GLT with
M = 8; 16; and 32, respectively. It can be seen that the synthesis
filters are much smoother than the analysis filters and decay to zero
at both ends to reduce the blocking artifacts.

We have also investigated a simplified version of the GLT, where
the matricesUUU ii are chosen as identity matrix. In this case, only the
parametersdii’s are present, and the simplified GLT would require
M more multiplications than the LOT. Since the higher order basis
functions are less important in reducing the blocking artifacts and
improving the coding gain than the lower order basis functions,
we can further reduce the arithmetic complexity by setting their
normalization factors(dii) to 1. This will considerably reduce the
arithmetic complexity of the GLT for real-time applications. These
remaining free parametersdii; i = 0; � � � ; ND � 1; are used to
optimize the coding gain of the system. Here,ND is the number of
normalization factors that we have retained in the GLT. The coding
gains of the simplified GLT with different values ofND are shown
in Table I. The optimized normalization factors for the eight-channel
simplified GLT are shown in Table II. It can be seen that the coding
gains of the simplified GLT’s are quite close to each other. In addition,
the impulse responses of the simplified GLT’s are also similar to
those of the GLT.

V. CODING PERFORMANCE

In this section, we will compare the performance of the DCT,
LOT and GLT in image coding. (8� 8) DCT and separable eight-
channel length-16 LOT and GLT(ND = 8) are used for simulation.
For a fair comparison between the systems, we follow the JPEG
quantization scheme with the DCT replaced by the LOT and the GLT.
The quantization table is obtained using the bit allocation algorithm
proposed in [24], and no human visual model has been used. Fig. 7
shows the images “Lena” (512� 512 8-bit grey scale) encoded to
0.3 b/pixel using the various algorithms. The PSNR comparison of
the various algorithms is shown in Fig. 6. The JPEG algorithm using
the default quantization table is also given as a comparison. It can
be seen that the image encoded using the GLT has significantly less
blocking artifact and higher PSNR than that of the DCT and the LOT.

VI. CONCLUSION

In this correspondence, we have presented a new factorization
for linear-phase biorthogonal perfect reconstruction (PR) FIR filter
banks. Using this factorization, it is possible to obtain linear-phase
orthogonal and biorthogonal lapped transform with greater overlap.
We have also proposed a new family of biorthogonal lapped transform
called the generalized lapped transform (GLT) for subband coding ap-
plications. The GLT is found to have higher coding gain and smoother
synthesis basis functions than the lapped orthogonal transform (LOT).
Simulation results also demonstrated that the GLT has significantly
less blocking artifacts, higher peak signal to noise ratio (PSNR), and
better visual quality than the LOT in image coding. Simplified GLT
with different complexity/performance tradeoff is also given to further
reduce the implementation complexity.
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