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1 Introduction On the other hand, segmentation by clustering in a mea-
surement space such as a histogram sfat¥r one of the
many color spacé§'°has at times received considerable
attention. For instance, an early work in the mid-1970s by

Image segmentation is one of the important steps often
taken preceding image analysis. Its main purpose is to ex-
tra_\ct .ObJECtS of mt_ergst _CO’?ta"‘.ed In an image according to Hartigart® highlighted that clustering can be based on mini-
criteria such_as similarity In pixel intensity, color value;, . mizing the total sum errors of K clusters representing all
texture, gradient, edges, histogram modes, or some statistiy,e pixels in the image, where individual sum error is cal-
gal behavior. Pixels that satisfy one or more of these crite- jjated as the sum of the errors between the pixels in a
ria are then grouped together where each of these may repzjyster and the mean of these pixéésmeans algorithm
resent a complete or part of an objéctOver the pastfew  Around the same time, Ohlandémproposed a recursive
years, different segmentation algorithms have been re-histogram-directed spatial clustering scheme that aimed to
ported which can roughly be classified into three major separate one mode of the histogram from another until all
categories: spatial segmentatini, edge-based seg- the segmented regions can each be represented by a single
mentation:°~*? and segmentation by clustering in a mea- mode histogram. As real image histograms are spiky in
surement spacE°In general, these algorithms differ by nature, the results from this method tend to be noisy with
how the pixe| groups are formed and which criterion is nhumerous small regions. To alleviate this problem, the
being used. original histogram may be smoothed so that the resulting

Typical representatives of spatial segmentation are the Separation of the histogram modes is more accurate and
seed-based algorith&® and split-and-merge  al- less noise prone. Unavoidably, the smoothing operation
gorithms®~° The former algorithms are conceptually and gartly dgt(fermmer? the ou(tjcomec loéfsnghe se%mentatlon.

'- : . temmed from the same idea, Ce roposed a 1-D
computationally simple and their results are acceptable. . . ' ;
Unforitunately ):hey gre also rather sensitive to noispe and histogram segmentation method in the perceptually uniform

h h d f formi | b f ! color spacgLAB), of which the segmentation was heavily
ave the tendency of forming a large number of small re- yaarmined by how accurately the single mode histograms

gions when real images are concerned. The latter algo-5re extracted. A very similar algorithm known as the multi-
rithms are less sensitive to noise or sharp spatial variations,spectral thresholding algorithm was described in Sonka
but the resulting object boundaries often appear undesirablyet al! for color images. Hedley and Y&halso used histo-
blocky. For edge-based segmentation, the major problemgram analysis but combined clustering with edge detection
lies with its sensitivity to noise and poor quality of the in which only low gradient pixels are subject to the analy-
edges in generdl. sis. Their results were compared with the K-means algo-
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rithm on a well-defined color road map where they claimed Sec. 5 concludes this paper with detailed discussions on the
a better performance on detailed information and clustering comparison.
time. However, the test image has very good contrast and
sharp edges, and it is difficult to assess its performance2 Constrained Gravitational Clustering
against the K-means algorithm when it is not so.

From a different perspective, Lim and éeised a vari- 2.1 Concept
ant of the RGB color space where thresholding was usedThe concept of this constrained gravitational clustering
for coarse segmentation and a fuzzy c-mean method was(CGC) algorithm is built upon the gravitational clustering
used for fine segmentation. Although numerous small re- method originally proposed by Wrightfor data analysis.
gions resulted, the boundaries were fairly smooth. Simi- In brief, gravitational clustering defines a finite system of
larly, Beni and Lid® proposed a fuzzy clustering algorithm  particles in space, each with a specified initial location, a
with minimal biases and used the maximum entropy prin- zero velocity, a given mass, and a negligible volume, that
ciple to maximize the entropy of the centroids. Along this converge to the centroid of the system due to the gravita-
line, Mathews and Hearh®proposed a non-metric fitness tional attraction between the masses. The physical model of
measurement which predicted the data properties by mini- gravitational clustering includes complex calculations in
mizing the conditional prediction errors where their algo- Velocity, accelerations, and collisions of particles, where
rithm was compared with the K-means algorithm and Wright simplified it to a Markovian model in which move-
showed that they can achieve a smaller and more stablements of particles depends only on the locations and
error rate on two Gaussian distributed data sets, though nomasses of the remaining particles and not on any past his-
real images were tested in this case. tory. Thus the Markovian model of gravitational attraction

In general, measurement space clustering has a numbepetween two particlep, andp; is defined as:
of merits. First, the transformation from the spatial domain meX m
is usually many-to-one, resulting in a reduced data set Fpkpiz—Gﬁ(sk—s)
which has computing advantage. Second, although many of TS
the clustering methods are inherently recursive or iterative, whereG is the gravitational constanty is the mass, and
most of them generate reasonably smooth region bound-is the location vector. Due to this attraction, particles are
aries and are less prone to noise and local boundaryclustered until a single mass is left in the system. The op-
variations'®?° For these reasons, clustering in a measure- timality of the clustering is determined in terms of the per-
ment space has been widely used for image segmentationcentage of particles clustered versus the time taken to clus-

@

particularly when color images are concerned.
In this paper, a new clustering algorithm derived from
the Markovian model of the gravitational clustering

ter them. As it is, this model cannot be applied directly to
image segmentation because of the fact that optimum result
can only be determined after all the particles are clustered

concept! is proposed that works in the RGB measurement iNto a single mass and the clustering time is calculated.
space for color image. To enable the model to be applicable USing clustering time as an indicator of optimality almost
in image segmentation, the new algorithm imposes a clus- ¢€rtainly has no correspondence to optimal image segmen-
tering constraint at each clustering iteration to control and t@tion results, while the whole clustering process is poten-
determine the formation of multiple clusters. Using such tally time-consuming for large digital images generally

constraint to limit the attraction between clusters, a termi-
nation condition can be easily defined, for example, when
the attraction between clusters is zero. Conventionally,
evaluation of segmentation results is never straightforward,
but the new clustering algorithm is evaluated objectively
and subjectively on three different images against the K-
means clustering algorithiii,the recursive histogram clus-
tering algorithm for colofalso known as the multi-spectral
thresholding,>* the Hedley-Yan algorithn® and the
widely used seed-based region growing algoriftthThe

Liu and Yan§ method is employed for the objective as-

used in many applications nowadays.

The CGC algorithm resolves these two issues by first
introducing a new constraint which makes the clustering
meaningful with respect to the spatial property of images,
and second, mapping the spatial image data into the RGB
color space for data reduction. In the former case, a force
effective function(FEP is defined such that it governs the
effectiveness of the attractive force between particles. In
essence, when the net force acting on a particle is con-
cerned, only those particles that satisfy the FEF constraint
contribute to the calculation of the net force. According to
this nonzero net force, the particle moves to a new location,

sessment, while three visual features are inspected in theyq if more than one particle share the same location, these

subjective assessment. From the evaluation, it is observedp

that the new algorithm exhibits the following characteris-
tics: (1) its objective measurement figures are comparable
with the best in this group of segmentation algorithit®3;
it generates smoother region boundari@the segmented
boundaries align closely with the original boundaries; and
(4) it forms a meaningful number of segmented regions.
The organization of this paper is as follows: Sec. 2 pre-
sents a detailed description of the new algorithm; Sec. 3

articles are merged to form a new particle. The clustering
process iterates by determining the new net force on each
particle until the net forces on all the particles are zero.
With the FEF, the number of particles to be considered in
each calculation is substantially reduced while the number
of clusters formed corresponds to the number of segmented
regions. For the latter case, the use of the RGB color space
seems appropriate as true color images are in RGB, and the
mapping itself is many-to-one. Thus, the resulting number

briefly describes the evaluation conditions, test images andof particles becomes smaller than the total number of image
evaluation methods used; Sec. 4 provides details of the ob-pixels and is independent of the image size. Moreover,
jective evaluation and the subjective inspection results; andscaling of the measurement space resolution is also possible
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Fig. 1 Conceptual flow of the constrained gravitational clustering algorithm.

if further data reduction is desired. Figure 1 depicts the
conceptual flow of the constrained gravitational clustering
algorithm for image segmentation.

2.2 Algorithm
For a true color imagg of sizeM XN, each pixel is de-

fined by three colors: red, green and blue. Therefore, the

pixel value ofg at (X,y) can be represented by

gR(va)
ge(x,y) |,
gB(X!y)

a(x,y)= )

wherex=1,..M, y=1,...N, andggr(X,y),9¢(X,Y),9s(X,Y)

e [0,...] — 1], wherel is the number of color levels. The
mapping of the image pixels to the RGB color space can be
illustrated in Fig. 2, where each pixel in the spatial domain
is mapped to the measurement space according to the
RGB values(Note that four clusters are already noticeable
after the mapping. Each pixel represents a mass of 1.
Whenever there is more than one pixel mapped to the sam
location in the RGB space, the mass of that particle before
clustering equals to the total number of pixels mapped to it.

Ir

for k=1,..Q where Q<M XN. The gravitational attrac-
tion, Fpkpi’ between two particlep, and p; is defined by

the Markovian model as given in E€l). Therefore, the net
force on particlep, due to all the other particles satisfying
the FEF constraint in the RGB space can be written as
follows:

n
Foe= 2, Fop X W(PKPy), (4)
k#i

whereW(-) is the FEF, which can take the form of a step
function or a Gaussian function as illustrated in Fig. 3,
where the valu® is the deciding parameter.

In one extreme, iD is large enough to include all the
particles in the RGB space, the CGC algorithm becomes
the original gravitational clustering algorithm. In the other
extreme, ifDg=0, each particle in the measurement space
represents a cluster, hence no further clustering is possible.
However, if D¢ is in between the two extremes, it deter-

dnines how the clustering is to be performed and the final

number of clusters. To illustrate this point, Fig. 4 depicts
the clustering results of the image in Fig. 2 using different

After the mapping, each entry in the RGB space is regarded Values ofDg and shows how the number of clusters formed

as a single particle.

For the clustering, let us define partiglg in the RGB
space to be characterized by two parameters: mag$, (
and location vectorg, ), as given by:

S«
My

: ©)

o

Fig. 2 Mapping of an image into the RGB color measurement
space.
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Fig. 3 Force effective functions.
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(a) Dr =8, Clusters=148 (b) Dr =16, Clusters=23 (c¢) Dg =32, Clusters=6 (d) Dp=64,Clusters=3

Fig. 4 Clustering at different values of Dr.

can be controlled. For smalbg, the number of particles where the mass of the particle remains unchanded.
considered for calculating the net force per particle is small 5(a)] if there is no particles occupying it's new location. If
and a larger number of clusters are formed as a result. Astwo particlesp, andp; have moved to the same location as
D¢ increases, the number of particles considered in the netillustrated in Fig. %), i.e.s,=s, then they are merged to
force calculation increases and the number of clustersform a new particlep,,, according to the following equa-
formed decreases as a result. Of course, |&gelemands tion:

high computing overhead and vice versa.
With the above constraint, if the net force ppis non-

zero, then it moves in the RGB space according to the
direction and magnitude of the force. Let us define this

movement to beAs, as a result of the net force agny,
which is given by:

Asc=ut+ Sat?, (5
and the acceleration to be given by:

F
Pk
ak_Fka (6)
whereu, is the velocity of particlep,. According to the
Markovian modelu, is assumed zero artdis normalized
to 1. Therefore, the new location pf equals tos +As,,
or:

S — )

f Pu=(SicHASx my)
Direction
of net %
G
p=(sy my) pi=(si+as; my)

A3

Direction
of net force p~(s;m)

@ 5, #5,

pnew_

(snew>:(sqew=34=sj’)_ @®

Mpew m,+ mJ

After the new locations and masses for all the particles
in the RGB space have been determined, the clustering pro-
cess repeats by calculating the new net forces for the new
particles in the new locations and new masses. This causes
the particles to move yet again if any of these values are
nonzero. The clustering process terminates when all the net
forces in the system are zero, i.e. no movement is possible
even if the process continues. The final number of particles
formed in the RGB space corresponds to the number of
clusters or regions in the segmented image.

During the clustering process, an internal table recording
the movements and merging of particles is maintained. Ac-
cording to this table, a mapping of the input color intensi-
ties, (R,G,B), to the output color intensitiesR(,G’,B")
can be established. This mapping facilitates the inverse
mapping from the RGB space back to the spatial domain.
The flow of the algorithm is depicted in Fig. 6.

R Poow=(Sk+ASx My+my)
Direction
of net force

ASx

Pe=(sx M)

Direction
1 \of net force

py=(s; my)

®) 5, =5,

Fig. 5 Two possible cases of particle movement: (a) S;#S; , and (b) S,=S; .
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Fig. 6 Flow chart of the clustering process.

3 Evaluation Conditions nuity common in measurement space methods, and to re-

To evaluate the performance of the CGC algorithm, four duce the number of region altogether.
other image segmentation algorithms were also imple-
mented and tested. These algorithms are the K-means clus3.1 Test Images

tering (K-means,”® recursive histogram  clustering The three images used in the evaluation were “toon,”
(RHC),"'* seed-based region %OWM@RG)'S and the  «ce|ls” and “bus” (Figs. 7-9. These images belong to
Hedley and Yan algorithmSCS.™ The K-means cluster-  nart of a larger picture or photograph digitized by a scan-
ing is chosen here because it has been widely used in datg\er. “Toon” is an image of a small cartoon figure sur-
analysis as well as image segmentation. It has also beenyoynded by some colorful but well-defined regions. The
compared with other clustering algorithms in the p&sf.  poundaries consist of straight linésorizontal, vertical and
For the recursive histogram-directed spatial clustering algo- diagona) and curves, and the color contrast between re-
rithm, it represents a large class of histogram clustering gions is high. In contrast, “cells” is an image of some
techniques. In our evaluation, the RHC algorithm adopts a purple-dyed white cells taken from a slide under a micro-
histogram smoothing filter for reducing noise content in the scope. The image is slightly out of focus and its contrast is
histogram and employs the multispectral thresholding ap- yormal. The dyed white cells are light purple and have a

proach for handling color images. The SRG algorithm is gark purple nucleus each, whereas the other cells are dark
chosen because it has been widely used too. It works on a

simple principle and produces good results. There are two
reasons for choosing the SCS algorithm. The first is that it
represents a combined histogram analysis and edge detec-
tion approach. The second is that it has been compared with
the K-means algorithm using the image of a road fap.
Although the edges and contrast of road map image tested
are sharp, giving the SCS algorithm a certain advantage,
their comparison would serve as a useful reference for the
evaluation in this research.

In the evaluation, for all five algorithms and three im-
ages, two sets of results were obtained. The first set of
results was taken by applying the algorithms as they are, no
preprocessing or postprocessing. The second set of results
were taken with a region merging algorithm acting as a
postprocessor to help remove some of the spatial disconti- Fig. 7 “toon.”
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Table 1 Results according to smallest L without region merging.

K-means RHC SRG SCS CGC

Parameter K=5 W=11 T=40 T,=0.75 D =16

“Toon” L 092 6123 021 3758 019
R 261 7695 1094 6011 1190
Parameter K=4 ~W=5 T-10 T,~0.85 D,—16
“Cells” L 045 168 020 476 028
R 273 1893 3966 830 487
Parameter K=3 W=11 T=10 T,=0.8 D=8
“Bus” L 209 422 033 517  1.03
Fig- 8 "cells.” R 322 1212 7602 1152 4336

brown. The image presents a higher degree of segmentation
difficulty than the “toon” image. The “bus” image is part . . .
of a photo taken from an overhead camera looking down at Whereh(x.y) is the segmented imag® is the total num-

a busy road. The double-decker bus is mainly white with a ber of regions resulted ih(x,y); A; is the number of pix-
faint pattern on the side. The boundaries look fuzzy, but the €ls in thei’th region andAr is the total number of pixels in
front right side and three wheels are clearly visible. The the image;ei2 is the color error of region which is defined
background includes part of a road where construction as the sum of the euclidean distance of the color vectors
work can be seen at the top of the image and broken roadbetween the input image and the segmented image for each
markings near the bottom. This image is considered to be pixel in the region. As the color error is squared and the
the most difficult amongst the three. The jagged boundariesnumber of regions square-rooted, it seems fair to assume
and the busy background are expected to cause noticeablehat L[h(x,y)] is biased toward the effect of color errors,

boundary errors and incorrect segmentation. rather than the correct number of segmented regions.
] The subjective inspection is based on three critgfia:
3.2 Evaluation Methods smoothness of the boundarig€) boundary correctness,

Both objective measurement and subjective inspection wereand (3) the complexity of the segmented image. In this
used to evaluate the performance of the algorithms con-case, smoothness refers to the compactness of the edges,
cerned. For the objective measurement there exist manycorrectness refers to how close the segmented boundaries
different evaluation method€22-2Most of these methods  align with the original, and complexity refers to the number
require a reference image for the evaluation, which is not of meaningful regions formed.
always available. Of all these methods, the one proposed by
Liu and Yand is adopted in this research because it can be 4 Results
used to evaluate real images locally and globally without
needing a reference image. However, it should also be4.1 Objective Evaluation
noted that this method does not provide an exact grading of The first set of tests was conducted on all five algorithms
the segmentation algorithms. It merely gives a broad and with the three test image&vithout region merging For
general indication of how well the algorithm performs. The each algorithm, its parameter, el in CGC, was varied
evaluation functiorl. is defined as: over a range where their segmented results larfdr all
three test images were determined. The hestalue, the

L[h(x.y)]= VR 2 & 9 corresponding nur_nber of. segmented regioR}, (anq the

' 100 £ \/KI parameter to achieve this value for each algorithm are
given in Table 1.

From Table 1, a number of observations can be made
with respect td_. First, the performances of both the RHC
and SCS algorithms are poor. For the “toon” image, their
L values are much higher than the other three. For the other
two images, theit. values are high, but not exceptionally
high. Second, both the SRG and CGC algorithms perform
similarly for all three images and are substantially better
than the others. Compared with the SRG, the CGC seems to
be better on the “toon” image, slightly worse on the
“cells” image and 3 times worse on the “bus” image. In
this regard, the SRG algorithm is the best and most consis-
tent, and the CGC algorithm follows closely behind. Third,
the K-means algorithm performs reasonably in third place
as itsL varies from~6 times worse than the best case on
Fig. 9 “bus.” the “bus” image to only 2 times worse than the “cells”

R 2
1
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Table 2 Relative ranking according to L without region merging.

Table 3 Results according to smallest L with region merging.

K-means RHC SRG SCS CGC K-means RHC SRG SCS CGC
“Toon” 3 5 2 4 1 parameter K=7 W=3 T=40 T,=0.8 Dr=16
“Cells” 3 4 1 5 2 “Toon” L 0.25 089 022 1.79 0.21
“Bus” 3 4 1 5 2 R 167 233 168 693 161
parameter K=5  W=5 T=50 T,=0.85 Dr=16
“Cells” L 0.28 034 025 057 0.24
_ _ _ . _ R 277 455 264 367 244
|mage._For cla_lrlty, tr_\e relgtlve ranking Qf these algorithms parameter K=3 W=11 T—=80 T,=09 D24
accor'dlng 'td_ is d§p|cted in Table 2. As it shows, the SRG .5 o L 1.06 126 095 152 0.99
algorithm is consistently better than the rest, followed by R 254 340 253 381 283

the CGC algorithm, then the K-means. Between the RHC

and SCS algorithms, the RHC seems to perform slightly
better than the SCS algorithm.

When the number of segmented regions is concerned,
the K-means algorithm always produces the smaliesis
compared with the rather large numbers by the other four

algorithms in some cases. For instance, although SRG con-

sistently gives the bedt for all three images, it® in each
case is large, particularly for the “bus” image. The same
applies to the CGC, RHC, and SCS algorithms, at a smaller
scale. The particular point can be explained by &g that
asL weighs more heavily on the total color error thBn
algorithms like the K-means that produce sniabut large
color error would have a large. On the other hand, algo-
rithms such as the SRG that produce a laRybut small
color error would have a small. From the segmentation
point of view, it is perhaps desirable to have a snrafind

pixels, they tend to generate larBeand errors at the same
time, and hence large.

To further illustrate this point, let us inspect the “cells”
results, which are depicted in Fig. 10. Broadly, both the
K-means and CGC results appear to be neat with sufficient
details to represent the various regions in the original im-
age. Their boundaries are smooth and reasonably correct,
and their backgrounds are correctly segmented. The SRG
result is fine apart from the fuzzy boundaries and incor-
rectly segmented background. Both the RHC and SCS re-
sults appear to have numerous small regions and noisy
boundaries, with a rather untidy background as well. The
severe distortion of the SCS result is clearly visible.

The second set of tests in our evaluation was to perform

a small color error. Both the K-means and CGC algorithms segmentation with region merging. The evaluation condi-
seem to exhibit this property to some extent, but not the tions and criteria are the same as before, and the corre-
others. In the case of the RHC and SCS algorithms, due tosponding results are given in Table 3, with the ranking in
the inherent noisy nature of histograms and the problem of Table 4. From these tables, observations similar to the first
using edge detection to differentiate high and low gradient test set can be made. First, the objective performance of the

(a) K-means (c) SRG

(d) SCS (e) CGC (f) Original

Fig. 10 Resulting images according to smallest L without region merging.
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Table 4 Relative ranking according to L with region merging. To inspect the effect of region merging, the “cells” im-
ages in this test set are depicted in Fig. 11. Broadly, the
K-means RHC SRG SCs CGC CGC results appear to be clean with smooth and correct

— boundaries, as well as a correctly segmented background.
Toon 3 4 2 S L For the SRG result, region merging helped to remove the
“Cells” 8 4 2 5 1 boundary fuzziness, but distortion also becomes apparent,
“Bus” 3 4 1 5 2 particularly for the top right hand cell. Other than that, the
background and other cells have been segmented reason-
ably well. Both the K-means and RHC results are similar.
The K-means result looks smoother with less distortion, but
SRG and CGC algorithms are almost the same. The differ- the background is incorrectly segmented and so is the top
ence is minor and the trend is consistent for all three im- right hand cell. The RHC result still appears noisy even
ages. Second, the other three algorithms show a markedafter the region merging. For the SCS result, region merg-
improvement inL overall. The K-means values are much ing helped to merge many smaller regions, but as a result,
closer to the SRG and CGC, being at worst 0.07 higher. In the image appears overmerged and boundary distortion ap-
the case of the RHC and SCS algorithms, thealues are pears to be extensive.
much more acceptable than before, although they are still
poor compared with the K-means values. o )

The K-means, SRG, and CGC algorithms produce simi- 4.2 Subjective Inspections
lar R, whereas both the RHC and SCS algorithms still pro- Figures 12 to 14 depict the visually best segmented images
duce largeR. For all the algorithms, the merging of regions for each algorithm on all three images with or without re-
seems to have some positive effect on the flRand L. gion merging. The inspection criteria are based on those
For instance, in the case of the CGC algorithm on the mentioned in Sec. 3.2. When comparing the images in Fig.
“toon” image, for the sameDg, R and L with region 12, we can observe that the RHC and SCS results depl_cted
merging are 161 and 0.21, respectively, and without region in (b) and (d) are poorer than the other three. Boundaries

merging are 1190 and 0.19. The differenceLiris rather ~ &ré obviously noisy and jagged in both cases. Of the two,
small, yet theirRs are vastly different. This can be ex- the RHC result shows severe errors along the diagonal and

plained: if the algorithms tend to generate a laRybefore curved boundaries. In addition, the small black region on

. ; th f th . Id b the bottom right hand corner of the image disappeared al-
region merging, then many ot these regions wou € together. The SCS result is slightly better but the errors on
merged after the postprocessing and result in a smBller

: 4 . . the boundaries are still obvious. For the other three algo-
On the other hand, merging regions would likely result in jihms on close inspection, the K-means result seems to

an increase in color errors. So i dominates before the  haye the sharpest straight line boundaries, which are
merging, then merging would give a smaller(from 1.68  slightly fuzzy in the SRG and CGC cases. When curve
to 0.34 in RHC atW=5), otherwise a largeL may result boundaries are concerned, the K-means result seems to be
(from 0.19 to 0.21 in CGC dD=16). slightly more jagged and the boundary errors are a little

(a) K-means

(d) SCS ~(e) CGC (f) Original

Fig. 11 Resulting images according to smallest L with region merging.
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When comparing the images in Fig. 13, we can observe
that the worst performer in this case is the SCS algorithm.
Its segmented regions suffer from a serious overmerging
effect in which the middle and bottom few cells have all
been merged together or with the background. Its appear-
ance is also worsened by the erratic boundaries. A better
result is obtained by the SRG algorithm. Although the SRG
has the best in the objective evaluation, its inability to
correctly segment the cell at the top right hand corner, the
bottom center cell, and some of the nuclei, degrades its
visual quality. On the other hand, the RHC result appears to
be much better than what its value indicates. For in-
stance, most of the regions have been correctly segmented
and the whole image looks simple with reasonably correct
boundaries. However, some boundaries appear to be noisy
and jagged, and its background has also been segmented
into a number of smaller regions. Of the remaining two, the
K-means result appears to have a smaller number of re-
gions and a correct background. The boundaries are smooth
and correct, except for a mild hint of overmerging, which is
noticeable around the rectangular cell at the bottom of the
Fig. 12 Segmented results of “toon” image. image. For the CGC result, it appears to be the best as all
the regions have been correctly segmented with smooth and
correct boundaries, and a correct background. The rectan-

more apparent, although the overall appearance of thesadular cell is clearly !solated and vital details in these cells
boundaries is still smooth and acceptable. In this case, thehave been appropriately retained. The only problem per-
SRG and CGC results resemble the original reasonablyhaps is the incomplete boundary of the bottom center cell
closely. The only difference between these two results is With a dark outline and light internal region. In this case,

that the SRG result has an overmerging problem under theonly the K-means algorithm is able to segment this cell

small cartoon figure, just above the semicircular boundary, correctly.

and the CGC has a similar problem for the boundary = When comparing the images in Fig. 14, a number of
slightly toward the left. Taking everything into account, the points can be noted. First, the K-means result is poor as
CGC, K-means, and SRG results are all very similar and part of the bus is merged with the background, and the
acceptable. The RHC and SCS results are poor and notboundaries of the big white bus top appear to be jagged.
acceptable. Second, for the RHC result, the boundaries of the white top

% [
(d) SCS (e) CGC (f) Original

(a) K-means

~(e) CGC

(d) SCS (f) Original

Fig. 13 Segmented results of “cells” image.
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(a) K-means

(f) Original

Fig. 14 Segmented results of “bus” image.

also appears to be jagged, and the background is incorrectlypears to be the best with the bus and background correctly
segmented. Third, the boundaries of the SRG result appearsegmented. Boundaries are smooth and correct, yet without
to be smoother, but merging of bus regions with the back- too many small regions.

ground is also evident. On the positive side, its background In order to further study the results obtained, the results

is clean and most of the bus has been correctly segmentedin Fig. 14 were enlarged, and the same part in each case is
Fourth, the SCS result has too many details retained. Forshown in Fig. 15. When the raw images before edge detec-
example, the front of the bus is segmented into numeroustion are compared, it can be seen that the CGC result has
unwanted regions. This probably accounts for the large the best appearance with the simplest number of regions, as
number of segmented regions remaining according to thewell as smooth and correct boundaries. The SRG result also
objective measurement. As a whole, the CGC result ap-looks quite good if not for the merged background. The

A

] 4
(a) K-means (b) RHC (©) SRG (d) SCS

Fig. 15 Edge-detected results of portion of the “bus” image.
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RHC result appears to be clean except for a few noisy based region growing algorithm both perform well when
boundaries. Similarly, the K-means boundaries suffer from visually inspected, although the seed-based algorithm tends
the noise problem and the background is merged with theto generate a substantially larger number of segmented re-
bus. The worst is again the SCS result which shows incor- gions, and the K-means results appear to be mildly under-
rect segmentation and boundary distortion. Their edge- segmented. Weighing all these, the K-means algorithm is
detected results highlight the above points further. considered to have a slightly better performance than the
In summary, the new clustering algorithm performs ex- SRG algorithm. The remaining two algorithms perform
tremely well on both objective and subjective terms. Objec- poorly in this category due to the nature of the histogram
tively, its evaluation values are among the smallest. Sub- thresholding and the classification of high and low gradient
jectively, the visual quality of its segmented results on the pixels using edge detection. In conclusion, the new cluster-
three test images have been consistently high where theiring algorithm is considered to be the best of the five seg-
boundaries are smooth and correct, and the results contain anentation algorithms in objective and subjective terms.
meaningful number of regions in all cases. The perfor-  Future work will be carried out as follows. First, differ-
mance of the K-means and SRG algorithms are very close.ent force effective functions will be attempted where the
Although the SRG algorithm is better objectively, the K- relationship betweeb( and the number of clusters formed
means results give a slightly higher visual quality and much will be studied. Second, the effect of scaling the color space
better number of segmented regions without region merg- will be considered as it will have further impact on the data
ing. With region merging, the SRG results appear slightly reduction and computing requirement of the algorithm. Fi-
overmerged, and therefore not as good as the K-means imally, other representative segmentation algorithms will be
terms of boundary correctness. The RHC algorithm has theincluded in future comparisons, where other practical im-

problem of jagged boundaries and a large number of seg-ages will also be considered.

mented regions even with region merging. The SCS algo-

rithm also suffers from a large number of segmented re- Acknowledgments

gions and jagged boundaries, where its boundary
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