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Abstract—With the limited frequency spectrum and an increas-
ing demand for cellular communication services, the problem of
channel assignment becomes increasingly important. However,
finding a conflict-free channel assignment with the minimum
channel span is NP hard. Therefore, we formulate the problem
by assuming a given channel span. Our objective is to obtain a
conflict-free channel assignment among the cells, which satisfies
both the electromagnetic compatibility (EMC) constraints and
traffic demand requirements. We propose an approach based on
a modified genetic algorithm (GA). The approach consists of a
genetic-fix algorithm that generates and manipulates individu-
als with fixed size (i.e., in binary representation, the number
of ones is fixed) and a minimum-separation encoding scheme
that eliminates redundant zeros in the solution representation.
Using these two strategies, the search space can be reduced
substantially. Simulations on the first four benchmark problems
showed that this algorithm could achieve at least 80%, if not
100%, convergence to solutions within reasonable time. In the
fifth benchmark problem, our algorithm found better solutions
with shorter channel span than any existing algorithms. Such
significant results indicate that our approach is indeed a good
method for solving the channel-assignment problem.

Index Terms—Cellular network, channel assignment, generic
algorithm, wireless communication.

I. INTRODUCTION

A N IMPORTANT issue in the design of a cellular radio
network is to determine a spectrum-efficient and conflict-

free allocation of channels among the cells while satisfying
both the traffic demand and the electromagnetic compatibil-
ity (EMC) constraints. This issue is commonly referred to
as channel assignment or frequency assignment. Generally,
there are three types of EMC constraints [7], namely: 1) the
cochannel constraint (CCC), where the same channel cannot be
assigned to certain pairs of radio cells simultaneously; 2) the
adjacent channel constraint (ACC), where channels adjacent in
the frequency spectrum cannot be assigned to adjacent radio
cells simultaneously; and 3) the cosite constraint (CSC), where
channels assigned in the same radio cell must have a minimal
separation in frequency between each other. These EMC
constraints are normally determined by the characteristics of
the radio frequency propagation and spatial density of the
expected traffic requirements.
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The problem of channel assignment has had a brief history
in the literature. Basically, it can be classified into two
categories: 1) fixed channel assignment (FCA), where channels
are permanently allocated to each cell and 2) dynamic channel
assignment (DCA), where all channels, which are available for
every cell, are allocated dynamically upon request. Normally,
DCA gives better performance than FCA except under heavy
traffic load condition, where FCA outperforms DCA [2].
Since heavy traffic load is expected in the future generation
of cellular radio networks, an efficient FCA scheme that
can provide high spectrum usage efficiency is desired. The
FCA problem has been studied extensively for the past three
decades. A comprehensive summary of the work done before
1980 can be found in [3]. It has been shown that this
problem is equivalent to a generalized graph-coloring problem,
which is NP hard (e.g., [1]). As a result, various approximate
algorithms have been proposed. These include some graph-
theoretic approaches [3]–[8]. Most of these methods are based
on a heuristic ranking of cells according to the difficulty
of meeting the EMC constraints. Recently, some approaches
based on the Hopfield neural network [9] and simulated
annealing [10] have been proposed. The first neural network
for solving the channel-assignment problem was proposed
probably by Kunz [11]. Following that, several other neural
networks were studied. These include the work by Sengoku
et al. [12], Funabiki and Takefuji [13], and Lochite [14].
An inherent disadvantage of this approach is that it easily
converges to local optima and, hence, suboptimal solutions.
To overcome this difficulty, a simulated annealing approach
was suggested by Duque-Antonet al. [15] and Matharet
al. [16]. Although this approach is guaranteed to achieve
the global optimum asymptotically, its rate of convergence
is rather slow, and a carefully designed cooling schedule is
required.

In this paper, we propose yet another approach—the ge-
netic algorithms (GA’s) [17], [18]—for solving the channel-
assignment problem. We consider a general cellular radio
network subjected to all three kinds of EMC constraints
described earlier. In addition, the traffic is assumed to be in-
homogeneous, i.e., each cell has different traffic requirements.
Our problem formulation follows the stem of the aforemen-
tioned neural-network and simulated annealing approaches.
The objective is to obtain a conflict-free channel assignment
among the cells such that the total number of channels used is
close to the minimum channel span required for the whole
network. The approach is based on a modified GA called
the genetic-fix algorithm. Unlike the conventional GA’s [17],
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[18] that generate subsets of all possible sizes, the genetic-
fix algorithm can generate fixed-size subsets (i.e., in binary
representation, the number of ones is fixed). Furthermore,
we propose a minimum-separation encoding scheme that can
eliminate redundant zeros in the solution representation. These
two strategies allow us to reduce the search space substantially
and, hence, greatly speed up the computation.

Recently, it has come to our attention that two GA ap-
proaches have been independently considered in [19] and [20].
In [19], the author first defined an asexual crossover and
a special mutation and then represented the solution space
in a way similar to our genetic-fix algorithm such that the
traffic requirement was fulfilled inherently. A disadvantage
of such asexual crossover is that it can easily destroy the
structure and, thus, make the problem harder to converge. In
[20], the authors represented the channel-assignment solution
as a string of channel numbers (instead of binary string).
These numbers were grouped in such a way that each cell
had a specified number of channels and, hence, satisfied the
traffic requirement. The evolution was then proceeded via
the partially matched (PMX) crossover operator and basic
mutation. Our work differs from [19] and [20] in that our
crossover operator is based on a concept similar to that
in conventional binary crossover. Furthermore, our solution
representation allows us to further reduce the search space by
eliminating the CSC using the minimum-separation encoding
scheme, which will not be possible with the representation in
the above two approaches. In addition, instead of performing
simulation on small- or medium-size problems for demonstra-
tion purposes, we consider several “hard” realistic benchmark
problems.

The rest of the paper is organized as follows. In Section
II, we formulate the channel-assignment problem with several
assumptions. We first present a graph-theoretic formulation
of the problem and then formulate the problem as an un-
constrained optimization problem by assuming that the total
number of available channels is given. In Section III, we
discuss the genetic-fix algorithm with a brief review of the
conventional simple GA (SGA). In Section IV, we present the
minimum-separation encoding scheme that can eliminate the
CSC. In Section V, we discuss some implementation issues.
These include the determination of a near-optimal minimal
channel span and a local-search routine that can improve the
rate of convergence of the genetic-fix algorithm. In Section
VI, we apply the algorithm to solve the channel-assignment
problem and perform some simulations. Finally, we conclude
our work in Section VII.

II. PROBLEM FORMULATION

The cellular radio network to be considered consists of
arbitrary cells. Without loss of generality, it is assumed

that channels are evenly spaced in the radio frequency
spectrum. Using an appropriate mapping, channels can be
represented by consecutive positive integers. Therefore,
the EMC constraints can be described by an
symmetric matrix called the compatibility matrix , where

1) each diagonal element represents the CSC, i.e., the
minimum separation distance between any two channels
at cell and 2) each nondiagonal element represents
the minimum separation distance in frequency between any
two frequencies assigned to cells and , respectively.
In this matrix, CCC is represented by , ACC is
represented by , and cells that are free to use the
same channels are represented by In all cases,

1.
By analyzing the traffic at each cell, the traffic demand

requirement can be obtained. This can be represented by an
-element demand vector denoted asIn this vector, each

element represents the number of channels to be assigned
to cell

In short, given the compatibility matrix and the traffic
demand vector , the optimal channel-assignment scheme
involves the determination of the minimum channel span
required and the way to distribute these channels among the
cells while satisfying the EMC constraints and the traffic
demand requirements.

A. Graph-Theoretic Formulation

Conventional graph-theoretic approaches formulate the
problem as a “minimum span” problem, i.e., given the
compatibility matrix and the traffic demand vector of
an arbitrary -cell radio network, find a conflict-free channel
assignment with the minimum channel span. Mathematically,
it means that if is the channel number of theth
call assigned to cell , then the problem can be expressed
as

minimize

subject to

for

and

and (1)

It has been shown that this problem is equivalent to a gen-
eralized graph-coloring problem [1], [3]. When only CCC
is considered, it is reduced to a graph-coloring problem,
which is known to be NP complete, i.e., the computation
time grows exponentially with the number of the nodes
in the graph. Consequently, an exact search of the opti-
mal solution is impractical for problems of a reasonable
size.

B. Our Formulation

The graph-theoretic approach aims only at minimizing the
used spectrum. However, in practice, the determination of
a conflict-free assignment pattern is more important. Conse-
quently, some methods that assume a given channel span have
been proposed. These include several “natural” approaches
such as neural network [11], [13], [14] and simulated annealing
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[15], [16]. Our formulation follows the stem of these ap-
proaches. We assume that the cellular network is composed of

cells and each cell is capable of carrying any of the available
channels. We formulate the channel-assignment problem as an
unconstrained optimization problem.

In particular, we represent the solution spaceas an
binary matrix, where is the number of radio cells and is
the total number of available channels. (Here, we assumeis
given. This formulation is different from the “minimum span”
problem.) Each element in the matrix is either one or zero
such that

if channel is
assigned
not assigned

to cell

Diagrammatically, the admissible channel assignmentcan
be described, as given at the bottom of the page.

Basic requirements for the cellular network are the ability
to serve the expected traffic and the avoidance of interference.
The first requirement imposes a demand constraint onA
total of channels are required for cellThis implies that the
total number of ones in rowof must be Mathematically,
it means that if the assignment to cellviolates the demand
constraint, then

The second requirement is modeled by the compatibility
matrix It is composed of CSC, CCC, and ACC. For CSC,
if channel is within distance from an already assigned
channel in cell (i.e., ), then channel must
not be assigned to cell Mathematically, it means that if the
assignment of channel to cell violates CSC, then

For CCC and ACC, if channel in cell is within distance
from an already assigned channelin cell , where 0 and

(i.e., ), then channel must not be assigned
to cell Mathematically, it means that if the assignment of
channel to cell violates CCC and/or ACC, then

Therefore, a generic choice of cost function can be ex-
pressed as

(2)

where and are weighting factors.
It is noted that achieves its minimum of zero when

all constraints are satisfied. Therefore, our problem is to find
an such that is zero. To speed up the search process,
the structure of the solution space is examined. A special form
of solution representation is used such that the traffic demand
and the CSC requirements are fulfilled inherently. In the next
two sections, we will discuss how a modified GA, called the
genetic-fix algorithm, and a special encoding technique, called
the minimum-separation encoding scheme, can accomplish this
task.

Channel Number

Cell Number

...
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Fig. 1. Crossover in SGA.

III. PRINCIPLE OF GENERIC GENETIC ALGORITHMS

Although there are many variants of GA’s, their mechanisms
are similar as illustrated in the following pseudocodes:

GA

generate randomly an initial population;
evaluate fitness of each individual;
while convergence not achieved and

max. number of generations not exceeded

select individuals probabilistically according to
their fitness;

perform genetic operations on the selected
individuals;

evaluate fitness of the newly obtained
individuals;

In its most fundamental form, called the SGA [17], each
individual is represented by a binary vector. Proportional
selection is adopted and two genetic operators, called mu-
tation and crossover, are used. These operators are applied
to the selected individuals with fixed probabilities and
corresponding to mutation and crossover, respectively. Unlike
crossover that does not create new genetic material, mutation
can introduce new information in the population. This peculiar
characteristic of mutation allows GA’s to overcome local
optima. Basically, mutation involves the “flipping” of each
bit of an individual with probability Its role is to restore
lost or unexplored genetic information into the population to
prevent premature convergence. Crossover, on the other hand,
involves the exchange of portions of two selected individuals.
The idea is to allow the offspring to preserve part of the first
parent while incorporating information from the second parent.
This implementation in SGA is accomplished by choosing a
crossover point at random and exchanging the segments on
the right of this point as illustrated in Fig. 1.

Another common way to implement crossover is to choose
two crossover points and exchange the segments between these
points. It has been shown in [21] that such crossover has some
theoretical advantages over the one-point case. Hence, in our
subsequent discussion, we will focus on crossover operators
with two crossover points.

D. Principle of Genetic-Fix Algorithm

It is noted that generic GA’s generate subsets of all possible
sizes. However, there are some combinatorial optimization
problems whose feasible solutions are fixed-size subsets. By
taking this information into account, we can greatly reduce

Fig. 2. Crossover in genetic fix.

the search space of the problem and, hence, shorten the
computation time of the algorithm. We introduce the genetic-
fix algorithm that can generate a fixed number of ones for
each individual and preserve this property during the genetic
operations. Of course, this requires special crossover and
mutation operators that can maintain the property of a fixed
number of ones. One way to implement these operators is
proposed as follows.

A. Crossover in Genetic Fix

Given two parents and , we create a first-in last-out
(FILO) stack to store the bit position corresponding to the
opposite bit pair and are said to be opposite
if , where denotes the exclusive or operator.
The crossover is performed by first generating two crossover
points and at random along the string length such that

and then moving right from until an is found such
that We push into the FILO stack and continue
the process until we find asuch that Then, we
compare with , where is the top element in the stack.
If they are the same, we pushinto the stack, otherwise, we
swap the pair indexed bywith the pair indexed by and pop

from the stack. The process continues untilis reached.
A pseudocode of this operator is illustrated as follows:

CrossoverGeneticFix parents and

generate randomly two crossover pointsand
along the string length such that ;
for

if and are opposite

if stack is empty, push into stack;
else

if and are different
top element in stack

swap with ;
pop from stack;

else push into stack;

Let us consider an example using binary vector representation.
Suppose that we have two 10-b strings. Each of them has
five ones with the crossover sites and The
genetic-fix crossover operation can be illustrated by Fig. 2.
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The same rule applies to the binary array representation if
the two crossover points are in the same row. However, if they
belong to different rows (say, row and row , where ),
then genetic-fix crossover will apply from to the end of row

and from the beginning of row to and will swap those
in-between rows, if any.

B. Mutation in Genetic Fix

In order to balance the number of ones in an individual, the
mutation operation must always be done in pairs of opposite
bits. This can be implemented as follows. Letbe the th
bit position of an individual. To mutate , we need to find a
random such that Then, we swap with In
the case of binary array representation, bothwith must
be in the same row.

IV. M INIMUM -SEPARATION ENCODING SCHEME

There exists some combinatorial optimization problems,
which may require a minimum separation between consec-
utive elements in the solution. By encoding each element
properly, the solution space can be greatly reduced. In the
sequel, we will present an encoding technique, called the
minimum-separation encoding scheme, which can accomplish
this objective.

Let an individual be represented by a-bit binary string
with fixed elements and let be the minimum separation
between consecutive elements. The idea of the encoding
scheme is to represent the solution in such a way that a one is
followed by ( 1) zeros encoded as a new “one,” denoted
as1 For example, if , then1 is equivalent to “100”
in the old representation. Consequently, for an individual with

and , it can be encoded as follows:

Original Rep. Encoded Rep.

Hence, the length of representation can be substantially
reduced. However, a problem still remains if a “one” is at
a position within 1 from the end of the string. To
cope with this shortcoming, we need to first augment the

original individual with 1 “zero” before performing
the encoding scheme. In this way, the total bit length is
increased to 1 An example is illustrated as
follows:

Original Rep.

Augmentation

Encoded Rep.

Using the minimum-separation encoding scheme, a-bit
binary string with elements separated by a distance of
can be encoded by a binary string of
bits only.

V. IMPELMENTATION ISSUES

By representing each individual as a binary arrayand
restricting the number of ones in each row to its corresponding
traffic demand, i.e., given at the bottom of the page, the
traffic demand requirement can be fulfilled automatically. This
property can be maintained throughout the iterative process
using the genetic-fix operators.

Further improvement can be achieved by noting that the
CSC requirement is nothing more than a minimum separation
between consecutive elements in each row of an individual.
Therefore, using the minimum-separation encoding scheme,
we can eliminate the CSC requirement from the cost function
and further reduce the search space. As a result, rowof the
solution matrix will consist of 1’s with a total length of

bits.
Hence, using the genetic-fix algorithm and the minimum-

separation encoding scheme, the cost function of the channel-
assignment problem can be simplified to

(3)

Channel Number

Cell Number

...

Row Sum

...
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Compared with the problem formulation in the neural net-
work and simulated annealing approaches (e.g., [13]), our
formulation is much simpler. However, there are still some
implementation issues to be considered. These include the
determination of the total number of available channels
and the ways of improving the performance of the genetic-fix
algorithm.

A. Determination of

Our problem formulation assumes that the total number of
available channels is given. This number can be determined
by either the available radio spectrum or the lower bound
estimated by a graph-theoretic method [22]. Alternatively,
a rough estimate of the least upper bound of can be
obtained by multiplying in C with the maximum in

Starting from this estimate, we decrease it gradually until
the genetic-fix algorithm cannot find a “feasible” solution for
the channel-assignment problem within a “reasonable” time.
The smallest feasible number of available channels thus far
obtained will be used as in our problem.

B. Simplification of the Cost Function

By exploiting the symmetry of the compatibility matrix,
the cost function (3) can be further simplified to

(4)

Cf. Local-Search Routine

Generally, GA’s do not perform a finely tuned local search.
In order to improve the performance and increase the rate of
convergence, we introduce the following local-search routine.
The basic idea is rather simple. It involves nothing more than
finding a zero along a row of the binary array solution and
swapping it with the most “violated” one (i.e., the “one,” which
gives the highest increase in the cost function) on that row.
Of course, this procedure should result in better performance
with a little more expense in computation. The routine starts
with a given binary array solution and an empty penalty
vector with size and proceeds as follows.

1) Save most “violated” ones in the penalty vector.

2) Select randomly a nontagged element, say indexed by,
from that vector and tag it.

3) Find a nontagged zero at random along theth row
of , tag it, and swap it with the most corresponding
“violated” one pointed to by element

4) Evaluate the new structure.

5) If no improvement is revealed, restore the old structure
and repeat steps 3)–4) until all zeros in roware tagged.

6) Repeat steps 2)–5) until all elements in the penalty
vector are tagged.

To make the computation manageable, should not be
large, and the local-search routine should only be done when
necessary. In our case, we perform a local search only when
the best solution thus far achieved has not been changed for

generations. Once a better solution is found, this counter
will be reset or the local search will continue.

VI. SIMULATIONS

Our simulator, called GENESIS_F and written in C, is
based on the GENESIS system [23] developed by Grefenstette
for general-purpose unconstrained optimization using genetic-
search techniques. Similar to GENESIS, the user needs only
to provide an evaluation function that gives the “fitness” of a
given individual. There are several enhancements over GENE-
SIS. First, it allows users to think about the genetic structures
as binary arrays in addition to vectors of real numbers and
bit strings. This representation enables an easier application
of GENESIS to some problems, like the scheduling problem.
Second, variable bit length is allowed in each row of a binary
array. Such an arrangement may help reduce the search space
by removing some redundant zeros (see [24]). Third, an option
that allows users to choose fixed-element manipulation, based
on the concept of the genetic-fix algorithm, is added. This
includes the generation of fixed-size individuals and preserves
the fixed-size property throughout various genetic operations
such as selection, crossover, and mutation. Fourth, it allows
users to solve constrained optimization problems via a penalty
method, which uses the “implied objective function” constraint
[24].

Five benchmark problems were examined. Problems 1, 2,
3, and 5 were taken from [7], and problem 4 was from
[11]. Table I [11] summarizes the characteristics of these five
problems, where all the demand vectors and the compatibility
matrices except are given in [13]. The compatibility
matrix is the same as in [13] with all the diagonal
elements being replaced by problem 5, while problems 2
and 4 consider only CSC and CCC, and problems 1, 3, and
5 also consider ACC. Furthermore, for each problem, the
required channel span was determined via pilot trials as
described in the previous section. While problems 1–4 give
the same as in [13], problem 5 has an even shorter channel
span than the existing algorithms in [7]. (The best existing
channel span is 269.) In order to justify the effectiveness of
the minimum-separation encoding scheme, the bit reduction
in representing the solution space is also included in the
table.

One hundred Monte Carlo runs were performed on problems
1–4, and ten runs were performed on problem 5. In order
to avoid the disappearance of the best individual after some
generations, the “elitist” selection strategy was adopted so
that the best individual survives with probability one, i.e.,
it always survives intact from one generation to the next.
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TABLE I
PROBLEM SPECIFICATIONS AND SOLUTION REPRESENTATION

(a) (b)

Fig. 3. A typical rate of convergence trajectory for problem 3 based on (a) number of trials and (b) CPU time used.

TABLE II
SIMULATION PARAMETERS

Several parameters need to be set, including the maximum
number of trials per run trials), the crossover proba-
bility , the mutation probability , the population
size , the size of the penalty vector , and the
counter for “igniting” the local-search routine gener-
ations). As for any GA’s, the settings of these parame-
ters are generally quitead hoc. Nevertheless, a general rule
was suggested in [17] for using a relatively small popu-
lation size, high crossover probability, and low mutation
probability. In our simulation, this rule was first applied,
and then the parameters were fine tuned through pilot ex-

TABLE III
SUMMARY OF SIMULATION RESULTS

periments, ensuring that the computation was manageable.
Table II summarizes the simulation parameters of all five
problems.
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Simulations were performed on an HP Apollo 9000/700
workstation using our proposed genetic-fix algorithm and
the minimum-separation encoding scheme in GENESIS_F.
Performances were measured based on: 1) average central
processing unit (CPU) time used per successful convergence in
which a solution is found before exceedingtrials; 2) average
number of fitness evaluations, called trials, per successful
convergence; and 3) average frequency of convergence to
solutions defined as the ratio of the total number of suc-
cessful convergence to the total number of runs. Because
not every offspring needs to be evaluated in each generation,
performance measure based on trials is more meaningful than
generations. Table III summarizes the results. For ease of
comparison, the corresponding neural-network performance
in [13] is also included. In addition, a typical trajectory of
problem 3 that demonstrates the rate of convergence is shown
in Fig. 3, and an example of channel assignment for problem
5 is given in the Appendix.

The results show that the genetic-fix algorithm is, indeed, a
good method for solving the FCA problem. Compared with the
small number of convergences in the neural-network approach,
our algorithm gives 100% convergence in problems 1 and
4, 92% convergence in problem 2, and 80% convergence in
problem 3. With a shorter channel span than any existing algo-
rithms [7], our algorithm gives 20% convergence in problem 5.
Such a result already demonstrated its effectiveness in finding
good solutions. With an unlimited number of trials, one can
be almost sure that the algorithm gives 100% convergence to
the solutions as proved in [24].

VII. CONCLUSIONS

We have studied the problem of conflict-free FCA in cel-
lular radio networks. We proposed an approach based on a
modified GA. This algorithm, called the genetic-fix algorithm,
generates and manipulates individuals with fixed size and,
hence, greatly reduces the search space. Furthermore, using the
minimum-separation encoding scheme, the required number
of bits for representing the solutions decreases substantially.
These two strategies enable us to eliminate the traffic demand
requirement and the CSC from the cost function and, hence,
greatly improve the computation speed. Simulations on the
first four benchmark problems showed that this algorithm
could achieve, respectively, 100%, 92%, 80%, and 100%.
In the fifth benchmark problem, our algorithm found better
solutions with a shorter channel span than any existing al-
gorithms. Such significant results indicate that our algorithm
is indeed a good one for solving the channel-assignment
problem.

One should note that our simulation is based on a se-
quential implementation of the genetic-fix algorithm and is,
by no means, optimized in terms of computation time. By
coding the algorithm more efficiently and implementing it
in a parallel fashion, it is expected that this costly process
can be greatly reduced and, hence, substantially speed up the
search.

APPENDIX

For an example of channel assignment for problem 5, see
the previous page.
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