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Fixed Channel Assignment in Cellular Radio
Networks Using a Modified Genetic Algorithm

Chiu Y. Ngo, Member, IEEE,and Victor O. K. Li, Fellow, IEEE

Abstract—With the limited frequency spectrum and an increas- The problem of channel assignment has had a brief history
ing demand for cellular communication services, the problem of in the literature. Basically, it can be classified into two
channel assignment becomes increasingly important. However, categories: 1) fixed channel assignment (FCA), where channels
finding a conflict-free channel assignment with the minimum ’ .
channel span is NP hard. Therefore, we formulate the problem are _permanently allocated to each cell and_ 2) dynam|<_: channel
by assuming a given channel span. Our objective is to obtain a assignment (DCA), where all channels, which are available for
conflict-free channel assignment among the cells, which satisfiesevery cell, are allocated dynamically upon request. Normally,
both the electromagnetic compatibility (EMC) constraints and DCA gives better performance than FCA except under heavy
traffic demand requirements. We propose an approach based on traffic load condition, where FCA outperforms DCA [2].

a modified genetic algorithm (GA). The approach consists of a . . . . -
genetic-fix algorithm that generates and manipulates individu- Since heavy traffic load is expected in the future generation

als with fixed size (i.e., in binary representation, the number Of cellular radio networks, an efficient FCA scheme that

of ones is fixed) and a minimum-separation encoding scheme can provide high spectrum usage efficiency is desired. The
that eliminates redundant zeros in the solution representation. FCA problem has been studied extensively for the past three
Using these two strategies, the search space can be reducedie ades. A comprehensive summary of the work done before

substantially. Simulations on the first four benchmark problems - -
showed that this algorithm could achieve at least 80%, if not 1980 can be found in [3]. It has been shown that this

100%, convergence to solutions within reasonable time. In the Problem is equivalent to a generalized graph-coloring problem,
fifth benchmark problem, our algorithm found better solutions  which is NP hard (e.g., [1]). As a result, various approximate
with shorter channel span than any existing algorithms. Such g|gorithms have been proposed. These include some graph-
significant resul_ts indicate that our_approach is indeed a good theoretic approaches [3]-[8]. Most of these methods are based
method for solving the channel-assignment problem. e . . o
on a heuristic ranking of cells according to the difficulty

Index Terms—Cellular network, channel assignment, generic of meeting the EMC constraints. Recently, some approaches
algorithm, wireless communication. based on the Hopfield neural network [9] and simulated
annealing [10] have been proposed. The first neural network
for solving the channel-assignment problem was proposed
probably by Kunz [11]. Following that, several other neural
networks were studied. These include the work by Sengoku

N IMPORTANT issue in the design of a cellular radio L 1121 Funabiki and Takefuii 113 d Lochite 114
network is to determine a spectrum-efficient and conflicE! a. [12], unabiki and -faketuji [13], an -oc |te. [ ]'.
n inherent disadvantage of this approach is that it easily

free allocation of channels among the cells while satisfyi ; . .
both the traffic demand and the electromagnetic compatib'(-mverges to local optima and, hence, suboptimal solutions.

ity (EMC) constraints. This issue is commonly referred tJO overcome this difficulty, a simulated annealing approach
95 suggested by Duque-Antat al [15] and Matharet

as channel assignment or frequency assignment. Gener . . .
g d y g %‘i [16]. Although this approach is guaranteed to achieve

there are three types of EMC constraints [7], namely: 1) t lobal . icallv. i f
cochannel constraint (CCC), where the same channel canno{rbee global optimum asymptotically, its rate of convergence
,L%rather slow, and a carefully designed cooling schedule is

assigned to certain pairs of radio cells simultaneously; 2) t ired
adjacent channel constraint (ACC), where channels adjacen[ffﬂu'rﬁ_ : h h—th
the frequency spectrum cannot be assigned to adjacent radif] (M!S Paper, we propose yet another approach—the ge-

cells simultaneously; and 3) the cosite constraint (CSC), Whé}gtic algorithms (GA’s) [17], [18]—for solving the channel-

channels assigned in the same radio cell must have a minifigpgnment problem. we conS|de_r a general cellular r.adlo
separation in frequency between each other. These E work subjected to all three kinds of EMC constraints

constraints are normally determined by the characteristics scribed earlier. In addition, the traffic is assumed to be in-

the radio frequency propagation and spatial density of t gmogeneous, i.e., egch cell has different traffic requirements.
expected traffic requirements. Our problem formulation follows the stem of the aforemen-

tioned neural-network and simulated annealing approaches.

Manuscript received December 19, 1994, revised October 29, 1996. The objective is to obtain a conflict-free channel as&gnmentt
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[18] that generate subsets of all possible sizes, the genefif-each diagonal element; represents the CSC, i.e., the
fix algorithm can generate fixed-size subsets (i.e., in binamyinimum separation distance between any two channels
representation, the number of ones is fixed). Furthermomg, cell i and 2) each nondiagonal elemesy represents
we propose a minimum-separation encoding scheme that ¢h@ minimum separation distance in frequency between any
eliminate redundant zeros in the solution representation. Thége frequencies assigned to celis and j, respectively.
two strategies allow us to reduce the search space substantillythis matrix, CCC is represented hy; = 1, ACC is
and, hence, greatly speed up the computation. represented by;; = 2, and cells that are free to use the
Recently, it has come to our attention that two GA apsame channels are represented &y = 0. In all cases,
proaches have been independently considered in [19] and [26]. > 1.
In [19], the author first defined an asexual crossover andBy analyzing the traffic at each cell, the traffic demand
a special mutation and then represented the solution sp&@uirement can be obtained. This can be represented by an
in a way similar to our genetic-fix algorithm such that th&-element demand vector denoted dasin this vector, each
traffic requirement was fulfilled inherently. A disadvantagglementd; represents the number of channels to be assigned
of such asexual crossover is that it can easily destroy t#e cell .
structure and, thus, make the problem harder to converge. Idn short, given the compatibility matrix’ and the traffic
[20], the authors represented the channel-assignment solui§fmand vectord, the optimal channel-assignment scheme
as a string of channel numbers (instead of binary strindfvolves the determination of the minimum channel span
These numbers were grouped in such a way that each &gfuired and the way to distribute these channels among the
had a specified number of channels and, hence, satisfied ¢g#S While satisfying the EMC constraints and the traffic
traffic requirement. The evolution was then proceeded V#gmand requirements.
the partially matched (PMX) crossover operator and basic
mutation. Our work differs from [19] and [20] in that our
crossover operator is based on a concept similar to tl‘loétt

in conventional binary crossover. Furthermore, our solution conventional graph-theoretic approaches formulate the
representation allows us to further reduce the search spacgRyblem as a “minimum span’ problem, i.e., given the
eliminating the CSC using the minimum-separation encodiR@mpatibility matrix C' and the traffic demand vectat of
scheme, which will not be possible with the representation ih arbitraryn-cell radio network, find a conflict-free channel
the above two approaches. In addition, instead of performiagsignment with the minimum channel span. Mathematically,
simulation on small- or medium-size problems for demonstra- means that ifs;; is the channel number of théth
tion purposes, we consider several “hard” realistic benchmag¥ll assigned to celf, then the problem can be expressed
problems. as

The rest of the paper is organized as follows. In Section
II, we formulate the channel-assignment problem with several o
assumptions. We first present a graph-theoretic formulation =~ MNIMIZE 7t = max sik
of the problem and then formulate the problem as an un-  sypject to |sir — sj1 > cij
constrained optimization problem by assuming that the total forii—=1.2 - n
number of available channels is given. In Section Ill, we J T
discuss the genetic-fix algorithm with a brief review of the andk = 1,2, di,l = 1,2, -+, d;
conventional simple GA (SGA). In Section IV, we present the and(4, k) # (4,1). (1)
minimum-separation encoding scheme that can eliminate the

CSC. In Section V, we discuss some implementation iSSUgSy < peen shown that this problem is equivalent to a gen-

These include the determination of a near-optimal minimal_i>oq graph-coloring problem [1], [3]. When only CCC

channel span and a local-search routine that can improve f?econsidered, it is reduced to a graph-coloring problem,

rate of convergence of the genetic-fix algorithm. In Sectiofnich is known to be NP complete, i.e., the computation

VI, we apply the algorithm to solve the channel-assignmefifne grows exponentially with the number of the nodes

problem a_nd perfprm some simulations. Finally, we conclugg ine graph. Consequently, an exact search of the opti-

our work in Section VII. mal solution is impractical for problems of a reasonable
size.

Graph-Theoretic Formulation

Il. PROBLEM FORMULATION

The cellular radio network to be considered consists & Our Formulation
n arbitrary cells. Without loss of generality, it is assumed The graph-theoretic approach aims only at minimizing the
that channels are evenly spaced in the radio frequengyed spectrum. However, in practice, the determination of
spectrum. Using an appropriate mapping, channels can deonflict-free assignment pattern is more important. Conse-
represented by consecutive positive integers. Therefoggiently, some methods that assume a given channel span have
the EMC constraints can be described by anx n been proposed. These include several “natural’ approaches
symmetric matrix called the compatibility matrik’, where such as neural network [11], [13], [14] and simulated annealing
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[15], [16]. Our formulation follows the stem of these apfor CCC and ACC, if channelin cell ; is within distance:;;
proaches. We assume that the cellular network is composedrofn an already assigned changeh cell j, wherec;; > 0 and
n cells and each cell is capable of carrying any of the availabiet j, (i.e., |p — ¢| < ¢;;), then channeb must not be assigned
channels. We formulate the channel-assignment problem ag@rell ;. Mathematically, it means that if the assignment of
unconstrained optimization problem. channelp to cell ; violates CCC and/or ACC, then

In particular, we represent the solution spdcas ann x m
binary matrix, wheren is the number of radio cells and is

the total number of available channels. (Here, we assune n o P

given. This formulation is different from the “minimum span” Z Z fiq>0.
problem.) Each elemern,;, in the matrix is either one or zero JJ;:ZL q={’;(§2;l—1)
such that €ij >0
ik = { L channelk is aSS|gngd to cell j. Therefore, a generic choice of cost function can be ex-
0 not assigne pressed as

Diagrammatically, the admissible channel assignniéntan

be described, as given at the bottom of the page. n m n pe;—1)

Basic requirements for the cellular network are the ability C(F) = Z Z Z Z fia | fin
to serve the expected traffic and the avoidance of interference. i=1p=1 | J=1 q=p—(es;~1)
The first requirement imposes a demand constrainfor JJ#;O 1<g<m

total of d; channels are required for céllThis implies that the

total number of ones in rowof /" must bed;. Mathematically, pt(cii—1)
n m i1

it means that if the assignment to celviolates the demand
constraint, then + 042; 221 z(: ! Jig | fip
t=1p= g=p—(cii—
qF=p
1<g<m
<Zl Jia = di) 70 +8Y" <Z fia = di> (2)
= =1 \g=1

The second requirement is modeled by the compatibiliyhere o and 3 are weighting factors.

matrix C. It is composed of CSC, CCC, and ACC. For CSC, |t s noted thatC(F") achieves its minimum of zero when

if channelp is within distancec;; from an already assignedy| constraints are satisfied. Therefore, our problem is to find

channelg in cell  (i.e., |p - ¢| <c;), then channep must 5, o g ,cp thatC(F) is zero. To speed up the search process,

not .be assigned to cell Mather.“?“ca”y’ it means that if thethe structure of the solution space is examined. A special form

assignment of channei to cell i violates CSC, then of solution representation is used such that the traffic demand
and the CSC requirements are fulfilled inherently. In the next

pH(eis—1) two sections, we will discuss how a modified GA, called the
Z fiq>0. genetic-fix algorithm, and a special encoding technique, called
q=p;§éc;—l) the minimum-separation encoding scheme, can accomplish this
1<g<m task.
Fik Channel Number

1 2 3 cee m

1 0 1 0 ce 0 1 0

2 0 0 1 0 0 1

Cell Number 3 0 0 1 1 0 0
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Before Crossover After Crossover
10]10001 1010110
—

01]10110 0110001

Fig. 1. Crossover in SGA.

Ill. PRINCIPLE OF GENERIC GENETIC ALGORITHMS

Although there are many variants of GA’s, their mechanis

are similar as illustrated in the following pseudocodes:

Before Crossover After Crossover

10(110001]10 — 10{011010]J10
011011110]00 011110101]060

Fig. 2. Crossover in genetic fix.

the search space of the problem and, hence, shorten the
computation time of the algorithm. We introduce the genetic-
M algorithm that can generate a fixed number of ones for
each individual and preserve this property during the genetic

GA() operations. Of course, this requires special crossover and
{ mutation operators that can maintain the property of a fixed
generate randomly an initial population; number of ones. One way to implement these operators is
evaluate fitness of each individual, proposed as follows.
while convergence not achieved and
max. number of generations not exceeded A. Crossover in Genetic Fix
{ Given two parentsd and B, we create a first-in last-out

select individuals probabilistically according to
their fitness;
perform genetic operations on the selected

(FILO) stack to store the bit positioh corresponding to the
opposite bit pail( Ay, By). A and By, are said to be opposite
if Ax @ By = 1, where® denotes the exclusive or operator.

individuals; _ The crossover is performed by first generating two crossover
evaluate fitness of the newly obtained points ¢; and ¢, at random along the string length such that
individuals; ¢1 < ¢» and then moving right frona; until ani is found such
¥ that A; & B; = 1. We pushi into the FILO stack and continue
¥ the process until we find asuch thatd, & B; = 1. Then, we

In its most fundamental form, called the SGA [17], eacRompared; with A,,, wheresl is the top element in the stack.
individual is represented by a binary vector. Proportiond they are the same, we pughinto the stack, otherwise, we
selection is adopted and two genetic operators, called nfiyrap the pair indexed bywith the pair indexed by1 and pop
tation and crossover, are used. These operators are appfiedrom the stack. The process continues untilis reached.
to the selected individuals with fixed probabilitips, andp, A pseudocode of this operator is illustrated as follows:
corresponding to mutation and crossover, respectively. Unlike CrossoverGeneticFix (parentsA and B)

crossover that does not create new genetic material, mutationf

can introduce new information in the population. This peculiar generate randomly two crossover poiatsandc,
characteristic of mutation allows GA’s to overcome local along the string length such that < ¢»;
optima. Basically, mutation involves the “flipping” of each for (i = c1;i < coji++)
bit of an individual with probabilityp,,. Its role is to restore
lost or unexplored genetic information into the population to if A; andB; are opposite
prevent premature convergence. Crossover, on the other hand, {
involves the exchange of portions of two selected individuals. if stack is empty, pushinto stack;
The idea is to allow the offspring to preserve part of the first else
parent while incorporating information from the second parent.
This implementation in SGA is accomplished by choosing a if A; andA,, are different
crossover point at random and exchanging the segments on (s1 = top element in stack
the right of this point as illustrated in Fig. 1.

Another common way to implement crossover is to choose swap(A;, B;) with (As1, Bs1);
two crossover points and exchange the segments between these pop sl from stack;
points. It has been shown in [21] that such crossover has some }
theoretical advantages over the one-point case. Hence, in our else push into stack;
subsequent discussion, we will focus on crossover operators }
with two crossover points. }

¥

D. Principle of Genetic-Fix Algorithm 1.

It is noted that generic GA’s generate subsets of all possililet us consider an example using binary vector representation.
sizes. However, there are some combinatorial optimizati®uppose that we have two 10-b strings. Each of them has
problems whose feasible solutions are fixed-size subsets. fiRg ones with the crossover sites = 3 andc; = 8. The
taking this information into account, we can greatly reduagenetic-fix crossover operation can be illustrated by Fig. 2.
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The same rule applies to the binary array representatioroifiginal individual with (dnin — 1) “zero” before performing
the two crossover points are in the same row. However, if théye encoding scheme. In this way, the total bit length is
belong to different rows (say, row and rowy, wherex <y), increased to(p + dyim — 1). An example is illustrated as
then genetic-fix crossover will apply from to the end of row follows:

z and from the beginning of row to ¢, and will swap those Original Rep.
in-between rows, if any. 1000100010
\
B. Mutation in Genetic Fix Augmentation
In order to balance the number of ones in an individual, the 100010001000
mutation operation must always be done in pairs of opposite 4
bits. This can be implemented as follows. ligtbe theith Encoded Rep.
bit position of an individual. To mutaté;, we need to find a 101010
randomb; such thab; ®b; = 1. Then, we swap; with b;. In Using the minimum-separation encoding schemey-lait
the case of binary array representation, biatiwith b; must pinary string withg elements separated by a distancelgf,
be in the same row. can be encoded by a binary string [pf— (¢ — 1)(dumin — 1)]
bits only.

IV. MINIMUM -SEPARATION ENCODING SCHEME

: . . S V. IMPELMENTATION ISSUES
There exists some combinatorial optimization problems,

which may require a minimum separation between consec-BY representing each individual as a binary ardgyand
utive elements in the solution. By encoding each elemef@stricting the number of ones in each row to its corresponding
properly, the solution space can be greatly reduced. In thiaffic demand, i.e., given at the bottom of the page, the
sequel, we will present an encoding technique, called tf@ffic demand requirement can be fulfilled automatically. This
minimum-separation encoding scheme, which can accompligioperty can be maintained throughout the iterative process
this objective. using the genetic-fix operators.

Let an individual be represented bygabit binary string ~ Further improvement can be achieved by noting that the
with ¢ fixed elements and let,;, be the minimum separation CSC requirement is nothing more than a minimum separation
between consecutive elements. The idea of the encodpgfween consecutive elements in each row of an individual.
scheme is to represent the solution in such a way that a ond fgrefore, using the minimum-separation encoding scheme,
followed by (@..in — 1) zeros encoded as a new “one,” denoted€ can eliminate the CSC requirement from the cost function
as1. For example, ifdin = 3, then1 is equivalent to “100” and further reduce the search space. As a result,irofaithe
in the old representation. Consequently, for an individual wigelution matrix” will consist of d; 1's with a total length of

p =10 andg = 3, it can be encoded as follows: [m — (di — 1)(cis — 1)] bits.
Hence, using the genetic-fix algorithm and the minimum-

separation encoding scheme, the cost function of the channel-

Original Rep. Encoded Rep. . S
1000100100 — T0i1 assignment problem can be simplified to
. . n m n (ci5—1)
Hence, the length of representation can be substantially il
reduced. However, a problem still remains if a “one” is at o) = ZZ Z Z fia | fiv- (3)
a position within(d,;, — 1) from the end of the string. To i=lp=l ’J; a=p—(ci;=1)
. . . . sgs=m
cope with this shortcoming, we need to first augment the ©ij
fix Channel Number
1 2 3 e m Row Sum
1 0 1 0 0 1 0 dy
2 0 0 1 0 0 1 dy
Cell Number 3 0 0 1 1 0 0 ds
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Compared with the problem formulation in the neural net- 5) If no improvement is revealed, restore the old structure
work and simulated annealing approaches (e.g., [13]), our and repeat steps 3)—4) until all zeros in roare tagged.
formulation is much simpler. However, there are still some 6) Repeat steps 2)-5) until all elements in the penalty
implementation issues to be considered. These include the vector are tagged.
determination of the total number of available channels

and the ways of improving the performance of the genetic-fl® Make the computation manageabtg, should not be
algorithm. large, and the local-search routine should only be done when

necessary. In our case, we perform a local search only when
o the best solution thus far achieved has not been changed for
A. Determination ofn K generations. Once a better solution is found, this counter

Our problem formulation assumes that the total number \(I)Vf" be reset or the local search will continue.

available channels: is given. This number can be determined

by either the available radio spectrum or the lower bound VI. SIMULATIONS

estimated by a graph-theoretic method [22]. Alternatively,

a rough estimate of the least upper bound rof can be Our simulator, called GENESIS_F and written in C, is
obtained by multiplyingc;; in C with the maximumd; in  based on the GENESIS system [23] developed by Grefenstette
d. Starting from this estimate, we decrease it gradually unfidr general-purpose unconstrained optimization using genetic-
the genetic-fix algorithm cannot find a “feasible” solution fosearch techniques. Similar to GENESIS, the user needs only
the channel-assignment problem within a “reasonable” timi@. provide an evaluation function that gives the “fitness” of a
The smallest feasible number of available channels thus faven individual. There are several enhancements over GENE-
obtained will be used as: in our problem. SIS. First, it allows users to think about the genetic structures
as binary arrays in addition to vectors of real numbers and
bit strings. This representation enables an easier application
of GENESIS to some problems, like the scheduling problem.
By exploiting the symmetry of the compatibility matrz, Second, variable bit length is allowed in each row of a binary

the cost function (3) can be further simplified to array. Such an arrangement may help reduce the search space
by removing some redundant zeros (see [24]). Third, an option

that allows users to choose fixed-element manipulation, based

B. Simplification of the Cost Function

n—1 n se—lp—1 on the concept of the genetic-fix algorithm, is added. This

O(F) = Z Z Z Fialiv mclu_des th_e generation of fixed-size |n_d|V|duaIs a_nd preserves
=l jeitl \ p=1 g=1 the fixed-size property throughout various genetic operations

€i3>0 such as selection, crossover, and mutation. Fourth, it allows

m p—1 m users to solve constrained optimization problems via a penalty
+ > > fifw+3>_ finfip |- (4 method, which uses the ‘implied objective function” constraint
p=1 [24]
Five benchmark problems were examined. Problems 1, 2,
3, and 5 were taken from [7], and problem 4 was from
Cf. Local-Search Routine [11]. Table I [11] summarizes the characteristics of these five
problems, where all the demand vectors and the compatibility
Generally, GA’s do not perform a finely tuned local searchmatrices exceptCs are given in [13]. The compatibility
In order to improve the performance and increase the raterétrix Cs is the same a<’s in [13] with all the diagonal
convergence, we introduce the following local-search routinelements being replaced by problem 5, while problems 2
The basic idea is rather simple. It involves nothing more thamd 4 consider only CSC and CCC, and problems 1, 3, and
finding a zero along a row of the binary array solution an8l also consider ACC. Furthermore, for each problem, the
swapping it with the most “violated” one (i.e., the “one,” whiclrequired channel spam was determined via pilot trials as
gives the highest increase in the cost function) on that rodescribed in the previous section. While problems 1-4 give
Of course, this procedure should result in better performanitee samen as in [13], problem 5 has an even shorter channel
with a little more expense in computation. The routine stargpan than the existing algorithms in [7]. (The best existing
with a given binary array solutiod” and an empty penalty channel span is 269.) In order to justify the effectiveness of
vector with sizen, and proceeds as follows. the minimum-separation encoding scheme, the bit reduction
1) Saven, most “violated” ones in the penalty vector. gblr:presentmg the solution space is also included in the
2) Select randomly a nontagged element, say indexed by one hundred Monte Carlo runs were performed on problems
from that vector and tag it. 1-4, and ten runs were performed on problem 5. In order
3) Find a nontagged zero at random along e row to avoid the disappearance of the best individual after some
of F, tag it, and swap it with the most correspondingenerations, the “elitist” selection strategy was adopted so
“violated” one pointed to by elemerit that the best individual survives with probability one, i.e.,
4) Evaluate the new structure. it always survives intact from one generation to the next.

p=cij g=p—ci;j+1
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TABLE |
PROBLEM SPECIFICATIONS AND SOLUTION REPRESENTATION
Problem | No. of | No. of | Compatibility | Demand Required Number of Bits
Cells | Channels Matrix Vector | Previous Our Difference
Approach | Approach
n m C d A B A-B
1 4 11 Cy Dy 44 36 8
2 21 221 Cs Dy 4641 2845 1796
3 21 309 Cs Dy 6489 3795 2694
4 25 73 C, D, 1825 1683 142
5 21 268 Ce Dy 5628 3832 1796
200 L 200} g
8150 4 g1saf R
s s
£ H
i q00H 4 I 100} ]
sof J 50 J
% P 3 ] P ‘% o5 1 15 2 25 3 35 4 45
Number of Trials x 10° CPU Time (sec) x10'
(@) (b)

Fig. 3. A typical rate of convergence trajectory for problem 3 based on (a) number of trials and (b) CPU time used.

TABLE I TABLE Il
SIMULATION PARAMETERS SUMMARY OF SIMULATION RESULTS
Problem T Pe Pm Nyin, | K Neural Network Genetic-Fix
Problem Frequency of Frequency of No. of CPU Time
1 100 | 0.95)0.0005 | 10 | 5 ) 10 Convergence (%) | Convergence (%) Trials (sec)
2 200000 | 0.95 | 0.0005 | 10 | 25 | 10 . 100 100 ) 00
3 200000 | 0.95 | 0.0005 | 10 {30 | 10 (& 0.0) (& 0.0)
4 200000 | 0.95 | 0.0005 | 10 | 25 | 10 5 7 o 63152 19365
4 400000 | 0.95 | 0.0005 | 10 | 30 | 10 (4 40521 ) | (& 16782 )
3 24 80 79502 89196
Several parameters need to be set, including the maximum (£ 40778) | (& 64846)
number of trials per run(T trials), the crossover proba- 4 9 100 26382 2181
bility (p.), the mutation probability(p,,), the population (£19639 ) | (£1722)
size (NV,), the size of the penalty vectofn,), and the 5 _ % 382770 596790
counter for “igniting” the local-search routineK gener- (1159014 ) | (76716 )

ations). As for any GA's, the settings of these parame
ters are generally quitad hoc Nevertheless, a general rule

was suggested in [17] for using a relatively small popu-

lation size, high crossover probability, and low mutatioperiments, ensuring that the computation was manageable.
probability. In our simulation, this rule was first applied;Table Il summarizes the simulation parameters of all five
and then the parameters were fine tuned through pilot gx¢oblems.
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Cell Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2 19 16 18 8 5 8 6 9 2 4 1 7 1 4 15 5 19 7 3 1
45 64 59 66 34 11 14 12 24 7 10 6 13 16 10 27 11 28 13 20 25
162 133 77 83 61 26 20 22 32 13 15 12 30 23 18 50 17 33 42 39 31
204 188 112 90 79 33 36 29 37 21 23 20 37 28 25 61 47 38 59 45 36
223 235 227 96 101 47 41 34 52 26 30 25 62 44 31 93 58 44 69 54 41

0 0 0 197 110 60 54 43 68 35 40 32 87 51 38 101 65 53 77 72 56
0 0 0 251 138 69 65 48 73 42 46 37 97 58 46 128 75 60 107 82 63
0 0 0262 178 75 81 56 85 49 51 43 110 67 63 185 87 67 115 90 70
0 0 0 0 200 101 92 76 91 55 57 48 115 73 71 190 97 78 124 113 80
0 0 0 0 210 113 98 83 99 62 64 54 121 78 86 197 125 84 134 121 95
0 0 0 0 233 132 103 88 104 71 69 59 127 84 96 212 135 89 139 143 103
0 0 0 0 239 143 109 106 110 81 74 72 137 89 112 218 182 100 158 148 123
0 0 0 0 0 148 116 114 119 94 86 77 146 94 120 242 187 109 166 169 133
0 0 0 0 0 155 122 126 140 102 92 82 153 105 131 250 203 120 181 175 145
0 0 0 0 0 161 129 138 146 107 98 88 180 118 145 262 236 127 188 194 150
0 0 0 0 0 166 135 149 154 115 105 95 207 125 151 0 0 139 204 207 156
0 0 0 0 0 173 159 156 161 122 113 103 212 140 168 O 0 147 235 223 165
0 0 0 0 0 196 170 165 167 132 118 108 219 157 174 O 0 153 244 228 171
0 0 0 0 0 201 177 202 173 137 124 116 255 182 179 O 0 162 252 258 200
0 0 0 0 0 209 186 214 180 142 129 121 260 193 195 0 0 168 260 266 209
0 0 0 0 0 226 191 225 192 151 134 126 0 198 200 O 0 174 0 0 220
0 0 0 0 0 232 206 231 199 158 144 131 0 203 208 O 0 179 0 0 234
0 0 0 0 0 238 211 237 210 164 149 136 0 215 227 O 0 193 0 0 248
0 0 0 0 0 253 217 254 216 170 155 141 0 224 247 O 0 198 0 0 261
0 0 0 0 0 266 229 259 221 176 160 146 0 236 265 0 0 206 0 0 268
0 0 0 0 0 0 234 0 233 184 166 152 0 241 0 0 0 211 0 0 0
0 0 0 0 0 0 245 0 240 189 172 157 0 249 0 0 0 217 0 0 0
0 0 0 0 0 0 251 0 246 195 181 163 0 258 0 0 0 226 0 0 0
0 0 0 0 0 0 256 0 257 201 186 169 0 263 0 0 0 232 0 0 0
0 0 0 0 0 0 261 0 264 208 191 175 0 268 0 0 0 245 0 0 0
0 0 0 0 0 0 0 0 0 213 204 183 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 219 215 188 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 224 222 196 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 230 228 202 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 238 235 207 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 243 241 212 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 249 247 218 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 255 253 225 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 260 258 231 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 267 265 237 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 244 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 263 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 268 0 0 0 0 0 0 0 0 0
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Simulations were performed on an HP Apollo 9000/700 APPENDIX

workstation using our proposed genetic-fix algorithm and g, gn example of channel assignment for problem 5, see
the minimum-separation encoding scheme in GENESIS £, previous page.

Performances were measured based on: 1) average central
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