Correlation Between Hot-Carrier-Induced Interface States and GIDL Current Increase in N-MOSFET’s

P. T. Lai, J. P. Xu, W. M. Wong, H. B. Lo, and Y. C. Cheng, Member, IEEE

Abstract—Correlation between created interface states and GIDL current increase in n-MOSFET’s during hot-carrier stress is quantitatively discussed. A trap-assisted two-step tunneling model is used to relate the increased interface-state density \( \Delta D_{it} \) with the shift in GIDL current \( \Delta I_d \). Results show that under appropriate drain-gate biases, the two-step tunneling is so dominant that \( \Delta I_d \) is insensitive to temperatures up to about 50 °C. With the help of 2-D device simulation, the locations of the drain region with significant two-step tunneling and the energy levels of the traps involved can be found, with both depending on the drain voltage. From these insights on \( \Delta D_{it} \), \( \Delta I_d \) and their relation, \( \Delta D_{it} \) near the midgap can be estimated, with an error less than 10% as compared to the results of charge-pumping measurement on the same transistors. Devices with nitrided gate oxide, different gate-oxide thicknesses and different channel dimensions are also tested to verify the above correlation.

I. INTRODUCTION

Interface-state creation due to hot-carrier stress constitutes a major device-reliability concern and attracts much research interest [1] – [3]. It is generally characterized by charge-pumping (CP) and \( C-V \) techniques. However, since its effects on the electrical characteristics of MOSFET’s are obvious in terms of subthreshold slope and gate-induced-drain-leakage (GIDL) current, it should also be possible to determine the change in interface-trap density \( \Delta D_{it} \) by measuring the shift in these device parameters, which has been described in the literature [4]–[7]. It was suggested by Duvvury et al. [4] that the increase in GIDL current was a direct result of flat-band voltage shift due to \( \Delta D_{it} \). However, Chen et al. [5] reported that in an n\textsuperscript{+} gated diode, \( \Delta D_{it} \) merely enhances GIDL current via an increase in surface generation velocity. More recently, Hori [6] discussed \( \Delta D_{it} \)-related GIDL current based on band-to-band (B-B) tunneling process via interface state. The present work attempts to quantitatively study the correlation between \( \Delta D_{it} \) and GIDL current increase \( \Delta I_d \) by means of an interface-trap-assisted two-step tunneling model [7], thus obtaining some insights on the physical mechanisms involved.

II. EXPERIMENT

Conventional n-MOSFET’s with thermal SiO\textsubscript{2} (OX) grown at 850 °C for 100 and 60 min, respectively, in O\textsubscript{2} and Ar (marked as OX1 and OX2, respectively), or nitrided oxide (N2ON) as gate dielectric were used. N2ON samples were fabricated by nitridizing OX2 samples at 950 °C for 70 min in pure N\textsubscript{2}O ambient. The final gate-oxide thickness \( T_{ox} \) of the three kinds of samples (measured by \( C-V \)) was 210 Å for OX1 samples and N2ON samples, and 145 Å for OX2 samples. The devices were subject to hot-electron stress, \( V_{GD} = 0.5 \) \( V \), \( V_D = 3.5 \) \( V \), for 1000–4000 s to create interface traps. GIDL current was measured before and after the stress under three different conditions with the same drain-to-gate bias \( V_{DG} = 8 \) \( V \), \( V_D = 5 \) \( V \), \( V_G = -3 \) \( V \); \( V_D = 4 \) \( V \), \( V_G = -4 \) \( V \); and \( V_D = 3 \) \( V \), \( V_G = -5 \) \( V \), and source and substrate grounded. The stressings and measurements were performed on MOSFET’s with channel length \( L \) channel width \( W \) = 1/24 \( \mu \text{m} \) and 1.8/10 \( \mu \text{m} \) in a nitrogen ambient under light-tight and electrically shielded condition using an HP 4156A precision semiconductor parameter analyzer.

III. RESULTS AND DISCUSSION

Fig. 1 shows the measured pre-stress and post-stress GIDL currents for OX1 samples. Solid lines, dash lines and dot lines correspond to the three different conditions for GIDL current increase. Along the arrow direction, stress time increases from 0 s to 4000 s with an increment of 1000 s. \( X \)-axis is the time at which GIDL current is measured after the stress is finished. It can be seen that after stressing for 1000 s, GIDL current increases obviously, and for stress time above 1000 s, shift of GIDL current becomes gradually small and then reaches almost a saturation value after stressing for 4000 s. This saturation phenomenon seems to indicate that interface-trap creation is limited by the number of potential trap sites available. The observed increase in post-stress GIDL current is distinctly different from that induced by oxide traps because oxide traps only induce GIDL current transient on a time scale of seconds. So, it should be dependent on the amount of interface traps created during stress since the stress method of \( V_{GD} = 0.5 \) \( V \) is mostly responsible for interface-state generation [1]. In other words, an additional conduction mechanism involving interface traps [7] should be possible after the hot-electron stress. Under low \( V_{DG} \), the energy band is not sufficiently bent with the Fermi level \( E_F \) still inside the bandgap, and therefore direct B-B tunneling is weak. However, the thermal excitation of electrons from the valence band into the interface traps, followed by tunneling into the conduction band...
band, i.e., a trap-assisted one-step tunneling [6], is highly probable. As $V_{DC}$ is increased to such a large value that $E_F$ is much below the interface-trap levels, a trap-assisted two-step tunneling is also appreciable due to enhanced tunneling rate, with hole tunneling from the interface traps to the valence band (step 1) and then electron tunneling from the interface traps to the conduction band (step 2) [7], as illustrated in Fig. 2. This deduction is further supported by the measured results for N2ON sample before and after a stressing for 3000 s, as presented in Fig. 3. It can be seen that shift in post-stress GIDL current is significantly smaller as compared to OX1 sample (only 167 pA for $V_D = 5$ V, 105 pA for $V_D = 4$ V and 40 pA for $V_D = 3$ V). This smaller shift is expected because creation of interface states during stress is effectively suppressed due to nitrogen incorporation at the Si/SiO$_2$ interface of nitrided devices [8]. Thus it can be concluded that the increase of GIDL current after stress indeed reflects a generation of interface states and $\Delta D_{it}$ could be linked to the measured increase in post-stress GIDL current.

Under the two-step tunneling condition, the increased GIDL current $\Delta I_d$ can be derived as follows [7]:

$$\Delta I_d = A \exp\left(-\frac{B_k}{F}\right)$$  \hspace{1cm} (1)

$$B_k = \frac{4}{\hbar} \left(2m_e\right)^{1/2} \left(E_c - E_t\right)^{3/2} / 3q$$  \hspace{1cm} (2)

$$E_t = E_V + \left(F_1/F\right)^{2/3}E_C / 1 + \left(F_1/F\right)^{2/3}$$  \hspace{1cm} (3)

where $A$ is weakly dependent on electric field and proportional to the generated interface-state density near midgap $\Delta D_{it}$. $F_1$ is the lateral field, $F$ is the total field in deep-depletion region, and $E_t$ is the energy level of the interface traps, which are most effective in the two-step tunneling process. Other variables have their usual definitions. To check the validity of (1), the temperature dependence of $\Delta I_d$ was measured and the results are shown in Fig. 4. It can be seen that measured $\Delta I_d$ at $V_{DC} = 8$ V hardly changes with temperature ($T$) below 50 °C, but increases at higher temperatures due to thermal generation which is ignored in (1) [7]. From (2) and (3), changes of $(E_t - E_V)$ and $B_k$ with $F_1/F$ can be obtained, as shown in Fig. 5. It can be seen that as lateral field $F_1$ gets stronger, $E_t$ changes from $E_V$ to $E_f$ (intrinsic Fermi level) and the corresponding $B_k$ decreases from 36 to 12.8 MV/cm. In fact, $B_k$ in (1) reflects a potential barrier height in tunneling and has a minimum value for midgap-trap-assisted two-step tunneling. In [7], the parameter $A$ was treated as a fitting parameter, and as a result, $\Delta D_{it}$ was not explicitly involved in (1). In reality, $A$ can be expressed as

$$A = \Delta D_{it}qWL_c\Delta E_t/(2\pi\alpha)$$  \hspace{1cm} (4)
where $\tau_{\text{tr}}$ is effective transit time in the conduction band, $L_{\text{e}}$ is effective spatial width of $\Delta D_{\text{it}}$ distribution which contributes to GIDL current through the two-step tunneling conduction mechanism, $\Delta E_{\text{t}}$ is effective energy range covered in GIDL current measurement. In order to deduce $\Delta D_{\text{it}}$, it is necessary to obtain the field distribution near drain junction. Only after $F$ and $F_1$ are determined by 2-D device simulation, the value of $B_{\text{e}}$ in (1) can be calculated by (3) and (2), and then $\Delta D_{\text{it}}$ can be found as below.

For clarity, the measured results in Fig. 1 are taken as an example to illustrate the detail of obtaining $\Delta D_{\text{it}}$. For the three GIDL measurement conditions mentioned previously, the field distributions along the interface near the drain simulated by MINIMOS4 are depicted in Fig. 6. The gate and drain edges
are located at position \( x = 1.2 \) and 1.1 \( \mu m \) for OX1 sample; \( x = 2.0 \) and 1.9 \( \mu m \) for OX2 sample, respectively, which define the two ends of the gate-drain overlap region. The width of this region was measured by the device-parameter extraction program BSIMPro® for Windows and was equal to 0.10 \( \mu m \). From Fig. 6, two phenomena can be observed: the vertical field \( F_2 \) is higher than the lateral field \( F_1 \), and their peaks lie within the gate-drain overlap region. Since \( F_1 \) and \( F \) are functions of position, (1) should be rewritten as

\[
\Delta I_d = A \frac{1}{\Delta X} \int \exp\left(-\frac{B_{kt}/F}{x}\right) dx \\
\approx A \frac{1}{\Delta X} \sum_{j} \exp\left(-\frac{B_{kt,j}/F_j}{x_j}\right) \Delta x_j.
\]

(5)

Substituting (4) and re-arranging gives

\[
\Delta D_{kt} = \frac{2\tau_{ox}\Delta X}{qWL_e\Delta E_t} \sum_{j} \exp\left(-\frac{B_{kt,j}/F_j}{x_j}\right) \Delta x_j \cdot \Delta I_d
\]

(6)

where \( \Delta X \) is effective action range of electric field which can result in significant two-step tunneling conduction, and can be approximated to be the same as \( L_e \). Simulations showed that \( \Delta X \) almost corresponds to depletion region width near drain junction which depends on drain voltage, in which depletion region edges in channel region and gate-drain overlap region can be determined by defining a value of \( 1 \times 10^{24} \) cm\(^{-3} \) for majority concentration [9]. In addition, from the assumption that \( \Delta D_{kt} \) is a uniform distribution only near midgap \( E_t \) [7], (5.) and (6.) should not include the terms with large \( B_{kt,j} \) values which correspond to \( E_t \) levels far below \( E_t \) as shown in Fig. 5. Calculations showed that when \( B_{kt} \) is above 29 MV/cm, electrons tunneling can be almost considered as B-B tunneling because \( E_t \) is very close to \( E_V \) in the cases. Combining considerations on \( \Delta X \) and \( B_{kt} \) above, after performing field simulation, \( \Delta D_{kt} \) for different stress times can be calculated using (6) for different \( V_D \) under same \( V_{DG} \) from the measured \( \Delta I_d \), and the results are shown in Fig. 7(a) (in the calculation, \( \tau_{ox} = 0.1 \) ps [10]). For \( V_D = 3, 4, \) and 5 V measurement conditions, the values of \( \Delta X \) and \( \Delta E_t \) are 584 Å, 0.15 eV; 1347 Å, 0.21 eV; and 2111 Å, 0.25 eV, respectively, with \( \Delta E_t \) below \( E_t \). For comparison, the corresponding results measured by the commonly used CP method on the same transistor are also presented in Fig. 7(a). As can be seen, the results estimated by GIDL method under all measurement conditions are in good agreement with the results of CP measurement, and maximum error is less than 6%. The same procedures are also carried out for OX2 sample and results are shown in Fig. 7(b). Two different transistors are used for the two GIDL measurement conditions due to significant oxide-charge trapping effect during GIDL current measurement on the samples, which produces a larger error close to 10%. It is worth pointing out that in Fig. 7(b), the curves for \( V = 2 \) and 3 V are not included since both measured GIDL current (\(<20\) pA) and \( \Delta I_d \) are too small to be measured accurately, which results in a large error in the calculated \( \Delta D_{kt} \) (about an order of magnitude lower than CP measurement). The fact is also supported by measured results of N2ON samples (CP measured value is \( 9.5 \times 10^8 \) cm\(^{-2} \) eV\(^{-1} \) and estimated \( \Delta D_{kt} \) is \( 1.0 \times 10^9 \) cm\(^{-2} \) eV\(^{-1} \) for \( V_D = 5 \) V, 8.7 \( \times 10^9 \) cm\(^{-2} \) eV\(^{-1} \) for \( V_D = 4 \) V, and 6.6 \( \times 10^9 \) cm\(^{-2} \) eV\(^{-1} \) for \( V_D = 3 \) V (error: 37%). Therefore, to have a properly large measurement current, a suitable drain voltage should be chosen. It has been found in our measurements that GIDL current between hundreds of pA and tens of nA is appropriate, whose origin of course must still be examined, i.e., B-B tunneling dominant or
two-step tunneling dominant. This can be distinguished simply by plotting $\ln(I_d/F_s)$ versus $1/F_s$ for GIDL current resulted from band-to-band tunneling [11]

$$I_d = \frac{C}{B} F_{tot} \exp \left( -\frac{B}{F_{tot}} \right)$$

(7)

where $B$ and $C$ are constants, $F_{tot}$ is the average total electric field which can be approximated by the surface electric field $F_s$ at the point of maximum band-to-band tunneling [12]:

$$F_s = -\frac{3T_{c}qN}{\varepsilon_s} + \sqrt{\left( \frac{3T_{c}qN}{\varepsilon_s} \right)^2 + 2qN|V_{Dc}| - V_{f0}}$$

(8)

where the drain doping concentration $N$ was simulated to be

Fig. 6. Simulated electric field distributions along oxide/Si interface near drain junction for three measurement conditions using MINIMOS4. $V_g = V_{gs} = 0$ V. (a) OX1 sample, and (b) OX2 sample.
Fig. 7. $\Delta D_{it}$ of OX1 (a) and OX2 (b) samples obtained by GIDL current method and CP technique for different stress time. For OX2 sample, measurements for two different $V_{ts}$'s were performed on two different transistors because of oxide-charge trapping during GIDL measurement.

$1.7 \times 10^{10}$ cm$^{-3}$, which was verified by spreading-resistance measurements, while flatband voltage $V_{fb}$ was measured to be $-0.866$ V for OX1 sample and $-0.921$ V for OX2 sample. If the $\ln(I_d/F_s)$ versus $1/F_s$ curve deviates from a straight line at the chosen $V_{DG}$, it can be believed that trap-assisted tunneling coexists with B-B tunneling. The two trap-assisted mechanisms can be further distinguished by considering the temperature dependence of $\Delta I_d$ shown in Fig. 4. Obviously, in Fig. 8, our measurement condition of $V_{DCI} = 8$ V for the GIDL current at room temperature should correspond to the two-step tunneling mechanism because $\Delta I_d$ is basically constant around room temperature.
It should be emphasized that if (1) is adopted with $F$ taking the maximum value of the field distribution, the estimated $\Delta D_k$ is much smaller than that by CP method (error $\sim$68\% for $V_D = 5$ V, 78\% for $V_D = 4$ V, and 84\% for $V_D = 3$ V) as shown in Fig. 7(a), while one using the average field in (8) instead is several orders larger than that by CP method [not shown in Fig. 7(a)]. This indicates that the whole field distribution near the drain junction is needed in order to accurately link the GIDL increase with $\Delta D_k$. Finally, the average value of $B_k$ is directly found by plotting $\ln(\Delta I_d)$ versus $1/F_s$. As shown in Fig. 9 slope $=-19.20$ for OX1 sample, $-20.26$ for OX2 sample, i.e., $B_k$ of OX1 and OX2 samples is 19.20 and 20.26 MV/cm, respectively, which are in good agreement with the average values of 19.45 MV/cm for...

---

**Fig. 9.** Plot of $\ln(\Delta I_d)$ versus $1/F_s$ corresponding to the two-step tunneling for OX1 and OX2 samples. From the slope of the linear fit, the values of $B_k$, 19.20 MV/cm for OX1 sample and 20.26 MV/cm for OX2 sample, are obtained.
OX1 sample and 20.22 MV/cm for OX2 sample obtained by simulation of the field distribution, suggesting good accuracy of the field simulation.

IV. SUMMARY

In summary, the dependence of post-stress GIDL current increase \( \Delta I_d \) on the creation of interface states during hot-carrier stress was investigated by means of a two-step tunneling model. The increase can reflect the change of interface-state density \( \Delta D_{it} \) under proper drain-gate biases. The two-step tunneling results in a \( \Delta I_d \) insensitive to temperatures up to about 50 °C. For a fixed \( V_{DG} \) of 8 V in our devices, the energy level of the traps which is effective for the two-step tunneling is within a range of 0.15–0.25 eV below the midgap and the width of the tunneling region is about 600–2000 Å near the drain junction for \( V_D \) of 3–5 V. From the developed relation between \( \Delta D_{it} \) and \( \Delta I_d \), \( \Delta D_{it} \) can be estimated from the measured \( \Delta I_d \) and 2-D device simulation, and the maximum error is smaller than 10% relative to the results of charge-pumping measurement. Further support is obtained by using devices with nitrided gate oxide (which show much suppressed \( \Delta D_{it} \)), different gate-oxide thicknesses and different channel dimensions. Therefore, this work is conducive to understanding some properties of \( \Delta D_{it} \) and its relation with \( \Delta I_d \).

REFERENCES


P. T. Lai received the Ph.D. degree from the University of Hong Kong in 1985. His research was related to the design of small-sized MOS transistors with emphasis on the narrow-channel effects. The work involved analytical and numerical modelings, and different isolation structures.

He worked as a Post-Doctoral Fellow at the University of Toronto, Toronto, Ont., Canada, in the area of self-aligned bipolar transistor using a poly-emitter bipolar process with trench isolation. Currently, he is with the University of Hong Kong, where his current research interests include investigation of various physical mechanisms that govern the complexity of IC’s, development of efficient algorithms and models for the simulations of IC process and semiconductor devices, the development of a PC-based CAD tool for IC technologies, covering device, process and circuit levels, and integrated sensors.

J. P. Xu received the B.S., M.S. and Ph.D. degrees in microelectronics from Huazhong University of Science and Technology, Wuhan, P.R.C., in 1982, 1984, and 1993, respectively.

He is currently a Post-Doctoral Fellow in the Department of Electrical and Electronic Engineering, the University of Hong Kong. His current research interests include the reliability of MOSFET’s and the performance of MOSFET’s with NO-based, N2O-based, and NH3-based nitrided oxide as gate dielectrics.

W. M. Wong is currently a student in the Department of Electrical and Computer Engineering at the University of Calgary, Calgary, Alta., Canada.

H. B. Lo received the B.Eng. and M.Eng. degrees in engineering physics from McMaster University, Hamilton, Ont., Canada, in 1970 and 1972, respectively.

From 1970 to 1972, he was a Research Engineer in the Atomic Power Division and the Solid State Devices Department at Westinghouse Canada, Hamilton. From 1974 to 1980, he was with Micro Electronics, Ltd., Hong Kong, where he was engaged in both development and production of wafer processing of bipolar devices. In 1980, he joined the Department of Electrical and Electronic Engineering, the University of Hong Kong, where he is currently a Lecturer. His current research interests are on the design and processing of semiconductor devices.

Y. C. Cheng (M’78) received the B.Sc. degree in physics and mathematics from the University of Hong Kong in 1963 and the Ph.D. degree in theoretical physics from the University of British Columbia, Vancouver, B.C., Canada, in 1967.

From 1963 to 1978, he held various appointments at a number of universities in Canada and at Bell-Northern and Xerox Research Laboratories. During this period, he had undertaken research work on silicon devices and had coinnvented and developed the “HCI-oxidation” technique for the production of clean oxides for integrated-circuit applications. In 1977, he was appointed as an Adjunct Professor at the University of Waterloo, Waterloo, Ont., Canada. He was a Professor in the Department of Electrical and Electronic Engineering and Dean of the Engineering Faculty, University of Hong Kong. In 1986, he was appointed as a Visiting Professor in EECS, University of California, Berkeley. He is also an Advisory Professor of the Physics Department, the South China University of Technology. He has authored or coauthored over 100 technical papers and holds three U.S. and Canadian patents on semiconductor technology. Currently, he is the Vice Chancellor of the University of Hong Kong.