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A Proof of the Identifiability of a Subspace-Based
Blind Channel Estimation for OFDM Systems

Yonghong Zeng, Member, IEEE, and Tung Sang Ng, Fellow, IEEE

Abstract—Muquet et al. have proposed a subspace-based blind
method for estimating the channel responses of cyclic-prefixed
OFDM systems. Their proof for the channel identifiability uses
the roots of channel transfer function and therefore depends on
the channel order. When only an upper bound is known for the
channel order, the proof fails. In this letter, a new proof for the
identifiability is given which does not require knowledge of the
precise channel order and can handle various choices of length of
the OFDM block.

Index Terms—Blind channel identification, cyclic prefix, identifi-
ability, orthogonal frequency division multiplexing (OFDM), sub-
space method.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFDM)
is a special case of multicarrier modulation, which can ef-

fectively mitigate the effects of multipath propagation and hence
increase data rate [1]. Also, OFDM system can be equalized in
frequency domain by using the fast Fourier transform (FFT),
which is fast and efficient. Subspace-based method is a major
approach for blind channel estimation in wireless communica-
tion [2]–[5]. The basic idea for any subspace-based method is
the same, that is, using the obtained signal or noise subspace
(from the statistical information of output signals) to identify
the channels. However, channel identifiability and its proof vary
greatly for different systems. In [6], Muquet et al. have proposed
a subspace-based blind method for estimating the channel re-
sponses of OFDM systems. In the proof [6, Appendix B] for
the channel identifiability, they assume that the channel transfer
function has zeros (distinct or multiple), and these zeros are
used to construct a matrix (see [6]) of size , where is
an upper bound of the channel order. If is not the real channel
order (this is the case for most practical applications), that is, the
real order is less than , it is obvious that the channel transfer
function surely has less than zeros. Therefore, the matrix
cannot be constructed and the proof fails. In this letter, a new
proof for the identifiability is given which does not use the pre-
cise channel order and can handle various choices of length of
the OFDM block. Also, it is shown that, in most cases, even if
channel zeros hit some of the OFDM subcarriers, the channel
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is still identifiable. The concrete steps for finding the channel in
[6] remains valid and therefore is not discussed here.

II. SYSTEM DESCRIPTION

The system model considered here is the same as that in [6].
Let be the length of the cyclic prefix (CP) and also an upper
bound of the channel order. The channel response is denoted by

. We can always assume that
(otherwise the zeros preceding the first nonzero coefficient can
be removed). It is assumed that each OFDM block consists of

symbols ([6] only considers the case of ), where
is an integer. Let be the OFDM block at time epoch

after implementing the inverse FFT and cyclic prefixing. Then,
the number of symbols in such a block is . Let

and be the received block and ambient noise, re-
spectively. All blocks can be split into subblocks of length

(1)

where is the cyclic prefix, that is, . Let us
consider two consecutive blocks and define

(2)

If we use to denote the lower triangular
Toeplitz matrix with first column and first
row , and to denote the upper
triangular Toeplitz matrix with first column
and first row , it is easy to show that

(3)

where is a matrix defined as follows: if

(4)

if

(5)
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where is an matrix defined as

. . .
. . .
. . .

. . .

(6)

where and are two matrices as

(7)

Please note that is invertible since . For ,
it is easy to show that after some elementary column transform,
the matrix can be turned into as

. . .
. . .

. . .
. . .

(8)

where

(9)

III. PROOF OF THE IDENTIFIABILITY

We use to denote the vector space spanned by
the column vectors of , that is, all possible linear combi-
nations of the column vectors. is also called the
signal subspace, which can be determined by eigen-decompo-
sition of the statistical auto-correlation matrix of the received
signal. Any subspace-based method can only determine this
subspace. In general, knowing cannot determine
matrix . However, for some matrix with special structure,
it is possible to determine by up to certain
ambiguity. Based on its structure, we will prove in this section
that is uniquely determined by subject to a
scalar ambiguity.

Lemma 1: Let and be two
matrices, respectively, defined as

...
...

. . .

...
...

...

(10)

...
...

. . .

...
...

...

(11)

where and are matrices of size , and
and are of full column rank. Then, if

, there exists a block lower triangular in-
vertible matrix defined as

...
...

. . .
(12)

where are matrices of size and invertible, such
that

(13)

Proof: It is easy to verify that if and
only if there exists a invertible matrix such that

We section into blocks and express it as

...
...

...
(14)

where are matrices.
Now we prove that must be a block lower triangular matrix

and invertible by using the mathematical induction. The th
block row of is the multiplication of the th block row of
and matrix . Considering the first block row, we have

Since and are of full column rank, we know that
must also be of full rank, that is, is invertible. Also,

.
Now assuming that and invertible, where

, and , we want to show that
and invertible. Considering the th block

row, based on the assumption we have

Since and are of full column rank, we
know that is invertible. Furthermore, the full column
rank property of means that
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. Based on the mathematical induction law, we know
that is a block lower triangular matrix with all its diagonal
blocks invertible.

Now assume that there is another channel with response
such that .

For simplicity, let .
Theorem 1: Assume that , and

are invertible. If
, there exists a nonzero constant such that

.
Proof: We first consider the case of .

if and only if there exists a invertible
matrix such that . Since and
can be turned into and respectively by column
elementary transform, it is obvious that there exists a

invertible matrix such that . From the
structure of and Lemma 1, we know that must
be a block lower triangular matrix as

...
...

. . .
(15)

where are matrices and invertible. For simplicity,
we use to denote the matrix . Considering the last
block column of , we see that

... ...

...
(16)

So, we have , that is, , where
and have the forms as fol-

lows:

...
. . .

. . .
...

...
. . .

. . .
...

(17)

Since is invertible, it is obvious that .
So, noticing the structure of and using Lemma 1 again
we know that there exists an invertible lower triangular matrix

such that . Comparing the last column of and

, we see that there is a nonzero constant such that
.

Now we consider the case of . Based on Lemma 1,
we know that there is an invertible matrix such that

. Hence we also have
, that is, . So, the theorem is also

correct.
It is possible to extend the results above to the case of
. For example, if and is not a multiple of , the

input/output (3) can be replaced by (refer to [6, Appendix A] for
details)

(18)

where is a matrix defined as

(19)

where and are defined as previously, is an
Toeplitz matrix with first column

and first row , and
. After some elementary column

transforms, the matrix can be turned to

(20)

where . Like is also
a lower triangular block Toeplitz matrix. So, it is possible to
generalize Lemma 1 and Theorem 1 for this case.

IV. CONDITION FOR THE IDENTIFIABILITY

The only condition for the identifiability is
invertible. When ,

the condition turns to: invertible. Since is a
cyclic matrix with first row ,
it is invertible if and only if the length- discrete Fourier trans-
form of the first row has no zero coefficients. This condition
will be invalid if and channel zeros meet the OFDM
subcarriers (note that ). When , which is the
case for most practical applications [1], the physical meaning
of the condition in communication remains to be investigated.
However, it seems that even if channel zeros hit some of the
OFDM subcarriers, the condition is still valid.

V. CONCLUSION

In this letter, a new proof for the subspace-based channel
identifiability of the cyclic-prefixed OFDM system has been
given. The proof does not assume the precise channel order and
can handle various choices of length of the OFDM block. Fur-
thermore, it is shown that, in most cases, even if channel zeros
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hit some of the OFDM subcarriers, the channel is still identifi-
able.
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