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Quantum entanglement and the self-trapping transition in polaronic systems
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We revisit from a quantum-information perspective a classic problem of polaron theory in one dimension. In
the context of the Holstein model we show that a simple analysis of quantum entanglement between excitonic
and phononic degrees of freedom allows one to effectively characterize both the small and large polaron
regimes as well as the crossover in between. The sfi@aie polaron regime corresponds to a higow)
degree of bipartite quantum entanglement between the exciton and the phonon cloud that clothes the exciton.
Moreover, the self-trapping transition is clearly displayed by a sharp drop of exciton-phonon entanglement.
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I. INTRODUCTION It is worthwhile to stress that, at variance with most of the

Almost three quarters of a century have passed since tHher studies of this type, the particular form of quantum
concept of polaronic self-trapping was first conceived byehtanglement we are going to analyze is between systems of
Landau2 and yet many questions remain unanswered redistinct physicalnature the exciton, a finite-dimensional
garding some of the most simplistic polaron Hamiltonians. Insystem, and the phonons, a bosonic bath. To emphasize this
this paper we will approach this classic problem from thefact we will refer to the bipartite quantum entanglement be-
contemporary point of view of quantum entanglemefihe  tween the exciton and its phonon environment in the polaron
latter concept plays a central role in the burgeoning field ofroblem asheter@ntanglement. This situation bears resem-
guantum information in that quantum entanglement repreblance to those idecoherencstudies where a system under
sents the key physical resource at the basis of quantum ixamination, e.g., a qubit, is coupled with its environmental
formation protocold. More recently, a growing amount of degrees of freedom, which spoils the purity of the system
attention has been devoted to analyses of quantum entanglgtate. From this point of view, the polaronic entanglement to
ment in many-body systems undergoing quantum phaske analyzed in this paper can be viewed as a measure of the
transitions> decoherence of the excitonijphononig state induced by the

An emerging picture is that various entanglement meacoupling with the lattice phonon@xcitons.
sures, such as the two-qubit concurrence and the entangle- This paper is structured as follows. In Sec. Il, the Holstein
ment entropy of a subsystem, provide different, oftenmodel is introduced, and the corresponding phase diagram of
complementary physical insights onto the nature of manypolaronic self-trapping is presented. In Sec. lll, we evaluate
body wave functions. Tools drawn from quantum informa-heteroentanglement between the exciton and the phonon
tion theory provide a deeper, previously unavailable underbath, and examine its relation to polaronic self-trapping. Dis-
standing of quantum correlations and their qualitativecussions are given in Sec. IV, in which we show that exci-
changes across boundaries of different phase-diagram réenic superradiance, viewed as a form of intraexciton en-
gimes in these many-body systems. Moreover, inspired bjanglement between spatially distinct excitonic modes,
ideas from quantum-information theory, efficient computa-complement the exciton-phonon entanglement.
tional schemes for studying quantum many-body systems
have been devised. Il. SELF-TRAPPING AND PHASE DIAGRAM OF THE

The study to be carried out in this paper aims to exem- HOLSTEIN MODEL
plify the ongoing efforts bridging the field of quantum infor-
mation theory and established areas of condensed matter We first introduce a Frenkel-exciton model Hamiltonian,
physics. We will show that an analysis of quantum entanglea|30 known as the Holstein molecular crystal model, which
ment between electronjor excitonig and phononic degrees describes a lattice of two-level molecules interacting with a
of freedom in a polaronic model allows one to characteriz?ath consisting of nucleagintramolecular, intermolecular,
the polaron phase diagram in a strikingly simple fashion. Inand solventdegrees of freedom

particular, the self-trapping transition, i.e., a crossover be- m#n
tween the so-called small and large polaron regimes, is A= 0 (q)BB. + J BIB. +HP. 1
readily captured by the behavior of the linear entropy of the % o @B:By % il @) B @)

excitonic reduced density matrix. We will show that the 5 . o )
small (large) polaron regime corresponds to a higlow) HereB, (B,) are eAxcnon annihilatioicreation operators for
degree of quantum entanglement between the exciton and itse nth molecule HP" is the bath(phonor Hamiltonian, and
phononic environment. Moreover, the self-trapping transitiong represents the complete set of nuclear coordinates. The
is clearly displayed by a sharp drop of exciton-phonon enexcitonic operators satisfy the hard-core bosons relations
tanglement. (B)?=B2=0,[B,B/ =6, It follows that each site label is
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associated with a two-level system, i.e.qabit. Notice that There are two competing energy scales in the Holstein
in terms of the Pauli matrices one hB$=o¢*, andB=0". Hamiltonian in the absence of off-diagonal exciton-phonon
Despite that this latter notation is the standard one in quareoupling, namely, the lattice relaxation enemggw, and the
tum information, in order to keep in line with the vast po- bare exciton bandwidthJ Their ratio will be denoted the
laronic literature, we will stick to th® operators. Interested coupling strengthk=g%wo/4J which determines the size of
readers should not have any problem in translating the forthe polaron as well as exciton-phonon correlations. In typical
mulas to the Pauli matrices notation. molecular crystalsg?=<1, in ionic crystalsg? is large com-
Exciton-phonon interactions originate from dependencepared to unity, and in semiconductory’ is between the
of molecular frequencie€), and the intermolecular cou- former two. In anthracence, for examplejs about 0.4, and
plings J,, on nuclear coordinateg. We adopt the Hamil- in pyrene, about 0.8—1%.For strong exciton-phonon cou-
tonian Eq.(1) with the Einstein phonon HamiltoniaiP"  Pling (x>1), solutions of the Holstein Hamiltonian are
=Enhwob:§bn, Wherebg creates a phonon of frequenay on k_nown_ as _small p_olarons becau_se the e>_<citon-ind_uced lattice
site n, and we have one Einstein oscillator per molecule distortion is confined to essentially a single exciton Ste.
Exciton-phonon interactions enter through the nuclear coorFor weak exciton-phonon coupling <1), the spatial extent
dinate influence on both molecular frequencigsagonal of the lattice distortion is significantly increased and the re-
coupling and intermolecular interactiorff-diagonal cou-  sulting phonon-dressed exciton is called a large polaron. The
pling). ExpandingQ,,(q) to first order in phonon coordinate crossover from a large polaron to a small polaron with in-
g, the first term of Eq.(1) readSEnQn(q)BxBn:EnQn(q creasing exciton-phonon couplingssentially often called

:O)Ban_H:'diag with the diagonal exciton-phonon coupling the self—trapplng_ transitionis .rat'her abrupt fo'r large 'mter-
term molecular couplingl. In the limit of slow lattice motions,

adiabatic polaron theories admit approximate solutions in the
. form of solitons.
HY29= ghwy >, B,T]Bn(bﬁ +b,), (2) The one-dimensional Holstein Hamiltonian with diagonal
n and off-diagonal coupling to Einstein phonons has been
previously3-16 modeled by a variational wave function pio-
and g is a dimensionless diagonal coupling constant. Exneered by Toyozawdabeled as the Toyozawa Ansatz in Ref.
pandingJn,(q) to first order in phonon coordinates, we write 15)
the second term of Eqg.(1) as, for example,

S I @) B Bn= Sz ndmr(0.= 0) B B+ HO4- with the trans- Ky =N €AY vh Bl 0. (5
fer integral J,,(q=0)=-J8, w1 and the off-diagonal cou- " m
pling tern”® Here|K) is the lowest energy polaron state with momentum
K, |0)e is the exciton vacuum state, and’) are phonon
HO%= L phwo >, [BIBrs1(bf + ) (Sne1) = Su) wave functions centered at sitecontaining a coherent state
nl on each siten; with a d|splacemenlnl_n:

T \
* BuB-a(by + 1) = Gr-a))) ® AK) = exf- 3 O bl =\ b ) IO (6)

n
The second term of3) is the Hermitian conjugate of the '
first, and we have assumed nearest-neighbor coupling of tH8)gh is the phonon vacuum state, ahif;) is different from
antisymmetric type withy a dimensionless parameter con- |A§,) only by a shift ofn—n’ lattice constants. The param-
trolling the off-diagonal coupling strength. Off-diagonal cou- eters\f and{* are obtained variationally. The phonon wave
pling may adopt various forrfi§ other than the antisymmet- functions|AK) represent a lattice distortion forming a poten-
ric type (3), and can play important roles in electronic tial well centered ah and trapping the exciton with an am-
properties of solid. In the theory of high-temperature superplitude distribution ofyf. The Toyozawa Ansatz statb) is
conductivity, for example, it has been recently prop8sbdt  not norma|ized;<|<|K):znme—ianrfll/,rf;ngf wheresﬁ is the
off diagonal coupling modulates the hopping integral of thepepye-waller factor: S = (AK[AK,_ ) =exd NS |\K[2(ean
Zhang-Rice singlet and the superexchange interaction, and is d

ol | tin the low-dooi 4 Equati 1)], and)\g are the Fourier transform aﬂf The variational
especially relevant in the low-doping regime. Equatio®s  athads are shown to be rather efficient while remaining

and (3), together withH" and the zeroth-order intermolecu- quantitatively accurate compared with calculations involving
lar COUpllng term, result in the genel’allzed Holstein Hamll'far more expensive Computationa| resourge@_

tonian HEH (The original Holstein Hamiltonian contains di-  We introduce the phonon-traced exciton density maiiix
agonal coupling only® for the statdK):
K. — -1
ACH = 0(q = 0)B]B, + A2 pe: = (KIKYTron([KXKD, @
n where Ty, stands for tracing over the phonon degrees of
mn freedom. To calculatepg we assume that exciton-phonon
+ 2 Jmn(q:O)BIan+|:|0-d-+ gph (4) coupling leads to the formation of bands of collective
mn exciton-phonon states, and the many-body polaron wave
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FIG. 1. TheJ-g phase diagram for the Toyozawa Ansatz. A thin
sword-shaped regime identifies with the polaronic self-trapping
line, across which the effective mass of the polaron decreases dras-
tically asg is decreased. The tasolid) line of the sword-shaped o
regime indicates the onset of bifurcationkat 0 when the polaronic 2t
structure goes through a sudden change as one travels vertically
downward in the phase diagram, and the bottdashedl line indi-
cates where the state of the high&stin the vicinity of K=0) for
which a discontinuous change in the polaronic structure is observed

Small Entanglement

acquires two solutions as one travels vertically upward. 0 . . . L L
0 1 2 3 4 5 6
(b) J
function for the ground state band is given by the Toyozawa )
AnsatA3-15 FIG. 2. Heteroentanglement between the exciton and the
phonons as measured by the linear entropy Jeﬁag:‘))Z] is dis-
(Pg)mm - N"1<K|K)"1E eiK(n’—n)l/,rfrn(r/,:,_n,gi_n_ played in the upper panel for the entidleg phase diagram. The

, entanglement is calculated for the lowest energy state with zero
crystal momentunK=0. The solid line in the lower panel is the

In this paper we confine our attention to the case of diagedge of the cliff which separates the large and small entanglement
onal exciton-phonon coupling only. Localization of regions.
(p§=°)mm is determined by the combined effect of electronic
confinementﬁ,ﬁzo and the overlap of the adjacent nuclear . HETEROENTANGLEMENT AND POLARONIC
wave functionS,sz. An efficient iterative procedure is em- SELE-TRAPPING
ployed to identify optimizec< and ¢/*.** Computation typi- o _ ,
cally starts from the)=0 axis where exact solutions exist. A For afinite bare exciton band width>0, the lowest en-
convergent solution at one point in the phase diagram is use®fgy state for diagonal coupling only has zero crystal mo-
to initiate a variation at a neighboring point. Reversibility of mentumK=0. In this lowest-energK=0 state, heteroen-
the calculation and uniqueness of the solution are checke@nglement between the two species in the Holstein
via altering initializations of the iterative procedure as theHamiltonian, the exciton and the phonons, as measured by
parameter space is mapped. A phase diagram for the Toyte linear entropy, has the form
ozawa Ansatz spanned hlyyand g is presented in Fig. 1 E: :1—Tl‘e[(pK:0 2) (8)
which displays a thin sword-shaped region identified with ' € '
the polaronic self-trapping. The tg@polid) line of the sword-  The function(8) is a linearized version of the von Neumann
shaped regime indicates the onset of bifurcationKatO  entropyS(p)=—Trp In p; it shares with this latter quantity the
when the polaronic structure goes through a sudden changeoperties:(i) E=0 = p=p?, i.e., p is a pure state(ii) Enax
as one travels vertically downward in the phase diagram, and1-1/D=E(1/D), i.e., the linear entropy is at its maximum
the bottom(dashedl line indicates where the state of the for the totally mixed staté/D (D = is the dimension of the
highestK (in the vicinity of K=0), for which a discontinuous spacg. Moreover, for qubits, the linear and von Neumann
change in the polaron structure is observed, acquires twentropy are monotonic functions of each other. The linear
solutions as one travels vertically upward. Outside theentropy(8) has a close relation with the so-called 2-Renyi
sword-shaped area, solutions to self-consistent variationantropy!® These considerations show th@) represent a
equations are unique and independent of how the iterativgood choice as a simple entanglement measure. Calculated
procedure is initialized. The polaronic structure far,g) heteroentanglement is shown in Fig. 2 for the eniires g
points abovebelow) the sword-shaped area is traditionally phase diagram. It is important to note that the qualitative
identified as smalllarge) polarons. behavior of the ground state entanglement as a function of
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control parameters discussed above doetsdepend on the laron regimes can be understood in terms of a sharp increase
specific choice of the linear entropy as the entanglemenf the exciton-phonon entanglement.
measure; analogous calculations performed with the von We also note that this form of heteroentanglement is
Neumann entropy give rise to the very same qualitativecomplementary to the superradiant behavior of the excitonic
picture2° system. Superradianagoherent spontaneous emissias
On theJ=0 vertical axis, theexactwave function of the the enhanced radiative decay compared to that of a monomer
Holstein polaron can be written a5,B10)JAZ%, where @S @ result of the coherent nature of the electronic excited
(AZO|AO=5  Therefore, the heteroentanal _stateg}22 If all transition dipoles of theN monomers are
oA — , glement be

tween the two species reaches its maximum orJthe ver- parallel, superradiance of th€=0 state can be calculated

tical axis: Ea=1-N"1. On the horizontal axig=0, on the from
contrary, theK=0 state is separable with respect to the two S =2 (b5 9
species. mn

As shown in the upper pane_l of Fig. 2, excnon—phqnqnlt follows that excitonic superradiance and the exciton-
heteroentangle_rnent_forms a cliff. The edge of the_ Cl'ﬁ ISphonon heteroentanglement are complementary. For ex-
found overlapping with the thin sword-shaped area in Fig. 1,516 on the vertical=0 axis in Fig. 2, the linear heteroen-
(i.e., the self-trapping Im)g and can be fitted empirically by tanglement (8) is at its maximum, 1N%, while the
J:=(g:~1’hwy: on the cliff plateauE approaches 1IN correspondingk=0 superradiance reaches its minimum
on the other side of the cliff edge,decreases rapidly to zero vajue 1; on the horizontaj=0 axis, the linear heteroen-
with increasingJ or decreasingy. In the lower panel, the tanglement vanishes while corresponditig0 superradiance
solid line is the projection of the cliff edge onto they plane  reaches its maximum vallé For a given transfer integrd|
which separates the large and small entanglement phasesgs the exciton-phonon couplirgyis reduced, the superradi-
The usual distinction between the small and large polaronance gains while the exciton-phonon heteroentanglement de-
can thus be rephrased as follonthe small polaron is a creases. Superradiance can be regarded as a form of the
maximally entangled exciton-phonon entity, while the largequantum coherence between different components of the ex-
polaron has much-reduced exciton-phonon heteroentangleziton wave function localized on different sites. This coher-
ment The heteroentanglement is therefore a good measure ehce, in turn, can be viewed as a form of entanglement be-
large and small polarons and the transition in between.  tween spatially distinct excitonimodes(for a definition of
mode entanglement, see, e.g., Ref). Zhus, the aforemen-
tioned complementarity phenomenon can be viewed as a
form of entanglement transfer from the interexciton-phonon

In this paper we have revisited the classic polaron probtype to the intraexciton mode entanglement, and vice versa.
lem utilizing the concept of quantum entanglement. The The role of off-diagonal exciton-phonon coupling as well
exciton-phonon coupling, described by the Holstein Hamil-as analyses of entanglement of polaronic states with nonzero
tonian, induces strong quantum coherences between the tvesystal momenta are the subject of ongoing investigations.
heterogeneous physical degrees of freedom. These cohdrhe Toyozawa Ansatz is again well-suited to capture the un-
ences can be conveniently quantified by the linear entropy aflerlying physics in the presence of off-diagonal exciton-
the excitonic(or phononi¢ reduced density matrix. The lat- phonon coupling. We believe that the results presented in this
ter has been explicitly computed by employing the Toyozawgpaper exemplify the fact that implementations of notions and
Ansatz. Difficulties associated to the infinite dimensionalityapparatuses drawn from the emerging field of quantum infor-
of the phonon degrees of freedom can be circumvented bgnation science are invaluable for gaining fresh insights for
using the Toyozawa variational Ansatz to approximate thelassic problems in condensed matter physics.
ground-state polaronic wave function, for which an exact
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