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We revisit from a quantum-information perspective a classic problem of polaron theory in one dimension. In
the context of the Holstein model we show that a simple analysis of quantum entanglement between excitonic
and phononic degrees of freedom allows one to effectively characterize both the small and large polaron
regimes as well as the crossover in between. The small(large) polaron regime corresponds to a high(low)
degree of bipartite quantum entanglement between the exciton and the phonon cloud that clothes the exciton.
Moreover, the self-trapping transition is clearly displayed by a sharp drop of exciton-phonon entanglement.
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I. INTRODUCTION

Almost three quarters of a century have passed since the
concept of polaronic self-trapping was first conceived by
Landau,1,2 and yet many questions remain unanswered re-
garding some of the most simplistic polaron Hamiltonians. In
this paper we will approach this classic problem from the
contemporary point of view of quantum entanglement.3 The
latter concept plays a central role in the burgeoning field of
quantum information in that quantum entanglement repre-
sents the key physical resource at the basis of quantum in-
formation protocols.4 More recently, a growing amount of
attention has been devoted to analyses of quantum entangle-
ment in many-body systems undergoing quantum phase
transitions.5

An emerging picture is that various entanglement mea-
sures, such as the two-qubit concurrence and the entangle-
ment entropy of a subsystem, provide different, often
complementary physical insights onto the nature of many-
body wave functions. Tools drawn from quantum informa-
tion theory provide a deeper, previously unavailable under-
standing of quantum correlations and their qualitative
changes across boundaries of different phase-diagram re-
gimes in these many-body systems. Moreover, inspired by
ideas from quantum-information theory, efficient computa-
tional schemes for studying quantum many-body systems
have been devised.6

The study to be carried out in this paper aims to exem-
plify the ongoing efforts bridging the field of quantum infor-
mation theory and established areas of condensed matter
physics. We will show that an analysis of quantum entangle-
ment between electronic(or excitonic) and phononic degrees
of freedom in a polaronic model allows one to characterize
the polaron phase diagram in a strikingly simple fashion. In
particular, the self-trapping transition, i.e., a crossover be-
tween the so-called small and large polaron regimes, is
readily captured by the behavior of the linear entropy of the
excitonic reduced density matrix. We will show that the
small (large) polaron regime corresponds to a high(low)
degree of quantum entanglement between the exciton and its
phononic environment. Moreover, the self-trapping transition
is clearly displayed by a sharp drop of exciton-phonon en-
tanglement.

It is worthwhile to stress that, at variance with most of the
other studies of this type, the particular form of quantum
entanglement we are going to analyze is between systems of
distinct physicalnature: the exciton, a finite-dimensional
system, and the phonons, a bosonic bath. To emphasize this
fact we will refer to the bipartite quantum entanglement be-
tween the exciton and its phonon environment in the polaron
problem asheteroentanglement. This situation bears resem-
blance to those indecoherencestudies where a system under
examination, e.g., a qubit, is coupled with its environmental
degrees of freedom, which spoils the purity of the system
state. From this point of view, the polaronic entanglement to
be analyzed in this paper can be viewed as a measure of the
decoherence of the excitonic(phononic) state induced by the
coupling with the lattice phonons(excitons).

This paper is structured as follows. In Sec. II, the Holstein
model is introduced, and the corresponding phase diagram of
polaronic self-trapping is presented. In Sec. III, we evaluate
heteroentanglement between the exciton and the phonon
bath, and examine its relation to polaronic self-trapping. Dis-
cussions are given in Sec. IV, in which we show that exci-
tonic superradiance, viewed as a form of intraexciton en-
tanglement between spatially distinct excitonic modes,
complement the exciton-phonon entanglement.

II. SELF-TRAPPING AND PHASE DIAGRAM OF THE
HOLSTEIN MODEL

We first introduce a Frenkel-exciton model Hamiltonian,
also known as the Holstein molecular crystal model, which
describes a lattice of two-level molecules interacting with a
bath consisting of nuclear(intramolecular, intermolecular,
and solvent) degrees of freedom

Ĥ = o
n

VnsqdBn
†Bn + o

m,n

mÞn

JmnsqdBm
† Bn + Ĥph. s1d

HereBn sBn
†d are exciton annihilation(creation) operators for

thenth molecule,Ĥph is the bath(phonon) Hamiltonian, and
q represents the complete set of nuclear coordinates. The
excitonic operators satisfy the hard-core bosons relations
sBn

†d2=Bn
2=0, fBnBm

† g=dnm. It follows that each site labeln is
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associated with a two-level system, i.e., aqubit. Notice that
in terms of the Pauli matrices one hasB†=s+, and B=s−.
Despite that this latter notation is the standard one in quan-
tum information, in order to keep in line with the vast po-
laronic literature, we will stick to theB operators. Interested
readers should not have any problem in translating the for-
mulas to the Pauli matrices notation.

Exciton-phonon interactions originate from dependence
of molecular frequenciesVn and the intermolecular cou-
plings Jmn on nuclear coordinatesq. We adopt the Hamil-

tonian Eq. (1) with the Einstein phonon HamiltonianĤph

=onqv0bn
†bn, wherebn

† creates a phonon of frequencyv0 on
site n, and we have one Einstein oscillator per molecule.
Exciton-phonon interactions enter through the nuclear coor-
dinate influence on both molecular frequencies(diagonal
coupling) and intermolecular interactions(off-diagonal cou-
pling). ExpandingVnsqd to first order in phonon coordinate
q, the first term of Eq.(1) reads onVnsqdBn

†Bn=onVnsq
=0dBn

†Bn+Ĥdiag with the diagonal exciton-phonon coupling
term

Ĥdiag= gqv0o
n

Bn
†Bnsbn

† + bnd, s2d

and g is a dimensionless diagonal coupling constant. Ex-
pandingJmnsqd to first order in phonon coordinates, we write
the second term of Eq. (1) as, for example,

omÞnJmnsqdBm
† Bn=omÞnJmnsq=0dBm

† Bn+Ĥo.d. with the trans-
fer integral Jmnsq=0d=−Jdn,m±1 and the off-diagonal cou-
pling term7,8

Ĥo.d.= 1
2fqv0o

nl

fBn
†Bn+1sbl

† + bldsdn+1,l − dnld

+ Bn
†Bn−1sbl

† + bldsdnl − dn−1,ldg. s3d

The second term of(3) is the Hermitian conjugate of the
first, and we have assumed nearest-neighbor coupling of the
antisymmetric type withf a dimensionless parameter con-
trolling the off-diagonal coupling strength. Off-diagonal cou-
pling may adopt various forms8,9 other than the antisymmet-
ric type (3), and can play important roles in electronic
properties of solid. In the theory of high-temperature super-
conductivity, for example, it has been recently proposed9 that
off diagonal coupling modulates the hopping integral of the
Zhang-Rice singlet and the superexchange interaction, and is
especially relevant in the low-doping regime. Equations(2)
and(3), together withĤph and the zeroth-order intermolecu-
lar coupling term, result in the generalized Holstein Hamil-

tonian ĤGH (The original Holstein Hamiltonian contains di-
agonal coupling only.)10

ĤGH = o
n

Vnsq = 0dBn
†Bn + Ĥdiag

+ o
mn

mÞn

Jmnsq = 0dBm
† Bn + Ĥo.d.+ Ĥph. s4d

There are two competing energy scales in the Holstein
Hamiltonian in the absence of off-diagonal exciton-phonon
coupling, namely, the lattice relaxation energyg2v0 and the
bare exciton bandwidth 4J. Their ratio will be denoted the
coupling strengthk=g2v0/4J which determines the size of
the polaron as well as exciton-phonon correlations. In typical
molecular crystals,g2&1, in ionic crystals,g2 is large com-
pared to unity, and in semiconductors,g2 is between the
former two. In anthracence, for example,k is about 0.4, and
in pyrene, about 0.8–1.6.11 For strong exciton-phonon cou-
pling sk@1d, solutions of the Holstein Hamiltonian are
known as small polarons because the exciton-induced lattice
distortion is confined to essentially a single exciton site.12

For weak exciton-phonon couplingsk!1d, the spatial extent
of the lattice distortion is significantly increased and the re-
sulting phonon-dressed exciton is called a large polaron. The
crossover from a large polaron to a small polaron with in-
creasing exciton-phonon coupling(essentially often called
the self-trapping transition) is rather abrupt for large inter-
molecular couplingJ. In the limit of slow lattice motions,
adiabatic polaron theories admit approximate solutions in the
form of solitons.

The one-dimensional Holstein Hamiltonian with diagonal
and off-diagonal coupling to Einstein phonons has been
previously13–16 modeled by a variational wave function pio-
neered by Toyozawa(labeled as the Toyozawa Ansatz in Ref.
15)

uKl = N−1o
n

eiKnuLn
Klo

m

cm−n
K Bm

† u0le. s5d

Here uKl is the lowest energy polaron state with momentum
K, u0le is the exciton vacuum state, anduLn

Kl are phonon
wave functions centered at siten containing a coherent state
on each siten1 with a displacementln1−n

K :

uLn
Kl = expf− o

n1

sln1−n
K bn1

† − ln1−n
K* bn1

dgu0lph. s6d

u0lph is the phonon vacuum state, anduLn
Kl is different from

uLn8
K l only by a shift ofn−n8 lattice constants. The param-

etersll
K andcl

K are obtained variationally. The phonon wave
functionsuLn

Kl represent a lattice distortion forming a poten-
tial well centered atn and trapping the exciton with an am-
plitude distribution ofcl

K. The Toyozawa Ansatz state(5) is
not normalized:kK uKl=onme−iKncm

Kcm−n
K* Sn

K whereSn
K is the

Debye-Waller factor:Sn
K;kLm

K uLm−n
K l=expfN−1oqulq

Ku2seiqn

−1dg, andlq
K are the Fourier transform ofln

K. The variational
methods are shown to be rather efficient while remaining
quantitatively accurate compared with calculations involving
far more expensive computational resources.17,18

We introduce the phonon-traced exciton density matrixre
K

for the stateuKl:

re
K: = kKuKl−1TrphsuKlkKud, s7d

where Trph stands for tracing over the phonon degrees of
freedom. To calculatere

K we assume that exciton-phonon
coupling leads to the formation of bands of collective
exciton-phonon states, and the many-body polaron wave
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function for the ground state band is given by the Toyozawa
Ansatz13–15

sre
Kdmm8 = N−1kKuKl−1o

nn8

eiKsn8−ndcm−n
K cm8−n8

K* Sn8−n
K .

In this paper we confine our attention to the case of diag-
onal exciton-phonon coupling only. Localization of
sre

K=0dmm8 is determined by the combined effect of electronic
confinementcn

K=0 and the overlap of the adjacent nuclear
wave functionsSn

K=0. An efficient iterative procedure is em-
ployed to identify optimizedll

K andcl
K.14 Computation typi-

cally starts from theJ=0 axis where exact solutions exist. A
convergent solution at one point in the phase diagram is used
to initiate a variation at a neighboring point. Reversibility of
the calculation and uniqueness of the solution are checked
via altering initializations of the iterative procedure as the
parameter space is mapped. A phase diagram for the Toy-
ozawa Ansatz spanned byJ and g is presented in Fig. 1
which displays a thin sword-shaped region identified with
the polaronic self-trapping. The top(solid) line of the sword-
shaped regime indicates the onset of bifurcation atK=0
when the polaronic structure goes through a sudden change
as one travels vertically downward in the phase diagram, and
the bottom (dashed) line indicates where the state of the
highestK (in the vicinity of K=0), for which a discontinuous
change in the polaron structure is observed, acquires two
solutions as one travels vertically upward. Outside the
sword-shaped area, solutions to self-consistent variational
equations are unique and independent of how the iterative
procedure is initialized. The polaronic structure forsJ,gd
points above(below) the sword-shaped area is traditionally
identified as small(large) polarons.

III. HETEROENTANGLEMENT AND POLARONIC
SELF-TRAPPING

For a finite bare exciton band widthJ.0, the lowest en-
ergy state for diagonal coupling only has zero crystal mo-
mentum K=0. In this lowest-energyK=0 state, heteroen-
tanglement between the two species in the Holstein
Hamiltonian, the exciton and the phonons, as measured by
the linear entropy, has the form

E: = 1 − Trefsre
K=0d2g. s8d

The function(8) is a linearized version of the von Neumann
entropySsrd=−Trr ln r; it shares with this latter quantity the
properties:(i) E=0⇔r=r2, i.e., r is a pure state;(ii ) Emax
=1−1/D=Es1 /Dd, i.e., the linear entropy is at its maximum
for the totally mixed state1 /D (D 5 is the dimension of the
space). Moreover, for qubits, the linear and von Neumann
entropy are monotonic functions of each other. The linear
entropy (8) has a close relation with the so-called 2-Renyi
entropy.19 These considerations show that(8) represent a
good choice as a simple entanglement measure. Calculated
heteroentanglement is shown in Fig. 2 for the entireJ vs g
phase diagram. It is important to note that the qualitative
behavior of the ground state entanglement as a function of

FIG. 1. TheJ-g phase diagram for the Toyozawa Ansatz. A thin
sword-shaped regime identifies with the polaronic self-trapping
line, across which the effective mass of the polaron decreases dras-
tically as g is decreased. The top(solid) line of the sword-shaped
regime indicates the onset of bifurcation atK=0 when the polaronic
structure goes through a sudden change as one travels vertically
downward in the phase diagram, and the bottom(dashed) line indi-
cates where the state of the highestK (in the vicinity of K=0) for
which a discontinuous change in the polaronic structure is observed
acquires two solutions as one travels vertically upward.

FIG. 2. Heteroentanglement between the exciton and the
phonons as measured by the linear entropy 1−Trefsre

K=0d2g is dis-
played in the upper panel for the entireJ-g phase diagram. The
entanglement is calculated for the lowest energy state with zero
crystal momentumK=0. The solid line in the lower panel is the
edge of the cliff which separates the large and small entanglement
regions.
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control parameters discussed above doesnot depend on the
specific choice of the linear entropy as the entanglement
measure; analogous calculations performed with the von
Neumann entropy give rise to the very same qualitative
picture.20

On theJ=0 vertical axis, theexactwave function of the
Holstein polaron can be written asonBn

†u0leuLn
J=0l, where

kLm
J=0uLn

J=0l=dmn. Therefore, the heteroentanglement be-
tween the two species reaches its maximum on theJ=0 ver-
tical axis:Emax=1−N−1. On the horizontal axisg=0, on the
contrary, theK=0 state is separable with respect to the two
species.

As shown in the upper panel of Fig. 2, exciton-phonon
heteroentanglement forms a cliff. The edge of the cliff is
found overlapping with the thin sword-shaped area in Fig. 1
(i.e., the self-trapping line), and can be fitted empirically by
Jc=sgc−1d2qv0: on the cliff plateau,E approaches 1−N−1;
on the other side of the cliff edge,E decreases rapidly to zero
with increasingJ or decreasingg. In the lower panel, the
solid line is the projection of the cliff edge onto theJ-g plane
which separates the large and small entanglement phases.
The usual distinction between the small and large polarons
can thus be rephrased as follows:the small polaron is a
maximally entangled exciton-phonon entity, while the large
polaron has much-reduced exciton-phonon heteroentangle-
ment. The heteroentanglement is therefore a good measure of
large and small polarons and the transition in between.

IV. DISCUSSIONS

In this paper we have revisited the classic polaron prob-
lem utilizing the concept of quantum entanglement. The
exciton-phonon coupling, described by the Holstein Hamil-
tonian, induces strong quantum coherences between the two
heterogeneous physical degrees of freedom. These coher-
ences can be conveniently quantified by the linear entropy of
the excitonic(or phononic) reduced density matrix. The lat-
ter has been explicitly computed by employing the Toyozawa
Ansatz. Difficulties associated to the infinite dimensionality
of the phonon degrees of freedom can be circumvented by
using the Toyozawa variational Ansatz to approximate the
ground-state polaronic wave function, for which an exact
form remains elusive. This choice of Ansatz states also al-
lows us to carry out a large portion of the calculations in an
analytical, conceptually transparent fashion. The study of the
entanglement behavior, as a function of the controlling pa-
rametersJ and g (exciton hopping amplitude and exciton-
phonon coupling, respectively), allows a very simple charac-
terization of the zero-temperature phase diagram of the
model. The self-trapping transition from large to small po-

laron regimes can be understood in terms of a sharp increase
of the exciton-phonon entanglement.

We also note that this form of heteroentanglement is
complementary to the superradiant behavior of the excitonic
system. Superradiance(coherent spontaneous emission) is
the enhanced radiative decay compared to that of a monomer
as a result of the coherent nature of the electronic excited
states.21,22 If all transition dipoles of theN monomers are
parallel, superradiance of theK=0 state can be calculated
from

S: = o
mn

sre
K=0dmn. s9d

It follows that excitonic superradiance and the exciton-
phonon heteroentanglement are complementary. For ex-
ample, on the verticalJ=0 axis in Fig. 2, the linear heteroen-
tanglement (8) is at its maximum, 1−N−1, while the
correspondingK=0 superradiance reaches its minimum
value 1; on the horizontalg=0 axis, the linear heteroen-
tanglement vanishes while correspondingK=0 superradiance
reaches its maximum valueN. For a given transfer integralJ,
as the exciton-phonon couplingg is reduced, the superradi-
ance gains while the exciton-phonon heteroentanglement de-
creases. Superradiance can be regarded as a form of the
quantum coherence between different components of the ex-
citon wave function localized on different sites. This coher-
ence, in turn, can be viewed as a form of entanglement be-
tween spatially distinct excitonicmodes(for a definition of
mode entanglement, see, e.g., Ref. 23). Thus, the aforemen-
tioned complementarity phenomenon can be viewed as a
form of entanglement transfer from the interexciton-phonon
type to the intraexciton mode entanglement, and vice versa.

The role of off-diagonal exciton-phonon coupling as well
as analyses of entanglement of polaronic states with nonzero
crystal momenta are the subject of ongoing investigations.
The Toyozawa Ansatz is again well-suited to capture the un-
derlying physics in the presence of off-diagonal exciton-
phonon coupling. We believe that the results presented in this
paper exemplify the fact that implementations of notions and
apparatuses drawn from the emerging field of quantum infor-
mation science are invaluable for gaining fresh insights for
classic problems in condensed matter physics.
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