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Kalikmanov[Phys. Rev. E59, 4085(1999] proposed a perturbation theory method to calculate the dielec-
tric constant of dipolar hard sphere fluids using an infinitely long cylindrical container to avoid the depolar-
ization. We demonstrate that while the method is very helpful, his theory appears to be incomplete because of
the incorrect calculation of the corresponding three-body integrals. It is shown that with the correct consider-
ation of these terms the theory is consistent with the results of earlier work in low-density limit, and at high
densities the method yields the equation of Tetnal.[Mol. Phys.48, 863(1983] for the dipolar hard sphere
fluid dielectric constant.

PACS numbgs): 61.20.Gy, 77.22.Ch, 77.22.Ej

[. INTRODUCTION where is the depolarization factofThe calculation of\ is
well known[4,5].) For an infinitely prolate ellipsoidneedle-
A number of method$2,3] have been used in theoretical shaped sample\ =0, which means that
and computer simulation studies of dielectric constant of po-

lar fluids. However, all studies are based on the basic relation E=Ecy- (©)
between the polarizatiofP) and the electric field strength
inside the dielectri¢E): For a dielectric with a spherical shape= %, the inside field
strength(Maxwell field) becomes
4mP=(s—1)E, 1) gth(Maxwell field)
where ¢ is the dielectric constant. Assuming we know the E= 3 E 4)
molecular parameters and the distribution functions, the po- g+2 v

larization can be calculated for a bulk fluid phase. If we have
the relation between the external fielli() andE, the di-  For a dilute gas of dipolar particles, the polarization is given
electric constant can be expressed in terms of the densityy the expansion of the Langevin functiph(a)]:
temperature, and molecular quantities that appear ifHq.

In an ellipsoid-shaped dielectric, if the external field direc- 2

S
tion coincides with that of one of the principal axes, then the P=spL(a)=sp[coth @) — lla]= %_ Eexts (5)
field strength inside the dielectric is
1 wheres is the magnitude of the dipole momept=N/V is
E= mEexta (2)  the number densityT is the temperature is the Boltzmann

constant, ande=sE,/(kT) is a dimensionless quantity.
Using a spherically shaped sample, the Debye equgéipn
'I_or the dielectric constant can be obtained on the basis of
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wherey=4mps?/9kT is the dimensionless dipole strength 2

S ..
function. Considering the dipolar hard sphéBHS) fluid, u(rij ,wi,@;) =Ug(rij) — Fg_-D(I,J)
Jepseri7,8] and RushbrookE9,10] have shown that the next g
exact term in they expansion of £ —1)/(s+2) is given as —SEeyCOSY; — SECOSdj. (1)
e—1 15 , On the right side of Eq(11) the first term is the hard sphere,
e+t2 7 Ey . (7 the second is the dipole-dipole interaction energy, and the

last two terms are the external field contributions. This nota-
Equation(7) gives correct third-order results in tiyeex-  tion is in accordance witfi1] but for D(i,j) dipole-dipole

pansion of the dielectric constant; orientation function, we use the most general expression

which has the opposite sign of the corresponding Kalikma-
kov function. Without any further details, the second-order
expression for the DHS free enerdy) in the external field

Note, that they expansion of Wertheim’11] mean spheri-
cal approximationNMSA) dielectric constant also gives the
above result. Onsager[42] and Van Vleck’'s[13] theories

are correct only up to second ordeninUsing the Kirkwood IS
equation[14], Taniet al.[15] obtained a perturbation theory 1 2
equation for the dielectric constant of DHS fluid, which is ﬁF:[gFO_(%) b,— 5(%) b,, (13
9l
e=1+3y+ 3y2+ 3y3 LA(Qp—)—1>_ (9) where F is the free energy of the reference systdbHS
16m fluid without the external field and b; is the ith field-

dependent perturbation term, which can be calculated with

Here l4qx(p) is a density-dependent integradee latef,  the help of the correlation functions of DHS fluid. The cor-
which can be calculated by the hard sph@t&) correlation  esponding equations are

functions. In the low density limityqy=1772/9, and there-
fore Eq.(9) is identical to Eq.(8).

Recently, using the algebraic perturbation technique of blzf drido; f(w1), (14
Ruelle [16], Kalikmanov[1] predicted an equation for the
dielectric constant of the DHS fluid. In his method, the ex-
ternal electric field is treated as a perturbation and the ﬂuidbzzf drydryde; do, f(w)[g3(r 1, 01,0,) —11f(w5),
sample is confined into afinfinitely) long cylinder with an

axis parallel to the external field to avoid the depolarization. (15
The polarization is calculated on the basis of free energy,q
route, and the dielectric constant is obtained using Es.
and(3). In the low density approximation his result is f(w;)=expl e cosd,)— 1= a cosd; + (a?/2)co 9; .
(16)
e=1+3y+3y’+ 2y3, (10)

To be consistent in the calculationlof, the second-order
This result is not in agreement with E(B), which can be expansion of the Mayer functiofEq. (16)] must be used
considered exact at low density up to the third-order term irwhile in the calculation ob,, a first-order expansion may be
the dipole strength function. The dielectric constant does notised. The exact DHS pair correlation function is not known,
depend on the shape of the sample, therefore the differendberefore in[1] a second-order perturbation expression was
between Eqs(10) and (8) is not reasonable. Though the used[17]:
calculation route differs from the previous methods, the dif-

ference in the third-order terms is too high. gg(rlz,wl,w2)=gd(rlz)+(,832)gl(r12,w1,w2)
In this Comment we show that there are two errors in -
Kalikmanov's work in the calculation of the three-body +(Bs7) 02Tz, 01,02), (17)

terms of the field-dependent free energy and, therefore, hish is th . lati . d th
theory seems to be incomplete. Calculating these terms col erebgd(rlz) IS the HS pair correlation function, and the
rectly, in the low density limit we can recover E@). Tak-  Perturbation terms are

ing into account the density dependence of the correlation

functions, our previous equation for the dielectric constant of 9 _9u(T12) D(1,2), (18)

DHS fluid [15] is obtained. e
1 ga(ri) 1
Il. THEORETICAL APPROACH 92=§D2(1,2) ; -5 pD(1,2)ap(r12)94(r 1)
A. Model 12
The potential energy of thig th pair of the DHS particles }
in an external field is 3 PA(L235(r12)9u(r 12) (19
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with A(1,2=5§;-5, and Kirkwood’s superposition approxi- very important contribution to the field-dependent free en-
mation used for the three-body correlation function. In Eg.ergy. The role of this term was ignored in Kalikmanov's
(19 we introduce two functions with the following defini- work. The functiona,(ri) is really short ranged but the

tions: calculation of its integral is not correct in Kalikmakov’s pa-
per. Theap(riy) anda,(rq,) functions are convolution in-

ag(r 2):J dr 1+ 3 cosa, COSa, COSag (1 1904(T ) tegrals and with the help of the Fourier-transform-
DAl 3 (r13f23)° 9all13)Ga(r23), convolution method of Haye and co-workei20,21], also

(20 used by Goldmah22], they can be calculated relatively eas-
ily. The details of the calculation can be found in the Appen-

3cos az—1 dix. In the low-density limit the following exact relations are
aA(rlz):J dr3mgd(r13)gd(r23)- ) obtained: Y g

B. Low-density limit [ ( 5 ) ” if %2<2
First we study the low-density approximation, which ap(ry)= isx
means that in Eq917)—(19) the HS pair correlation func- d om i
tions are replaced by the Heaviside step functigg(r) ry
=0 (r—d)], whered is the HS diameter. In accordance with (27)
[1] we can obtain that
ml [r)d r r
a? —[2(—12> —24(—12 +32 if <2
b;=47—V. (22 1 12[ "\ d d d
6 ap(ri)= s X 1
According to the three-term expansion g@(rlz,wl,wz), 0 if FBZ‘
Kalikmanov separatel, into three terms: (28
bo= V(b5 + b5 +bi?). (23)  Using these functions and E(@4) for b?) we obtain
It is easy to see thatl§°)=0. Using the solid angle integra- p 1672
tion b(zz):(ﬁsz)zg 9 f drizap(ri)
f dw; dw, cosd;D(1,2)cosd, X 0O(r;—d)(1-3 cos 9y
47)2 +(ps?)2L 16W2Jdr ()0 (r1—d), (29
=—(%) (1-3co 93y, (24) 3 9 128411 S
. where we took into account that
we obtain
A 2 1 167T2
b(21): _BSZ(_) f drlZT(1_3 CO§ ,[912) f dwldwz COSﬁlA(l,Z)COSﬁzz 9 - (30)
3 r12> B73
(25)

Equation(27) shows thatap(rq,) is long ranged and, there-
In the calculation of the integral of Eq25), Kalikmanov  fore, in the case of the first integral of E@9), the integra-
assumed that the container is énfinitely) long cylinder  tion must be carried out on an infinitely prolate ellipsoid.
with an axis parallel to the external field. It is better to men-Using the method of Groh and Dietri¢t8,19 we obtain
tion an infinitely prolate ellipsoidneedle-shaped sample
because in this case the depolarization factor is exactly zero.
The calculation of the integral in Eg25) is not trivial
for such a shape, but Groh and Dietrict8,19 have pre-
dicted a_relatively simple method for that. Using this method 8_77 drlﬂl—(l—3 cog 9,,)
we obtain 3 Jr>d T

f dridap(rip)®(ri—d)(1—3 cog 9,)]

A 32’772
,85( ) , (26) =~ "9 - (31

which is identical with the result dfL]. The first term in Eq.  This result is not surprising, because their equation shows
(19) is really short ranged and therefore in this approxima{Eq. (3.19 in Ref.[18]] that only the asymptotic limit of the
tion, this term does not give any contribution to the field-ay(r,,) function gives a contribution to the integral.
dependent free energy. We can see in Eq28) thata,(r,) is really short ranged,

There are problems ifil] with the calculation ofb$?). which makes it possible to replace its integration over an
The functionap(rq,) is long ranged and therefore gives a ellipsoid by an integration over a sphere:
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2d 5 172 200 . J
f dripaa(ri)O(ryp—d)=4m ) drlZaA(r12)r12:T
(32
150 - % .
It is easy to see that the integral in E§2) is the low-density
limit of the integral introduced by Taret al. [15]:
Debye
100
lgaa(p=0)= | drizas(rip))®(rp—d)
3cofaz—1
:f dr12®(r12_d)f drg——3—3— 50 -
Fg23
X O(r13—d)O(ry—d). (33 | o
06 . : ‘ ] | Onsager
Kalikmanov obtained &2/3 for this integral, which is not 0 1 2 3 4

correct. He cited the Appendix of one of his earlier pub- s°/kTd’
lications [23], where he calculated that integral. However,
in [23] there is an error in the conversion of integration
variables and, therefore, i124] he calculated a completely
different integral. In Eq.(33) the volume elemendr; can
be considered as that of a sphere around particle 1drg.,
=—r2,dr3d(cosaz)de [23], where ¢ is the azimuthal C. Density dependence of dielectric constant
angle extending overs2 After integration over the possible
angles it reads

FIG. 1. Dielectric constant as a function sf/kTd® for pd®
=0.8. Open circles denote simulation results in Réaf. Filled
circles are our simulation data from Ref&5,26]. PT refers to our
perturbation calculations.

The dielectric constant of DHS fluid depends on the den-
sity, beside the dipole strength functi¢®,3,15. To obtain
o w0 1 the functional form, the correct density-dependgpfr,p)
IddA=—87rzf drlzrizf dr13rf3f d(cosas) must be used to calculate the integrals that appear. In this
d d -1 case forb{" we obtain

XM(Y —d) (34) 4|2 9a(r12,p)

e 53 2 b(zl):_ﬁsz(?) f dryy——3—(1-3 cog 9y,).
ri>d r12

which is identical with the formula of Taret al. [15] but (39

completely different from the corresponding results[il  op, the basis of the results of Groh and Dietrfdi8, 19 it is

and[23]. clear that only the asymptotic values @§(r 1,,p)/r3, give

Ob;lijnmmanzmg all calculated terms, for the free energy We;,nyipytions to the integral. Since the asymptotic limit of

this function is 1/3,, the result of the integration on an infi-

1 A nitely prolate ellipsoid is the same that was obtained in Eq.
,BF=,8FO—6Vpa2—an2,BSZOA2 (26). Considering theb?) term, the obtained asymptotic
value of the density-dependent(rq,,p) function is the
82 1772 same as was the density-independent (see the Appen-

T ar
+ 2—43VP3(BSZ)Z 2 4—86V103(/332)2a2- (35  dix); therefore the numerical value of the corresponding in-
tegral does not change. Only the integral of the short-ranged
The polarization can be calculated from E85) as ay(ri2,p) function shows a density dependence. This inte-
gral can be calculated on a sphere, and according t4Zay.
that corresponds to thigjga(p) integral of Taniet al. [15].
(36) Of course the derived equation for the dielectric constant is
the same as given by Ed9). According to the above-
Using the dipole strength function for the polarization we Mentioned arguments, Kalikmanov's corresponding equation
obtain for the dielectric constant is incorrect. Therefore, the com-
parison with simulation datéFig. 1 in Ref.[1]) is inappro-
3 priate. Of course, his results for the initial magnetic suscep-
P= E(VJFYZ— Y3+ 16y°®) Eex- (37) tibility of a ferrofluid (Fig. 2 in Ref.[1]) must be recalculated
again. The reduced dipole moment dependence of our
From the polarization, the dielectric constant can be calcuformulated dielectric constant is displayed in Fig. 1. At low

1

Y

JF
IEBext

N,V,T

lated by the help of Eqg1) and(3). Hence and moderate dipole moments, the agreement with simula-
’ tion data is quite good. The theory prediction is below the
e=1+3y+3y?+ 3y (38)  simulation data at high dipole moments whe#kTd®

=2.5. To help the concrete calculations, on the bas[4 6f
which is in agreement with the formula of Taet al. [15]  here we give again the Patige fitted expression for the
obtained by a different route. I 4qa integral:
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| .. 1777 1-0.93952* +0.367 14*? 20 e gq(r) AL
as(P)= "9 10,9230 +0.2332372" 10 (=" (A1)
wherep* = pd? is the reduced density, and Eg0) is valid  function we can obtain the following equations:
in the range of & p* <0.95. Further applications to the cal- 1
culation of dielectric constant of hard-core dipolar Yukawa = f“ : 1212
fluid have been published recenfl®5,26 by us. ap(1) = 0 dk j2(knLF(k) I, (A2)
IIl. SUMMARY 1 (= sin(kr) —
aA(r)=—2f dk [f(k)]2K>. (A3)
7 Jo (kr)

To study the dielectric constant of DHS fluids, Kalik-
manov|[1] used Ruelle’d16] algebraic perturbation theory — . ,
in the construction of the field-dependent free energy. It hastere f(k) is not the Fourier transform but a Hankel
been shown that with a correct calculation of the three-bodyransform:
term integrals this free energy route gives consistent results

for the dipole strength and density dependence of the dielec- f(k)= —477J drj(kr)f(r)r?, (A4)
tric constant. In spite of the fact that these results are known 0

[15,22,28, the improved method should be very valuable in . o

the study of thermodynamic properties of fluids in an exter-Wlth the second-order Bessel function:

nal field. As there is nothing special in the theory that re- 3sinx 3cosx  Sinx

stricts it to electric dipoles, it is valid for the description of a jo(xX)= e E— ot (A5)

magnetic colloid suspension in an external magnetic field.

On the basis of the work of Hgye and StEfl1] for the
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an extra factor of 3 in Eq(21) while in the definition of
ap(rip an extra factor of—6) is in Eq.(20). The first factor

To calculate the functional forms @fy(r15) andax(rqy) is obvious, while the signature of the second one comes from
integrals, the Fourier-transform-convolution metfig8—-22  the fact that in Haye and Stell’&p function (Egs. C6 and
is applied. Both functions are convolution integrals; there-C7 in Ref.[21]), one angle in the triangle ¢f.,2,3 particles

3[f(0))_ 8

2mrd,  3rd,

ap(ri) ~ (A6)

[E Vb

APPENDIX

fore following Hgye and Stell21] by introducing the

is a supplementary angle and therefore its cosine is negative.

[1] V. I. Kalikmanov, Phys. Rev. B9, 4085(1999.
[2] G. Stell, G. N. Patey, and J. S./#&m Adv. Chem. Phys48,
183(1981).

Phys.48, 863(1983.
[16] D. Ruelle,Statistical Mechanics: Rigorous ResulBenjamin,
New York, 1969.

[3] S. W. de Leeuw, J. W. Perram, and E. R. Smith, Annu. Rev[17] J. A. Barker and D. Henderson, Rev. Mod. Phy8, 587

Phys. Chem37, 245(1986.

[4] B. K. P. Scaife,Principles of Dielectrics 2nd ed.(Clarendon
Press, Oxford, 1998 Chap. 2.

[5] J. A. Stratton Electromagnetic Theorylst ed.(McGraw-Hill,
New York, 1941, Chap. 3.

[6] P. Debye, Phys. 713, 97 (1912.

[7] D. W. Jepsen, J. Chem. Physl, 774 (1966.

[8] D. W. Jepsen, J. Chem. Phytb, 709 (1966.

[9] G. S. Rushbrooke, Mol. Phy87, 761(1979.

[10] G. S. Rushbrooke, Mol. Phyd3, 975(1981).

[11] M. S. Wertheim, J. Chem. Phys5, 4291(1971).

[12] L. Onsager, J. Am. Chem. So88, 1486(1936.

[13] J. H. Van Vleck, J. Chem. Phys, 556 (1937).

[14] J. G. Kirkwood, J. Chem. Phyg, 911 (1939.

[15] A. Tani, D. Henderson, J. A. Barker, and C. E. Hecht, Mol.

(1976.

[18] B. Groh and S. Dietrich, Phys. Rev.30, 3814(1994.

[19] B. Groh and S. Dietrich, Phys. Rev.33, 2509(1996.

[20] J. S. Hiye, J. L. Lebowitz, and G. Stell, J. Chem. Phg4,
3253(1974).

[21] J. S. Hye and G. Stell, J. Chem. Phy&3, 5342(1975.

[22] S. Goldman, Mol. Physr1, 491 (1990.

[23] V. I. Kalikmanov, Physica A183 25 (1992.

[24] K. Lucas, Applied Statistical Thermodynamic&Springer-
Verlag, Berlin, 199}, p. 307.

[25] D. Henderson, D. Boda, I. Szalai, and K. Y. Chan, J. Chem.
Phys.110, 7348(1999.

[26] I. Szalai, D. Henderson, D. Boda, and K. Y. Chan, J. Chem.
Phys.111, 337(1999.



