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Kalikmanov@Phys. Rev. E59, 4085~1999!# proposed a perturbation theory method to calculate the dielec-
tric constant of dipolar hard sphere fluids using an infinitely long cylindrical container to avoid the depolar-
ization. We demonstrate that while the method is very helpful, his theory appears to be incomplete because of
the incorrect calculation of the corresponding three-body integrals. It is shown that with the correct consider-
ation of these terms the theory is consistent with the results of earlier work in low-density limit, and at high
densities the method yields the equation of Taniet al. @Mol. Phys.48, 863 ~1983!# for the dipolar hard sphere
fluid dielectric constant.
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I. INTRODUCTION

A number of methods@2,3# have been used in theoretic
and computer simulation studies of dielectric constant of
lar fluids. However, all studies are based on the basic rela
between the polarization~P! and the electric field strengt
inside the dielectric~E!:

4pP5~«21!E, ~1!

where « is the dielectric constant. Assuming we know t
molecular parameters and the distribution functions, the
larization can be calculated for a bulk fluid phase. If we ha
the relation between the external field (Eext) and E, the di-
electric constant can be expressed in terms of the den
temperature, and molecular quantities that appear in Eq.~1!.
In an ellipsoid-shaped dielectric, if the external field dire
tion coincides with that of one of the principal axes, then
field strength inside the dielectric is

E5
1

11l~«21!
Eext, ~2!
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wherel is the depolarization factor.~The calculation ofl is
well known @4,5#.! For an infinitely prolate ellipsoid~needle-
shaped sample! l50, which means that

E5Eext. ~3!

For a dielectric with a spherical shapel5 1
3 , the inside field

strength~Maxwell field! becomes

E5
3

«12
Eext. ~4!

For a dilute gas of dipolar particles, the polarization is giv
by the expansion of the Langevin function@L(a)#:

P5srL~a!5sr@coth~a!21/a#>
s2r

3kT
Eext, ~5!

wheres is the magnitude of the dipole moment,r5N/V is
the number density,T is the temperature,k is the Boltzmann
constant, anda5sEext/(kT) is a dimensionless quantity
Using a spherically shaped sample, the Debye equation@6#
for the dielectric constant can be obtained on the basis
Eqs.~1!, ~4!, and~5! as

«21

«12
5y, ~6!
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where y54prs2/9kT is the dimensionless dipole streng
function. Considering the dipolar hard sphere~DHS! fluid,
Jepsen@7,8# and Rushbrooke@9,10# have shown that the nex
exact term in they expansion of («21)/(«12) is given as

«21

«12
5y2

15

16
y2. ~7!

Equation~7! gives correct third-order results in they ex-
pansion of the dielectric constant:

«5113y13y21 3
16 y31¯ . ~8!

Note, that they expansion of Wertheim’s@11# mean spheri-
cal approximation~MSA! dielectric constant also gives th
above result. Onsager’s@12# and Van Vleck’s@13# theories
are correct only up to second order iny. Using the Kirkwood
equation@14#, Tani et al. @15# obtained a perturbation theor
equation for the dielectric constant of DHS fluid, which is

«5113y13y213y3S 9I ddD~r!

16p2 21D . ~9!

Here I ddD(r) is a density-dependent integral~see later!,
which can be calculated by the hard sphere~HS! correlation
functions. In the low density limitI ddD517p2/9, and there-
fore Eq.~9! is identical to Eq.~8!.

Recently, using the algebraic perturbation technique
Ruelle @16#, Kalikmanov @1# predicted an equation for th
dielectric constant of the DHS fluid. In his method, the e
ternal electric field is treated as a perturbation and the fl
sample is confined into an~infinitely! long cylinder with an
axis parallel to the external field to avoid the depolarizati
The polarization is calculated on the basis of free ene
route, and the dielectric constant is obtained using Eqs.~1!
and ~3!. In the low density approximation his result is

«5113y13y21 45
16 y3. ~10!

This result is not in agreement with Eq.~8!, which can be
considered exact at low density up to the third-order term
the dipole strength function. The dielectric constant does
depend on the shape of the sample, therefore the differe
between Eqs.~10! and ~8! is not reasonable. Though th
calculation route differs from the previous methods, the d
ference in the third-order terms is too high.

In this Comment we show that there are two errors
Kalikmanov’s work in the calculation of the three-bod
terms of the field-dependent free energy and, therefore,
theory seems to be incomplete. Calculating these terms
rectly, in the low density limit we can recover Eq.~8!. Tak-
ing into account the density dependence of the correla
functions, our previous equation for the dielectric constan
DHS fluid @15# is obtained.

II. THEORETICAL APPROACH

A. Model

The potential energy of thei j th pair of the DHS particles
in an external field is
f

-
id

.
y

n
ot
ce

-

is
r-

n
f

u~r i j ,v i ,v j !5ud~r i j !2
s2

r i j
3 D~ i,j !

2sEextcosq i2sEextcosq j . ~11!

On the right side of Eq.~11! the first term is the hard sphere
the second is the dipole-dipole interaction energy, and
last two terms are the external field contributions. This no
tion is in accordance with@1# but for D( i,j ) dipole-dipole
orientation function, we use the most general expression

D~ i,j !53~ ŝi• r̂ i j !~ ŝj• r̂ i j !2~ ŝi• ŝj !, ~12!

which has the opposite sign of the corresponding Kalikm
kov function. Without any further details, the second-ord
expression for the DHS free energy~F! in the external field
is

bF5bF02S r

4p Db12
1

2 S r

4p D 2

b2 , ~13!

whereF0 is the free energy of the reference system~DHS
fluid without the external field! and bi is the i th field-
dependent perturbation term, which can be calculated w
the help of the correlation functions of DHS fluid. The co
responding equations are

b15E dr1 dv1 f ~v1!, ~14!

b25E dr1 dr2 dv1 dv2 f ~v1!@g2
0~r12,v1 ,v2!21# f ~v2!,

~15!

and

f ~v i !5exp~a cosq i !21>a cosq i1~a2/2!cos2 q i .
~16!

To be consistent in the calculation ofb1 , the second-order
expansion of the Mayer function@Eq. ~16!# must be used
while in the calculation ofb2 , a first-order expansion may b
used. The exact DHS pair correlation function is not know
therefore in@1# a second-order perturbation expression w
used@17#:

g2
0~r12,v1 ,v2!5gd~r 12!1~bs2!g1~r12,v1 ,v2!

1~bs2!2g2~r12,v1 ,v2!, ~17!

where gd(r 12) is the HS pair correlation function, and th
perturbation terms are

g15
gd~r 12!

r 12
3 D~1,2!, ~18!

g25
1

2
D2~1,2!

gd~r 12!

r 12
6 2

1

6
rD~1,2!aD~r 12!gd~r 12!

1
1

3
rD~1,2!aD~r 12!gd~r 12! ~19!
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with D(1,2)5 ŝ1• ŝ2 and Kirkwood’s superposition approx
mation used for the three-body correlation function. In E
~19! we introduce two functions with the following defin
tions:

aD~r 12!5E dr3

113 cosa1 cosa2 cosa3

~r 13r 23!
3 gd~r 13!gd~r 23!,

~20!

aD~r 12!5E dr3

3 cos2 a321

~r 13r 23!
3 gd~r 13!gd~r 23!. ~21!

B. Low-density limit

First we study the low-density approximation, whic
means that in Eqs.~17!–~19! the HS pair correlation func
tions are replaced by the Heaviside step function@gd(r )
5Q(r 2d)#, whered is the HS diameter. In accordance wi
@1# we can obtain that

b154p
a2

6
V. ~22!

According to the three-term expansion ofg2
0(r12,v1 ,v2),

Kalikmanov separatedb2 into three terms:

b25a2V~b2
~0!1b2

~1!1b2
~2!!. ~23!

It is easy to see thatb2
(0)50. Using the solid angle integra

tion

E dv1 dv2 cosq1D~1,2!cosq2

52S 4p

3 D 2

~123 cos2 q12!, ~24!

we obtain

b2
~1!52bs2S 4p

3 D 2E
r 12.d

dr12

1

r 12
3 ~123 cos2 q12!.

~25!

In the calculation of the integral of Eq.~25!, Kalikmanov
assumed that the container is an~infinitely! long cylinder
with an axis parallel to the external field. It is better to me
tion an infinitely prolate ellipsoid~needle-shaped sample!
because in this case the depolarization factor is exactly z
The calculation of the integral in Eq.~25! is not trivial
for such a shape, but Groh and Dietrich@18,19# have pre-
dicted a relatively simple method for that. Using this meth
we obtain

b2
~1!5bs2S 4p

3 D 3

, ~26!

which is identical with the result of@1#. The first term in Eq.
~19! is really short ranged and therefore in this approxim
tion, this term does not give any contribution to the fie
dependent free energy.

There are problems in@1# with the calculation ofb2
(2) .

The functionaD(r 12) is long ranged and therefore gives
.

-

ro.

d

-
-

very important contribution to the field-dependent free e
ergy. The role of this term was ignored in Kalikmanov
work. The functionaD(r 12) is really short ranged but the
calculation of its integral is not correct in Kalikmakov’s pa
per. TheaD(r 12) and aD(r 12) functions are convolution in-
tegrals and with the help of the Fourier-transform
convolution method of Høye and co-workers@20,21#, also
used by Goldman@22#, they can be calculated relatively ea
ily. The details of the calculation can be found in the Appe
dix. In the low-density limit the following exact relations ar
obtained:

aD~r 12!5
1

d3 3H p

12F2S r 12

d D 3

16S r 12

d D G if
r 12

d
,2

8p

3 S d

r 12
D 3

if
r 12

d
>2,

~27!

aD~r 12!5
1

d3 3H p

12F2S r 12

d D 3

224S r 12

d D132G if
r 12

d
,2

0 if
r 12

d
>2.

~28!

Using these functions and Eq.~24! for b2
(2) we obtain

b2
~2!5~bs2!2

r

6

16p2

9 E dr12aD~r 12!

3Q~r 122d!~123 cos2 q12!

1~bs2!2
r

3

16p2

9 E dr12aD~r 12!Q~r 122d!, ~29!

where we took into account that

E dv1dv2 cosq1D~1,2!cosq25
16p2

9
. ~30!

Equation~27! shows thataD(r 12) is long ranged and, there
fore, in the case of the first integral of Eq.~29!, the integra-
tion must be carried out on an infinitely prolate ellipsoi
Using the method of Groh and Dietrich@18,19# we obtain

E dr12@aD~r 12!Q~r 122d!~123 cos2 q12!#

5
8p

3 E
r 12.d

dr12

1

r 12
3 ~123 cos2 q12!

52
32p2

9
. ~31!

This result is not surprising, because their equation sho
@Eq. ~3.19! in Ref. @18## that only the asymptotic limit of the
aD(r 12) function gives a contribution to the integral.

We can see in Eq.~28! thataD(r 12) is really short ranged,
which makes it possible to replace its integration over
ellipsoid by an integration over a sphere:
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E dr12aD~r 12!Q~r 122d!54pE
d

2d

dr12aD~r 12!r 12
2 5

17p2

9
.

~32!

It is easy to see that the integral in Eq.~32! is the low-density
limit of the integral introduced by Taniet al. @15#:

I ddD~r50!5E dr12aD~r 12!Q~r 122d!

5E dr12Q~r 122d!E dr3

3 cos2 a321

r 13
3 r 23

3

3Q~r 132d!Q~r 232d!. ~33!

Kalikmanov obtained 5p2/3 for this integral, which is not
correct. He cited the Appendix of one of his earlier pu
lications @23#, where he calculated that integral. Howeve
in @23# there is an error in the conversion of integrati
variables and, therefore, in@24# he calculated a completel
different integral. In Eq.~33! the volume elementdr3 can
be considered as that of a sphere around particle 1, i.e.,dr3

52r 13
2 dr13d(cosa3)dw @23#, where w is the azimuthal

angle extending over 2p. After integration over the possibl
angles it reads

I ddD528p2E
d

`

dr12 r 12
2 E

d

`

dr13 r 13
2 E

21

1

d~cosa3!

3
3 cos2 a321

r 13
3 r 23

3 Q~r 232d!, ~34!

which is identical with the formula of Taniet al. @15# but
completely different from the corresponding results in@1#
and @23#.

Summarizing all calculated terms, for the free energy
obtain

bF5bF02
1

6
Vra22

4p

54
Vr2bs2a2

1
8p2

243
Vr3~bs2!2a22

17p2

486
Vr3~bs2!2a2. ~35!

The polarization can be calculated from Eq.~35! as

P52
1

V S ]F

]Eext
D

N,V,T

. ~36!

Using the dipole strength function for the polarization w
obtain

P5
3

4p
~y1y22y31 17

16 y3!Eext. ~37!

From the polarization, the dielectric constant can be ca
lated by the help of Eqs.~1! and ~3!. Hence,

«5113y13y21 3
16 y3, ~38!

which is in agreement with the formula of Taniet al. @15#
obtained by a different route.
-
,

e

-

C. Density dependence of dielectric constant

The dielectric constant of DHS fluid depends on the d
sity, beside the dipole strength function@2,3,15#. To obtain
the functional form, the correct density-dependentgd(r ,r)
must be used to calculate the integrals that appear. In
case forb2

(1) we obtain

b2
~1!52bs2S 4p

3 D 2E
r 12.d

dr12

gd~r 12,r!

r 12
3 ~123 cos2 q12!.

~39!

On the basis of the results of Groh and Dietrich@18,19# it is
clear that only the asymptotic values ofgd(r 12,r)/r 12

3 give
contributions to the integral. Since the asymptotic limit
this function is 1/r 12

3 , the result of the integration on an infi
nitely prolate ellipsoid is the same that was obtained in E
~26!. Considering theb2

(2) term, the obtained asymptoti
value of the density-dependentaD(r 12,r) function is the
same as was the density-independent one~see the Appen-
dix!; therefore the numerical value of the corresponding
tegral does not change. Only the integral of the short-ran
aD(r 12,r) function shows a density dependence. This in
gral can be calculated on a sphere, and according to Eq.~21!
that corresponds to theI ddD(r) integral of Taniet al. @15#.
Of course the derived equation for the dielectric constan
the same as given by Eq.~9!. According to the above-
mentioned arguments, Kalikmanov’s corresponding equa
for the dielectric constant is incorrect. Therefore, the co
parison with simulation data~Fig. 1 in Ref.@1#! is inappro-
priate. Of course, his results for the initial magnetic susc
tibility of a ferrofluid ~Fig. 2 in Ref.@1#! must be recalculated
again. The reduced dipole moment dependence of
formulated dielectric constant is displayed in Fig. 1. At lo
and moderate dipole moments, the agreement with sim
tion data is quite good. The theory prediction is below t
simulation data at high dipole moments whens2/kTd3

>2.5. To help the concrete calculations, on the basis of@15#
here we give again the Pade´-type fitted expression for the
I ddD integral:

FIG. 1. Dielectric constant as a function ofs2/kTd3 for rd3

50.8. Open circles denote simulation results in Ref.@1#. Filled
circles are our simulation data from Refs.@25,26#. PT refers to our
perturbation calculations.
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I ddD~r* !5
17p2

9

120.939 52r* 10.367 14r* 2

120.923 98r* 10.233 23r* 2 , ~40!

wherer* 5rd3 is the reduced density, and Eq.~40! is valid
in the range of 0<r* <0.95. Further applications to the ca
culation of dielectric constant of hard-core dipolar Yukaw
fluid have been published recently@25,26# by us.

III. SUMMARY

To study the dielectric constant of DHS fluids, Kalik
manov @1# used Ruelle’s@16# algebraic perturbation theor
in the construction of the field-dependent free energy. It
been shown that with a correct calculation of the three-b
term integrals this free energy route gives consistent res
for the dipole strength and density dependence of the die
tric constant. In spite of the fact that these results are kno
@15,22,26#, the improved method should be very valuable
the study of thermodynamic properties of fluids in an ext
nal field. As there is nothing special in the theory that
stricts it to electric dipoles, it is valid for the description of
magnetic colloid suspension in an external magnetic field
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APPENDIX

To calculate the functional forms ofaD(r 12) andaD(r 12)
integrals, the Fourier-transform-convolution method@20–22#
is applied. Both functions are convolution integrals; the
fore following Høye and Stell@21# by introducing the
ev

ol.
s
y
lts
c-
n

-
-

a-

h

-

f ~r !5
gd~r !

r 3 ~A1!

function we can obtain the following equations:

aD~r !5
1

p2 E
0

`

dk j2~kr !@ f̄ ~k!#2k2, ~A2!

aD~r !5
1

p2 E
0

`

dk
sin~kr !

~kr !
@ f̄ ~k!#2k2. ~A3!

Here f̄ (k) is not the Fourier transform but a Hank
transform:

f̄ ~k!524pE
0

`

dr j 2~kr ! f ~r !r 2, ~A4!

with the second-order Bessel function:

j 2~x!5
3 sinx

x3 2
3 cosx

x2 2
sinx

x
. ~A5!

On the basis of the work of Høye and Stell@21# for the
asymptotic limit ofaD(r 12) function we can write

aD~r 12! ;
r 12→`

3@ f̄ ~0!#2

2pr 12
3 5

8p

3r 12
3 , ~A6!

which is of course independent of the density.
Note that our formulas are not the same as the equat

of Høye and Stell@21#. In our definition ofaD(r 12), there is
an extra factor of 3 in Eq.~21! while in the definition of
aD(r 12) an extra factor of~26! is in Eq.~20!. The first factor
is obvious, while the signature of the second one comes f
the fact that in Høye and Stell’sAD function ~Eqs. C6 and
C7 in Ref.@21#!, one angle in the triangle of~1,2,3! particles
is a supplementary angle and therefore its cosine is nega
m.
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