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We propose a new class of unconventional geometric gates involving nonzero dynamic phases, and
elucidate that geometric quantum computation can be implemented by using these gates. Comparing
with the conventional geometric gate operation, in which the dynamic phase shift must be removed or
avoided, the gates proposed here may be operated more simply. We illustrate in detail that unconven-
tional nontrivial two-qubit geometric gates with built-in fault-tolerant geometric features can be

implemented in real physical systems.
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Quantum computation takes its power from superpo-
sition and entanglement, which are two main features dis-
tinguishing the quantum world from the classical world.
But they are also very fragile and may be destroyed easily
by a process called decoherence. The suppression of these
decoherence effects in a large-scalable quantum com-
puter is essential for construction of workable quantum
logical devices. Quantum error-correcting codes [1] en-
able quantum computers to operate despite some de-
gree of decoherence and may make quantum computers
experimentally realizable, provided that the noise in
individual quantum gates is below a certain constant
threshold. The recently estimated threshold is that the
individual gate infidelity should be of the order 107*
[2]. In order for this precision to be possible, quantum
gates must be operated in a built-in fault-tolerant manner.

Apart from the decoherence-free subspace scheme [3],
a promising approach to achieve built-in fault-tolerant
quantum gates is based on geometric phase shifts [4—6].
A universal set of quantum gates [7] may be realized
using geometric phase shifts when the Hamiltonian of
the qubit system changes along suitable loops in a control
space [8§—15]. A quantum gate is expressed by a unitary
evolution operator U({y}), where the set {y} are phases
acquired in a particular evolution in realization of the
gate, and usually these phases consist of both geometric
(y%) and dynamic (yY) components [4—6]. U({y}) is
specified as a geometric gate if the phase vy in the gate
operation is a pure geometric one (i.e., with zero dynamic
phase in the evolution), and quantum computation imple-
mented in this way is referred to as geometric quantum
computation (GQC) in a general sense [8—15]. GQC de-
mands that logical gates in computing are realized by
using geometric phase shifts, so that it may have the
inherently fault-tolerant advantage due to the fact that
the geometric phases depend only on some global geo-
metric features. Although this property was doubted by
some numerical calculations with certain decohering
mechanisms [16], an analytical result showed that geo-
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metric phases may be robust against dephasing [17].
Several basic ideas of adiabatic GQC by using NMR
[9], superconducting nanocircuits [10], trapped ions [11],
or semiconductor nanostructure [12] were proposed, and
the generalization to nonadiabatic case was also sug-
gested [13-15].

According to conventional wisdom, a key point in
GQC [8-15] is to remove/avoid the dynamic phase. One
simple method is to choose the dark states as qubit space,
thus the dynamic phase is always zero [11]. A more
general method to cancel the dynamic phase is the so-
called multiloop scheme, i.e., let the evolution be dragged
by the Hamiltonian along several special closed loops,
then the dynamic phases accumulated in different loops
may be canceled, with the geometric phases being added
[9,10,15]. These methods to cancel the dynamic phase
need subtle choice of the control parameters and/or more
operations than that needed in dynamic phase gates, and
thus may induce additional errors in the operations. On
the other hand, since the central idea of the GQC is that
the phase accumulated in the gate evolution has global
geometric features, it is natural to ask whether we can
design and implement a quantum gate with geometric fea-
tures but a nonzero/nontrivial dynamic phase. Clearly,
this kind of gate differs from the conventional geometric
quantum gates addressed previously [8—15] and is of
significance in physical implementation of the built-in
fault-tolerant quantum computation.

In this Letter, we not only answer the above important
question for the first time, but also propose a new class of
unconventional geometric quantum gates, in which the
total phase y consists of both a geometric component and
a nonzero dynamic one. Our novel idea is simply that,
despite its nonzero dynamic component, the total phase is
still dependent only on global geometric features if we
ensure that the dynamic phase y? is proportional to the
geometric phase y8 [4-6] as

¥4 = nys, (n#0,—1), (1)
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where 7 is a proportional constant independent on (or at
least some) parameters of the qubit system. Equation (1)
may be rewritten as y = (1 + 7)y8 with vy the total phase
accumulated in the gate operation, and the correspond-
ing quantum gate should possess global geometric fea-
tures, which we hereafter specify as the unconventional
geometric gate. These gates would have advantages that
conventional geometric gates have. Comparing with con-
ventional geometric gates, unconventional geometric
gates proposed here can simplify experimental opera-
tions, since the additional operations required to cancel
the dynamic phase are not necessary in certain physi-
cal systems. In the following, we illustrate in detail that
unconventional nontrivial two-qubit geometric gates with
inherent fault-tolerant geometric features can be really
implemented in physical systems [18—21], and specify
the recently reported two-qubit phase gate [19] as an
unconventional geometric gate proposed here.

Let us consider a realistic physical system proposed
quite earlier in implementing quantum computers [18]. In
this system, two ions are confined in a harmonic trap
potential and interact with laser radiation. Two internal
states of each ion denoted by | |) or | 1) represent the qubit
states. By choosing the laser beams appropriately, the trap
potential may excite a stretch mode with the frequency
o, when the ions are in the different internal state, while
nothing happened when they are in the same internal state
[19]. If the internal states are in | [1) or | 1|), within the
rotating wave approximation, the Hamiltonian of this
system in the rotating frame reads (5 = 1)

H(l) — iQD(aJre—iéH—i(bL _ aeiﬁl—i(bL), (2)

where a' and a are the usual harmonic oscillator rais-
ing and lowering operators, 6 is the detuning, ¢; repre-
sents the phase of the driving field and Qp =
—(Fo; — Fo)zos/2 with zg, being the spread of the ground
state wave function of the stretch mode. Fyy (F(y) is the
dipole force acting on the | |) (| 1)) state. The quantum
state |W) under this force can be coherently displaced in
position-momentum phase space. It is clear that the pop-
ulations of the two ions would not change when the
system is governed by the Hamiltonian (2); thus the
two-qubit gate achieved in the cyclic evolution should
be a phase gate described by

U(y) = diag[1, exp(iyy), exp(iyy), 1] (3)

in the computational basis {|l1), [ID), [T}, [TD} (v =
vy = v) [20-22]. The phase gate (3) is a nontrivial
two-qubit gate when y # nar with n an integer [7].

To explicitly express the geometric and dynamic
phases, we employ here the coherent-state path integral
formulation in the phase space to derive them. The phase
change associated with cyclic evolution in [0, T is de-
fined by |W(T)) = exp(iy)|¥(0)) with y a real number. In
order to evaluate y, we may rewrite the relation as
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exp(iy) = (¥(0)|U(T, 0)|¥(0)) with the evolution opera-
tor being written as the standard time-ordered product:

N
U(T,0) = Tei [o 04 — [e o, )
n=1

Here 7' is the time ordering operator, and H(n) denotes the
Hamiltonian at time ¢ = ¢t,,. In the system we consider
here, we may use the coherent states Ia”>, which are the
eigenstates of the destruction operator a with eigenvalues
ay. If H(a', a; 1) is normally ordered (a more general case
than that addressed here), by inserting N resolutions of
the identity (1/7) [lay)d?ay(ayl = 1 into U(T, 0) with
d*ay; = dRe(a))d Im(ay;) and N — oo, we find that the
propagator, defined as K(ay(7); a;;(0)) = (a;;(0)|ay(T)),
is given by [23]

Klay(T); ap(0)] = fei(y“yd)p[an(f)], )
where Dl ay(t)] = limy_o(1/m)N [TV_, d*ay(1,),

i (T % s L%
,yg = Ej;) (a“a” — a“a”)dt (6)

is just the geometric phase in a closed path in the phase
space [5], and

T
y! = _/;) H(aj, ay; t)dt (7

is the dynamic phase with H(aj};, ay;t) = (ay|H(1)|ay)
[24]. v® in Eq. (6) can also be expressed as (i/2) X
flajday — ayday], which is the area enclosed by the
closed path of a”(tg. In the present system, we have

Q . .
ay(t) = iTD(e’“s’ —1)ei%r, (8)

02
Hlah ays) = 221 = cos(0)} o

under the natural initial condition ay(0) =0, with
the requirement that the evolution operator satisfies
U(r = 0) = 1 [see Eq. (11)]. Therefore, the phases accu-
mulated in one cycle are found to satisfy Eq. (1):

yi= -2y =2y = 20y, (10)

with &y = —2(Qp/8)%. Thus, a universal unconven-
tional geometric gate described by Eq. (3) can be
achieved once a;(r) forms a close path in the gate opera-
tion. For instance, ®;; = — /2 is obtained by choosing
|Qp/8] = 1/2; then U(ar/2) is a universal controlled 7
phase gate after rotating —r/2 on the | 1) states.

At this stage, it is worth pointing out that the conven-
tional geometric phase gate is unreachable in this system
since only a nontrivial y¢ = =7 can be obtained under
the condition of the trivial dynamic phase (y? = 27 X
integer). But U(y) is a trivial gate when y = *7 [7].
However, most intriguingly, the total phase is exactly
equal to the minus geometric phase, namely, U(y)
achieved here is an unconventional geometric logical
gate with = —2 proposed before. Interestingly, the
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proportional constant in this example is indeed inde-
pendent of any parameters in the system, such as the
speed of the gate, the detuning, the phase, and the density
of the laser beams used etc. Consequently, the phase y in
the gate (3) has really all the features dependent only on
the geometry. Remarkably, the phase gate addressed here
was experimentally demonstrated very recently [19], and
the high fidelity of the two-qubit phase gate achieved in
the reported experiment benefits from its geometric fea-
tures: The phase is determined only by the path area, not
on the exact starting state distributions, path shape, ori-
entation in phase space, or the passage rate to traverse the
closed path [19]. All these features are global properties
which motivated one to study the conventional GQC [8—
15]. To our knowledge, a conventional geometric quantum
gate has not been achieved experimentally, though the
conditional geometric phase was observed in Ref. [9],

Also intriguingly, we find that Eq. (10) is valid even
in noncyclic cases, which has close relevance to the
robustness of the (cyclic phase) gate against the small
noncyclic perturbations. When a quantum system evolves
from an initial state |¥(0)) to a final state |W(r)) with
(P(0)|W(1)y = e |{(W(0)|W(£))], y is specified as the total
phase and the noncyclic geometric phase can be defined
as y¢ =y — y9, where y! = — [[(W()|H({)|¥())dr
is the dynamic phase [5,6]. In the present system, the
wave function |W(7)) at time ¢ is |V(z)) = U,|(0)), and
the evolution operator U, can be found as

U, = Te—if’ H(')dl'

=e i [ H@dr=(1/2) ['dry [2LH () Hn)ld +

= 10D (ay), (11)

where CD”(I) = (Qp/8)*[sin(6t) — &¢], D(ay) =
explay()at — aj()al, and ay(r) is given by Eq. (8).
The commutator of the Hamiltonian (2) at different
time is a number, not an operator. Then the last equation
is exactly derived by expanding the magnus’ formula
[Eq. (11)] [25] to the second term, since the higher-order
terms in the expansion vanish. Then it is straightfor-
ward to derive y(r) = ®;(7) at any time ¢. On the other
hand, the dynamic phase accumulated during [0, f] can
be obtained explicitly y%(f) = — ff)(nIDJf(ae”)H(t’) X
D(ay)|nydt’ = 2®(t), where |n) is an eigenstate in the
Fock space. Therefore, we conclude that Eq. (10) is valid
at any time. Because of this very special property, the
total phase still depends only on the geometric features
even in the presence of a slight deviation of the period T
and thus the illustrated geometric gate is also insensitive
to the error in controlling the cyclic time in this respect
[26], which is an extra advantage of this kind of gate and
is believed to be one of the factors leading to high fidelity
of the unconventional phase gate reported experimentally
[19]. The robustness of GQC to noncyclic perturbations is
also addressed in Ref. [27].
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We now turn to another interesting example [20]. In the
ions trapped quantum computer model, the Hamiltonian
for ions interacting with the vibrational mode can be
controlled by using different kinds of Raman laser pulses.
In the case of two ions with each driven by identical
Raman lasers, the system may be described by a special
case of the interaction Hamiltonian given by

H(t) = —i[f(t)at — f*(Hall., (12)

where J, = 0'(1) + 0'(2) is the collective spin operator with

bemg the z-component Pauli matrix for the jth ion.
The conditional phase gate in the system has been pro-
posed by using a specific four pulse sequence [20].
We suggest a more general gate achieved by this Hamil-
tonian than that addressed there. The gate governed by the
Hamiltonian (12) is clearly a phase gate U({y}) =
diag[exp(iyy)), exp(iyy), exp(iyy), exp(iyy)], since this
Hamiltonian would not lead the spins to flip in the com-
putational basis. Denoting Bj; (j, [ =], or 1) as the
eigenvalues for J in this basis, it is straightforward to
find that

DT(ﬁjl)aTIBﬂD(ﬁjl) = jz-l(aJr + a*(1)),
DY (Bj)aB;D(By) = Bila + a(1)),

where D(B;) = exp{a(t)at — a*()alB;} with a(r) =
— [4 f(f)dt'. Then we have

H(a*, a;1) = (n|DY(B;)H(1)D(B;)|n)
= =i Lfa* () = f O]

Substituting this result into Eq. (7), the dynamic phase is
given by

Y4(r) = 283y°(7), (13)

with y%(7) = (1/2) [ila*(t)f(r) — a(r)f*(r)] dt. The geo-
metric phase is then found to be

Yi(r) = = B2Y°(7). (14)
Comparing Eq. (13) with Eq. (14), we have
Yi(7) = ~29(r) = 2y (7). (15)

Thus, a universal phase gate U({y}) may also be realized
if a(r) forms a closed path, noting that U({v}) is nontriv-
ial under the condition y) + yy # y; + vy (mod27).

Similarly, by appropriately choosing laser beams, the
ions in a Paul trap may be described by the Hamiltonian
given by

H(1) = —i[f(t)at — f*(1)ald,,

with J = a'y) + 0'(2) Comparing with the Hamilton-
ian (12) only a bas1s changes from J, to J Using a
similar method, we find a gate given by U(r) =
exp( — iy(r)f%) with y(7) = 9°(7) [21], and also have
y(r) = =2y8(1) = 2y(7).
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Clearly, the quantum gates demonstrated above are just
the unconventional geometric gates with a parameter-
independent proportional constant. Therefore, they not
only possess all geometric advantages that conventional
geometric gates have but also are independent of initial
states in the system, enabling one to reach the high
fidelity. Nevertheless, we should note that the uncertainty
of the phase in a general unconventional geometric
quantum gate comes from two factors: fluctuations due
to the conventional geometric phase term and the 7 term.
Generally speaking, an unconventional geometric gate is
robust to the fluctuations or perturbations from the pa-
rameters which 7 (and y?#) is independent of. This is the
reason why 7 is required to be independent on at least
some parameters of the qubit system; a perfect unconven-
tional geometric gate is just the example illustrated
above: 7) is independent on all parameters of the system.

In conclusion, we have proposed a new class of uncon-
ventional geometric quantum gates. Comparing with con-
ventional GQC, our proposal may simplify experimental
operations, because additional operations to remove/avoid
the dynamic phase are no longer required. Apart from the
above-addressed systems related to the harmonic oscilla-
tors, it is of great significance to design and to implement
this class of unconventional geometric gates in other
physical systems.
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