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Arrays of vortices are considered for two-dimensional, inviscid flows when the functional
relationship between the stream function and the vorticity is a hyperbolic sine. An exact solution as
a doubly periodic array of vortices is expressed in terms of the Jacobi elliptic functions. There is a
threshold value of the period parameter such that a transition from globally smooth distributions of
vorticity to singular distributions occurs. @003 American Institute of Physics.
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One possible mode of two-dimensional, incompressible,

(b) a doubly periodic array of vortices in terms of prod-

inviscid, steady flows free of body forces is governed by theucts of elliptic function®

relation

Vz‘p: Pyt 'r/fyy:f((//):_w- (1)

¢ is the stream function and is the vorticity. f is a differ-
entiable but otherwise arbitrary function. The choice

f(y)=—osinhy=V2y, (o>0) 2)

is known as the sinh Poisson equatioh(shP, and serves as
a model in the studies of the most probable state in inviscid

y=4tanh !

k.
(r \/i—l—kz) cn(rx,k>cn<sy,k1>l,

r*k?(1—k?)=sk3(1-k3), (4)

r3(1-2k?)+s%(1-2k5) =o;

(c) doubly periodic arrays of vortices in terms of rational

two-dimensional flows in fluids and plasmas. Exact solutionsexpressions of elliptic functiofi

are thus of fundamental fluid dynamical interests as well as
of relevance in applications. Examples from the literature

include:
(a) the Mallier—Maslowe vortices

Bcog 1+ B%X)
V1+ ,82 cosh By)

y=4tanht , o=1; (3

(i) y=4tanh?

Vksn(rx, k) — Jkgsn(sy,ky)
1+ \/k_klsr(rx,k)sr(sy,kl)

s(1+ky)=r(1+k),

(i) y=4tanh?

s?(1—ky)2=1+4rk,

o=1,

dn(rx,k)dn(sy,k;) — (1—k?) V41— k214

(1—kHY4dn(rx, k) + (1—k?)¥dn(sy,ky) |

r(1+Vi—-k?)=s(1+y1-k3), o=-r31—yJ1—-k??2?+4s?\|1—ki.

The main goal of the present work is to present anotheC, is a constant anB is the Hirota bilinear operator defined

exact solution for shP. Equatid@) is first rewritten in bilin-
ear form

y=4 tanhl(%), (5)

(D+D7—=Co)(g-g+f-f)=0,

(Df+DS—Co+o)g-f=0. ®
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The bilinear forms are known to be effective in obtaining
solitary and periodic waves for nonlinear equatinh®.

A doubly periodic array of vorticesPeriodic solutions
can now be derived by searching fgrand f in terms of
products of elliptic and theta function5The methodology is
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FIG. 1. Streamlines for the doubly periodic arrays of vorticess=1, k
=0.9 (dotted lines denote negative values of the stream function

very similar to the one used in our earlier wérend hence
only the final results will be stated here. A product periodic
solution for the sinh Poisson equation is

_ anrxK)  (1—K2)Y4
=4 tanh 1{/\0{(1_1(2)1’4 dn(rx,k)
dn(syky) (1—kp™
(1=K dn(syky) ||’ °

where the amplitude parameter is defined by
s(1-kH¥
2r(1—y1-k?)~

The wavenumbers and the moduli of the elliptic functidgs,
k., are related by

S2(1-kDM1-1-K]]=

9

0=

rA(1-k*M*1-

V1-k2].

(10)
The vorticity parametery [Eq. (2)], is given by
o=r6V1—k2—2+k2]+s6\1-K>—2+K3]. (11)

We verify by direct differentiation that Eq<8)—(11)
satisfy EqQ. (2) using the computer algebra software
MATHEMATICA .

Figure 1 shows that Eq8) in general represents again a
doubly periodic array of vortices. The direction of rotation in
each cell is different from that in the adjacent cells. The
Jacobi elliptic function drX) has period K whereK is the
complete elliptic integral of the first kind

2
K(k)=

de
J1—KZsirt o

Moduli of the elliptic functionsk, k; will be used below
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FIG. 2. Lines of constant vorticity for the doubly periodic arrays of vortices,
r=s=1, k=0.9 (dotted lines denote negative values of the vortjcity

The boundaries of the cells are horizontal and vertical
lines defined by the equations

dn(rx,k)=(1—-k®¥, dnsy,k))=(1-k)¥ (12

The vorticity within each cellFig. 2) can be related to
the circulation around the cell boundaries

ﬂg udx+ody,

by the Stokes theorem. Analytical expressions are feasible by
identities of elliptic functions, but the details will not be
pursued here.

A nearly circular singularity in vorticity In general val-
ues of the stream function will get larger &sor k; ap-
proaches onéFig. 3). The intriguing aspect of the present

to represent the periods of the doubly periodic arrays of VOrg|g, 3. streamlines in a cell near the threshold valuekof =s=1, k

tices.
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FIG. 4. Variation of vorticity across a cross sectign<0) of the cell near  FIG. 5. Singularity boundary (tani/4=1) beyond the threshold value of
the threshold value df, r=s=1, k=0.984. k, r=s=1, k=0.99.

solution is that patterns of point vortices or finite regions of _1he flow configuration beyond the critical value kf

vorticity singularities are reached before the long wave Iimitde.f.ined by (14) requires Careful_ con§ideration. Inside the
is taken or attained. critical contour the stream function given k8) cannot be

For simplicity in algebra we focus on the cases, k used since the hyperbolic tangent is larger than one in the
—k, . Consider the point0, 0). From Eq.(8), the hyperbolic interior. However, we propose that the flow field given by
tangent will attain the value one, and hence the value of the y= Wy, v=— iy,

stream function will become infinite if o _ i . - .
is still a valid flow field, and the resulting vorticity remains

14 finite. Mathematically the stream function would be complex
W—(l—k )=z, constants in the interior streamlines. However, physical
quantities, such as velocitiéderivatives of the stream func-
tion) and mass flow(difference of adjacent streamlinesan
1-k?=(v2—-1)* k~0.985171. (13)  still be calculated in a meaningful way. The vorticity field
o remains finite in the interior region. Hence one would obtain
Although the vorticity parameter of Eq. (11) appears to be 5 «nearly circular singularity” in the vorticity field along the

zero due to Eq(13), the vorticity at(0, 0) is actually given ;e defined by Eq(15) for k beyond the critical valuéof

or

by about 0.985 1711
40T(1+T3?) W One possible way to avoid a singularity is to consider a
0=——"—7—, T=tanh-, T-—1, closed curve exterior to the boundary defined(b$). Out-
(1-T9) 4 . . ) . :
side the closed curve the sinh Poisson equation holds, while
as k—0.985171, (14)  the interior is governed by a different principle of vorticity

. . . dynamics. The situation is then analogous to the case of the
and hence the vorticity still possesses a simple pole at this . : . .

. . Classical Lamb dipole. A brief account of this vortex pattern
particular value ok given by Eq.(13).

It is instructive to study the actual transformation for the!> 9'Ven here for completeness. Basically the flow is imota-

plots of vorticity ask varies. Neak=0.985 171 is close to t!onal outside a circle of r_adlug;, b.Ut the vorticity is propor-
T . . tional to the stream functiofy) inside the circle. Matchings
zero and the vorticity is very small except in the vicinity of

~ ) and its derivative across the circle give the Lamb
T=1 (Fig. 4. dipole®12-14

For still larger values ok, the stream function as given
by (8) is not defined in a finite region within each cell, as the
hyperbolic tangent must be less than one in absolute value.

The boundary is defined by
[ dn(rx,k)  (1—Kk*)™][ dn(ry,k) (1—k2)1’4}
(

a®\
=—U(r—7)sm6, r>a,

y=CJy(kr)sing, w=—Ck2J,(kr)sing, r<a,

1=K)P ™ (k) [ (T=KAT* ™ “dn(ry k) Ju(ka)=0, C=—22_
L kJo(ka)
=2((1_T)1,z—(1—k2)1’4). (15 U is the free stream speed in the far field.
Special reduction and potential applicationshe long
The curve resembles a circ{Eig. 5). wave limits of these doubly periodic patterns of vortex arrays
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will typically lead to known solutions. For simplicity we simulations should be performed. Indeed three-dimensional

shall first take the solution equatidd) as an example. The secondary instability of the Mallier—Maslowe vortices has

cn function has period K, whereK is the complete elliptic been studied by computational methods, and related to fea-

integral of the first kind. The stream function is given by Eq.tures observed experimentally in shear flows and wékes.

(4), and there are two equations relating the five parameters

r, s, k, ky, o. The periods in the, y directions are K/r, ACKNOWLEDGMENT
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