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Abstract. A good knowledge of the evolution process of a crack or cav-
ity is necessary for a better understanding the mechanical behavior of
the damage and failure of materials and structural components. Before
damage begins, the size of the initial or prescribed cracks and cavities
are usually very small. These small cracks and cavities can be conve-
niently used as the diffraction apertures of the coherent light. By analyz-
ing the diffraction fields, the characteristic parameters of these special
diffraction apertures can be obtained and, hence, the deformation fields.
Experimental tests are conducted to demonstrate the reliability and ac-
curacy of the laser diffraction technique in detecting the evolution and
propagation of a small crack or cavity. The relationships between the
coherent diffraction patterns and the crack and cavity geometric param-
eters are established for the simple shape of the crack or cavity aperture.
Moreover, the autocorrelative method and the spectral iterative tech-
nigue are introduced to retrieve the small crack and cavity apertures for
the complex shapes. © 2002 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction tested materials or structural components subjected to im-
pact or cyclic loading, the inspection methods should be
able to show instantaneous changes at the testing position,
and keep track of cumulative degradation. This is a chal-
lenge to the scientists involved in experimental mechanics,
which means that not only should the inspection system be

as simple as possible, but the measurement method should

It is a known fact that the fatigue life of structural compo-
nents consists of two discrete periods: the initiation of
finite-sized cracks and subsequent propagation to failure.
Consequently, it is important to develop a sensitive, nonde-
structive technique capable of detecting early fatigue dam-
agein situ, to predict the remaining fatigue life of a com- S o . .
ponent. Various optical techniques involving a laser light &S0 D€ adapted tm situ and original position testing.
source have been used for nondestructive testing, which, ' this paper, a relatively new optical technique, which
includes flaw detection and surface inspection. For ex- ' called the laser diffraction technique, was used to inves-

ample, the speckle correlation and speckle decorrelationg?;éﬁ ;23 ;?;&f%i@%%@g?f&g%i?;t't%r;;i)lfe?Ozggll/?orse“_t
techniques are used to inspect the surface fatigue deforma- Y Subl '

tion and surface morphology changes of the matartah over, this technique was also combined with the_ power
1-D optical Fourier spectrum analysis system is applied to spectrum autocor(elat|on met'hod and spectral iterative
detect small fatigue cracRsln addition, optical methods techm_que, respectlvely,_to retrieve the complex shapes of
- Iy ’  the microcrack and cavity apertures on the surface of the

such as photoelasticity, holography, moisgpeckle, and tested material
caustic are also widely used for crack detection or defor- '
mation measurement in a crack zéné®

Generally, all of the methods just mentioned have suc
advantages: sensitivity to the sample deformati@amplane . o
or out of plang and ability to make qualitative or quantita- 2-1 Basic Principles
tive full-field measurement of the displacements and dis- When the surface of a specimen that contains some small
placement gradients¢straing. But the disadvantages are cracks and cavities is illuminated by a spatially filtered and
also obvious, i.e., the requirement for a special test envi- collimated laser beam, the reflected and diffracted light in-
ronment, such as vibration isolation, a dark room, and wet tensity distributions carry the crack and cavity geometry
chemistry processing or special material and surface pre-information. Figure 1 shows a schematic diagram of the
processing. To properly evaluate the damage and failure oflaser diffraction system. Before the diffracted pattern can

h 2 Theory
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Fig. 1 Schematic diagram of the laser diffraction system for the
evolution measurement of small cracks and cavities.

after deformation

be applied for the study of the crack and cavity evolution, it
is necessary to first discuss the relationship between the
crack and cavity geometry and the intensity distribution (b)
diffracted from it. vaiom_Jst, when asmall crack or cavity Fio. 2 Dimensions of the CA and the chan ¢ sh
on the tested specimen is used as the diffracted aperture, th(gngiaxial tenii;nf’ (z)oa trgpgzoﬁja? an% C(b)a a?]e;"optisca?"a?aused by
aperture shape is closely related to the crack or cavity ge-
ometry or the profile. The aperture formed by the small
crack or cavity is called the crack or cavity apert(@A),
and it is mathematically described as the CA function The diffractive intensity recorded by the CCD camera on
V(X,y). the (u,v) plane is

Suppose that the collimated laser illuminates the speci-
men uniformly in the normal direction and the light dif- Y
fracted from the CA is observed on the receiving screen, as f f W (x,y)
shown in Fig. 1. If the distance between the CA surface —w ) '

1
(o)==

(x,y) and the observation planel,p) is so large that the 5
Fraunhofer approximation can be used, the complex ampli- xexp[—j2m(xf,+yf,)] dx dy
tudeA(u,v) at the (1,v)plane is given b} o

C © 0 1 —

- = W (fy, )2 5
A(u,v) szj_mj_wq'(x’y) )\Zzzl (. Tyl 5
277' . . . . . . .
% —i 2T (ux+ d 1 Equation(5) shows that the diffractive intensity is in pro-
exp| 7l NZ (Uxtvy)| dx dy @) portion to the square of the spectrum of the crack aperture

function W(x,y). Deformation or fatigue damage of the
whereC is a complex factor and its amplitude is assumed specimen changes th(x,y) and hence alters its corre-
to be one unit, and is the distance between the observa- gponding diffraction intensity. Thus, if the distribution of
tion plane and the specimen surface. The integral of Bq.  ine giffraction intensity is measured, the changeligk, y)
is the Fourier transform of'(x,y) at the spatial frequen- -5 pe evaluated.
cies. Since Eq(l) is in the form of a 2D Fourier transform,
the diffraction pattern can be expressed in Fourier trans-

form notation as follows 2.2 Analytical Reconstruction the Simple Geometry
c Shape of ¥ (x,y) with Far-Field Laser
Aty f,)= ﬁq_f(fx 1), ) P/ﬁract/on . ' .
J Two simple tensile specimens, one with a rectangular aper-
ture and the other with a circular aperture were selected for
where a pilot study to simulate the simple geometry shape of a
crack and a cavity. Their dimensions are given in Fig. 2.
U N R e The corresponding intensity patterns of the diffraction
V(haty) j_oo _w\lf(x,y) fields can be expressed respectively as folldws
xexp[—j2m(xf,+yfy)] dx dy, 3) a2h? 2
I.(f,,f,)=——|sinc(af,) sinc(bf,)| , (6)
f=u\zZ, f,=v/\Z, (4) (Bfy \272 (at (bty
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Ji(wDp)|?
Dpl/2 '

p=r¢/INZ

(7)

D 2
|c(ff)=(m)

where J;(x) is the first-order Bessel function of the first

kind, r¢=(f2+f)"% anda, b, andD are crack length,
width, and cavity diameter, respectively. Equatigésand
(7) produce 2D intensity distributions, wherg(f,,f,) is
symmetric to bothx andy axes, and (fy,f,) is circular
symmetric. In the case of a rectangular CA, where
>>b, the main beam of the diffraction patternioff, , f,)
is in the f, direction. The values that make(f,,f,) and
I.(fx.fy) zero are, respectively,

fy=n/b, n=0,%x1,+2,..., forl(fy,f), (8)
p=+1.22D, +2.23D, =3.24D, ..., forl.p), (9
or

Av=% for 1.(fy,fy), (10
Ar¢=1.0\Z/D for l(p), (12)

whereAv andAr; are the distances between thith and
(n+1)'th minimal along thef, axis and the radial direction,
respectively. Equation®)—(11) show that the variableSv

jmb
A2

xsinc(f,+efy)a+2]

exd —jm(f—ef,)a]

X exp

(—jwfa) sin(xfb) sinc(fa);. (12

And for one-side displacement,

Wio(fy,fy)=abexp(—jwfa) sinc(f,a) sinc(f,b)

a . .
+ e exp(—jwfia) exp(—jmfb)

y
x{exp(—jmefya) sinc[(f,+efy)a]

—sinc(f,a)}. (13

Equations(12) and (13) describe the far-field diffraction
patterns of the trapezoidal apertures. These patterns are
more complicated than those obtained from rectangular ap-
ertures. Note that the first terms on the right side of the
equations are the far-field diffraction patterns of a rectan-
gular aperture and the second terms are those of the trian-
gular apertures. The parametecan be measured from the
intensity distribution of the diffraction fields. In the present

and Ar¢ or fy, andr¢, are inversely proportional to the
width b and diameteD of the crack apertures, respectively.
Therefore, bottb and D can be determined by measuring
the distanceddvand Ar;. Thus, through the far-field dif-

fraction of the laser beanip andD can be measured with
high accuracy.

The precedingV (x,y) functions are assumed for ideal-
ized rectangular and circular configurations. In the practical 5
situation, the crack aperture varies in shape when the speci- -
men is subjected to an applied load. Sections 2.3 and 2.4 (Fx0,fy) =Alfx0, Fy) A" (f10.fy) = \272 \Ptt(fxo'fy)’ '
deal with the complex apertures in the geometry shape. (14)
Assuming that the specimen is subjected to uniaxial tensile
load and the deformation is small, the apertures of the rect-
angular and circular cavities will evolve and become ap- 1 |
proximately trapezoidal and elliptical, respectively, in |(f ,,f,)=A(f.q,f )A* (f ,f,)=—— W o(f,o,f
shapes. Figure 2 shows the deformed aperture shapes. The( 0 1) = Al IA (o fy) \22Z? tol Fxo.Ty)
diffraction fields due to trapezoidal and elliptical cavity ap-
ertures are be discussed in the following.

Figure Za) shows two kinds of trapezoidal cavity aper- ) _ ) o
tures, one consisting of a rectangle and a triangle and theWheref, is a given frequency along thfg axis. It is dif-
other a rectangle and two triangles, which are due to one-ficult to obtain the analytic solutlons.for the m_|n|mal values
side and two-side displacements, respectively, of the speci-Of I(fxo.fy) . Therefore, the numerical solutions are pre-
men during the uniaxial tensile test. By applying E8), sented in Fig. 3. By combining the numerical solutions with
the Fourier transforms of these two cavity apertures can bethe distances between thih and (n+1)’th minimal of the
obtained as follows. For two-side displacement, diffraction intensities along thé, and f, axes obtained
from the experiment, the changes of the geometric param-
eters of the CA can be measured for different loading states.
Thus, such fracture parameters as the crack opening dis-
placement, the stress intensity factor, and crack propagation
can be obtained.

Similarly, for the elliptical crack aperturigefer to Fig.
2(b)], we have

case, the limiting orientation of the diffraction is vertical to
the crack surface. Thus the diffraction distribution along the
fy=v/\Z axis is considered. By inserting Eq&l2) and

(13) into Eq. (5), the intensity of the diffraction distribu-
tions can be expressed, for the first and second kinds of
trapezoidal apertures, respectively, as follows:

2

(19

Vi (fy,fy)=abexp(—jnf,a) sinc(f,a) sinc(f,b)

2

xexd —jm(fy+efy)a] sinc[(f,+efy)a]

ja :
+——1exp(—jmb/2)
fy
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Fig. 3 Far-field diffraction patterns of rectangular/trapezoidal aper-
tures: (@) a=5mmand b= 0.2 mm; (b) a=5mm, b= 0.2 mm, f,
= 0.0 and £=0.0349; and (c) a = 5 mm, b= 0.2 mm, f, = 1.5, and
e = 0.0349.

+ oo + o

S 2a
Ve(ffy=—— 2 2 Jy2nha)don.(27f,b)

y N=—% m=—x

-P(n,m), (16)

where J,(x) is the n'th order Bessel function of the first
kind andP(n,m) is defined as
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Fig. 4 Far-field diffraction pattern of a circular aperture, where F
=af, is for the f, axis and F=bf, is for the f, axis.
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The intensity distribution of the elliptical crack aperture is

1 '7
I(fxrfy):A(fxrfy)A*(fxvfy): W \I,e(fxrfy)

The calculated results of E¢18) are presented in Fig. 4,
and the values oF;, corresponding to the minimums of
I(fy,f,) are also listed in Fig. 4. Using these numerical
results and Eq(4), the changes of CA scale in different
directions can be calculated.

2
(18

2.3 Spectral Autocorrelation Estimation of the
Complex Geometry Shape of ¥ (x,y) with
Far-Field Laser Diffraction

Equation(5) shows that the diffractive intensity is in pro-
portion to the square of the spectrum of the aperture func-
tion ¥ (x,y). Deformation or fatigue damage of the speci-
men causes the functiow(x,y) to change and, hence,
alters its corresponding diffraction intensity. If the distribu-
tion of the diffraction intensity is measured, the change of
V¥ (x,y) can be evaluated. However, when the shape of the
cavity is complex, it is difficult to obtain the analytical
diffraction formula from Eq.(5). Therefore, the evolution
process of the complex aperture shape cannot be retrieved
guantitatively. However, if the image of the crack or cavity
is a bright and uniform distribution on the CA plane, the
shape of the CA can be reconstructed by retrieving its sup-
port. First, we assume that the analysis is limited to Euclid-
ean space of two dimensions, i.ex,¥) € EZ . Obviously,

in the present caseV(x,y)=0 and the supportS of

W (x,y) is the smallest closed set such that the integral of



Li et al.: Detection of small cracks . ..

W(x,y) over the complement o in E? is zero. Then the
autocorrelation of'(x,y) can be defined 4%

peal,m)= szqf(x,y)*qf(er {,y+m) dx dy

- | worvoecy-m sy, a9

whereW(x,y)* is the conjugate o’ (x,y) . If the support
S of W(x,y) is compact(i.e., closed and boundgand if
Ais the support opca(¢, %) , then

A:

U [S_(X,Y)]:{f_)(,’?_y:(xay)ES}- (20)

(xy)es

Equation(20) can be viewed as being formed by succes-
sively translatings . If we assume th&s is a convex set, all
convex symmetric setd will have at least one solutidh

S=2A={(¢129/2):({,m) e A} (21)

Equation(21) shows that the support of CA is just half that
of its autocorrelation function. Therefore, Af is obtained,
the support of the CA can be determined.

Applying Wiener-Khintchine theorem, we have the rela-
tionship betweenpca(Z,7) and its Fourier modulus of

V(x,y):

pentem=| [

x exp[2mi(f,L+f,p)] df, df

@2 [ ity

x exp[2mi(f,L+f,7)] df, df,.

o 2
W(fy.fy)

(22

Equation (22) shows that the autocorrelation function of
CA is the inverse Fourier transform of the squared Fourier
modulus, andpca(¢,7) can be calculated by taking the
inverse of Fourier transform of the diffractive patterns ob-
tained from the laser diffraction measurements. Further-
more, the supporf can also be determined from the re-

trievedpca(¢, 7).

2.4 Spectral Iterative Retrieval of the Complex
Geometry Shape of V¥ (x,y) with Far-Field
Laser Diffraction

Two mentioned methods have been used to retrieve the CA

in the laser diffraction technique. Their advantage is that

only simple calculations are required to determine the de-

formed apertures based on far-field diffraction intensity.

But the disadvantage is that autocorrelation method does

not always produce unique solution and the analytical

method can only retrieve the deformed apertures in a

simple shape.

To retrieve the complex geometry shapeW(x,y) ef-
fectively with far-field laser diffraction, an iterative method
that utilizes the iterative Fourier transformation back and

forth between the CA and its Fourier domains is employed
to estimate the complex shape of the crack or cavity. From

Eq. (5), @(x,y) can be stated as

W(fy,f)=W(H,.1y)] exp[jD(fy,fy)]

[ wou

xexdg —j2m(xf,+yfy)] dx dy. (23

Equation (23) means giving the modul{® (f,f,)|and
some knowledge of¥(x,y), then one can reconstruct
WP(x,y). An equivalent problem is to reconstruct the phase
function of the Fourier transformb (f,,f,), since then sim-
ply performing an inverse Fourier transform generates
WP(x,y). In our case, the squared modulhffrective in-
tensity) has been measured and the constrain¥ ¢x,y) is
real and nonnegative.

There are several particularly successful approaches to
solving this retrieval problem: the error-reduction
algorithm?® the input-output approactf, and related
algorithmst?*>18 These algorithms involve iterative Fou-
rier transformation back and forth between the object and
Fourier domains and application of the measured data or
known constrains in each domain. In our paper, a simple
and general method, the error-reduction algorithm, also re-
ferred to as Gerchberg-Saxton algorithm, is employed to
retrieve the aperture of the complex geometry shape.

The error-reduction algorithm was originally invented in
connection with the problem of reconstructing phase from
two intensity measurements. It consists of the following
four steps(1) Fourier transformation of an estimate object;
(2) replacing the modulus of the resulting computed Fourier
transform with the measured Fourier modulus to form an
estimate of the Fourier transforr{8) inverse Fourier trans-
formation of this estimatg#) replacing the modulus of the
resulting computed image with the known constraints in the
object domain to form a new estimate of the object. In
equations, for thé'th iteration, this is

>
N
e
[Ta
/ (@ N
. V4 !
h 5% w # D 4"’
/~ N——
(b)

Fig. 5 Geometrical configurations of the specimens; (a) h = 20 mm,
w=12mm,a=5mm,and t=2mmand (b) D= 0.5mm, t= 0.7
mm, and w = 10 mm.

Optical Engineering, Vol. 41 No. 6, June 2002 1299



Li et al.: Detection of small cracks . ..

Bl BoBG8 8.8

100 200 300 400 500
0.069+003N

g 8 B a8

8

100, 200 300 400 (500
2.078e+003N

8 & 2 8 8 8

8

100 200 3000 400 500
3.234e+003N

100 200 300 400 500
0. 960+003N

2. 352+003N

100 200 300 400 5000 ¢
3.512+003N

100 200 300 400 500
1.7640e+003N

1000 2000 300 400 500
2.930e+003N

100 200 300 400 500
3.469e+003N

Fig. 6 Experimental results of the far-field diffraction patterns of an SEC aperture subjected to uniaxial

tension.

Gk(fX1fy): |Gk(fx ,fy)|eXF[j ¢k(fx vfy)]:j[gk(xiy)]=(24

Gi(fx.fy)=IP(fy.fy)lexd j u(fx.fy)], (29
gk (xy)=1gk(xy)|exdj ou(x,y) =T [ G(f,.f,)], (26)

Ok+106Y) =Gk 1(X,Y) [exd j Ok 1(X,Y)]
=gk 1% y) [exd j Ox(x,y)1, (27)

whereg,(x,y), O(x,y), Gi(f4.f,), andey(fy.f,) are es-
timates of¥ (x,y), (x,y), [ ¥ (f,,f,)|=1[(f4.f,)]*/4 and

1300 Optical Engineering, Vol. 41 No. 6, June 2002

®(fy,fy), respectively. Herep(x,y) is the phase function
of the input object. In our casep(x,y) satisfieso(X,y)
=0.
For single-intensity measurement, as in our case, we use
the following equation in Eq(27):

(X,y)¢A
(x,y)e A (28)

gk(X,y),
gk+1(xiy) = 0,

whereA is the set of points at which,(x,y) violates the
object-domain constraints, i.e., wherexgi(x,y) is nega-
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Fig. 7 Experimental results of the far-field diffractive patterns of a CCH aperture subjected to uniaxial
tension.

tive or its dimension exceeds the know domain of the re- Equation(29) indicates when the squared error is zero, a

constructed object. The iterations continue until the com- solution has been found.

puted Fourier transform satisfies the Fourier-domain

constraints or the reconstructed image satisfies the object-3 Experimental Procedure

domain constraints; then one has found a solution. The con- L ) ) . )

vergence of the algorithm can be monitored by computing 3-1  Uniaxial Tension Diffraction Experiments

the percent error, which can be expressed as The uniaxial diffraction experiments were carried out to
demonstrate the small crack and cavity evolution under
loading. Figure 5 shows two specimens, one contains a

Efx,fy|[| (f.fy) 12— abgGy(fy.f))| single-edge crackSEQ of length 5 mm and width 0.2 mm
Etr= S T10f. 2 X100% (29 and the other contains a central circular h¢®CH) of
fx'fy[ (. fy)] radius 0.25 mm. The plate specimens are made of alumi-

Optical Engineering, Vol. 41 No. 6, June 2002 1301
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Fig. 8 Numerical calculations comparing the far-field diffraction patterns of the rectangular and trap-
ezoidal apertures.

num alloy LY;, and manufactured using a wire-cut ma- cally and the change of dimensions of the CA can be cal-

chine. The specimens were subjected to uniaxial tension,culated by the formulas already given.

which produced one-side displacement. A digital force sen- ) )

sor recorded the applied loads. The specimen surface, con3.2 Calculation of the Expansion of CA and

sisting of an SEC or CCH, was illuminated by a collimated Estimation of the Fracture Parameters

laser beanrefer to Fig. 1. Considering the actually loading state, we should use Eq.
Figures 6 and 7 show the diffraction patterns of an SEC (15) to calculate the expansiof of the crack surface for

and a CCH at the observation plane. We found that the the SEC. However, it is clear to see that the distribution of

diffraction patterns contracted significantly with the in- the far-field diffraction patterns of the SEC is similar to the

crease of the loading. This phenomenon corresponded todiffraction patterns of a slit with different widths. This

the expansion of the CA when the specimens were sub-means that the rotational component ®fvas very small

jected to tensile loading. The image system captured thebefore rupture(brittle fracturd, and thus Eq(15) can be

diffraction pattern immediately and stored it into a personal reduced to Eq(6). To investigate the difference of the far-

computer. The distances between tiith and (h+1)'th field diffraction patterns between the rectangular and trap-

minimal of the diffraction pattern were detected automati- ezoidal apertures, both Eq®) and(15) were used to cal-

1302 Optical Engineering, Vol. 41 No. 6, June 2002
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Fig. 9 Evolution curves of the SEC subjected to uniaxial tension.

culate the far-field diffraction patterns, by assuming that
=5 mm,b=0.2 mm, ande was varied. Figure 8 presents
the calculated results, which show that the strong subdif-
fraction (due to diffraction of a triang)lealmost disappears
ate=0.02 andf,=1.5 mm !, and the diffractive patterns

caused by the rectangular and trapezoidal apertures are
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Fig. 10 Estimation of COD and Aa using evolution curves: (a) ap-
plied load versus COD and (b) Aa versus applied load.
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Fig. 11 Evolution curves (for plane y=0 ) of the central circular
cavity subjected to uniaxial tension: (a) expansion & versus a+Aa
and (b) ratio of the major to minor axes versus applied load.

quite the same in the range fife (—60,60) mm L. Thus,

§in they axis (tensile directioh can be simply calculated
using Eq.(6) whene <0.02, which is deemed the condition
of small angle opening of the CA. Figure 9 shows the evo-
lution of ¢ at different stages of loading. The experimental
data show that the evolution process can be divided into
two parts: one is uniform expansion of the SEC, and the
other is the rotation of the crack surface. The magnitudes of
these two terms, which are estimated from curves 1 through
8 in Fig. 9, are 0.15 mm and 1.05 deg, respectively. Other
important fracture parameters, such as crack opening dis-
placement (COD), stress intensity factor(SIF), crack
growth length(Aa), crack opening angléCOA), and crack

tip opening angldCTOA), can also be estimated from the
evolution process of the SEC. Figure(&0shows the plot

of applied load versus COD, and Fig. (bD presents the
plot of Aa versus the applied load. The parameter&gf,
CTOD, COA, and CTOA are estimated to be 20.30
MPam’? (¢”=73.50MPa), 33.90um, 2.15 deg, and
20.98 deg, respectively. As for the case of CCH, Hd)

was used to calculate its expansion in the direction of 0, 45,
90, and 135 deg. Figure (@ shows the evolution process
of the CA. The significant expansion can be clearly seen in
the tensile direction. Figure 1) shows the ratio of the
major to minor axes of the deformed elliptical CA during
uniaxial tension. The maximum value of the expansion ra-
tio is about 1.22 before rupture of the specimen occurs.
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Fig. 12 Retrieval results of the deformed CA using autocorrelation function method, where loads are
3.0, 539.0, 980.0, 1577.8, 2234.4, 2714.6, 2900.8, and 3096.8 N, respectively.

3.3 Cauvity Aperture Estimation with Spectral the results of the retrieval for various applied loads. The
Autocorrelation evolution process o6 can be obtained from these retrieval

Based on the conclusion in Sec. 2.3, the support of a circleimages directly. The maximum ratio of the support in the
or an ellipse is just half that of its autocorrelation function. tensile directiorthorizontal directiopto that in the in-plane
Therefore, the expansiof of the CA can be easily re- vertical direction was 58/4¥1.23 before rupture of the
trieved from the autocorrelation function and the far-field specimen occurred. This result tallied with the maximum
diffraction intensity discussed in Sec. 2.2. Figure 12 shows ratio of the major to minor axes of the deformed CA when
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Fig. 13 Expansion of the deformed CA retrieved using the autocor-
relation function; (a) the ratio of expansion in the horizontal direction
(tensile direction) to that of vertical direction (free loading direction)
versus applied load and (b) expansions of the deformed CA in the
horizontal and vertical directions versus the applied load.

the specimen was subjected to uniaxial tension. Figure
13(a) presents the plot of the ratio/a versus the applied
load. The result indicates that the expansion in the tensile
direction increased dramatically when the load exceeded
1000 N. Note that the initial ratio was not equal to 1, which
indicates that the CA was not a circular cavity before the (d)
experiment was carried out. This was attributable to inac-
curately drilling during the preparation of specimen. The Fig 14 microcavity reconstruction: (a) the microscopic image of the
tendency of rapid expansion maintained until the specimen cavity on the silicon nitride lamella composite of aluminum matrix,
ruptured. The amount of expansidris plotted against the (b) far-field transmitted diffraction pattern of the through microcav_ity;
applied tensile load in two directions, as shown in Fig. (c) and (d) the reconstru_cted cavity with sp(_ectral autocorrelation

. . . . method and spectral iterative method, respectively.
13(b). The maximum expansions in the horizontal and ver-
tical directions were 0.172 and0.0285 mm, respectively.
These results show that the necking effect was not obvious,
which was expected because of the material property.

Another reconstructed specimen using the spectral auto-duced by pores in molten molding or by desquamating of
correlation method is a through microcavity on a silicon the silicon nitride particles in machining will seriously ef-
nitride lamella composite of aluminum matrighickness fect the mechanical behaviors. Figure(@d4shows the mi-
1.3 mm. This material is widely used thanks to its super- croscopic image of the cavity and Figs. (i4and 14c)
high strength and light weight. However, when the material show the transmitted diffraction pattern and the recon-
is applied with the flaky structure, the microcavities pro- structed cavity aperture.
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Fig. 15 Images of the microcracks on the surface of the ring and their corresponding far-field diffrac-
tion patterns and reconstructed microapertures: (from left to right: microcrack, diffraction pattern, and
reconstructed microaperture).

3.4 Micro CA Retrieval with the Spectral Iterative to load. The experimental setup used is very simple but the
Method interpretation of experimental data is relatively compli-

The spectral iterative method was used to reconstruct thec@ted. When the shape of the CAlis simple, the aperture can
microcrack on the surface of an aluminum alloy ring used Pe retrieved analytically from the far-field laser diffraction
in a bullet train. The reflected laser diffraction method is Pattern. However, this is difficult in the case of a complex
used to get the surface far-field diffraction patterns of the aperture. Therefore, any approach proposed is expected to
ring. It is well polished as a mirror surface before the ex- Provide qualitative or quantitative results about the evolu-
periment. The ring is subjected to diametral fatigue loading tion process of the complex aperture. The employment of
with a frequency of 106 Hz and compressed load amplitude autocorrelation function provides a simple calculation algo-
300 kg. After loading for 5 min, the reflected diffraction rithm to retrieve the deformed CA. The significance of this
patterns corresponding to the different positions on the sur- method is twofold:(1) the ability to qualitatively estimate
face of the ring were recorded and reconstructed. Figure 15the cavity aperturén situ at the original position test and
shows the diffraction patterns and their corresponding re- (2) the fact that it can be used as a limiting condition in the
constructed crack apertures. The microscopic images of theobject domain for the spectral iterative method. The limita-
microcracks caused by the fatigue loading on the testedtions are the convexity required for the CA shape and
object are also shown in this figufmagnified 200 times unigue solution. Based on present knowledge, the supports
Finally, the microcavity aperture mentioned in Sec. 3.3 was of parallelograms, circles, ellipses, and convex polygons
also retrieved using the spectral iterative method. Figure satisfyS=A/2. The supports of triangles can be retrieved by
14(d) shows the retrieved result. The error in the spectral the posttreatment. Therefore, if the support of the CA is one

iterative method is limited b¥;,, <6%. of the convexities just listed, the CA can be retrieved from
i ) its autocorrelation function. The reconstructed images
4 Discussion shown in Figs. 1) and 14d) with the two retrieval meth-

The laser diffraction technique was employed to investigate ods have some differences, which are caused by the local
the evolution process of small cracks and cavities subjectednonconvex aperture of the cavity. The nonconvexity of the
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CA extends the support of its autocorrelation function. References

Thus, the retrieval aperture size will be a bit larger than that
of the real cavity. 1
The spectral iterative method is a convenient retrieval
method that has no limitation on the geometry shape of CA.
Attention is paid to the quality of the diffractive patterns,
i.e., clear diffraction patterns should be received on the re- 3.
cording plane. This requires that the size of the CA should
match the wavelength of the diffractive light, for example, 4.
1 mm to several micrometers is a suitable aperture scale
when a He-Ne laser is used as the coherent source. Another
important point is to avoid the zero-order saturation and 6.
high-order loss of the diffractive intensity. This can be
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10.

Y. Z. Dai, A. Kato, and F. P. Chaing, “Fatigue monitoring by laser
speckle,”Int. J. Fatiguel3(3), 227-232(1991).

2. J. S. Steckenrider and J. W. Wagner, “Computed speckle decorrelation

(CSD) for the study of fatigue damageQ@pt. Lasers Eng22, 3—15
(1995.

A. Kato and K. Tanabe, “Non-contact strain measurement using metal
foil gauges with the application of the laser speckle meth@&itrain
33(1), 15-19(1997.

A. Kato and M. Hayashi, “Fatigue life estimation of steel using laser
speckle senor,NDT&E 32, 139-145(1999.

5. B. J. Pernick and J. Kennedy, “Optical method for fatigue crack de-

tection,” Appl. Opt.19(18), 3224—-32281980.

A. A. Wells and D. Post, “The dynamic stress distribution surround-
ing a running crack—a photoelastic analysiByoc. SESAL6, 69—92
(1958. i

D. Post, B.Han, and P. Ifjuigh Sensitivity Moire Experimental
Analysis for Mechanics and Material§pringer-Verlag, New York
(1994.

M. P. Boone, “Use of reflection holograms in holographic interferom-
etry and speckle correlation for measurement of surface displace-
ment,” Opt. Acta22(7), 579-589(1975.

9. F. P. Chiang, “A white light speckle method applied to the determi-

nation of stress intensity factor and displacement field around a crack
tip,” Eng. Fract. Mech15(1-2), 115-121(1981).

P. S. Theocaris, “Elastic stress intensity factors evaluated by caustics
in experimental evaluation of stress concentration and intensity fac-
tors,” Chap. 3 inCracks in Composite Material<. G. Sih, Ed., pp.
189-252, Martinus Nijhoff, The Netherland981).

K. lizuka, Engineering OpticsSpringer-Verlag, Berlif(1985.

J.R. Fienup, “Phase retrieval algorithms: a comparisémppl. Opt.
21(15), 2758-22141982.

W. R. Gerchberg and W. O. Saxton, “A practical algorithm for the
determination of phase from image and diffraction plane pictures,”
Optik (Stuttgart)35, 237-246(1972.

14. J. R. Fienup, “Reconstruction of an object from the modulus of its

Fourier transform,”Opt. Lett.3(1), 27-29(1978.

P.-T. Chen and M. A. Fiddy, “Image reconstruction from power spec-
tral data with use of point-zero locations]? Opt. Soc. Am. A1(8),
2210-2214(1994).

O. Hadar, E. Gersten, D. A. Weitzman, and D. Arbel, “Image recon-
(struc(t)ion from power spectral datafProc. SPIE 2827 182-190
1996.

Xide Li received his BS degree from the
Department of Physics, Northwest Univer-
sity, in 1986 and his MS and PhD degrees
in engineering mechanics in 1989 and in
mechanical engineering in 1992, respec-
tively, from Xi'an Jiaotong University. After
completing his PhD degree, for 2 years he
’ was a postdoctoral research fellow with the
University of Science and Technology of
/ China. From December 1996 to July 1997,
7/

a he was a guest researcher at Lulea Univer-

sity of Technology in Sweden. He is currently an associate professor
with Tsinghua University. His research fields are optical metrology

Two reconstruction algorithms, spectral autocorrelation ang photomechanics. His research interests include the holographic
and spectral iterative, were also employed together with the interferometry, speckle interferometry, the digital correlation tech-
laser diffraction technique to estimate the small CA. The nique, phase-shifting measurement, computerized tomography, and
retrieved images and curves contain the evolution processcomputer digital image processing. He has been the leader respon-

of the deformed CA and structures of the microcrack or
microcavity, respectively.

Acknowledgments

We gratefully acknowledge financial support by Project No. |
10072031 supported by the NSFC, Special Funds for the
Major State Basic Research Projects of Chifido.

G19990650, and the Research Grants Council of the Hong

sible for several research projects and he has published about 40
papers in journals and proceedings.

A. K. Soh obtained his first degree from
the University of Singapore and his PhD
from the University of Surrey, United King-
dom. For several years he was a structural
engineer with major onshore, marine, and
offshore engineering firms prior to joining
the Nanyang Technological University
(NTU) as an academic staff member in
1983. He left NTU and joined the Depart-
ment of Mechanical Engineering of the Uni-
versity of Hong Kong in 1996. His research

interests include fracture study of piezoelectric and ferroelectric ma-

Kong Special Administrative Region, Chin&roject No. terials with defects and thin films, fatigue fracture analysis of tubular
HKU 7081/00E. connections, and the development of new bimaterial finite elements.

Optical Engineering, Vol. 41 No. 6, June 2002 1307



Li et al.: Detection of small cracks . ..

Cong Huang received his BS from the De-
partment of Engineering Mechanics of
Tsinghua University in 2000. He is currently
a master’s student with the Institute of Me-
chanics, Chinese Academic School. His re-
search interest is dynamic behaviors of
materials.

C. H. Yang is a PhD candidate with the Department of Mechanical
Engineering, the University of Hong Kong. His research interest is
the analysis of finite elements.

1308 Optical Engineering, Vol. 41 No. 6, June 2002

Hui-Ji Shi holds a PhD and is a professor
with the Department of Engineering Me-
chanics, Tsinghua University, where he di-
rects the Central Laboratory of Materials
Strength and Structural Vibration. His re-
search is in solid mechanics concerning
the fatigue and fracture of materials under
severe environment conditions such as
high-temperature and serious corrosion.



