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Abstract. A good knowledge of the evolution process of a crack or cav-
ity is necessary for a better understanding the mechanical behavior of
the damage and failure of materials and structural components. Before
damage begins, the size of the initial or prescribed cracks and cavities
are usually very small. These small cracks and cavities can be conve-
niently used as the diffraction apertures of the coherent light. By analyz-
ing the diffraction fields, the characteristic parameters of these special
diffraction apertures can be obtained and, hence, the deformation fields.
Experimental tests are conducted to demonstrate the reliability and ac-
curacy of the laser diffraction technique in detecting the evolution and
propagation of a small crack or cavity. The relationships between the
coherent diffraction patterns and the crack and cavity geometric param-
eters are established for the simple shape of the crack or cavity aperture.
Moreover, the autocorrelative method and the spectral iterative tech-
nique are introduced to retrieve the small crack and cavity apertures for
the complex shapes. © 2002 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1474437]
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1 Introduction

It is a known fact that the fatigue life of structural comp
nents consists of two discrete periods: the initiation
finite-sized cracks and subsequent propagation to fail
Consequently, it is important to develop a sensitive, non
structive technique capable of detecting early fatigue da
age in situ, to predict the remaining fatigue life of a com
ponent. Various optical techniques involving a laser lig
source have been used for nondestructive testing, w
includes flaw detection and surface inspection. For
ample, the speckle correlation and speckle decorrela
techniques are used to inspect the surface fatigue defo
tion and surface morphology changes of the material.1–4 A
1-D optical Fourier spectrum analysis system is applied
detect small fatigue cracks.5 In addition, optical methods
such as photoelasticity, holography, moire´, speckle, and
caustic are also widely used for crack detection or de
mation measurement in a crack zone.6–10

Generally, all of the methods just mentioned have su
advantages: sensitivity to the sample deformations~in plane
or out of plane! and ability to make qualitative or quantita
tive full-field measurement of the displacements and d
placement gradients~strains!. But the disadvantages ar
also obvious, i.e., the requirement for a special test e
ronment, such as vibration isolation, a dark room, and
chemistry processing or special material and surface
processing. To properly evaluate the damage and failur
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tested materials or structural components subjected to
pact or cyclic loading, the inspection methods should
able to show instantaneous changes at the testing posi
and keep track of cumulative degradation. This is a ch
lenge to the scientists involved in experimental mechan
which means that not only should the inspection system
as simple as possible, but the measurement method sh
also be adapted toin situ and original position testing.

In this paper, a relatively new optical technique, whi
is called the laser diffraction technique, was used to inv
tigate the crack opening and propagation of a single
crack and a cavity subjected to uniaxial tensile load. Mo
over, this technique was also combined with the pow
spectrum autocorrelation method and spectral itera
technique, respectively, to retrieve the complex shape
the microcrack and cavity apertures on the surface of
tested material.

2 Theory

2.1 Basic Principles

When the surface of a specimen that contains some s
cracks and cavities is illuminated by a spatially filtered a
collimated laser beam, the reflected and diffracted light
tensity distributions carry the crack and cavity geome
information. Figure 1 shows a schematic diagram of
laser diffraction system. Before the diffracted pattern c
1295© 2002 Society of Photo-Optical Instrumentation Engineers
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be applied for the study of the crack and cavity evolution
is necessary to first discuss the relationship between
crack and cavity geometry and the intensity distributi
diffracted from it. Obviously, when a small crack or cavi
on the tested specimen is used as the diffracted aperture
aperture shape is closely related to the crack or cavity
ometry or the profile. The aperture formed by the sm
crack or cavity is called the crack or cavity aperture~CA!,
and it is mathematically described as the CA functi
C(x,y).

Suppose that the collimated laser illuminates the sp
men uniformly in the normal direction and the light di
fracted from the CA is observed on the receiving screen
shown in Fig. 1. If the distance between the CA surfa
(x,y) and the observation plane (u,v) is so large that the
Fraunhofer approximation can be used, the complex am
tudeA(u,v) at the (u,v)plane is given by11

A~u,v !5
C

j lZE2`

` E
2`

`

C~x,y!

3exp F2 j
2p

lZ
~ux1vy!G dx dy ~1!

whereC is a complex factor and its amplitude is assum
to be one unit, andZ is the distance between the observ
tion plane and the specimen surface. The integral of Eq.~1!
is the Fourier transform ofC(x,y) at the spatial frequen
cies. Since Eq.~1! is in the form of a 2D Fourier transform
the diffraction pattern can be expressed in Fourier tra
form notation as follows

A~ f x , f y!5
C

j lZ
C̄~ f x , f y!, ~2!

where

C̄~ f x , f y!5E
2`

` E
2`

`

C~x,y!

3exp @2 j 2p~x fx1y fy!# dx dy, ~3!

f x5u/lZ, f y5v/lZ. ~4!

Fig. 1 Schematic diagram of the laser diffraction system for the
evolution measurement of small cracks and cavities.
1296 Optical Engineering, Vol. 41 No. 6, June 2002
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The diffractive intensity recorded by the CCD camera
the (u,v) plane is

I ~ f x , f y!5
1

l2Z2 U E2`

` E
2`

`

C~x,y!

3exp @2 j 2p~x fx1y fy!# dx dyU2

5
1

l2Z2
uC̄~ f x , f y!u2. ~5!

Equation~5! shows that the diffractive intensity is in pro
portion to the square of the spectrum of the crack aper
function C(x,y). Deformation or fatigue damage of th
specimen changes theC(x,y) and hence alters its corre
sponding diffraction intensity. Thus, if the distribution o
the diffraction intensity is measured, the change ofC(x,y)
can be evaluated.

2.2 Analytical Reconstruction the Simple Geometry
Shape of C(x,y) with Far-Field Laser
Diffraction

Two simple tensile specimens, one with a rectangular a
ture and the other with a circular aperture were selected
a pilot study to simulate the simple geometry shape o
crack and a cavity. Their dimensions are given in Fig.
The corresponding intensity patterns of the diffracti
fields can be expressed respectively as follows11:

I r~ f x , f y!5
a2b2

l2Z2Usin c~a fx! sin c~b fy! U2

, ~6!

Fig. 2 Dimensions of the CA and the changes of shape caused by
uniaxial tension: (a) a trapezoidal and (b) an elliptical CA.
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I c~r f !5S D

2lZD 2UJ1~pDr!

Dr/2 U
r5r f /lZ

2

, ~7!

where J1(x) is the first-order Bessel function of the fir
kind, r f5( f x

21 f y
2)1/2; and a, b, and D are crack length,

width, and cavity diameter, respectively. Equations~6! and
~7! produce 2D intensity distributions, whereI r( f x , f y) is
symmetric to bothx and y axes, andI c( f x , f y) is circular
symmetric. In the case of a rectangular CA, wherea
..b, the main beam of the diffraction pattern ofI r( f x , f y)
is in the f y direction. The values that makeI r( f x , f y) and
I c( f x , f y) zero are, respectively,

f y5n/b, n50, 61, 62, . . . , for I r~ f x , f y!, ~8!

r561.22/D, 62.23/D, 63.24/D, . . . , for I c~r!, ~9!

or

Dv5
lZ

b
for I r~ f x , f y!, ~10!

Dr f'1.01lZ/D for I c~r!, ~11!

whereDv andDr f are the distances between then’th and
~n11!’th minimal along thef y axis and the radial direction
respectively. Equations~8!–~11! show that the variablesDv
and Dr f or f y and r f , are inversely proportional to th
width b and diameterD of the crack apertures, respective
Therefore, bothb and D can be determined by measurin
the distancesDvand Dr f . Thus, through the far-field dif-
fraction of the laser beam,b andD can be measured with
high accuracy.

The precedingC(x,y) functions are assumed for idea
ized rectangular and circular configurations. In the pract
situation, the crack aperture varies in shape when the sp
men is subjected to an applied load. Sections 2.3 and
deal with the complex apertures in the geometry sha
Assuming that the specimen is subjected to uniaxial ten
load and the deformation is small, the apertures of the r
angular and circular cavities will evolve and become a
proximately trapezoidal and elliptical, respectively,
shapes. Figure 2 shows the deformed aperture shapes
diffraction fields due to trapezoidal and elliptical cavity a
ertures are be discussed in the following.

Figure 2~a! shows two kinds of trapezoidal cavity ape
tures, one consisting of a rectangle and a triangle and
other a rectangle and two triangles, which are due to o
side and two-side displacements, respectively, of the sp
men during the uniaxial tensile test. By applying Eq.~3!,
the Fourier transforms of these two cavity apertures can
obtained as follows. For two-side displacement,

C t t̄~ f x , f y!5ab exp ~2 j p f xa! sin c~ f xa! sin c~ f yb!

1
ja

2p f y
H exp ~2 j pb/2!

3exp@2 j p~ f x1« f y!a# sin c@~ f x1« f y!a#
i-

.

-

e

-
-

2expS j pb

2 D exp@2 j p~ f x2« f y!a#

3sin c~ f x1« f y!a12 j

3exp

~2 j p f xa! sin ~p f yb! sin c~ f xa!J . ~12!

And for one-side displacement,

C tō~ f x , f y!5ab exp ~2 j p f xa! sin c~ f xa! sin c~ f yb!

1
ja

2p f y
exp ~2 j p f xa! exp ~2 j p f yb!

3$exp ~2 j p« f ya! sin c@~ f x1« f y!a#

2sin c~ f xa!%. ~13!

Equations~12! and ~13! describe the far-field diffraction
patterns of the trapezoidal apertures. These patterns
more complicated than those obtained from rectangular
ertures. Note that the first terms on the right side of
equations are the far-field diffraction patterns of a rect
gular aperture and the second terms are those of the t
gular apertures. The parameter« can be measured from th
intensity distribution of the diffraction fields. In the prese
case, the limiting orientation of the diffraction is vertical
the crack surface. Thus the diffraction distribution along t
f y5v/lZ axis is considered. By inserting Eqs.~12! and
~13! into Eq. ~5!, the intensity of the diffraction distribu-
tions can be expressed, for the first and second kind
trapezoidal apertures, respectively, as follows:

I ~ f x0 , f y!5A~ f x0 , f y!A* ~ f x0 , f y!5
1

l2Z2UC t t̄~ f x0 , f y!U2

,

~14!

I ~ f x0 , f y!5A~ f x0 , f y!A* ~ f x0 , f y!5
1

l2Z2UC t0̄~ f x0 , f y!U2

,

~15!

where f x0 is a given frequency along thef x axis. It is dif-
ficult to obtain the analytic solutions for the minimal valu
of I ( f x0 , f y) . Therefore, the numerical solutions are pr
sented in Fig. 3. By combining the numerical solutions w
the distances between then’th and ~n11!’th minimal of the
diffraction intensities along thef x and f y axes obtained
from the experiment, the changes of the geometric par
eters of the CA can be measured for different loading sta
Thus, such fracture parameters as the crack opening
placement, the stress intensity factor, and crack propaga
can be obtained.

Similarly, for the elliptical crack aperture@refer to Fig.
2~b!#, we have
1297Optical Engineering, Vol. 41 No. 6, June 2002
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C ē~ f x , f y!5
2a

p f y
(

n52`

1`

(
m52`

1`

Jn~2p f xa!J2m11~2p f yb!

•P~n,m!, ~16!

whereJn(x) is the n’th order Bessel function of the firs
kind andP(n,m) is defined as

Fig. 3 Far-field diffraction patterns of rectangular/trapezoidal aper-
tures: (a) a 5 5 mm and b 5 0.2 mm; (b) a 5 5 mm, b 5 0.2 mm, fx

5 0.0 and «50.0349; and (c) a 5 5 mm, b 5 0.2 mm, fx 5 1.5, and
« 5 0.0349.
1298 Optical Engineering, Vol. 41 No. 6, June 2002
P~n,m!

55
H 0 mÞ

~21!np/2 m50J n50

$@~n224~m11!2#212@n224m2#21%n sinnp/2 nPodd

~21!mp/4 n52m

~21!mp/4 n52~m11!

0 nÞ2m and n52~m11!
J nPeven 6 nÞ0.

~17!

The intensity distribution of the elliptical crack aperture

I ~ f x , f y!5A~ f x , f y!A* ~ f x , f y!5
1

l2Z2UC ē~ f x , f y!U2

. ~18!

The calculated results of Eq.~18! are presented in Fig. 4
and the values ofFmin corresponding to the minimums o
I ( f x , f y) are also listed in Fig. 4. Using these numeric
results and Eq.~4!, the changes of CA scale in differen
directions can be calculated.

2.3 Spectral Autocorrelation Estimation of the
Complex Geometry Shape of C(x,y) with
Far-Field Laser Diffraction

Equation~5! shows that the diffractive intensity is in pro
portion to the square of the spectrum of the aperture fu
tion C(x,y). Deformation or fatigue damage of the spec
men causes the functionC(x,y) to change and, hence
alters its corresponding diffraction intensity. If the distrib
tion of the diffraction intensity is measured, the change
C(x,y) can be evaluated. However, when the shape of
cavity is complex, it is difficult to obtain the analytica
diffraction formula from Eq.~5!. Therefore, the evolution
process of the complex aperture shape cannot be retrie
quantitatively. However, if the image of the crack or cav
is a bright and uniform distribution on the CA plane, th
shape of the CA can be reconstructed by retrieving its s
port. First, we assume that the analysis is limited to Euc
ean space of two dimensions, i.e., (x,y)PE2 . Obviously,
in the present case,C(x,y)>0 and the supportS of
C(x,y) is the smallest closed set such that the integra

Fig. 4 Far-field diffraction pattern of a circular aperture, where F
5afx is for the fx axis and F5bfy is for the fy axis.
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C(x,y) over the complement ofS in E2 is zero. Then the
autocorrelation ofC(x,y) can be defined as12

rCA~z,h!5E
E2

C~x,y!* C~x1z,y1h! dx dy

5E
E2

C~x,y!* C~x2z,y2h! dx dy, ~19!

whereC(x,y)* is the conjugate ofC(x,y) . If the support
S of C(x,y) is compact~i.e., closed and bounded! and if
Ais the support ofrCA(z,h) , then

A5 ø
(x,y)PS

@S2~x,y!#5$z2x,h2y:~x,y!PS%. ~20!

Equation~20! can be viewed as being formed by succe
sively translatingS . If we assume thatS is a convex set, all
convex symmetric setsA will have at least one solution12

S5 1
2 A5$~z/2,h/2!:~z,h!PA%. ~21!

Equation~21! shows that the support of CA is just half th
of its autocorrelation function. Therefore, ifA is obtained,
the support of the CA can be determined.

Applying Wiener-Khintchine theorem, we have the re
tionship betweenrCA(z,h) and its Fourier modulus o
C(x,y):

rCA~z,h!5E
2`

1`E
2`

1`UC̄~ f x , f y!U2

3exp@2p i ~ f xz1 f yh!# df x df

5~Zl!2E
2`

1`E
2`

1`

I ~ f x , f y!

3exp@2p i ~ f xz1 f yh!# df x df y. ~22!

Equation ~22! shows that the autocorrelation function
CA is the inverse Fourier transform of the squared Fou
modulus, andrCA(z,h) can be calculated by taking th
inverse of Fourier transform of the diffractive patterns o
tained from the laser diffraction measurements. Furth
more, the supportA can also be determined from the r
trievedrCA(z,h).

2.4 Spectral Iterative Retrieval of the Complex
Geometry Shape of C(x,y) with Far-Field
Laser Diffraction

Two mentioned methods have been used to retrieve the
in the laser diffraction technique. Their advantage is t
only simple calculations are required to determine the
formed apertures based on far-field diffraction intens
But the disadvantage is that autocorrelation method d
not always produce unique solution and the analyti
method can only retrieve the deformed apertures in
simple shape.

To retrieve the complex geometry shape ofC(x,y) ef-
fectively with far-field laser diffraction, an iterative metho
that utilizes the iterative Fourier transformation back a
s

forth between the CA and its Fourier domains is employ
to estimate the complex shape of the crack or cavity. Fr

Eq. ~5!, C̄(x,y) can be stated as

C̄~ f x , f y!5uC̄~ f x , f y!u exp @ j F~ f x , f y!#

5E
2`

` E
2`

`

C~x,y!

3exp@2 j 2p~x fx1y fy!# dx dy. ~23!

Equation ~23! means giving the modulusuC̄( f x , f y)uand
some knowledge ofC(x,y), then one can reconstruc
C(x,y). An equivalent problem is to reconstruct the pha
function of the Fourier transformF( f x , f y), since then sim-
ply performing an inverse Fourier transform genera
C(x,y). In our case, the squared modulus~diffrective in-
tensity! has been measured and the constraint ofC(x,y) is
real and nonnegative.

There are several particularly successful approache
solving this retrieval problem: the error-reductio
algorithm,13 the input-output approach,14 and related
algorithms.12,15,16 These algorithms involve iterative Fou
rier transformation back and forth between the object a
Fourier domains and application of the measured data
known constrains in each domain. In our paper, a sim
and general method, the error-reduction algorithm, also
ferred to as Gerchberg-Saxton algorithm, is employed
retrieve the aperture of the complex geometry shape.

The error-reduction algorithm was originally invented
connection with the problem of reconstructing phase fr
two intensity measurements. It consists of the followi
four steps:~1! Fourier transformation of an estimate objec
~2! replacing the modulus of the resulting computed Four
transform with the measured Fourier modulus to form
estimate of the Fourier transform;~3! inverse Fourier trans-
formation of this estimate;~4! replacing the modulus of the
resulting computed image with the known constraints in
object domain to form a new estimate of the object.
equations, for thek’th iteration, this is

Fig. 5 Geometrical configurations of the specimens; (a) h 5 20 mm,
w 5 12 mm, a 5 5 mm, and t 5 2 mm and (b) D 5 0.5 mm, t 5 0.7
mm, and w 5 10 mm.
1299Optical Engineering, Vol. 41 No. 6, June 2002
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1300 Optical Engi
Fig. 6 Experimental results of the far-field diffraction patterns of an SEC aperture subjected to uniaxial
tension.
use
Gk~ f x , f y!5uGk~ f x , f y!uexp@ j fk~ f x , f y!#5I@gk~x,y!#,
~24!

Gk8~ f x , f y!5uP~ f x , f y!uexp@ j fk~ f x , f y!#, ~25!

gk8~x,y!5ugk8~x,y!uexp@ j uk~x,y!#5I21@Gk8~ f x , f y!#, ~26!

gk11~x,y!5ugk11~x,y!uexp@ j uk11~x,y!#

5ugk11~x,y!uexp@ j uk~x,y!#, ~27!

wheregk(x,y), uk(x,y), Gk8( f x , f y), andfk( f x , f y) are es-

timates ofC(x,y), w(x,y), uC̄( f x , f y)u5I @( f x , f y)#1/2, and
neering, Vol. 41 No. 6, June 2002
F( f x , f y), respectively. Herew(x,y) is the phase function
of the input object. In our case,w(x,y) satisfiesw(x,y)
50 .

For single-intensity measurement, as in our case, we
the following equation in Eq.~27!:

gk11~x,y!5H gk8~x,y!, ~x,y!¹L

0, ~x,y!PL ~28!

whereL is the set of points at whichgk8(x,y) violates the
object-domain constraints, i.e., wherevergk8(x,y) is nega-
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Fig. 7 Experimental results of the far-field diffractive patterns of a CCH aperture subjected to uniaxial
tension.
re-
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jec
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ing
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s a

mi-
tive or its dimension exceeds the know domain of the
constructed object. The iterations continue until the co
puted Fourier transform satisfies the Fourier-dom
constraints or the reconstructed image satisfies the ob
domain constraints; then one has found a solution. The c
vergence of the algorithm can be monitored by comput
the percent error, which can be expressed as

Ef rr 5
( f x , f y

u@ I ~ f x , f y!#1/22abs~Gk~ f x , f y!u

( f x , f y
@ I ~ f x , f y!#1/2

3100% ~29!
t-
-

Equation~29! indicates when the squared error is zero
solution has been found.

3 Experimental Procedure

3.1 Uniaxial Tension Diffraction Experiments

The uniaxial diffraction experiments were carried out
demonstrate the small crack and cavity evolution un
loading. Figure 5 shows two specimens, one contain
single-edge crack~SEC! of length 5 mm and width 0.2 mm
and the other contains a central circular hole~CCH! of
radius 0.25 mm. The plate specimens are made of alu
1301Optical Engineering, Vol. 41 No. 6, June 2002
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1302 Optical Engi
Fig. 8 Numerical calculations comparing the far-field diffraction patterns of the rectangular and trap-
ezoidal apertures.
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num alloy LY12 and manufactured using a wire-cut m
chine. The specimens were subjected to uniaxial tens
which produced one-side displacement. A digital force s
sor recorded the applied loads. The specimen surface,
sisting of an SEC or CCH, was illuminated by a collimat
laser beam~refer to Fig. 1!.

Figures 6 and 7 show the diffraction patterns of an S
and a CCH at the observation plane. We found that
diffraction patterns contracted significantly with the i
crease of the loading. This phenomenon corresponde
the expansion of the CA when the specimens were s
jected to tensile loading. The image system captured
diffraction pattern immediately and stored it into a perso
computer. The distances between then’th and (n11)’th
minimal of the diffraction pattern were detected automa
neering, Vol. 41 No. 6, June 2002
,

-

o
-

cally and the change of dimensions of the CA can be c
culated by the formulas already given.

3.2 Calculation of the Expansion of CA and
Estimation of the Fracture Parameters

Considering the actually loading state, we should use
~15! to calculate the expansiond of the crack surface for
the SEC. However, it is clear to see that the distribution
the far-field diffraction patterns of the SEC is similar to th
diffraction patterns of a slit with different widths. Thi
means that the rotational component ofd was very small
before rupture~brittle fracture!, and thus Eq.~15! can be
reduced to Eq.~6!. To investigate the difference of the fa
field diffraction patterns between the rectangular and tr
ezoidal apertures, both Eqs.~6! and ~15! were used to cal-
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culate the far-field diffraction patterns, by assuming thaa
55 mm, b50.2 mm, and« was varied. Figure 8 presen
the calculated results, which show that the strong sub
fraction ~due to diffraction of a triangle! almost disappears
at «50.02 andf x51.5 mm21, and the diffractive patterns
caused by the rectangular and trapezoidal apertures

Fig. 9 Evolution curves of the SEC subjected to uniaxial tension.

Fig. 10 Estimation of COD and Da using evolution curves: (a) ap-
plied load versus COD and (b) Da versus applied load.
e

quite the same in the range off yP(260,60) mm21. Thus,
d in the y axis ~tensile direction! can be simply calculated
using Eq.~6! when«,0.02, which is deemed the conditio
of small angle opening of the CA. Figure 9 shows the ev
lution of d at different stages of loading. The experimen
data show that the evolution process can be divided
two parts: one is uniform expansion of the SEC, and
other is the rotation of the crack surface. The magnitude
these two terms, which are estimated from curves 1 thro
8 in Fig. 9, are 0.15 mm and 1.05 deg, respectively. Ot
important fracture parameters, such as crack opening
placement ~COD!, stress intensity factor~SIF!, crack
growth length~Da!, crack opening angle~COA!, and crack
tip opening angle~CTOA!, can also be estimated from th
evolution process of the SEC. Figure 10~a! shows the plot
of applied load versus COD, and Fig. 10~b! presents the
plot of Da versus the applied load. The parameters ofK IC ,
CTOD, COA, and CTOA are estimated to be 20.3
MPam1/2 (s}573.50 MPa), 33.90mm, 2.15 deg, and
20.98 deg, respectively. As for the case of CCH, Eq.~16!
was used to calculate its expansion in the direction of 0,
90, and 135 deg. Figure 11~a! shows the evolution proces
of the CA. The significant expansion can be clearly seen
the tensile direction. Figure 11~b! shows the ratio of the
major to minor axes of the deformed elliptical CA durin
uniaxial tension. The maximum value of the expansion
tio is about 1.22 before rupture of the specimen occurs

Fig. 11 Evolution curves (for plane y>0 ) of the central circular
cavity subjected to uniaxial tension: (a) expansion d versus a1Da
and (b) ratio of the major to minor axes versus applied load.
1303Optical Engineering, Vol. 41 No. 6, June 2002
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1304 Optical
Fig. 12 Retrieval results of the deformed CA using autocorrelation function method, where loads are
3.0, 539.0, 980.0, 1577.8, 2234.4, 2714.6, 2900.8, and 3096.8 N, respectively.
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3.3 Cavity Aperture Estimation with Spectral
Autocorrelation

Based on the conclusion in Sec. 2.3, the support of a ci
or an ellipse is just half that of its autocorrelation functio
Therefore, the expansiond of the CA can be easily re
trieved from the autocorrelation function and the far-fie
diffraction intensity discussed in Sec. 2.2. Figure 12 sho
Engineering, Vol. 41 No. 6, June 2002
the results of the retrieval for various applied loads. T
evolution process ofd can be obtained from these retriev
images directly. The maximum ratio of the support in t
tensile direction~horizontal direction! to that in the in-plane
vertical direction was 58/4751.23 before rupture of the
specimen occurred. This result tallied with the maximu
ratio of the major to minor axes of the deformed CA wh
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the specimen was subjected to uniaxial tension. Fig
13~a! presents the plot of the ratiob/a versus the applied
load. The result indicates that the expansion in the ten
direction increased dramatically when the load excee
1000 N. Note that the initial ratio was not equal to 1, whi
indicates that the CA was not a circular cavity before
experiment was carried out. This was attributable to in
curately drilling during the preparation of specimen. T
tendency of rapid expansion maintained until the specim
ruptured. The amount of expansiond is plotted against the
applied tensile load in two directions, as shown in F
13~b!. The maximum expansions in the horizontal and v
tical directions were 0.172 and20.0285 mm, respectively
These results show that the necking effect was not obvio
which was expected because of the material property.

Another reconstructed specimen using the spectral a
correlation method is a through microcavity on a silic
nitride lamella composite of aluminum matrix~thickness
1.3 mm!. This material is widely used thanks to its supe
high strength and light weight. However, when the mate
is applied with the flaky structure, the microcavities pr

Fig. 13 Expansion of the deformed CA retrieved using the autocor-
relation function; (a) the ratio of expansion in the horizontal direction
(tensile direction) to that of vertical direction (free loading direction)
versus applied load and (b) expansions of the deformed CA in the
horizontal and vertical directions versus the applied load.
,

-duced by pores in molten molding or by desquamating
the silicon nitride particles in machining will seriously e
fect the mechanical behaviors. Figure 14~a! shows the mi-
croscopic image of the cavity and Figs. 14~b! and 14~c!
show the transmitted diffraction pattern and the reco
structed cavity aperture.

Fig. 14 Microcavity reconstruction: (a) the microscopic image of the
cavity on the silicon nitride lamella composite of aluminum matrix,
(b) far-field transmitted diffraction pattern of the through microcavity;
(c) and (d) the reconstructed cavity with spectral autocorrelation
method and spectral iterative method, respectively.
1305Optical Engineering, Vol. 41 No. 6, June 2002
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1306 Optical Engi
Fig. 15 Images of the microcracks on the surface of the ring and their corresponding far-field diffrac-
tion patterns and reconstructed microapertures: (from left to right: microcrack, diffraction pattern, and
reconstructed microaperture).
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3.4 Micro CA Retrieval with the Spectral Iterative
Method

The spectral iterative method was used to reconstruct
microcrack on the surface of an aluminum alloy ring us
in a bullet train. The reflected laser diffraction method
used to get the surface far-field diffraction patterns of
ring. It is well polished as a mirror surface before the e
periment. The ring is subjected to diametral fatigue load
with a frequency of 106 Hz and compressed load amplit
300 kg. After loading for 5 min, the reflected diffractio
patterns corresponding to the different positions on the
face of the ring were recorded and reconstructed. Figure
shows the diffraction patterns and their corresponding
constructed crack apertures. The microscopic images o
microcracks caused by the fatigue loading on the tes
object are also shown in this figure~magnified 200 times!.
Finally, the microcavity aperture mentioned in Sec. 3.3 w
also retrieved using the spectral iterative method. Fig
14~d! shows the retrieved result. The error in the spec
iterative method is limited byEf rr <6%.

4 Discussion

The laser diffraction technique was employed to investig
the evolution process of small cracks and cavities subje
neering, Vol. 41 No. 6, June 2002
-

e

to load. The experimental setup used is very simple but
interpretation of experimental data is relatively comp
cated. When the shape of the CA is simple, the aperture
be retrieved analytically from the far-field laser diffractio
pattern. However, this is difficult in the case of a compl
aperture. Therefore, any approach proposed is expecte
provide qualitative or quantitative results about the evo
tion process of the complex aperture. The employmen
autocorrelation function provides a simple calculation alg
rithm to retrieve the deformed CA. The significance of th
method is twofold:~1! the ability to qualitatively estimate
the cavity aperturein situ at the original position test and
~2! the fact that it can be used as a limiting condition in t
object domain for the spectral iterative method. The limi
tions are the convexity required for the CA shape a
unique solution. Based on present knowledge, the supp
of parallelograms, circles, ellipses, and convex polygo
satisfyS5A/2. The supports of triangles can be retrieved
the posttreatment. Therefore, if the support of the CA is o
of the convexities just listed, the CA can be retrieved fro
its autocorrelation function. The reconstructed imag
shown in Figs. 14~c! and 14~d! with the two retrieval meth-
ods have some differences, which are caused by the l
nonconvex aperture of the cavity. The nonconvexity of t
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CA extends the support of its autocorrelation functio
Thus, the retrieval aperture size will be a bit larger than t
of the real cavity.

The spectral iterative method is a convenient retrie
method that has no limitation on the geometry shape of C
Attention is paid to the quality of the diffractive pattern
i.e., clear diffraction patterns should be received on the
cording plane. This requires that the size of the CA sho
match the wavelength of the diffractive light, for examp
1 mm to several micrometers is a suitable aperture s
when a He-Ne laser is used as the coherent source. Ano
important point is to avoid the zero-order saturation a
high-order loss of the diffractive intensity. This can b
solved using a suitable aperture or a logarithmic look
table while recording the diffraction patterns. Moreover, t
cost on the iterative calculation is larger than that of
autocorrelation method. Meanwhile, the reconstructed a
ture is small because of the microscale of the crack or c
ity under test. Our future works will focus on promoting th
calculated efficiency, enlarging the reconstructed CA~to ac-
curately calculate the size of the micro-CA!, and measuring
the evolution of the complex geometry shape of the cr
or cavity on site.

5 Conclusions

A methodology for estimating the evolution process
small cracks and cavities, using the laser diffraction te
nique, was investigated. The changes of the diffraction p
terns during tensile testing of aluminum alloy specime
were observed; and several equations for expressing
relations between far-field laser diffractive patterns a
small CA were derived. Two experimental tests were c
ducted to demonstrate the reliability and accuracy of
proposed technique for detecting the evolution process
small crack or cavity with the simple in shape. The imp
tant fracture parameters, SIF, COD, COOD, COA, CTO
and Da are easily estimated using the evolution curves
the crack aperture versus the applied load, without mea
ing the whole field displacements of the specimen. Th
the strict requirements for interferometry measureme
such as isolation of vibration, a complex optical setup, a
a recording system are not necessary.

Two reconstruction algorithms, spectral autocorrelat
and spectral iterative, were also employed together with
laser diffraction technique to estimate the small CA. T
retrieved images and curves contain the evolution proc
of the deformed CA and structures of the microcrack
microcavity, respectively.
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