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Abstract. Conventional synthesis filters in subband systems lose their
optimality when additive noise (due, for example, to signal quantization)
disturbs the subband components. The multichannel representation of
subband signals is combined with the statistical model of input signal to
derive the multirate state-space model for the filter bank system with
additive subband noises. Thus the signal reconstruction problem in sub-
band systems can be formulated as the process of optimal state estima-
tion in the equivalent multirate state-space model. Incorporated with the
vector dynamical model, a 2-D multirate state-space model suitable for
2-D Kalman filtering is developed. The performance of the proposed 2-D
multirate Kalman filter can be further improved through adaptive seg-
mentation of the object plane. The object plane is partitioned into disjoint
regions based on their spatial activity, and different vector dynamical
models are used to characterize the nonstationary object-plane distribu-
tions. Finally, computer simulations with the proposed 2-D multirate Kal-
man filter give favorable results. © 1998 Society of Photo-Optical Instrumentation
Engineers. [S0091-3286(98)01608-0]
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1 Introduction

Multirate signal processing is of interest to a great ma
researchers due to its suitability in applications such
digital image/speech coding, progressive image transm
sion, and spectrum analysis. The idea of multirate sig
processing is to decompose the original signal into com
mentary frequency bands and then process them separ
in each subband. There has been tremendous progre
the design of decimation and interpolation filters a
analysis/synthesis filter banks that allow perfect reconst
tion ~PR!.1 The development of filter bank systems with P
involves the removal of three distortions: aliasing distorti
~ALD !, amplitude distortion~AMD !, and phase distortion
~PHD!. Thus, in their overall performance, filter-bank sy
tems with PR characteristic can be viewed as systems
all-pass and linear phase transfer functions.

The conventional approaches for PR filter-bank syste
are based on the assumption that the subband compo
are free of noise. However, in practical applications w
filter-bank systems, the subband components are alw
contaminated by noise due to the effect of quantizati
roundoff, and other corruption, so that perfect reconstr
tion is no longer possible. Two typical approaches ha
been developed to tackle the noise effects in designing fi
bank systems. The work in Ref. 2 incorporated the qu
tizer model in the design of synthesis filter. Through t
quantizer-model-based synthesis filter, one can cance
signal-dependent errors in the output of the system. In
alternative approach,3 the optimal filter banks are derive
2376 Opt. Eng. 37(8) 2376–2386 (August 1998) 0091-3286/98/$10
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on the basis of minimization of the mean squared er
~MSE! between the original and the reconstructed sign
considering the statistical characteristic of the input sig
and noise.

The goal of this paper is to improve the applicability
filter-bank systems by proposing a multirate Kalman sy
thesis filter to replace the conventional synthesis filte
with emphasis on 2-D cases. With the input signal emb
ded in the state vector, the multichannel representation
subband signals is combined with the statistical mode
the input signal to derive the multirate state-space mo
for the filter-bank systems, and the subband noises are
sumed to be additive in this model. On the basis of t
model, the multirate Kalman filter can be constructed
provide the minimum-variance estimation of the input s
nal based on observations of noisy subband componen

The concept of multirate Kalman synthesis filtering w
first given in Ref. 4. Our work differs from that in Ref. 4 i
that the philosophy to derive the state-space model is
ferent and a multirate state-space model suitable for
Kalman filtering is developed. It is well known that Kalma
filtering is one-dimensional in nature. To apply this tec
nique, however, the observation vector must be a func
of one independent variable, whereas the 2-D subb
components are functions of two spatial variables. In o
approach, the vector linear dynamical model developed
Ref. 5 is incorporated with the 2-D multichannel represe
tations of subband signals and thus results in the final
multirate state-space model for optimal 2-D signal reco
struction from noisy subband systems.
.00 © 1998 Society of Photo-Optical Instrumentation Engineers
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Fig. 1 Noise-free M-band filter-bank system.
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The remainder of the paper is organized as follows. S
tion 2 provides the basic concept of filter-bank systems
the multichannel representation of decimators/interpolat
In Sec. 3 the 2-D multirate state-space model suitable
2-D Kalman filtering is developed. The performance e
hancement through object-plane partitioning is describe
Sec. 4. Some numerical results and discussions are incl
in Sec. 5. Concluding remarks are provided in Sec. 6.

2 Filter-Bank Systems and Problem Formulation

2.1 Filter Bank Systems

The M -band filter-bank structure is shown in Fig. 1. Th
bank of filters $Hk(z), k50,1,...,M21% comprises the
analysis filters. Each filter output is downsampled a
transmitted to the receiver, where it is upsampled and
into the bank of synthesis filters$Gk(z), k51,2,...,M21%
for signal reconstruction. The decimation factorL satisfies
L<M . Without loss of generality, we consider only th
maximal-decimation case,L5M , in this paper.

We can derive the transmission features of the filt
bank systems from the block diagram shown in Fig. 1
we were to remove the undesired aliasing distortion,
would have

F̂~z!5F 1

M (
k50

M21

Gk~z!Hk~z!GF~z!. ~2.1!

The requirement for perfect reconstruction, i.e.,f̂ (n)
5 f (n2n0), is obviously

(
k50

M21

Gk~z!Hk~z!5z2n0, ~2.2!

i.e., the composite transmission reduces to a simple de

2.2 Multichannel Representation of Subband
Signals

Let $hi , i 50,1,...,M21% and$gi , i 50,1,...,M21% denote
the impulse response of the bank of analysis filters$Hk(z),
k50,1,...,M21% and the bank of synthesis filters$Gk(z),
k50,1,...,M21%, respectively. Thei th subband compo
.

d

.

nent yi is obtained by passingf (n) through hi(n) and
downsampling byM , which can be described as

yi~n!5(
j

hi~Mn2 j ! f ~ j !. ~2.3!

Let j 5Mk1 l , l 50,1,...,M21, and substitute into Eq
~2.3!. We have

yi~n!5 (
l 50

M21

(
k

hi@M ~n2k!2 l # f ~Mk1 l !

5 (
l 50

M21

(
k

hil ~n2k! f l~k!, ~2.4!

wherehil (n) and f l(n) are the so-called polyphase comp
nents ofhi(n) and f (n), respectively, defined as

hil ~n!5hi~Mn2 l !, l 50,1,...,M21, ~2.5a!

and

f l~n!5 f ~Mn1 l !, l 50,1,...,M21. ~2.5b!

Similarly, we have the reconstruction signalf̂ (n) in terms
of synthesis filtersgi(n) and subband componentsyi(n):

f̂ ~n!5 (
i 50

M21

(
k

gi~n2Mk!yi~k!. ~2.6!

Without loss of generality, we shall consider only theM
52 case in the interest of convenient description; the d
vations and results can be easily generalized toM.2 at the
cost of notational complexity.

For M52, we have the following equivalent multichan
nel representation of subband signalsyi(n), i 50,1, in view
of ~2.4!:

y~n!5 (
k52l

L

H~k!f~n2k!, ~2.7!

where
2377Optical Engineering, Vol. 37 No. 8, August 1998
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Fig. 2 Two-band filter-bank system with additive noise.
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f~n!5F f ~2n!

f ~2n11!G and y~n!5Fy0~n!

y1~n!G ~2.8!

and H(k) is the multichannel impulse response matrix
the form

H~k!5Fh00~k! h01~k!

h10~k! h11~k!
G , ~2.9!

hi0(k)5hi(2k) andhi1(k)5hi(2k21), i 50,1.
If additive noisy corruptions are included in the subba

components~see Fig. 2!, the observed subband signalr (n)
can be expressed as follows:

r ~n!5y~n!1v~n!. ~2.10!

Here v(n)5@v0(n) v1(n)#t is the additive noise distur
bance vector. The conventional synthesis filters lose t
optimality when an additive noisy disturbancev(n) is in-
cluded in the subband components. We then seek to
velop a multirate Kalman filter to replace the convention
synthesis bank$Gi(z)% i 50,1 for optimal signal reconstruc
tion based on the observationr (n).

3 Derivation of Multirate State-Space Model for
2-D Signal

Subband image processing is the domain of extensive
search. The idea of subband-based processing is to de
pose the original image into different subbands and t
2378 Optical Engineering, Vol. 37 No. 8, August 1998
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employ separate processing in each subband. As we s
before, the overall performance of the 2-D perfe
reconstruction filter bank deteriorates greatly when ther
noisy corruption in subband components. Therefore,
optimal 2-D signal reconstruction from noisy subband s
tems remains a topic for research.

Figure 3 depicts the model of the image formation s
tem, where the 2-D signalf ( i , j ) ~called theobject-plane
distribution in this paper! is assumed to be a wide-sen
stationary Markov process and can be generated throu
linear systemb( i , j ) with a white sourceu( i , j ) as input.
The 2-D signalf ( i , j ) is then decomposed into its subban
componentsy( i , j ) through the 2-D filter bank system
H( i , j ). The final observation signalr ( i , j ) is the distorted
version of y( i , j ), which is corrupted with white noise
v( i , j ).

To incorporate the 2-D multirate Kalman filtering, a 2-
multirate state-space model, which represents the com
ite effects of the 2-D signal generating systemb( i , j ),
analysis filter bankH( i , j ), and decimation operator, shou
be developed. The construction of the 2-D multirate sta
space model involves the development of two state-sp
models: the vector dynamical model@known asb( i , j )# and
the basic signal model@known asH( i , j )#. The two models
are then combined to yield the final 2-D multirate sta
space model suitable for 2-D Kalman filtering, which
used to replace the 2-D synthesis filter bank for optim
2-D signal reconstruction from noisy subband systems.
Fig. 3 Model of image formation system.
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Ni, Ho, and Tse: Model-based multirate Kalman filtering approach . . .
3.1 The Basic Signal Model

When implementing the 2-D filter banks, the dominant a
proach is to apply two 1-D filter banks separately. Witho
loss of generality, we consider theM52 case only, which
is commonly used in practical applications. Let$hi

c ,gi
c : i

50,1% and $hi
r ,gi

r : i 50,1% denote two 1-D filter banks fo
column- and rowwise operations, respectively. The origi
2-D signal f (m,n) can be decomposed into four subba
componentsyi j (m,n), i , j 50,1, through the 2-D separat
analysis banks

yi j ~m,n!5(
k

(
l

hi
c~ l !hj

r~k! f ~2m2 l ,2n2k!, ~3.1!

while the signal reconstruction can be expressed as

f̂ ~m,n!5(
i 50

1

(
j 50

1

(
k

(
l

gi
c~m22l !gj

r~n22k!yi j ~ l ,k!.

~3.2!

Recalling the multichannel representation of the subb
signal ~2.7! described in the previous section, we can e
press Eq.~3.1! with the equivalent 2-D multichannel repre
sentation

y~m,n!5Fy00~m,n! y01~m,n!

y10~m,n! y11~m,n!
G

5 (
l 52lc

Lc

(
k52lr

Lr

Hc~ l !F~m2 l ,n2k!Hr~k!t ~3.3!

where

F~m,n!5F f ~2m,2n! f ~2m,2n11!

f ~2m11,2n! f ~2m11,2n11!
G

and

Hc~k!5Fh00
c ~k! h01

c ~k!

h10
c ~k! h11

c ~k!
G ,

Hr~k!5Fh00
r ~k! h01

r ~k!

h10
r ~k! h11

r ~k!
G .

Let hi
c,r be the column- or rowwise analysis filter, an

$lc,r ,Lc,r% be the extent pair ofhi
c,r . The $lc,r ,Lc,r% in

Eq. ~3.3! are chosen such thathi
c,r(22lc,r21)50 and

hi
c,r(2Lc,r11)50.

By definingpc5lc1Lc andpr5l r1L r and substitut-
ing k5k2l r into Eq. ~3.3!, we can expressy(m,n) as the
causal form in the horizontal direction:

y~m,n!5 (
l 52lc

Lc

(
k50

pr

Hc~ l !F~m2 l ,n1l r2k!Hr~k2l r !t.

~3.4!
If we define an operatorSlk such thatSlkA5Hc( l )AH r(k
2l r)t and D to be the horizontal shift operator wit
DkF(m,n)5F(m,n2k), the expression~3.4! can be trans-
formed into the following form:

y~m,n!5 (
l 52lc

Lc

(
k50

pr

Slk@DkF~m2 l ,n1l r !#

5 (
l 52lc

Lc

Tl~D !F~m2 l ,n1l r !, ~3.5!

whereTl(D)5Sl01Sl1D1¯1SlprDpr
.

We then expand Eq.~3.5! and arrange the elements a
cording to the powers toD, i.e.,

y~m,n!5 (
l 52lc

Lc

Sl0F~m2 l ,n1l r !1 (
l 52lc

Lc

Sl1DF~m2 l ,n

1l r !1¯1 (
l 52lc

Lc

SlprDpr
F~m2 l ,n1l r !. ~3.6!

Let us further define a vector operatorSk and symbol

F̄(m,n) as follows:

SkA5@Hc~Lc! Hc~Lc21! ¯ Hc~2lc!#AH r~k2l r !t

5H̄cAH r~k2l r !t,
~3.7!

F̄~m,n!5@F~m2Lc,n! F~m2Lc11,n! ¯ F~m

1lc,n!#t.

Then Eq.~3.6! can be expressed in the compact form

y~m,n!5 (
k50

pr

H̄c@DkF̄~m,n1l r !#Hr~k2l r !t. ~3.8!

We further represent Eq.~3.8! in a more convenient form
with the powerful Kronecker product notation, namely,

ỹ~m,n!5 (
k50

pr

@Hr~k2l r ! ^ H̄c#@DkF! ~m,n1l r !#

5 (
k50

pr

CkD
kF! ~m,n1l r !5H~D !F! ~m,n1l r !,

~3.9!

where H(D)5C01C1D1¯1CprDpr
. We obtain Eq.

~3.9! from a property of Kronecker product notation, i.e
vec$ABC%5(Ct

^ A)vec$B%,6 where the operationÃ

5vec$A% means that the column vectorÃ is formed by
stacking up all columns of the matrixA. In view of the
above definition, we have
2379Optical Engineering, Vol. 37 No. 8, August 1998
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Ni, Ho, and Tse: Model-based multirate Kalman filtering approach . . .
ỹ~m,n!5@y00~m,n! y10~m,n! y01~m,n! y11~m,n!#t,

~3.10!

F! ~m,n1l r !5@ f @2~m2Lc!, 2~n1l r !# ¯ f @2~m1lc!

11, 2~n1l r !] f @2~m2Lc!, 2~n1l r !11#

¯ f @2~m1lc!11, 2~n1l r !11#] t.

The column vectorF! (m,n1l r) consists of two adjacen
2(pc11)-dimensional column vectorsf @m,2(n1l r)# and
f@m,2(n1l r)11# with vertical extent ranging from 2(m
2Lc) to 2(m1lc)11.

The causal operatorH(D) in Eq. ~3.9! can be equiva-
lently described by a state-space model (A,B,C,D). If we
define the state vector as

x~m,n!5@F! ~m,n1l r21!t F! ~m,n1l r22!t
¯ F! ~m,n

2L r !t#t,

then we have

x~m,n11!5Ax~m,n!1BF! ~m,n1l r !, ~3.11a!

where

A53
0 0 0 0

¯

I 0 0 0

] � ]

0 0 0 0

¯

0 0 I 0

4
4pr ~pc11!34pr ~pc11!

and

B5F I
0
]

0
G

4pr ~pc11!34~pc11!

,

in which the0 and I denote 4(pc11)34(pc11) null and
unit matrix, respectively.

We then expand Eq.~3.9! and notice that

C05Hr~2l r ! ^ H̄c5Fh0
r ~22l r !H̄c 0

h1
r ~22l r !H̄c 0

G .

Thus the subband output can be expressed as

ỹ~m,n!5 (
k51

pr

CkF! ~m,n1l r2k!1C0F! ~m,n1l r !

5Cx~m,n!1Df @m,2~n1l r !# ~3.11b!

where
2380 Optical Engineering, Vol. 37 No. 8, August 1998
C5@C1 C2 ¯ Cpr#434pr ~pc11!

and

D5Fh0
r ~22l r !H̄c

h1
r ~22l r !H̄cG

432~pc11!

.

Based on these, we can formulate the 2-D noisy subb
system as the following multirate state-space model:

x~m,n11!5Ax~m,n!1BF! ~m,n1l r !,

x̂~m,21!5 x̂21 ~3.12!

r̃ ~m,n!5Cx~m,n!1Df @m,2~n1l r !#1 ṽ~m,n!

where r̃ (m,n)5@r 00(m,n) r 10(m,n) r 01(m,n) r 11(m,n)#t

is the noisy observation vector andṽ(m,n)
5@v00(m,n) v10(m,n) v01(m,n) v11(m,n)#t is the addi-
tive noise disturbance. To incorporate the 2-D multira
state-space model~3.12!, we then seek to develop a vecto
dynamical model to represent the statistics of the input 2
signal.

3.2 The Vector Dynamical Model

Consider the processf (t,n). Its horizontal variable~con-
tinuous! is denoted byt:0<t<T, and its vertical variable
by an integern51,2,...,N. Without any loss of generality
f (t,n) is chosen to have zero mean. The random proc
f (t,n) is further assumed to be wide-sense station
~WSSP! with autocorrelation function

E@ f ~ t1 ,n1! f ~ t2 ,n2!#5R~ t22t1 ,n22n1!5R~ t,n!. ~3.13!

For many natural images the autocorrelation funct
R(t,n) is well characterized by7

R~ t,n!5a exp~2mhutu2mvunu!. ~3.14!

A vector dynamical model can also be developed th
when driven by a white vector noise, produces a vec
output whose second-order statistics is described by
~3.14!. Let x(t) andu(t) be anM -dimensional state vecto
and a driving white noise vector, respectively, andy(t) be
the M -dimensional output vector. Then the vector dynam
cal model can be described as

ẋ~ t !5Ax~ t !1Bu~ t !, y~ t !5Cx~ t !, ~3.15!

whereA52mh andB5A2mh are scalars,C is anM3M
matrix such thatCCt5H, and thek,l th elementhkl of H is
given by hkl5a exp(2mvuk2lu). We consider the matrix
correlation function of the output vectory(t), which is de-
noted by U(h)5E@y(t)y(t1h)t#. If t and t1h range
over the domain@0,T#, then thek,l th elementukl(h) of
U~h! matches Eq.~3.14! exactly. The detailed procedure o
parameter determination for the model~3.15! can be found
in Ref. 5.
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We now complete the construction of the continuo
vector dynamical model~3.15!. Its discrete counterpart ca
be obtained through the following mapping7:

Ā~k!5exp~AT!,

B̄K̄B̄t5E
0

T

eA~T2s!BKBteAt~T2s! ds, ~3.16!

C̄5C,

where K and K̄ are the covariance matrices ofu(t) and
u(k), respectively. We then have the corresponding d
crete vector model

x~k11!5Āx~k!1B̄u~k!,
~3.17!

y~k!5C̄x~k!,

where

E@u~k!#50, E@u~k!u~ j !t#5Id~k2 j !,

P~21!5E@ x̂~21!x̂~21!t#, C̄P~21!C̄t5H.

In view of the discussion above, the 2-D discrete vec
model can be expressed in our configuration as

z8~m,k11!5Fz8~m,k!1Gu~m,k!, ẑ8~m,21!5 ẑ8m ,

~3.18!

f~m,k!5Hz8~m,k!,

wherez8(m,k) andu(m,k) are the 2(pc11)-dimensional
state vector and driving white-noise vector, respectively

Examining the state-space model described by E
~3.12! and ~3.18! reveals that the two systems evolve
different time scales. We proceed to modify the mod
~3.18! so that the two models can be combined into
augmented model with the same time scale.

Substitutingk52(n1l r) into Eq. ~3.18! leads to

z8@m,2~n1l r !11#5Fz8@m,2~n1l r !#

1Gu@m,2~n1l r !#,
~3.19!

f @m,2~n1l r !#5Hz8@m,2~n1l r !#.

In the interest of developing a unified multirate state-sp
model, we further representF! (m,n1l r) and f@m,2(n
1l r)# of Eq. ~3.12! in terms ofz8(m,n) andu(m,n):

z8@m,2~n1l r !12#5F2z8@m,2~n1l r !#1@FG G#

3F u@m,2~n1l r !#
u@m,2~n1l r !11#G ,
.

F! ~m,n1l r !5F f@m,2~n1l r !#
f@m,2~n1l r !11#G

5F H
HF Gz8@m,2~n1l r !#1F 0 0

HG 0G
3F u@m,2~n1l r !#

u@m,2~n1l r !11#G . ~3.20!

We definez(m,n)5z8@m,2(n1l r)# to make the two sys-
tems ~3.12! and ~3.20! evolve on the same time scale
which leads to

z~m,n11!5F2z~m,n!1G2u2~m,n!,

F! ~m,n1l r !5H2z~m,n!1Q2u2~m,n!, ~3.21!

f@m,2~n1l r !#5Hz~m,n!,

where

u2~m,n!5F u@m,2~n1l r !#
u@m,2~n1l r !11#G , H25F H

HF G ,
G25@FG G#, Q25F 0 0

HG 0G .
3.3 The 2-D Multirate State-Space Model

Under the assumption that the original 2-D signals~object
plane! may be modeled as a zero-mean, two-dimensio
wide-sense stationary random field with known correlat
function, we have derived a discrete vector model~3.21! to
characterize the dynamics of the object plane. By defin
w(m,n)5@x(m,n)t z(m,n)t#t and substituting Eq.~3.21!

for F! (m,n1l r) and f@m,2(n1l r)# in Eq. ~3.12!, we can
obtain the final augmented 2-D multirate state-space mo

w~m,n11!5Āw~m,n!1B̄u2~m,n!, ŵ~m,21!5ŵm ,

~3.22!

r̃ ~m,n!5C̄w~m,n!1 ṽ~m,n!,

wherem50,1,...,(M /2)21 andn50,1,...,(N/2)21 for an
object plane with dimensionsM3N. The vectorw(m,n) is
defined as the state vector of the system~3.22! with dimen-
sion determined by that ofx(m,n) andz(m,n). The param-
eters of the 2-D multirate state-space model are determ
as follows:

Ā5FA BH2

0 F2I G , B̄5FBQ2

G2
G , C̄5@C DH#. ~3.23!

The 2-D multirate state-space model~3.22! reflects ex-
actly the image formation model described in Fig. 3 w
white driving sourceu( i , j ) as input andr ( i , j ) as observa-
tion vector. The model allows us to take into account t
dynamics of the object-plane distributionf ( i , j ) in the pro-
cess of optimal state estimation.
2381Optical Engineering, Vol. 37 No. 8, August 1998
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Fig. 4 General model of image formation system with adaptive 2-D multirate Kalman filters.
the
r

-
o

e
trix

b-
ess

e

ose

re-
rge
tri-

pa-
ne
an
del
al-

en-

dom
rm

of
tion

an
be

-

ser-

-D

t,
r

ne
ach
We then investigate the statistical characteristics of
driving source vectoru2(m,n) and noisy disturbance vecto

ṽ(m,n) in the 2-D Kalman filtering configuration. The vec
tor u2(m,n) is formed by concatenation of tw
2(pc11)-dimensional driving vectorsu@m,2(n1l r)#,
u@m,2(n1l r)11#. The second-order statistics ofu2(m,n)
can be easily obtained from those ofu@m,2(n1l r)#,
u@m,2(n1l r)11#, i.e.,

E@u2~m,n!#50,
~3.24!

E@u2~m,n!u2~m,k!t#5V~m,n!d~n2k!

for m50,1,...,~M /2!21.

The noisy disturbance vectorṽ(m,n) is also assumed to b
a zero-mean, white Gaussian vector with covariance ma
of the form

E@ ṽ~m,n!ṽ~m,k!t#5F sv0

2 ~m,n!

�

sv3

2 ~m,n!
G

5R~m,n!d~n2k!. ~3.25!

The Kalman synthesis filter equations for the 2-D su
band system are given below for the sake of completen

ŵ~m,n!5@ I2K ~m,n!C̄#Āŵ~m,n21!1K ~m,n! r̃ ~m,n!,
~3.26a!

K ~m,n!5P~m,n!C̄t@C̄P~m,n!C̄t1R~m,n!#21, ~3.26b!

P~m,n11!5Ā@ I2K ~m,n!C̄#P~m,n!Āt1B̄V~m,n!B̄t,
~3.26c!

with ŵ(m,21)5ŵm , P(m,21)5Pm for m50,
1,...,(M /2)21 andn50,1,...,(N/2)21. TheP(m,n) and
K (m,n) in Eq. ~3.26! are the filtering state error covarianc
matrices and the Kalman-filter gain, respectively.
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:

4 Performance Enhancement through Adaptive
Kalman Filtering

Recall the assumption that the 2-D signalf ( i , j ) is charac-
terized by a single wide-sense stationary process, wh
autocorrelation function is of the form~3.14!. This may not
always be the case and can in fact lead to undesirable
sults. Considering the situation when there exists a la
spread of spatial activity content in the object-plane dis
bution f ( i , j ), the two parametersmh andmv in Eq. ~3.14!
may vary considerably from region to region.

The dependence of the autocorrelation function on s
tial activity can be used in partitioning the object pla
f ( i , j ) and designing the corresponding multirate Kalm
filter for each partition. Figure 4 shows the general mo
of an image formation system with adaptive multirate K
man filtering. The original 2-D signalf ( i , j ) is modeled as
a set of white sources passed through a bank of linear g
erating systems, whose impulse responses arebp( i , j ), p
51,2,...,k. Consequently, the object planef ( i , j ) is com-
posed of a set of disjoint partitioned regionsVp . Each of
these regions is assumed to be a 2-D stationary ran
process with a known autocorrelation function of the fo
~3.14!, i.e.,

Rp~ t,n!5ap exp~2mp,hutu2mp,vunu!, p51,2,...,k.
~4.1!

A different multirate Kalman filter is designed for each
the partitioned regions based on its autocorrelation func
Rp(t,n) and the basic signal model~3.12! for optimal 2-D
signal reconstruction from noisy subband components in
adaptive mode. The adaptive multirate Kalman filter can
viewed as a collection ofk separate multirate Kalman fil
ters with a selection rule that determines which of thek
filters is used for signal reconstruction, based on the ob
vation vectorr ( i , j ).

The two key issues involved in the design of a 2
adaptive multirate Kalman filter are~1! the partitioning of
the object planef ( i , j ) based on the spatial activity conten
and ~2! the construction of a multirate Kalman filter fo
each partitionVp .

There are a number of ways in which the object pla
f ( i , j ) can be partitioned. One simple and feasible appro
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is the so-called block partitioning on the basis of the va
ance within the block. The partitioning scheme is given
follows:

1. The object planef is divided into blocks of sized
3d, resulting in the block sequence$M (m,n)%.

2. The variance of each blockM (m,n) is computed,
which is defined as Var(m,n)5( ( i , j )PM (m,n)@ f ( i , j )
2h(m,n)#2, where h(m,n) is the mean for block
M (m,n).

3. A threshold operation is applied to segment the va
ance Var(m,n) so that the object planef is parti-
tioned into regionsVp , p51,2,...,k. The block
M (m,n) is classified as regionVp if ap21

,Var(m,n),ap , where the threshold valueap is
chosen subjectively according to the range
Var(m,n) and the number of regions desired.

We then proceed to develop the 2-D multirate sta
space model for the regionVp . Referring to the genera
signal formation model described in Fig. 4, the linear ge
erating systembp( i , j ) can be represented equivalently by
vector dynamical model of the form~4.2!:

zp~m,n11!5Fp
2zp~m,n!1Gp,2up,2~m,n!,

F! ~m,n1l r !5Hp,2zp~m,n!1Qp,2up,2~m,n!, ~4.2!

f@m,2~n1l r !#5Hpzp~m,n!.

The model~4.2! is constructed specifically for the regio
Vp and has the similar form as~3.21!. The model~4.2! can
then be combined with the basic signal model~3.12! to
yield the multirate statespace model~4.3! for the region
Vp :

wp~m,n11!5Āpwp~m,n!1B̄pup,2~m,n!,
~4.3!

r̃ ~m,n!5C̄pwp~m,n!1 ṽ~m,n!, p51,2,...,k.

On the basis of the model (Āp ,B̄p ,C̄p), a set of multirate
Kalman filters are constructed to provide the optimal e
mate of the original 2-D signalf ( i , j ) restricted to region
Vp .

5 Numerical Results and Discussions

Computer simulations were carried out to show the fea
bility and effectiveness of the proposed 2-D multirate K
man filtering for optimal 2-D signal reconstruction fro
noisy subband systems. We compared the performanc
the proposed 2-D multirate Kalman filter with that of th
conventional PR filter banks for 2-D signal reconstructi
at different noise levels. The simulation was implemen
on the SGI/R4000 platform with Matlab and C.

We adopted a set of two-band QMF PR filter ban
of length 8 in our simulation, which is defined a
h(n)5@0.0094 20.0707 0.0694 0.4900 0.4900 0.069
20.0707 0.0094#, with n ranging from 24 to 3. The
analysis filter bank is defined byh0(n)5h(n) and h1(n)
f

5(21)nh(n), while the corresponding synthesis filter ban
is given by g0(n)52h(n) and g1(n)522(21)nh(n).
The 232 subband decomposition of test image is imp
mented through two 1-D separate analysis filter ba
$hi

c ,hi
r% i 50,1, with hi

c(n)5hi
r(n)5hi(n), i 50,1.

Two quantitative measures are defined in our simulat
to reflect the input noise level and reconstruction perf
mance. We define

SNRi
m,n510 log10F (k,l y

m,n~k,l !2

(k,lv
m,n~k,l !2G , m,n50,1, ~5.1!

whereym,n(k,l ) andvm,n(k,l ) are the component and nois
in subband (m,n), respectively. We denote SNRi

m,n as
SNRi , since we adopted the same SNR level in each s
band in our simulation. Another measure, SNRr , is used to
indicate the reconstruction performance and defined as

SNRr510 log10H (k,l f ~k,l !2

(k,l@ f ~k,l !2 f̂ ~k,l !#2J , ~5.2!

where f (k,l ) and f̂ (k,l ) denote the original and recon
structed 2-D signal, respectively.

Case 1: Natural image with fixed model. The test im-
age ‘‘Hillside’’ is of size 160316038 @Fig. 5~a!#. The
image is converted to zero mean prior to 232 subband
decomposition. Its autocorrelation function is obtain
from the entire image without partitioning and found
have the form R(t,n)51168.3 exp(20.15utu20.22unu).
The vertical extent ofhi

c is 2(pc11)510 for the given
analysis filter bank. A 10-dimensional vector dynamic
model of the image is constructed on the basis of
R(t,n).5

Figure 5~b! shows the 232 subband decomposition o
the image ‘‘Hillside.’’ White additive noise at differen
SNR levels was added to all the four subband images.
variance of the white noise was adjusted so that the S
level on each subband image was kept the same. Figu
demonstrates the reconstruction performance compar
with both the proposed 2-D multirate Kalman filtering an
the conventional PR synthesis filters at different SNR le
els. Figure 5~d! shows the noise-corrupted subband ima
at SNRi50 dB. Figures 5~e! and 5~f! represent the recon
structed images at SNRi50 dB with the conventional filter-
bank and the Kalman filtering approach, while Figs. 5~g!
and 5~h! depict the results at SNRi58 dB. It is observed
that the improvement in reconstruction SNR with the p
posed 2-D multirate Kalman filtering is also considerab
especially in the portion of low SNRi . The noise effects are
well suppressed, even at extremely low SNR@Fig. 5~f!#: the
main structure of original image is still distinguishable o
the reconstructed image with 2-D multirate Kalman filte
ing.

Case 2: Natural image with adaptive model. The test
image ‘‘Hillside’’ was partitioned into two regions base
on their variance distributions. The segmented image is
2383Optical Engineering, Vol. 37 No. 8, August 1998
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2384
Fig. 5 (a) Original image ‘‘Hillside’’ of size 1603160. (b) 232 subband decomposition of ‘‘Hillside.’’
(c) Partitioned image. (d) Noise-corrupted subband image at SNRi50 dB. (e) Reconstructed image
with conventional PR filter banks at SNRi50 dB. (f) Reconstructed image with 2-D multirate Kalman
filter at SNRi50 dB. (g) Reconstructed image with conventional PR filter banks at SNRi58 dB. (h)
Reconstructed image with 2-D fixed-model multirate Kalman filter at SNRi58 dB. (i) Reconstructed
image with 2-D adaptive multirate Kalman filter at SNRi58 dB.
Optical Engineering, Vol. 37 No. 8, August 1998
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played in Fig. 5~c!, where the rock texture in the upper le
corner is classified as Region 1 and the rest of the imag
Region 2. The two autocorrelation functions are then de
mined for each region and have the form

region V1 : R1~ t,n!52548.6 exp~20.12utu20.16unu!;

region V2 : R2~ t,n!5849.8 exp~20.17utu20.27unu!.

From these autocorrelation functions the appropriate val
are determined for the matrices$Āp ,B̄p ,C̄p%p50,1, which
are used for signal reconstruction in region 1 and region
respectively. Figure 4 shows the block diagram for th
adaptive Kalman filtering scheme. The result of applicat
of the adaptive Kalman filtering at SNRi58 dB is shown in
Fig. 5~i!, with the result of fixed-model Kalman filtering fo
comparison. The reconstructed image with the two-mo
adaptive Kalman filtering approach is observed to have b
ter appearance. The edges tend to be somewhat sha
and the texture of the rocks in the upper left corner is m
distinct. The performance comparison between fixed-mo
and adaptive-model multirate Kalman filtering at differe
SNR levels is also given in Fig. 6. The SNR improveme
with the adaptive approach for the ‘‘Hillside’’ image i
around 0.2 dB. Although we are not here with refining t
adaptive algorithm, the preliminary results with the ada
tive Kalman filtering approach show potential to furth
improve the dynamical performance of the proposed 2
multirate Kalman filter.

6 Conclusions

In this paper, we have combined the multichannel repres
tation of subband signal with the statistical model of inp
signals to derive the multirate state-space model for no
filter-bank systems, with emphasis on the 2-D case. W
the input signals embedded in the state vector, the issu
signal reconstruction can be formulated as optimal st
estimation with multirate Kalman filtering. Since the Ka
man filtering is one-dimensional in nature, the vector d
namical model is incorporated to develop a 2-D multira
state-space model suitable for 2-D multirate Kalman filt
ing.

Fig. 6 Reconstruction SNR versus additive-noise SNR levels for
natural image ‘‘Hillside’’ of size 1603160.
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Computer simulation results with a natural image de
onstrate considerable improvements in the SNRr of the re-
constructed 2-D signal, at various noise levels, with
proposed 2-D multirate Kalman filtering approach ov
those with conventional PR synthesis filters.

We further present a 2-D adaptive multirate Kalman
tering scheme based on image segmentation. The parti
ing of the image allows more accurate modeling of t
second-order statistics of the object-plane distribution fu
tion and provides the potential for further performance e
hancement.
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