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1 Introduction on the basis of minimization of the mean squared error
Multirate signal processing is of interest to a great many (MSE) between the original and the reconstructed signal,
researchers due to its suitability in applications such as considering the statistical characteristic of the input signal

digital image/speech coding, progressive image transmis—anoI noise. . . . C
sign, and Specrt)rum analysi%. EI)'heg idea of muﬁirate signal The goal of this paper is to improve the applicability of

processing is to decompose the original signal into comple- filter-bank systems by proposing a multirate Kalman syn-

thesis filter to replace the conventional synthesis filters,
_mentary frequency bands and then process them separate! ith emphasis on 2-D cases. With the input signal embed-
in each .subband. Therg has bee.n tremen.dous_ Progréss ey in the state vector, the multichannel representation of
the design of decimation and interpolation filters and

i S subband signals is combined with the statistical model of
analysis/synthesis filter banks that allow perfect reconstruc- the input signal to derive the multirate state-space model

tion (PR)." The development of filter bank systems with PR o the filter-bank systems, and the subband noises are as-
involves the removal of three distortions: aliasing distortion ¢,med to be additive in this model. On the basis of this
(ALD), amplitude distortiofAMD), and phase distortion  nodel, the multirate Kalman filter can be constructed to
(PHD). Thus, in their overall performance, filter-bank sys- provide the minimum-variance estimation of the input sig-
tems with PR characteristic can be viewed as systems withpng| pased on observations of noisy subband components.
all-pass and linear phase transfer functions. The concept of multirate Kalman synthesis filtering was

The conventional approaches for PR filter-bank systems first given in Ref. 4. Our work differs from that in Ref. 4 in
are based on the assumption that the subband componentgat the philosophy to derive the state-space model is dif-
are free of noise. However, in practical applications with ferent and a multirate state-space model suitable for 2-D
filter-bank systems, the subband components are alwaysKalman filtering is developed. It is well known that Kalman
contaminated by noise due to the effect of quantization, filtering is one-dimensional in nature. To apply this tech-
roundoff, and other corruption, so that perfect reconstruc- nique, however, the observation vector must be a function
tion is no longer possible. Two typical approaches have of one independent variable, whereas the 2-D subband
been developed to tackle the noise effects in designing filter components are functions of two spatial variables. In our
bank systems. The work in Ref. 2 incorporated the quan- approach, the vector linear dynamical model developed in
tizer model in the design of synthesis filter. Through the Ref. 5 is incorporated with the 2-D multichannel represen-
guantizer-model-based synthesis filter, one can cancel alltations of subband signals and thus results in the final 2-D
signal-dependent errors in the output of the system. In anmultirate state-space model for optimal 2-D signal recon-
alternative approachthe optimal filter banks are derived struction from noisy subband systems.
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Fig. 1 Noise-free M-band filter-bank system.

The remainder of the paper is organized as follows. Sec-nent y; is obtained by passing(n) through h;(n) and
tion 2 provides the basic concept of filter-bank systems and downsampling byM, which can be described as
the multichannel representation of decimators/interpolators.
In Sec. 3 the 2-D multirate state-space model suitable for
2-D Kalman filtering is developed. The performance en- yi(n)=>, hi(Mn—})f(j). (2.3
hancement through object-plane partitioning is described in J
Sec. 4. Some numerical results and discussions are included

in Sec. 5. Concluding remarks are provided in Sec. 6. Let j=Mk+l, 1=0,1,..,M—1, and substitute into Eq.
(2.3. We have

2 Filter-Bank Systems and Problem Formulation M-1
i(n)= hi{M(n—k)—=11f(Mk+I
2.1 Filter Bank Systems yi(n) ;o 2k IM(n=l) =1 )

The M-band filter-bank structure is shown in Fig. 1. The M-1
bank of filters {H(z), k=0,1,..,M—1} comprises the => > hy(n—kf(Kk), (2.4)
analysis filters. Each filter output is downsampled and =0 Kk
transmitted to the receiver, where it is upsampled and fed
into the bank of synthesis filtelS,(2), k=1,2,..,M—1} whereh; (n) andf,(n) are the sq—called p_olyphase compo-
for signal reconstruction. The decimation factosatisfies ~ nents ofhi(n) andf(n), respectively, defined as
L=M. Without loss of generality, we consider only the
maximal-decimation casé,= M, in this paper.

We can derive the transmission features of the filter-
bank systems from the block diagram shown in Fig. 1. If
we were to remove the undesired aliasing distortion, we

hy(n)=h(Mn=1),  1=0,1,..M—1, (2.53

and

would have fi(n)=f(Mn+1), I=0,1,...M—1. (2.5
. @ Mt Similarly, we have the reconstruction sigrﬁh) in terms
F(z)= Vi go Gi(z)H(2) |F(2). (2.1 of synthesis filterg;(n) and subband componentgn):

M-1
The requirement for perfect reconstruction, i.d(n) f(n)= E E gi(n—MK)y;(k). (2.6
=f(n—ny), is obviously =0k
M-1 Without loss of generality, we shall consider only thk
> G2)HW(2)=2"", (2.2 =2 case in the interest of convenient description; the deri-
k=0

vations and results can be easily generalizeldite 2 at the
cost of notational complexity.

For M =2, we have the following equivalent multichan-
nel representation of subband signgle), i=0,1, in view

i.e., the composite transmission reduces to a simple delay.

2.2 Multichannel Representation of Subband of (2.4):
Signals
A
Let{h;,i=0,1,..,M—1}and{g;, i=0,1,..,M—1} denote B B
the impulse response of the bank of analysis fil{etgz), y(n)—k;)\ H(K)f(n—k), 2.7

k=0,1,..,M—1} and the bank of synthesis filte{&,(z),
k=0,1,..,M—1}, respectively. Theith subband compo- where
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Fig. 2 Two-band filter-bank system with additive noise.

(2.9

and H(K) is the multichannel impulse response matrix of

the form
hoo(K)  hoa(k)
H(k){hmﬂo hll(k)}’

hio(K) =h;(2k) andhi;(k)=h(2k—1), i=0,1.

If additive noisy corruptions are included in the subband

2.9

componentgsee Fig. 2, the observed subband sigm#éh)
can be expressed as follows:

r(n)=y(n)+v(n).

(2.10

Here v(n)=[vg(n) v4(n)]” is the additive noise distur-

bance vector. The conventional synthesis filters lose their

optimality when an additive noisy disturbanegn) is in-
cluded in the subband components. We then seek to de-te effects of the 2-D signal generating systdii,j),

velop a multirate Kalman filter to replace the conventional analysis filter banid(i,j), and decimation operator, should
synthesis bankKG;(z)};_, for optimal signal reconstruc-

tion based on the observatiogn).

3 Derivation of Multirate State-Space Model for

2-D Signal

employ separate processing in each subband. As we stated
before, the overall performance of the 2-D perfect-
reconstruction filter bank deteriorates greatly when there is
noisy corruption in subband components. Therefore, the
optimal 2-D signal reconstruction from noisy subband sys-
tems remains a topic for research.

Figure 3 depicts the model of the image formation sys-
tem, where the 2-D signdi(i,j) (called theobject-plane
distribution in this papey is assumed to be a wide-sense
stationary Markov process and can be generated through a
linear systemb(i,j) with a white sourceu(i,j) as input.

The 2-D signalf(i,j) is then decomposed into its subband
componentsy(i,j) through the 2-D filter bank system
H(i,j). The final observation signali,j) is the distorted
version of y(i,j), which is corrupted with white noise
v(i,j).

To incorporate the 2-D multirate Kalman filtering, a 2-D
multirate state-space model, which represents the compos-

be developed. The construction of the 2-D multirate state-
space model involves the development of two state-space
models: the vector dynamical mod&hown asb(i,j)] and

the basic signal modéknown asH(i,j)]. The two models

are then combined to yield the final 2-D multirate state-

Subband image processing is the domain of extensive re-space model suitable for 2-D Kalman filtering, which is
search. The idea of subband-based processing is to decomused to replace the 2-D synthesis filter bank for optimal
pose the original image into different subbands and then 2-D signal reconstruction from noisy subband systems.
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Fig. 3 Model of image formation system.
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3.1 The Basic Signal Model If we define an operato®, such thatS,A=H(I)AH"(k
When implementing the 2-D filter banks, the dominant ap- —A')” and D to be the horizontal shift operator with
proach is to apply two 1-D filter banks separately. Without D*F(m,n)=F(m,n—k), the expressiof3.4) can be trans-
loss of generality, we consider thd=2 case only, which ~ formed into the following form:

is commonly used in practical applications. Lt ,g; i

=0,1} and{h{,g;:i=0,1} denote two 1-D filter banks for AS b
column- and rowwise operations, respectively. The original Y(mn)= X, > S [DF(m—1,n+\")]
2-D signal f(m,n) can be decomposed into four subband I=—pc k=0

r

componentsy;;(m,n), i,j=0,1, through the 2-D separate AC
analysis banks = > T(D)F(m—I,n+\"), (3.5
|=—2C
N - S(1Yh' —l2n— ;
yi;(m,n) ; §I‘, he(hhi(k)f(2m—1,2n—k), (3. WhereT(D) =S+ SuD+ -+ S0
We then expand Ed3.5 and arrange the elements ac-
while the signal reconstruction can be expressed as cording to the powers t@, i.e.,
1 1 AC AC
fmm=2, 3 2 2 gi(m=20)gj(n=26y, (1 k. ymm= 3 SeF(m-1n+\)+ X S;DF(m-1,n
I=-2¢ I=-2¢
(3.2
AC
Recalling the multichannel representation of the subband AN D SlperrF(m—I,nJr)\r). (3.6)
signal (2.7) described in the previous section, we can ex- I=—\C
press Eq(3.1) with the equivalent 2-D multichannel repre-
sentation Let us further define a vector operat§ and symbol
E(m,n) as follows:
(m n)_{yoo(m,n) Yoi(m,n)
yim Yiolm,n) yis(m,n) SA=[HS(A®) HS(A®—=1) --- HS(—\®)]AH"(k—\")"
AC Ar J—
=HCAH'(k—\")",
= > > HYHEm—-I,n—KH(K) (3.3 ( ) (3.7
|=—=\C k=—\' -
F(m,n)=[F(m—A%n) F(m—A®+1n) --- F(m
where
+A°n)]"
f(2m,2n) f(2m,2n+1) .
F(m,n)= fam+12n) f(2m+1.2n+1) Then Eq.(3.6) can be expressed in the compact form
and o
y(m,n)= >, HDXF(m,n+\")TH (k—\")". (3.9
k=
hso(k) (k) ’
RHe(k)=| . N
higk) hii(k) We further represent E43.8) in a more convenient form

with the powerful Kronecker product notation, namely,

. Pr

" _{h&(k) hoy(k)
Y/(m,n)zkzo[H'(k—)\')®ﬁc][Dk|=:(m,n+)\r)]

hig(k)  hia(k)

Let h{'" be the column- or rowwise analysis filter, and

Pr
{N®T A"} be the extent pair oh". The {\®",A%"} in => CDE(m,n+\")=H(D)E(m,n+\"),
Eqg. (3.3 are chosen such that®'(—2\°"—1)=0 and k=0
he"(2A°7+1)=0. (3.9

By definingp®=\°+A° andp"=\"+ A" and substitut-
ing k=k—\" into Eq. (3.3, we can expresg(m,n) asthe  where H(D)=Cy+C;D+-+C,DP. We obtain Eq.

causal form in the horizontal direction: (3.9 from a property of Kronecker product notation, i.e.,
Ay vedABC}=(C"®A)vedB},® where the operationA
ymm= S S HF(m—1,n+\ —K)H (k—\")". =vqu} means that the column ve_ct@r is _formed by
= )¢ k=0 stacking up all columns of the matrik. In view of the
(3.9 above definition, we have
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y(m,n)=[yoo(M,N) Y1o(M,N) Yor(m,n) y53(m,n)]7,
(3.10

F(m,n+\)=[f[2(m—AS), 2(n+\")] --- f[2(m+\)
+1, 2(n+\")] f[2(m—AS), 2(n+\")+1]

- f[2(M+AS)+1, 2(n+\)+1]]7.

The column vectorlzz(m,nﬂ\’) consists of two adjacent
2(p.+ 1)-dimensional column vectofsf m,2(n+\")] and
flm,2(n+\")+ 1] with vertical extent ranging from 2
—A° to 2(m+A®)+1.

The causal operatdd (D) in Eqg. (3.9) can be equiva-
lently described by a state-space modg|§,C,D). If we
define the state vector as

x(m,n)=[F(m,n+\"—1)" F(m,n+\"=2)" -+ F(m,n
=AD",

then we have

x(m,n+1)=Ax(m,n)+BF(m,n+\"), (3.113

where
0 0 0 0]
I 0 0 0
A=
0 0 0 0
L 0 0 I 0- 4p"(pg+1)X4p"(ps+1)
and
|
0
B: : 1]
0

4p"(p.+1)X4(pe+1)

in which the0 and| denote 4p.+1)X4(p.+1) null and
unit matrix, respectively.
We then expand Ed3.9) and notice that

hi(—=2\")HS 0

Co=H'(—\")®H"= _ .
hi(—2\")H® O

Thus the subband output can be expressed as

Pr
y(m,n)= 2>, CF(mn+\"—k)+CoF(m,n+1")
k=1

=Cx(m,n)+Df [m,2(n+\")] (3.11b

where

2380 Optical Engineering, Vol. 37 No. 8, August 1998

C=[Cy Cy -~ Cpf]4x4pf(p°+1)
and
. hp(—2\")H®

| hi(—2\")H®

4x2(pC+1)

Based on these, we can formulate the 2-D noisy subband
system as the following multirate state-space model:

x(m,n+1)=Ax(m,n)+BE(m,n+\"),

x(m,—1)=X_;

(3.12

T(m,n)=Cx(m,n)+Df [m,2(n+\")]+V(m,n)

where ?(m,n)z[roo(m,n) r10(m,n) roi(m,n) ro(m,n)]”

is the noisy observation vector andv(m,n)
=[vgo(M,N) v1(M,N) voz(M,N) v14(mM,n)]" is the addi-
tive noise disturbance. To incorporate the 2-D multirate
state-space mod¢B.12), we then seek to develop a vector
dynamical model to represent the statistics of the input 2-D
signal.

3.2 The Vector Dynamical Model

Consider the procesit,n). Its horizontal variablgcon-
tinuoug is denoted byt:0<t<T, and its vertical variable

by an integen=1,2,..,N. Without any loss of generality,
f(t,n) is chosen to have zero mean. The random process
f(t,n) is further assumed to be wide-sense stationary
(WSSB with autocorrelation function
E[f(ty,n)f(t2,n2)]=R(t,—ty,n;—ny) =R(t,n). (3.13
For many natural images the autocorrelation function
R(t,n) is well characterized By

(3.19

A vector dynamical model can also be developed that,
when driven by a white vector noise, produces a vector
output whose second-order statistics is described by Eqg.
(3.14). Let x(t) andu(t) be anM-dimensional state vector
and a driving white noise vector, respectively, arft) be
the M-dimensional output vector. Then the vector dynami-
cal model can be described as

R(t,n)=a exp(— unlt| = w,n)).

X()=Ax(t)+Bu(t), y(t)=Cx(t), (3.19
whereA= — up, andB=\2u,, are scalarsC is anM X M
matrix such thaCC™=H, and thek,Ith elemenh,, of H is
given by h,,=a exp(—u,k—I1]). We consider the matrix
correlation function of the output vectg(t), which is de-
noted by ©(7n)=E[y(t)y(t+»)7]. If t and t+ » range
over the domairf0,T], then thek,Ith elementd,,(7) of
O(7) matches Eq(3.14) exactly. The detailed procedure of
parameter determination for the mod8I15 can be found
in Ref. 5.
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We now complete the construction of the continuous _

vector dynamical modg3.15. Its discrete counterpart can
be obtained through the following mapping

A(k)=exp(AT),

N T ,
BKB™= f eAT=9BKB7e? (779 (s, (3.16
0

C=C,

whereK and K are the covariance matrices oft) and
u(k), respectively. We then have the corresponding dis-
crete vector model

x(k+1)=Ax(k) + Bu(k),

(3.17
y(k)=Cx(Kk),
where
E[u(k)]=0,  E[u(ku(j)"]=148k—]),

P(—1)=E[x(—1)x(—1)7], CP(-1)C™=H

In view of the discussion above, the 2-D discrete vector
model can be expressed in our configuration as

zZ(m—1)=7",,

(3.18

Z'(mk+1)=®z'(m,k)+ Gu(m,k),

f(m,k)=Hz'(m,k),

wherez’(m,k) andu(m,k) are the 2p.+1)-dimensional
state vector and driving white-noise vector, respectively.
Examining the state-space model described by Egs.
(3.12 and (3.18 reveals that the two systems evolve on
different time scales. We proceed to modify the model
(3.18 so that the two models can be combined into an
augmented model with the same time scale.
Substitutingk=2(n+\") into Eq.(3.18 leads to

Z[m2(n+\")+1]=®z'[M,2(n+\")]

+Gu[m,2(n+\")], (3.19

f[m,2(n+\")]=Hz'[m,2(n+\")].

In the interest of developing a unified multirate state-space
model, we further represenE(m,n+\") and f[m,2(n

+\")] of Eg.(3.12 in terms ofz’'(m,n) andu(m,n):
Z[m2(n+\")+2]=d2Z'[m,2(n+\")]+[PG G]

um,2(n+\")]
um2(n+A")+1])

flm,2(n+\")]
flm,2(n+\")+1]

| H

T |HD
um,2(n+\")]

um,2(n+A"H+1])

IE(m,n+)\’)=[

Z'[m2(n+\")]+

0
HG 0

(3.20

We definez(m,n)=2z'[m,2(n+\")] to make the two sys-
tems (3.12 and (3.20 evolve on the same time scale,
which leads to

zZ(m,n+1)=®d?%z(m,n) + G,u,(m,n),
F(m,n+\")=H,z(m,n)+ Q,u,(m,n), (3.2

flm,2(n+\")]=Hz(m,n),

where
[ u[m,2(n+A")] oo H
VM=l yman+an+11)  H27|Ha |
0O O
G,=[PG G], Q2= HG ol

3.3 The 2-D Multirate State-Space Model

Under the assumption that the original 2-D sign@lbject
plane may be modeled as a zero-mean, two-dimensional,
wide-sense stationary random field with known correlation
function, we have derived a discrete vector ma@e21) to
characterize the dynamics of the object plane. By defining
w(m,n)=[x(m,n)” z(m,n)”]” and substituting Eq3.21)

for F(m,n+\") andf[m,2(n+\")] in Eq. (3.12, we can
obtain the final augmented 2-D multirate state-space model

\AN(mv_l):\;vmv

(3.22

w(m,n+1)= Aw(m n)+Bu2(m n,

T(m,n)=Cw(m,n)+v(m,n),

wherem=0,1,..,(M/2)—1 andn=0,1...,(N/2)—1 for an
object plane with dimensiond X N. The vectow(m,n) is
defined as the state vector of the sysi@22 with dimen-
sion determined by that ofm,n) andz(m,n). The param-
eters of the 2-D multirate state-space model are determined
as follows:

&

The 2-D multirate state-space mod8al22) reflects ex-
actly the image formation model described in Fig. 3 with
white driving sourceu(i,j) as input and (i,j) as observa-
tion vector. The model allows us to take into account the
dynamics of the object-plane distributidfi,j) in the pro-
cess of optimal state estimation.

A BH,
0 @2

BQ,
G,

A= , C=[C DHI. (3.23
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Fig. 4 General model of image formation system with adaptive 2-D multirate Kalman filters.

We then investigate the statistical characteristics of the 4 Performance Enhancement through Adaptive
driving source vectou,(m,n) and noisy disturbance vector Kalman Filtering

v(m,n) in the 2-D Kalman filtering configuration. The vec- Recall the assumption that the 2-D sigiiél,j) is charac-
tor u,(m,n) is formed by concatenation of two terized by a single wide-sense stationary process, whose

2(p.+1)-dimensional driving vectorsu[m,2(n+\")], autocorrelation function is of the for(3.14). This may not
u[m,2(n+\")+1]. The second-order statistics @f(m,n) always be t_he case and_can_ in fact lead to undesirable re-
can be easily obtained from those ofm,2(n+\")], sults. Considering the situation when there exists a large
um2(n+\"+1], ie., spread of spatial activity content in the object-plane distri-

butionf(i,j), the two parameterg,, and «, in Eg. (3.14)
may vary considerably from region to region.
(3.24) The dependence of the autocorrelation function on spa-
tial activity can be used in partitioning the object plane
E[uy,(m,n)uy(m, k) ]=Q(m,n)d(n—Kk) f(i,j) and designing the corresponding multirate Kalman
filter for each partition. Figure 4 shows the general model
for m=0,1,..,(M/2)— 1. of an image formation system with adaptive multirate Kal-
man filtering. The original 2-D signdi(i,j) is modeled as
The noisy disturbance vectotm,n) is also assumed to be  a set of white sources passed through a bank of linear gen-
a zero-mean, white Gaussian vector with covariance matrix erating systems, whose impulse responsesbg(ej), p
of the form =1,2,..,k. Consequently, the object plariéi,j) is com-
posed of a set of disjoint partitioned regiofis,. Each of
05 (m,n) these regions is assumed to be a 2-D stationary random
_ _ 0 process with a known autocorrelation function of the form
E[v(m,n)v(m,k)"]= (3.19), i.e.,
afs(m,n)

_R(mn)8(n—K). (3.25 Rp(t,n)=ap exp(— wpnltl —mp,In), p=1.2,.. k.

E[uz(m,n)]=0,

4.0

The Kalman synthesis filter equations for the 2-D sub-

the partitioned regions based on its autocorrelation function

- —_— ~ Rp(t,n) and the basic signal modé3.12) for optimal 2-D
w(m,n)=[1—K(m,n)CJAw(m,n—1)+K(m,n)r(m,n), signal reconstruction from noisy subband components in an
(3.26 adaptive mode. The adaptive multirate Kalman filter can be
o . viewed as a collection dt separate multirate Kalman fil-
K(m,n)=P(m,n)CTCP(m,n)C™+R(m,n)]" %, (3.26b ters with a selection rule that determines which of ke
filters is used for signal reconstruction, based on the obser-
vation vectorr(i,j).
The two key issues involved in the design of a 2-D
adaptive multirate Kalman filter ard) the partitioning of
~ . the object pland(i,j) based on the spatial activity content,
with  w(m,—1)=w,, P(m—-1)=P, for m=0, and (2) the construction of a multirate Kalman filter for
1,...,M/2)-1 andn=0,1,..,(N/2)— 1. TheP(m,n) and each partition(}, .
K(m,n) in Eq. (3.26 are the filtering state error covariance There are a number of ways in which the object plane
matrices and the Kalman-filter gain, respectively. f(i,j) can be partitioned. One simple and feasible approach

P(m,n+1) =AT[I — K(m,n)E]P(m,n)K”rgQ(m,n)gT,
(3.260
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is the so-called block partitioning on the basis of the vari- =(—1)"h(n), while the corresponding synthesis filter bank
ance within the block. The partitioning scheme is given as js given by go(n)=2h(n) and g;(n)=—2(—1)"h(n).
follows: The 2x2 subband decomposition of test image is imple-
mented through two 1-D separate analysis filter banks
{h?,hi}i—o1, with hf(n)=h{(n)=h;(n), i=0,1.

Two quantitative measures are defined in our simulation
2. The variance of each blocki(m,n) is computed,  to reflect the input noise level and reconstruction perfor-

1. The object pland is divided into blocks of sizel
X d, resulting in the block sequen¢& (m,n)}.

which is defined as Vang,n)== jycmmnml f(i.]) mance. We define
—n(m,n)]?, where »(m,n) is the mean for block
M(m,n). Ziy™"(k,1?

, mn=0,1, (5.1

SNR™"=10 logg =—— 73
3. A threshold operation is applied to segment the vari- R’ glO[Ekam‘”(k,l)2

ance Var(,n) so that the object plané is parti-
tioned into regionsQ,, p=12,..k. The block  Wherey™"(k,l) andv™"(k,I) are the component and noise

M(m,n) is classified as regionQ, if a, ; in subband f,n), respectively. We denote SNR as
<Var(m,n)<a,, where the threshold value, is SNR, since we adopted the same SNR level in each sub-
chosen subjectively according to the range of band in our simulation. Another measure, SN used to
Var(m,n) and the number of regions desired. indicate the reconstruction performance and defined as

We then proceed to develop the 2-D multirate state-
space model for the regiofd,. Referring to the general SNR =10 log,
signal formation model described in Fig. 4, the linear gen-
erating systen(i,j) can be represented equivalently by a
vector dynamical model of the forit#.2): where f(k,1) and f(k,1) denote the original and recon-
structed 2-D signal, respectively.

(5.2

Siaf(k,1?
Ltk —F(k112)

zo(m,n+1)=d5z,(m,n) + Gy, U, A(M,N),
Case 1: Natural image with fixed model. The test im-

lz:(m,nH\r):Hp,zzp(m,n)+vazuplz(m,n), (4.2 age “Hillside” is of size 160<160x8 [Fig. 5a)]. The
image is converted to zero mean prior tX2 subband
flm,2(n+\")]=H,z,(m,n). decomposition. Its autocorrelation function is obtained

from the entire image without partitioning and found to
The model(4.2) is constructed specifically for the region have the form R(t,n)=1168.3 exp{-0.15t|—0.22n|).
1, and has the similar form &8.21). The model4.2) can The vertical extent oh{ is 2(p°+1)=10 for the given

then be combined with the basic signal modgl12 to analysis filter bank. A 10-dimensional vector dynamical
yield the multirate statespace moddl.3) for the region model of the image is constructed on the basis of its
Q- R(t,n).>
o . Figure §b) shows the X2 subband decomposition of
Wp(m,n+1)=A,wy(m,n)+Byup o(m,n), the image “Hillside.” White additive noise at different
' 4.3 :

( SNR levels was added to all the four subband images. The

T(m,n)=Cowy(m,n)+v(mn), p=1.2,..k. variance of the white noise was adjusted so that the SNR

level on each subband image was kept the same. Figure 6
On the basis of the mOdeK(D,gp,Ep), a set of multirate demonstrates the reconstruction performance comparison
Kalman filters are constructed to provide the optimal esti- with both the proposed 2-D multirate Kalman filtering and
mate of the original 2-D signdi(i,j) restricted to region  the conventional PR synthesis filters at different SNR lev-
QO els. Figure &d) shows the noise-corrupted subband image

at SNR=0 dB. Figures &) and 5f) represent the recon-
5 Numerical Results and Discussions structed images at SNR O dB with the conventional filter-
Computer simulations were carried out to show the feasi- @k and the Kalman filtering approach, while Figé)s
bility and effectiveness of the proposed 2-D multirate Kal- nd h) depict the results at SNR8 dB. It is observed
man filtering for optimal 2-D signal reconstruction from that the improvement in reconstruction SNR with the pro-
noisy subband systems. We compared the performance ofposed 2-D multirate Kalman filtering is also considerable,
the proposed 2-D multirate Kalman filter with that of the especially in the portion of low SNR The noise effects are
conventional PR filter banks for 2-D signal reconstruction well suppressed, even at extremely low SNRy. 5(f)]: the
at different noise levels. The simulation was implemented main structure of original image is still distinguishable on

on the SGI/R4000 platform with Matlab and C. the reconstructed image with 2-D multirate Kalman filter-
We adopted a set of two-band QMF PR filter banks ing.

of length 8 in our simulation, which is defined as

h(n)=[0.0094 —0.0707 0.0694 0.4900 0.4900 0.0694  Case 2: Natural image with adaptive model. ~ The test
—0.0707 0.009% with n ranging from —4 to 3. The image “Hillside” was partitioned into two regions based
analysis filter bank is defined Byy(n)=h(n) andh(n) on their variance distributions. The segmented image is dis-

p-
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Region-1

@ )

Original image 2x2 subband
Hillside of size 160x160 decomposition of Hillside

© ®

Reconstruction image Reconstruction image
subband image at with conventional PR filter with 2-D multirate Kalman
SNR, =0 db banks at SNR, =0 db filter at SNR, =0 db

(h) - @

Reconstruction image Reconstruction image Reconstruction image
with conventional PR filter with 2-D fixed-model with 2-D adaptive multirate
banks at SNR, = 8 db multirate Kalman Kalman
filter at SNR, =8 db filter at SNR, =8 db

Fig. 5 (a) Original image “Hillside” of size 160 160. (b) 2 X2 subband decomposition of “Hillside.”
(c) Partitioned image. (d) Noise-corrupted subband image at SNR;=0 dB. (e) Reconstructed image
with conventional PR filter banks at SNR;=0 dB. (f) Reconstructed image with 2-D multirate Kalman
filter at SNR;=0 dB. (g) Reconstructed image with conventional PR filter banks at SNR;=8 dB. (h)
Reconstructed image with 2-D fixed-model multirate Kalman filter at SNR;=8 dB. (i) Reconstructed
image with 2-D adaptive multirate Kalman filter at SNR;=8 dB.
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T ' ; Computer simulation results with a natural image dem-
lzkfaﬁé?ﬁ»f%l"mﬁrﬂi?xﬁmmamm _— - B onstrate considerable improvements in the SHRthe re-
‘ L constructed 2-D signal, at various noise levels, with the
—10k ] L FIOE gy proposed 2-D multirate Kalman filtering approach over
2 1 L 1 those with conventional PR synthesis filters.
é P I T //,f”/ - We further present a 2-D adaptive multirate Kalman fil-
§ [ ; tering scheme based on image segmentation. The partition-
& L : ‘ : : ‘ | second-order statistics of the object-plane distribution func-
: 1 : : 1 tion and provides the potential for further performance en-
ol ] RS AU e ] hancement.
% 2 7 6 8 10 12
SNR levels

Fig. 6 Reconstruction SNR versus additive-noise SNR levels for

natural image “Hillside” of size 160X 160. References
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