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NOTE

FURTHER INSPECTION OF THE
STOCHASTIC GROWTH MODEL
BY AN ANALYTICAL APPROACH

SAU-HIM PAUL LAU
University of Hong Kong

It has been argued that a clear understanding of the stochastic growth model can best be
achieved by working out an approximate analytical solution. This paper follows that idea
but streamlines the presentation of the loglinear approximate solution for the neoclassical
model of capital accumulation. By focusing on the partial elasticity of capital stock with
respect to its lag term, this paper is able to confirm analytically some conclusions based on
numerical calculations in previous papers, and to clarify why a simpler solution arises in
several special cases.
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1. INTRODUCTION

The neoclassical model of capital accumulation has been the main framework
for examining long-run growth issues for several decades. Both the version with
constant saving rates [Solow (1956), Swan (1956)] and the version with a represen-
tative agent maximizing an intertemporal utility function [Cass (1965), Koopmans
(1965)] have been extensively examined and applied. The model has gained fur-
ther popularity recently as the advocates of the real-business-cycle approach [e.g.,
Prescott (1986), King et al. (1988)] suggest applying the dynamic stochastic per-
fectly competitive general equilibrium framework (usually extended to include
labor–leisure choice and other relevant variables such as productivity shock and
government expenditure) to examine short-run fluctuations together with long-run
growth.

Although stochastic growth models have become more and more popular in
macroeconomics, non-economists and perhaps even economists in other speciali-
ties do not seem to become more familiar with the details of the real-business-cycle
approach. Part of the reason is that most papers adopting this approach rely on com-
putational methods to obtain the equilibrium solution. As mentioned by Campbell
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(1994) and Romer (1996), the mixture of linear and loglinear elements in the model
makes it impossible to obtain an analytical solution in general, and thus necessary
to resort to the use of computational methods for quantitative analysis. The only
known case with an exact analytical solution occurs when intertemporal elasticity
of substitution is one and capital depreciates completely in one period [Long and
Plosser (1983)]. Unfortunately, the usefulness of this example is limited because
the assumption of complete depreciation of capital in one period is extremely
unrealistic.

Campbell (1994) argues that an analytical approach would convey better than a
purely computational approach the usefulness of the stochastic growth model to the
reader. To overcome the impossibility of obtaining an exact analytical solution for
more general cases, he uses the loglinear approximation, which gives the correct
solution in the special case that can be solved exactly. Specifically, he derives
an approximate analytical solution by loglinearizing the Euler equation and the
intertemporal resource constraint.

This paper follows the preceding idea but streamlines the derivation of the
loglinear approximate solution for the neoclassical model of capital accumulation.
Besides having a shorter presentation (which is, arguably, also easier to follow),
the slightly modified method used in this paper enables (i) the derivation of further
analytical results to confirm two conclusions based on computational methods in
previous papers and (ii) the clarification of why simpler analytical solution of the
stochastic growth model arises in several special cases.

The remaining parts of this note are organized as follows: Section 2 investigates
the neoclassical model of capital accumulation (with fixed labor supply), Section 3
focuses on the analytical results, and Section 4 concludes.

2. LOGLINEAR APPROXIMATE SOLUTION TO NEOCLASSICAL
MODEL OF CAPITAL ACCUMULATION

This section considers the loglinear approximation [as in King et al. (1988),
Campbell (1994)] to the neoclassical growth model with optimizing agents [Cass
(1965), Koopmans (1965)]. In particular, with some standard assumptions on the
functional forms about technology and preference, it derives an approximate ana-
lytical solution by loglinearizing the Euler equation and the intertemporal resource
constraint around the steady-state growth path, so that quantitative issues can be
examined.

The closed economy is populated by a constant and large number of identi-
cal agents (consumer-producers). The production technology is represented by a
standard Cobb–Douglas production function,

Yt = At F
(

Kt , (1 + γx )
t Nt

) = At
[
(1 + γx )

t Nt
]α

K 1−α
t = (1 + γx )

αt At K 1−α
t ,

(1)
where γx ≥ 0, α(0 < α < 1) is the exponent on labor in the production function,
the (inelastically supplied) labor input at each period Nt has been normalized
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to be 1, and Yt and Kt are, respectively, the output and the associated capital
input at period t .1 (Because labor input has been normalized to 1, Yt and Kt

can also be interpreted, respectively, as output per worker and capital per worker.)
Technological changes have been decomposed into two components: deterministic
and stochastic. The deterministic component is labor augmenting, with the rate of
exogenous technological progress given by γx . On the other hand, At is a random
shock to technology, which is assumed to be a first-order autoregressive process,

(ln At − ln A) = φ(ln At−1 − ln A) + εt , (2)

where−1≤φ≤1. The coefficientφ measures the persistence of technology shocks,
and ln A is the unconditional mean of ln At .

On the preference side, it is assumed that the representative agent chooses a
consumption path to maximize expected lifetime utility,

Et

∞∑
j=0

β jU (Ct+ j ) = Et

∞∑
j=0

β j C
1− 1

σ

t+ j − 1

1 − 1

σ

, (3)

where Et is the expectation operator conditional on the information set at period
t, β is the subjective time discount factor, σ(σ > 0) is the intertemporal elasticity
of substitution, and Ct is consumption at period t . The intertemporal resource
constraint is described by

Kt+1 = (1 − δ)Kt + Yt − Ct , (4)

where δ (0 ≤ δ ≤ 1) is the depreciation rate per period, and the initial level of capital
is given.

It is well known that along the (stochastic) steady-state growth path, output,
consumption, and capital all grow at a average rate of γx . To transform a growing
economy (when γx > 0) to a “no-growth” economy, define the variable per unit of
effective labor as the variable per worker divided by (1 + γx )

t , and denote it by
lowercase letter [such as ct = Ct/(1 + γx )

t ]. With this transformation, (1) and (4)
lead to

(1 + γx )kt+1 = (1 − δ)kt + At k
1−α
t − ct . (5)

Moreover, it is easy to show that the representative agent is maximizing an equiv-
alent intertemporal utility function defined in terms of consumption per unit of
effective labor,

Et

∞∑
j=0

(βx )
j c

1− 1
σ

t+ j − 1

1 − 1

σ

, (6)

where the effective discount factor βx differs from β due to the transformation of
the preference specification and is given by

βx = β(1 + γx )
1− 1

σ . (7)
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[See, e.g., King et al. (1988, Sec. 2.4) regarding the transformation of the preference
specification.] To guarantee finiteness of lifetime utility, the restriction βx < 1 is re-
quired. Note that, when σ = 1, the constant intertemporal elasticity-of-substitution
utility function in (3) becomes ln Ct+ j , and the corresponding utility function in
(6) becomes ln ct+ j .

The first-order condition for optimal choice of this model, given the objective
function (6), and the constraints (2) and (5), is given by

βx Et

{
c
− 1

σ

t+1

[
1 − δ + (1 − α)At+1k−α

t+1

]} = (1 + γx )c
− 1

σ
t . (8)

The optimal solution of the economy, in terms of consumption, capital, and tech-
nology shock, is described by the system of three nonlinear expectational differ-
ence equations: (2), (5), and (8).2 The optimal choice also satisfies a transversality
condition.

For the nonlinear system of optimal choice in this economy, an exact analytical
solution is not possible except for the special case that δ = 1 and σ = 1 [Long
and Plosser (1983), McCallum (1989)]. Campbell (1994) argues that an analytical
approach to the stochastic growth model generates important insights about the
dynamic effects of different shocks to the economy, and suggests loglinear ap-
proximations of the Euler equation and the intertemporal resource constraint. The
following analysis also adopts this approach, but modifies the method slightly and
presents further results based on an analytical approach. In particular, the following
analysis expresses the approximate solution in terms of fundamental preference
and technology parameters, instead of the real interest rate used by Campbell
(1994). Although expressing the approximate solution in terms of the real interest
rate is useful for numerical calculations [as done by Campbell (1994, Sec. 2.6)
and, indirectly, in Table 1 of this paper], expressing the solution in terms of fun-
damental parameters allows the derivation of (23), below. That equation makes it
possible to obtain analytical results regarding the effects of changes in fundamen-
tal parameters, and to show that simpler solutions of the stochastic growth model
arise in some special cases.

To obtain the loglinear approximation, first use the Euler equation and the in-
tertemporal resource constraint to get the (nonstochastic) steady-state values of k
and c, when At = A. Equations (5) and (8) imply that the steady-state values are
related by

1 − δ + (1 − α)Ak−α = 1 + γx

βx
, (9)

and

c =
[

1 + γx − βx (1 − δ)

βx (1 − α)
− (δ + γx )

]
k. (10)

Next, linearize (5) and (8) around ln k, ln c, and ln A. Linearizing (8) leads to

Et [(ln ct+1 − ln c) + θck(ln kt+1 − ln k) − θcA(ln At+1 − ln A)] = (ln ct − ln c),
(11)



752 SAU-HIM PAUL LAU

where

θck = σα[1 − βx (1 − δx )], (12)

θcA = σ [1 − βx (1 − δx )], (13)

and δx , which can be interpreted as the effective depreciation rate for the trans-
formed problem, is defined as

δx = δ + γx

1 + γx
. (14)

It is easy to see that 0 ≤ δx ≤ 1. Similarly, linearizing (5) leads to

ln kt+1 − ln k = θkk(ln kt − ln k) − θkc(ln ct − ln c) + θk A(ln At − ln A), (15)

where

θkk = 1

βx
, (16)

θkc =
[

1 − βx (1 − δxα)

βx (1 − α)

]
, (17)

θk A =
[

1 − βx (1 − δx )

βx (1 − α)

]
. (18)

Equations (2), (11), and (15) form a system of loglinear expectational difference
equations in consumption, capital stock, and the technology shock. This system
represents an approximation to the system of nonlinear expectational difference
equations of the same variables: (2), (8), and (5).

There are many ways to solve the above loglinear dynamic system. To compare
with the results of Campbell (1994), this section uses the method of undetermined
coefficients. However, the emphasis is on the partial elasticity of capital stock with
respect to its lag term, ηkk , defined as (20) below, or as Equation (20) in Campbell
(1994). This coefficient is focused because the results of Lau (1999) regarding
the presence of unit roots in stochastic endogenous growth models suggest that
ηkk = 1 as α tends to 0. (The limiting case of the neoclassical model of capital
accumulation with no exogenous technological progress as α tends to zero is an
endogenous growth model; see note 1 also.) Moreover, it is observed from Table 1
of Campbell (1994) that ηkk tends to 1 as σ tends to 0, but it is not clear whether
there are similar special results for other coefficients such as the partial elasticity of
consumption with respect to current capital, as given in Equation (19) of Campbell
(1994). Focusing on the equation of motion of the capital stock is likely to yield
more interesting results.

To this purpose, the following analysis first transforms the system of first-order
difference equations in capital and consumption, (11) and (15), into a second-order
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difference equation in capital:

Et

{
1

θkc
[(ln kt+2 − ln k) − θkk(ln kt+1 − ln k) − θk A(ln At+1 − ln A)]

− θck(ln kt+1 − ln k) + θcA(ln At+1 − ln A)

}

= 1

θkc
[(ln kt+1 − ln k) − θkk(ln kt − ln k) − θk A(ln At − ln A)]. (19)

Second, guess that the solution of capital in terms of its lag and the technology
shock as

(ln kt+1 − ln k) = ηkk(ln kt − ln k) + ηk A(ln At − ln A), (20)

where ηkk and ηk A are unknown coefficients to be determined.
Substituting (20) into (19) and using the result Et (ln At+1 − ln A) = φ(ln At −

ln A), which can be derived from (2), lead to the following equation:

η2
kk(ln kt − ln k) + ηkkηk A(ln At − ln A) + ηk Aφ(ln At − ln A)

− θkk[ηkk(ln kt − ln k) + ηk A(ln At − ln A)] − θk Aφ(ln At − ln A)

− θkcθck[ηkk(ln kt − ln k) + ηk A(ln At − ln A)] + θkcθcAφ(ln At − ln A)

= ηkk(ln kt − ln k) + ηk A(ln At − ln A) − θkk(ln kt − ln k)

− θk A(ln At − ln A). (21)

The two unknown coefficients are obtained from (21) as follows: First equate coef-
ficients on (ln kt − ln k) to find ηkk , and then equate coefficients on (ln At − ln A)

to find ηk A, given ηkk .
Equating the coefficients on (ln kt − ln k) gives the following quadratic

equation:

η2
kk − (1 + θkk + θkcθck)ηkk + θkk = 0. (22)

It can be shown that there are two unequal positive real roots to this quadratic
equation. Moreover, the larger root is excluded since the transversality condition
would otherwise be violated.3 Therefore, ηkk is given by

ηkk = (1 + θkk + θkcθck) −
√

(1 + θkk + θkcθck)2 − 4θkk

2
. (23)

Since σ > 0, 0 < βx < 1, 0 < α < 1, and 0 ≤ δx ≤ 1, it is easy to show from (12),
(16), and (17) that θck > 0, θkk > 0, and θkc > 0. As a result, ηkk in (23) is between
0 and 1. Once ηkk is found, ηk A can be obtained by
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TABLE 1. Numerical values of ηkk for a quarterly modela

σ

α 0.2 0.5 1 1.5 2 5

0.2 0.997 0.995 0.992 0.989 0.987 0.977
0.33 0.995 0.990 0.985 0.981 0.977 0.962
0.58 0.987 0.978 0.967 0.959 0.952 0.922
0.67 0.983 0.971 0.957 0.947 0.938 0.902

aThe number in each cell is ηkk . Parameter σ is the intertemporal elasticity of
substitution and α is the exponent on labor in the production function. The
assumed values of other parameters are δ = 0.025 and γx = 0.005. Moreover,
to make the steady-state real interest rate equal to 0.015, the implied value of
βx is 0.990.

ηk A = θkcθcAφ + θk A(1 − φ)

1 − φ + θkk − ηkk + θkcθck
. (24)

Equation (23) shows that ηkk depends on parameters βx , σ, α, and δx (with δx

further depending on δ and γx ).4 Table 1 reports some numerical values of ηkk

for a quarterly model. The focus is on the variation of ηkk with respect to σ and
α. The value of the intertemporal elasticity of substitution (σ ) is set at different
values to cover a wide range of possibilities. Regarding the exponent on labor in
the production function (α), the baseline value is 0.67. Other values examined in
Table 1 include 0.58 [as used by King et al. (1988)], 0.33 [as suggested by Mankiw
et al. (1992) for a neoclassical growth model augmented with human capital], and
0.2 [for a model with a broad concept of capital, so as to be consistent with the
convergence speed of 0.02 at an annual rate reported by Barro and Sala-i-Martin
(1992)]. The other parameters are chosen to resemble the long-run behavior of the
U.S. economy; see Campbell (1994) also. Specifically, it is assumed that δ = 0.025
(10% at an annual rate) and γx = 0.005 (2% at an annual rate). Moreover, βx is
chosen so as to make the steady-state real interest rate equal to 0.015 (6% at an
annual rate).

First, it is observed from Table 1 that ηkk decreases with respect to σ . Campbell
(1994, p. 474) also reports this pattern based on numerical calculations (which are
the same as those in row 4 of Table 1, with α = 0.67). He discusses the responses
of various coefficients (including the partial elasticity of capital stock with respect
to lag capital) in terms of income and substitution effects as the intertemporal
elasticity of substitution changes. Second, it is observed from Table 1 that ηkk

decreases with respect to α. For the neoclassical growth model with nonstochas-
tic technology, Barro and Sala-i-Martin (1992, p. 226) present some numerical
calculations to show that the rate of convergence to the steady-state growth path
is increasing in the exponent of labor in the production function. Because ηkk is
related negatively to the rate of convergence when technology is nonstochastic,
the numerical calculations presented in Table 1 are consistent with their results.
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3. FURTHER ANALYTICAL RESULTS

One advantage of the analytical approach used in this paper is its potential ability
to confirm conjectures suggested by computational results. Specifically, since ηkk

in (23) is expressed in terms of the underlying parameters, it can be shown that

∂ηkk

∂σ
= 1

2

[
1 − 1 + θkk + θkcθck√

(1 + θkk + θkcθck)2 − 4θkk

]
θkc

∂θck

∂σ
. (25)

Since θkk > 0, θkc > 0, θck > 0, and ∂θck/∂σ = α[1 − βx (1 − δx )] > 0, it is easy to
see that ∂ηkk/∂σ < 0. The partial elasticity of capital with respect to its lag term
decreases monotonically in the intertemporal elasticity of substitution.

Similarly,

∂ηkk

∂α
= 1

2

[
1 − 1 + θkk + θkcθck√

(1 + θkk + θkcθck)2 − 4θkk

](
θkc

∂θck

∂α
+ θck

∂θkc

∂α

)
, (26)

which is negative, since θkk > 0, θkc > 0, θck > 0, ∂θck/∂α = σ [1 − βx (1 −
δx )] > 0, and ∂θkc/∂α = [1 − βx (1 − δx )]/[βx (1 − α)2] > 0. The partial elasticity
of capital with respect to its lag term decreases monotonically in the exponent of
labor in the production function. The pattern of the variation of ηkk with respect
to σ and α based on numerical calculations in Table 1 is confirmed analytically.

The analysis of the stochastic growth model also leads to simple solutions in
some special cases. The first case is that as σ tends to 0, ηkk in (23) tends to 1. This
(zero intertemporal elasticity of substitution) case has been shown numerically in
Table 1 of Campbell (1994), and its relation to the permanent-income hypothesis
has been discussed. A similar second case is when α tends to zero (and γx = 0). In
this (endogenous growth) case, ηkk also tends to 1. When either σ or α tends to 0,
it can easily be observed from (12) that θck tends to 0. As a result, 1 + θkk + θkcθck

tends to θkk + 1,
√

(1 + θkk + θkcθck)2 − 4θkk tends to θkk − 1, and ηkk in (23)
tends to 1.

The third case is when δ = 1 and σ = 1 [as considered by Long and Plosser
(1983)]. In this case, an exact analytical solution is possible because the equilib-
rium consumption/output ratio turns out to be constant. Using various formulas
in Section 2, it can be shown that θck = α and θkc = [1 − βx (1 − α)]/[βx (1 − α)].
Therefore,

1 + θkk + θkcθck = 1

βx (1 − α)
+ (1 − α),

and √
(1 + θkk + θkcθck)2 − 4θkk = 1

βx (1 − α)
− (1 − α).

As a result, the complicated formula of (23) is reduced to a simple result that
ηkk = 1 − α. Moreover, formula (24) gives ηk A = 1.5
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4. CONCLUSION

Campbell (1994) suggests that an analytical approach would convey better the
usefulness of stochastic growth models. An approximate analytical solution is
able to provide more insights about the dynamic effects of the underlying shocks.
It is also useful to provide analytical results regarding some economic questions,
such as how the convergence rate of a nonstochastic growth model is related to the
fundamental parameters.

This paper continues on working from an analytical approach, and streamlines
the presentation of the loglinear approximate solution for the basic neoclassical
model of capital accumulation by modifying the analysis of King et al. (1988) and
Campbell (1994). It first derives the nonlinear system of optimal choice, and then
loglinearizes the Euler equation and the intertemporal resource constraint to ob-
tain the approximate system. In this respect, the approach follows that of Campbell
(1994). However, it differs from Campbell’s paper in (i) focusing on the partial
elasticity of capital stock with respect to its lag term instead of the partial elasticity
of consumption with respect to current capital, and (ii) expressing the various elas-
ticities in terms of the underlying preference and technology parameters instead of
the real interest rate. As a result, this paper is able to show that simpler analytical
solution arises in several special cases (because the term inside the square root in
the right-hand side of (23) can be simplified). Furthermore, it shows analytically
that the partial elasticity of capital with respect to its lag term (which is negatively
related to the convergence rate of the nonstochastic neoclassical growth model)
is decreasing in the exponent of labor in the production function (α) and in the
intertemporal elasticity of substitution (σ ). These analytical results provide con-
firmation to some conclusions based on numerical calculations in, among others,
Barro and Sala-i-Martin (1992) and Campbell (1994).

NOTES

1. The limiting case of this model with no exogenous technological progress (γx = 0) as α tends
to zero is a stochastic version of the AK endogenous growth model [Rebelo (1991)]. Note that the
specification in (1) is similar, but not identical, to Equation (1) of Campbell (1994). If the latter
specification is used instead, then the limiting case as α tends to zero and γx = 0 is the nonstochastic
AK model.

2. To economize on the use of words, consumption per worker, consumption per effective unit of
labor, deviation of consumption per effective unit of labor from the steady-state value, etc., are simply
represented by the term “consumption” in this paper, whenever the precise meaning can easily be
understood in the context.

3. It can be shown that the larger root of (22) is larger than θkk = (βx )
−1; see also King et al. (1988,

p. 206). On the other hand, Campbell (1994, p. 471) mentions that his Equation (26) is chosen because
the resulting steady state is locally stable. Equivalently, the other (unstable) root is ruled out so that the
transversality condition would not be violated.

4. On the other hand, ηk A in (24) depends on these parameters as well as φ. In unreported numerical
calculations as well as in Campbell (1994, Table 1), it can be observed that ηk A is not monotonic with
respect to either σ or φ. As there is no clear pattern in the variation of ηk A with respect to the parameters,
the remaining analysis only focuses on ηkk .
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5. Combining (15) and (20) gives (ln ct − ln c) = [(θkk − ηkk)/θkc](ln kt − ln k) + [(θk A − ηk A)/

θkc](ln At − ln A). When δ = 1 and σ = 1, this equation is simplified to (ln ct − ln c) = (1 − α)(ln kt −
ln k) + (ln At − ln A). Since the production function (1) implies (ln yt − ln y) = (ln At − ln A) + (1 −
α)(ln kt − ln k), it is easy to see that consumption/output ratio is constant.
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