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In this article, we consider a discrete-time insurance risk model+An autoregressive
model is used to model both the claim process and the premium process+ The prob-
ability of ruin is examined in a model with a constant interest rate+Both exponential
and nonexponential upper bounds are obtained for the ruin probability of an infinite
time horizon+

1. INTRODUCTION

Ruin probability arises in many applied probability models; for example, in queuing
theory, it is the tail probability of the equilibrium waiting time+ Ruin probability of
the insurance risk model has been extensively studied+ Compared to the classical
model without investment incomes, there is a relatively smaller number of articles
on ruin problems under the model with interest incomes+ Sundt and Teugels@15#
considered a compound Poisson model with a constant interest force+By using tech-
niques similar to the classical model, upper and lower bounds for the ruin probability
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were obtained+Paulsen and Gjessing@14# considered a diffusion-perturbed classical
risk model+ Under the assumption of stochastic investment incomes, a Lundberg-
type inequality was obtained+ Paulsen@13# provided an excellent survey on this
subject+ Yang @16# considered a discrete-time risk model with a constant interest
force+ By using martingale inequalities, both a Lundberg-type inequality and non-
exponential upper bounds for ruin probabilities were obtained+

In actuarial science, the classical models are usually based on the independency
assumptions+ However, because of the increasing complexity of insurance and re-
insurance products, actuaries have been paying an increasing amount of attention to
the modeling of dependent risks+ There are two types of correlation+ The first type is
the correlation between lines of businesses+ See the recent works by Dhaene and
Goovaerts@5,6# , Goovaerts and Dhaene@9# , Müller @11,12# , Denuit, Genest, and
Marceau@3# ,Ambagaspitiya@1# , Dhaene and Denuit@4# , and Hu and Wu@10# + The
second type is the correlation between the current claim and previous claims+ Early
contribution can be found in Gerber@7,8# + The latter is in the spirit of this article+ In
this article, we extend the results of Yang@16# to the correlated risk case+We con-
sider a discrete-time risk model with a constant interest rate and assume that both the
premiums and the claims are correlated random variables+ This model can also be
considered as an extension of the model in Bowers, Gerber, Hickman, Jones, and
Nesbitt@2# + The main difference between the model in this article and the one in
Bowers et al+ @2# is that we introduce the interest incomes+ Both exponential and
nonexponential upper bounds for the ruin probability are obtained+ The usefulness
of the upper bounds obtained in this article and the relationship between the param-
eters of the model and the ruin probabilities are illustrated by some numerical
examples+

The article is organized as follows+ Section 2 presents the model and some
assumptions+ A Lundberg-type inequality is given in Section 3, and Section 4 con-
tains the nonexponential bounds+ In Section 5, some numerical results are included
to illustrate the accuracy of the bounds obtained in this article+

2. THE MODEL

In classical risk models, we usually assume that the premiums are the same in dif-
ferent but equal length periods and the total amounts of claims in different periods
are independent random variables+ In many cases, this assumption may be unreal-
istic+ Bowers et al+ @2# considered an autoregressive model for the insurer’s claim
costs+ Gerber@8# assumed that the surplus process could be written as an initial
surplus plus the annual gains and it used a linear model to model the annual gains+
The ruin probability was considered in that article by using a martingale argument+
Similar work can also be found in Gerber@7# + In this article, we extend previous
models by using an autoregressive process to model both the premiums and the
claims+We also include investment incomes in our model+

Suppose that$W1,W2, + + + % is a sequence of independent and identically distrib-
uted~i+i+d! nonnegative random variables+ Let the common distribution function of
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Wi beG~x!5P~W# x! andE~W! , 1`,where an arbitraryWi is denoted byW+We
assume that$X1,X2, + + + % is a sequence of nonnegative random variables and

Xk 5 Wk 1 bXk21, k 5 1,2,3, + + + ,

X0 5 x0,

where 0# b , 1+ Here, Xi denotes the premium collected during the time interval
@i 2 1, i # , or thei th year+We assume that the premiums at the beginning of a sub-
sequent year are an upgrade of last year’s premium plus a random noise term+ One
possible interpretation of this model is the following: The parameterb can be inter-
preted as the proportion of last year’s business, which will remain in this year’s
portfolio+ The parameterb measures the degree of correlation+ If b 5 0, then the
premium process becomes an i+i+d+ random sequence and the premium collected at
any time interval is independent of old information+ If b is close to 1, then the process
becomes very dependent+A large part of the old customers will stay in the new time
period+ Wk can be thought of as the premium income in the yeark from the new
business in the yeark+ Suppose we are at time 0 now; then, last year’s premium
income is known+We denote it byx0+

In addition, we assume that$Y1,Y2, + + + % is a sequence of nonnegative random
variables and

Yk 5 Zk 1 aYk21, k 5 1,2,3, + + + ,

Y0 5 y0,

where $Zk% is a sequence of i+i+d nonnegative random variables, independent of
$W1,W2, + + + % and 0# a , 1+Here, Yi denotes the claims during the interval@i 21, i # ,
or the i th year+ Similar to the premium process case, the parametera can be inter-
preted as the proportion of the old business in the new portfolio+At time 0,we know
the claim amount of the last year+ The claim amount of last year is denoted byy0+
Note thata andb are not necessarily equal since this is only one interpretation of the
model+ The model could be applied to different situations+

Let the common distribution function ofZi be F~x! 5 P~Z # x!, where an
arbitrary Zi is denoted byZ and we assume thatEZ , 1`+ This completes the
description of the first-order autoregressive models for the premium and claim
processes+

Remark 1: In the above model, we assume thata $ 0 andb $ 0+ This is necessary
if we want both the premium random variables and the claim random variables to be
nonnegative+ In Bowers et al+ @2# , a first-order autoregressive process was used to
model the claim process and it was assumed that the parameter is in between21
and 1+When the parameter is negative, it is true that the claim process may take a
negative value with a positive probability+However, as long as the expected claim is
positive and the probability of the claim being negative is small, the model is still a
reasonable one~in the sense that it can still be used to fit the practical data and
provides a reasonable approximation to the practical problems; of course, it is an

MARTINGALE METHOD FOR RUIN PROBABILITY 185



incorrect model theoretically!+ In our model, if we do not require the premium and
the claim to be nonnegative with a probability of 1, we can also assume that21 ,
a , 1 and21 , b , 1+ All the results in this article can be extended to this case
without any difficulty+

Now, we can specify the surplus process of an insurance company by the fol-
lowing model+ Let Un be the surplus at timen and letr be the compound interest rate+
Here, we assume thatr is a constant~r $ 0!+ Let x denote the initial surplus+ Then,
the dynamic of the surplus is given by

Un 5 x~11 r !n 1 (
i51

n

Xi ~11 r !n2i11 2 (
i51

n

Yi ~11 r !n2i+ (1)

Here, we assume that the claimYi is paid at the end of the time period and the
premiumXi is paid at the beginning of the time period+ In this article, we will also
assume that the net-profit condition is true; that is,

E @Xi # . E @Yi # +

This condition is equivalent to

12 ai

12 a
E @Z# 1 ai y0 ,

12 bi

12 b
E @W# 1 bix0 (2)

for all i 5 1,2, + + + + The following condition implies condition~2! and it is easy to
check:

E @W# . E @Z# and b $ a+

We define the ruin probability for this model as

c~x, y0, x0! 5 PSø
n51

`

~Un # 0!6U0 5 x,Y0 5 y0,X0 5 x0D+ (3)

Remark 2:The above net-profit condition~2! is only a sufficient condition for the
ruin probability being less than 1+ A necessary condition for the ruin probability
being less than 1 is that

E~Z!

12 av F ~11 r !n 2 1

r
2 va

12 an

12 a
G2

E~W!

12 bv F~11 r !
~11 r !n 2 1

r
2 vb

12 bn

12 b
G

does not tend to infinity asn r `, wherev5 10~11 r !+

In this article,we discuss both exponential and nonexponential upper bounds for the
ruin probability+

3. EXPONENTIAL BOUND

Assume that the moment generating function ofZ exists in an appropriate region+
Suppose thata , ~11 bv2!0v21 andE @W# . E @Z# ; we also assume that there is
anR . 0 satisfying the equation
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EFexpS2
R

12 bv
WDGEFexpS RvZ

12 avDG 5 1, v5 ~11 r !21+ (4)

Then, R is called the adjustment coefficient+

Remark 3: If X[ C ~i+e+, b5 0,Wi 5 C, andC is a constant!, v51, anda5 0, then
R is the adjustment coefficient in the simple discrete-time model without interest
income and correlation+

Remark 4:Under the assumption that the moment generating function ofZ exists,
we can prove that there is anR . 0 satisfying Eq+ ~4!+ Note that the positive solu-
tion of Eq+ ~4! may not be unique+ If this is the case, the adjustment coefficient is
chosen as the smallest positive solution+

Theorem 1: For x $ 0,

c~x, y0, x0! #
exp~2R [x!

E @exp~2RvT ZUT !6T , `#
, (5)

where

ZUn 5 Un 2
av

12 av
Yn 1

b

12 bv
Xn,

T 5 inf $n :Un # 0%,

[x 5 ZU0 +

Inequality (5) is an equality when r5 0.

Proof: ConsideringMn~x! 5 e2Rvn ZUn,

Fn 5 s$Wi ,Zi , i # n%;

that is, Fn is as-field generated by$Wi % i51
n and$Zi % i51

n + Then,

E~Mn~x!6Fn21!

5 EFexpS2RvnSUn 2
av

12 av
Yn 1

b

12 bv
XnDD*Fn21G

5 EHFexpS2Rvnv21S ZUn21 1
1

12 bv
Wn 2

v

12 av
ZnDDG*Fn21J +

From ZUn21 isFn21-measurable, theWn’s are independent random variables, andZn’s
are independent random variables, we have

E~Mn~x!6Fn21!

5 exp~2Rvn21 ZUn21!EFexpS2Rvn21S 1

12 bv
Wn 2

v

12 av
ZnDDG

5 exp~2Rvn21 ZUn21!EFSexpS2RS 1

12 bv
Wn 2

v

12 av
ZnDDDvn21G +
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Becausevn21 5 ~10~11 r !!n21 # 1, wherer is the interest rate andr $ 0, 2xv
n21

~x . 0! is a convex function+ By Jensen’s inequality,

EF2SexpS2RS 1

12 bv
Wn 2

v

12 av
ZnDDDvn21G

$ 2SESexpS2RS 1

12 bv
Wn 2

v

12 av
ZnDDDDvn21

+

From the definition of adjustment coefficient and the assumption that$W1,W2, + + + %
is independent of$Z1,Z2, + + + %, we have

SESexpS2RS 1

12 bv
Wn 2

v

12 av
ZnDDDDvn21

5 1+

So

ESSexpS2RS 1

12 bv
Wn 2

v

12 av
ZnDDDvn21D # 1

and

E~Mn~x!6Fn21! # exp~2Rvn21 ZUn21! +

Then, Mn~x! is anFn-sup-martingale~resp+ a martingale whenr 5 0!+
Let T be the time of ruin and letn0 be a positive integer+ Then, T ∧ n0 is a

boundedFn-stopping time+By using the Doob’s bounded stopping time theorem,we
have

E~M0~x!! $ E~MT∧n0
~x!!;

that is,

E~e2R [x! $ E~e2Rv ~n0∧T ! ZUn0∧T !

5 E~e2RvT ZUT 6T # n0!P~T # n0!

1 E~e2Rvn0 ZUn0 6T . n0!P~T . n0!

$ E~e2RvT ZUT 6T # n0!P~T # n0!+

Letting n0 r 1`, we obtain

E~e2R [x! $ E~e2RvT ZUT 6T , 1`!P~T , 1`!

5 E~e2RvT ZUT 6T , 1`!c~x, y0, x0!+

From this, ~5! is proved+ n

In Bowers et al+ @2# , the insurer’s claim costs are modeled by an autoregressive
process and the premium is assumed to be a constant over different intervals+ We
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assume thatb5 0 ~i+e+, Xi 5 Wi , i 51,2, + + + , are i+i+d+ random variables! and we also
assume that the moment generating function ofZ exists+We now defineR. 0 as the
solution of the equation

E @exp~2RX!#EFexpS RvZ

12 avDG 5 1+

Then, as a special case of Theorem 1, we have the following corollary+

Corollary 1: For x $ 0,

c~x, y0! #
exp~2R [x!

E @exp~2RvT ZUT !6T , `#
,

where

ZUn 5 Un 2
av

12 av
Yn,

T 5 inf $n :Un # 0%,

[x 5 ZU0+

4. NONEXPONENTIAL BOUND

A problem with the above exponential bound is that when the moment generating
function ofZdoes not exist in the appropriate region,we cannot use it+ In such a case,
a special class of functions are used to obtain an upper bound+

We say a distributionB~X ! is a new worse than used~NWU! distribution
if B~x! is a distribution function~d+f+! of a nonnegative random variable and
OB~x! 5 1 2 B~x! and OB~x! OB~ y! # OB~x 1 y! for x $ 0 andy $ 0+We say thatB~x!

is a new better than used~NBU! if OB~x! OB~ y! $ OB~x 1 y! for x $ 0 andy $ 0+ An
important subclass of the NWU class is the class of absolutely continuous distri-
bution with a decreasing failure rate~DFR!, whereB~x! is DFR if the associated
failure rate2~d0dx! ln OB~x! is nonincreasing inx+

The following result provides a nonexponential bound for the ruin probability in
our setup+

Theorem 2: Suppose x2 @av0~12 av!#y0 1 b~11 bv!x0 $ 0, B1~x! is a NWU d.f.,
B2~x! is a NBU d.f., and

EH 1

OB1Sd1

v

12 av
ZD OB2Sd2

W

12 bvDJ # 1 (6)

for all 0 , d1 , 1 and0 , d2 , 1. Also assume that

OB1~ y 2 x! $ OB1~ y!$ OB2~x!%21, y $ x+ (7)
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Then,

c~x, y0, x0! # OB1Sx 2
av

12 av
y0 1 b~11 bv!x0D+ (8)

Proof:

Un 5 x~11 r !n 1 (
k51

n

Xk~11 r !n2k11 2 (
k51

n

Yk~11 r !n2k

5 ~11 r !nSx 2
12 ~av!n

12 av
avy0 1

12 ~bv!n

12 bv
bx0

1 (
i51

n

v i21
12 ~bv!n2i11

12 bv
Wi 2 (

i51

n

v i
12 ~av!n2i11

12 av
ZiD+

Let

Hn 5 )
i51

n 5 OB2Sv i21
12 ~bv!n2i11

12 bv
WiD

OB1Sv i
12 ~av!n2i11

12 av
ZiD 6 +

From Eq+ ~6!, we know thatHn is a supermartingale+ The ruin probability

c~x, y0, x0! 5 PHø
n51

`

~Un , 0!J
5 PHø

n51

` S(
i51

n

v i
12 ~av!n2i11

12 av
Zi 2 (

i51

n

v i21
12 ~bv!n2i11

12 bv
Wi

. x 2
12 ~av!n

12 av
avy0 1

12 ~bv!n

12 bv
bx0DJ

# PHø
n51

` S(
i51

n

v i
12 ~av!n2i11

12 av
Zi 2 (

i51

n

v i21
12 ~bv!n2i11

12 bv
Wi

. x 2
av

12 av
y0 1 b~11 bv!x0DJ

5 lim
Nr`

PHø
n51

N S(
i51

n

v i
12 ~av!n2i11

12 av
Zi 2 (

i51

n

v i21
12 ~bv!n2i11

12 bv
Wi

. x 2
av

12 av
y0 1 b~11 bv!x0DJ + (9)
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Sincex 2 @av0~12 av!#y0 1 b~11 bv!x0 . 0, similar to Yang@16# , we have

c~x, y0, x0!

5 lim
Nr`

PHø
n51

N SS(
i51

n

v i
12 ~av!n2i11

12 av
Zi 2 (

i51

n

v i21
12 ~bv!n2i11

12 bv
WiD1

. x 2
av

12 av
y0 1 b~11 bv!x0DJ

# lim
Nr`

PHø
n51

N S 1

OB1SS(
i51

n

v i
12 ~av!n2i11

12 av
Zi 2 (

i51

n

v i21
12 ~bv!n2i11

12 bv
WiD1D

$
1

OB1Sx 2
av

12 av
y0 1 b~11 bv!x0DDJ

5 lim
Nr`

PH max
1#n#NS 1

OB1SS(
i51

n

v i
12 ~av!n2i11

12 av
Zi 2 (

i51

n

v i21
12 ~bv!n2i11

12 bv
WiD1D

$
1

OB1Sx 2
av

12 av
y0 1 b~11 bv!x0DDJ

# lim
Nr`

P5 max
1#n#N1 OB2S(

i51

n

v i21
12 ~bv!n2i11

12 bv
WiD

OB1S(
i51

n

v i
12 ~av!n2i11

12 av
ZiD 2

$

1

OB1Sx 2
av

12 av
y0 1 b~11 bv!x0D 6

# lim
Nr`

P5 max
1#n#N

)
i51

n 1 OB2Sv i21
12 ~bv!n2i11

12 bv
WiD

OB1Sv i
12 ~av!n2i11

12 av
ZiD 2

$

1

OB1Sx 2
av

12 av
y0 1 b~11 bv!x0D 6

# fSx 2
av

12 av
y0 1 b~11 bv!x0D OB1Sx 2

av

12 av
y0 1 b~11 bv!x0D, (10)
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wheref is a function andf~x2 @av0~12 av!#y01 b~11 bv!x0! #1+ Therefore, this
theorem holds+ n

From Theorem 2, we have the following results+

Corollary 2: Assume x2 @av0~1 2 av!#y0 1 b~1 1 bv!x0 $ 0 and suppose that
B~x! is a NWU d.f. and satisfies the following:

(i) OB~ y 2 x! $ OB~ y!eµx for y $ x.

(ii) E H 1

OBSd1{
v

12 av
ZDJE @e2d2 µ@W0~12bv!# # # 1 for all 0 , d1 , 1 and

0 , d2 , 1.

Then,

c~x, y0! # OBSx 2
av

12 av
y0 1 b~11 bv!x0D+

Corollary 3: Suppose that x2 @av0~1 2 av!#y0 1 b~1 1 bv!x0 $ 0 and B~x! is
a DFR d.f. with a failure rate of µB~x! 5 ~d0dx! ln OB~x! and µ5 limxr`µB~x! . 0

EH 1

OBSd1

v

12 av
ZDJE @e2d2 µ@W0~12bv!# # # 1

for all 0 , d1 , 1 and0 , d2 , 1. Then,

c~x, y0! # OBSx 2
av

12 av
y0 1 b~11 bv!x0D+

5. EXAMPLES

In this section, we present some examples+ The examples are for illustrating the
tightness of the upper bounds in this article and the relationship between the param-
eters of the model and the ruin probabilities+ Application of this model to a real-
world problem and model fitting will be an interesting future research topic+ We
simulate the true ruin probabilities and compare them to the results obtained from
the upper bounds+We will use only the numerators of the derived upper bounds+ It is
not difficult to check that, in our examples, the denominators of the derived upper
bounds are greater than 1+ This will disclose the accuracy of the upper bounds we
obtained in this article+We can see that, in most of the cases, the upper bounds are
about three to five times the true ruin probabilities~except in Example 4!+However,
it is not easy to obtain the true ruin probability in general+The upper bounds, like the
ones in this article, are very easy to obtain, and in most of the practical problems,we
only need a conservative upper bound for the ruin probability+ In the following
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simulations, we used 2000 time intervals so that the true ruin probability could be a
little larger than the simulated results+

Example 1:Let P~X 5 c! 5 1, wherec is a positive constant+We letc 5 1 in this
example+ Z follows a Weibull distribution with a density function given by

fZ~z! 5 2ze2z2
for z . 0+

Let R be the solution to Eq+ ~4!+ The other parameters used in this example are
r 5 0+08 anda 5 0+1+ Then, we haveR5 0+7921+ It is easy to check that all of the
required conditions are satisfied+The simulation results and upper bounds~shown in
parentheses! are given in Table 1+

From Table 1, we can see that ify0 increases when the initial surplusx is fixed,
then the ruin probability also increases+ Sincey0 denotes the initial claim, this is just
saying that when the claim is larger, the ruin probability will be larger+ It is also clear
that when the initial surplus increases, the ruin probability decreases+

Example 2: In this example,we assume that both the premium process and the claim
process follow autoregressive models+We assume thatWandZ are Weibull distrib-
uted+ The density function forZ is the same as that in Example 1 and the density
function forW is given by

fW~w! 5 wew202 for x . 0+

Let r anda be the same as in Example 1 and letb5 0+1+ By solving Eq+ ~4!, we have
the adjustment coefficientR 5 1+40496+ The simulation results and upper bounds
~shown in parentheses! are given in Table 2+

The results from this example indicate that for a fixed initial surplus andy0, the
ruin probability decreases whenx0 increases+ This is because the initial premium is

Table 1. X 5 1 andZ Is Weibull

x 5 1+5 x 5 2 x 5 2+5

y0 5 0 0+0723~0+3048! 0+0593~0+2051! 0+0436~0+1380!
y0 5 0+1 0+0726~0+3073! 0+0594~0+2068! 0+0436~0+1392!
y0 5 0+2 0+0728~0+3098! 0+0594~0+2085! 0+0437~0+1403!
y0 5 0+3 0+0731~0+3123! 0+0596~0+2101! 0+0439~0+1414!
y0 5 0+4 0+0736~0+3148! 0+0597~0+2119! 0+0441~0+1426!
y0 5 0+5 0+0741~0+3174! 0+0602~0+2136! 0+0442~0+1437!
y0 5 0+6 0+0744~0+3199! 0+0603~0+2153! 0+0443~0+1449!
y0 5 0+7 0+0745~0+3225! 0+0605~0+2171! 0+0443~0+1461!
y0 5 0+8 0+0745~0+3251! 0+0610~0+2188! 0+0445~0+1473!
y0 5 1 0+0750~0+3304! 0+0615~0+2224! 0+0449~0+1497!
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large ifx0 is large+ Since the premium process follows a time-series model, x0 being
large will result in the premiums during later time periods also being large+

Example 3:Let P~X5 c! 51, wherec is a positive constant+ If Z; N~µ,s2!, then
R is the solution to

e2cRE
2`

1`

eRvx0~12av!
1

M2ps
e2~x2u!202s2

dx 5 1+

We can work out that

R 5
2~c 2 @uv0~12 av!#!

s2~v0~12 av!!2 +

Let the parameters beµ510,s2 532, r 50+08, a50+5, andc522+ThenR50+3557
and all of the conditions in this article for obtaining the upper bound are satisfied+
Note that the Normal distribution may take negative values; however, in our exam-
ple, it has a very small probability of taking a negative value~,1%!+ Also, for the
Normal distribution, the adjustment coefficientRhas a closed-form expression+ For
this reason, in the literature, the Normal distribution has been used as a claim ran-
dom variable distribution+An example of this is in the standard textbook by Bowers
et al+ @2# + The simulation results and upper bounds are given in Table 3

The results in Table 3 clearly indicate that when the initial surplus increases, the
ruin probability decreases+ It again shows that asy0 increases, the ruin probabilities
also increase+

Example 4:Let P~X 5 c! 5 1, wherec is a positive constant+ Assume thatZ ;
Gamma~n,l!+ Then, R is the solution to

e2cRE
0

1` 1

G~n!
e2lxlnxn21eRvx0~12av! dx 5 1;

Table 2. Both X andZ Are Weibull

x0 5 0 x0 5 0+2 x0 5 0+4 x0 5 0+6 x0 5 0+8

x 5 1+5,
y0 5 0

0+0417
~0+1215!

0+0415
~0+1178!

0+0414
~0+1142!

0+0414
~0+1108!

0+0411
~0+1074!

x 5 2,
y0 5 0

0+0211
~0+0602!

0+0204
~0+0584!

0+0201
~0+0566!

0+0200
~0+0549!

0+0189
~0+0532!

x 5 1+5,
y0 5 0+2

0+0418
~0+1213!

0+0414
~0+1173!

0+0413
~0+1140!

0+0412
~0+1105!

x 5 2,
y0 5 0+2

0+0207
~0+0601!

0+0203
~0+0582!

0+0201
~0+0565!

0+0194
~0+0547!
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that is,

e2cR 5
~l 2 Rv0~12 av!!n

ln +

Here,we choser 5 0+08, n5 2, l 5 4, c51, anda5 0+3+Using numerical methods,
we can find thatR51+9333+ Similarly, choosinga5 0+2, we haveR5 2+5231+ The
parameters used in this example, as in other examples, are for the purpose of dis-
closing the relationship between the upper bound and the true ruin probability, but
we would also like to see the impact of the parametera on the ruin probabilities+
When we chose the parameters, we checked that these numbers satisfied all the
required conditions+ The simulation results and upper bounds are given in Table 4+

This example shows that the ruin probability increases whena increases+This is
because the claims will be large ifa is large~a largea implies that a large proportion
of the claim in the previous time period will be likely to occur in a later time period!+

Example 5 (Nonexponential Bound):This example provides some numerical re-
sults obtained using the nonexponential upper bound obtained in this article+ In this
example, we assume thatP~X 5 c! 5 1 and thatc is a positive constant+ Let Z be
inverse Gaussian distributed with parametersl , 0, µ. 0, andb . 0+ Its probability
density is given by

fZ~z! 5 Mzl21e2µz2~z0b!, z$ 0+

Here, we choseµ5 1, b 5 1, andl 5 21+ Then, M 5 ~0+2798!21,

OB1~x! 5 ~11 kx!2ae2µx, k . 0, a . 0,

OB2~x! 5 e2µ~11r2a!x+

In this example, we assume that the parametersa andr satisfy the relationa $ r+
Then, OB1~x! is a NWU d+f+ and OB2~x! is a NBU d+f+ Moreover,

OB1~ y 2 x! $ OB1~ y!~ OB2~x!!21 for all y $ x +

Table 3. X 5 22 andZ Is Normal

y0 5 0 y0 5 1 y0 5 2

x 5 2 0+1093~0+4910! 0+2576~0+6671! 0+4357~0+9065!
x 5 3 0+0961~0+3440! 0+1011~0+4675! 0+2534~0+6352!
x 5 4 0+0551~0+2410! 0+0632~0+3275! 0+0741~0+4451!
x 5 5 0+0402~0+1689! 0+0445~0+2295! 0+0518~0+3119!
x 5 6 0+0303~0+1183! 0+0384~0+1608! 0+0455~0+2185!
x 5 7 0+0298~0+0829! 0+0302~0+1127! 0+0314~0+1531!
x 5 8 0+0238~0+0581! 0+0251~0+0789! 0+0316~0+1073!
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Table 4. X 5 1 andZ Is Gamma

y0 5 0 y0 5 0+3 y0 5 0+4 y0 5 0+5 y0 5 0+6 y0 5 0+8 y0 5 0+9 y0 5 1 y0 5 1+1

x 5 0+8,
a 5 0+3

0+0323
~0+2662!

0+0328
~0+2867!

0+0337
~0+3089!

0+0348
~0+3327!

x 5 0+8,
a 5 0+2

0+0170
~0+1578!

0+0180
~0+1671!

0+0200
~0+1770!

0+0210
~0+1874!

x 5 1,
a 5 0+3

0+169
~0+1447!

0+0231
~0+1948!

0+0243
~0+298!

0+0257
~0+2260!

x 5 1,
a 5 0+2

0+0009
~0+802!

0+0119
~0+1009!

0+0135
~0+1068!

0+0138
~0+1131!

x 5 1+2,
a 5 0+3

0+0154
~0+1535!

0+0256
~0+1782!

0+0322
~0+1919!

0+0361
~0+2067!

x 5 1+2,
a 5 0+2

0+0083
~0+0683!

0+0087
~0+0766!

0+0089
~0+0811!

0+0093
~0+0859!

x 5 1+5,
a 5 0+3

0+0109
~0+0997!

0+0130
~0+1074!

0+0141
~0+1157!

0+0142
~0+1247!

x 5 1+5,
a 5 0+2

0+0051
~0+0359!

0+0054
~0+0381!

0+0055
~0+0403!

0+0059
~0+0427!

1
9

6



Choosec such that

ES 1

OB1Sd
1

11 r 2 a
ZD OB2~dc!D # 1 for 0 , d , 1 +

If k 5 a 5 0+1, we require thatc $ 0+4372+
If we choosec5 0+45, then all of the conditions in Theorem 2 are satisfied+ The

simulation results and upper bounds whena5 0+5 andr 5 0+08 are given in Table 5+
The upper bound in this example provides a better bound for the ruin probability

than in other examples+ This at least shows that the exponential upper bound is not
necessarily better than the nonexponential bound+

Acknowledgment
The work described in this article was supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China~Project No+ HKU 7139001H!+

References

1+ Ambagaspitiya, R+S+ ~1999!+ On the distributions of two classes of correlated aggregate claims+
Insurance: Mathematics and Economics24: 301–308+

2+ Bowers, N+L+, Gerber, H+U+, Hickman, J+C+, Jones, D+A+, & Nesbitt, C+J+ ~1997!+ Actuarial math-
ematics, 2nd ed+ Schaumburg, IL : The Society of Actuaries+

3+ Denuit, M+, Genest, C+, & Marceau, E+ ~1999!+ Stochastic bounds on sums of dependent risks+ In-
surance: Mathematics and Economics25: 85–104+

4+ Dhaene, J+ & Denuit, M+ ~1999!+ The safest dependence structure among risks+ Insurance: Math-
ematics and Economics25: 11–21+

5+ Dhaene, J+ & Goovaerts, M+J+ ~1996!+ Dependency of risks and stop-loss order+ ASTIN Bulletin26:
201–212+

6+ Dhaene, J+ & Goovaevrts, M+J+ ~1997!+ On the dependency of risks in the individual life model+
Insurance: Mathematics and Economics19: 243–253+

7+ Gerber, H+U+ ~1981!+ On the probability of ruin in an autoregressive model+ Bulletin of the Associ-
ation of Swiss Actuaries77: 131–141+

8+ Gerber, H+U+ ~1982!+ Ruin theory in the linear model+ Insurance: Mathematics and Economics1:
177–184+

9+ Goovaerts, M+J+ & Dhaene, J+ ~1996!+ The compound Poisson approximation for a portfolio of de-
pendent risks+ Insurance: Mathematics and Economics18: 81–85+

Table 5. X 5 0+45 andZ Is Inverse Gaussian

y0 5 0 y0 5 1 y0 5 3

x 5 2 0+0771~0+1329! 0+1423~0+3170! 0+4719~0+7569!
x 5 3 0+0313~0+0485! 0+0612~0+1156! 0+0843~0+2759!
x 5 4 0+0114~0+0177! 0+0272~0+0422! 0+0744~0+1006!

MARTINGALE METHOD FOR RUIN PROBABILITY 197



10+ Hu, T+ & Wu, Z+ ~1999!+ On the dependence of risks and the stop-loss premiums+ Insurance: Math-
ematics and Economics24: 323–332+

11+ Müller,A+ ~1997!+ Stochastic orderings generated by integrals:A unified study+ Advances in Applied
Probability 29: 414–428+

12+ Müller, A+ ~1997!+ Stop-loss order for portfolios of dependent risks+ Insurance: Mathematics and
Economics21: 219–223+

13+ Paulsen, J+ ~1998!+ Ruin theory with compounding assets—A survey+ Insurance: Mathematics and
Economics22~1!: 3–16+

14+ Paulsen, J+ & Gjessing, H+K+ ~1997!+ Ruin theory with stochastic return on investments+ Advances in
Applied Probability29: 965–985+

15+ Sundt, B+ & Teugels, J+ ~1995!+ Ruin estimates under interest force+ Insurance: Mathematics and
Economics16: 7–22+

16+ Yang, H+ ~1999!+ Non-exponential bounds for ruin probability with interest effect included+ Scandi-
navian Actuarial Journal66–79+

198 H. Yang and L. Zhang


