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In this article we consider a discrete-time insurance risk mo&lelautoregressive
model is used to model both the claim process and the premium prd¢esgrob-
ability of ruin is examined in a model with a constant interest.ateh exponential

and nonexponential upper bounds are obtained for the ruin probability of an infinite
time horizon

1. INTRODUCTION

Ruin probability arises in many applied probability modéds examplein queuing
theory it is the tail probability of the equilibrium waiting timdRuin probability of
the insurance risk model has been extensively studiednpared to the classical
model without investment incomgthere is a relatively smaller number of articles
on ruin problems under the model with interest inconsndt and Teugelgl5]
considered a compound Poisson model with a constant interestByrasing tech-
niques similar to the classical modepper and lower bounds for the ruin probability
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were obtainedPaulsen and Gjessif#@i4] considered a diffusion-perturbed classical
risk model Under the assumption of stochastic investment incora¢sindberg-
type inequality was obtainedPaulsen13] provided an excellent survey on this
subject Yang[16] considered a discrete-time risk model with a constant interest
force By using martingale inequalitieboth a Lundberg-type inequality and non-
exponential upper bounds for ruin probabilities were obtained

In actuarial sciencehe classical models are usually based on the independency
assumptionsHowever because of the increasing complexity of insurance and re-
insurance productsictuaries have been paying an increasing amount of attention to
the modeling of dependent riskEhere are two types of correlatiohhe first type is
the correlation between lines of businessg&se the recent works by Dhaene and
Goovaertd5,6], Goovaerts and Dhaer8], Miller [11,12], Denuit Genestand
Marcead 3], Ambagaspitiyd1], Dhaene and Denui#], and Hu and W{i10]. The
second type is the correlation between the current claim and previous ckzanhg
contribution can be found in Gerbff,8]. The latter is in the spirit of this articlén
this article we extend the results of Yarig6] to the correlated risk cas®@/e con-
sider a discrete-time risk model with a constant interest rate and assume that both the
premiums and the claims are correlated random variablds model can also be
considered as an extension of the model in Bow&exber Hickman Jones and
Nesbhitt[2]. The main difference between the model in this article and the one in
Bowers et al[2] is that we introduce the interest incom@&oth exponential and
nonexponential upper bounds for the ruin probability are obtaifkd usefulness
of the upper bounds obtained in this article and the relationship between the param-
eters of the model and the ruin probabilities are illustrated by some numerical
examples

The article is organized as followSection 2 presents the model and some
assumptionsA Lundberg-type inequality is given in Section&ahd Section 4 con-
tains the nonexponential boundis Section 5some numerical results are included
to illustrate the accuracy of the bounds obtained in this article

2. THE MODEL

In classical risk modesve usually assume that the premiums are the same in dif-
ferent but equal length periods and the total amounts of claims in different periods
are independent random variahlés many caseghis assumption may be unreal-
istic. Bowers et al[2] considered an autoregressive model for the insurer’s claim
costs Gerber[8] assumed that the surplus process could be written as an initial
surplus plus the annual gains and it used a linear model to model the annual gains
The ruin probability was considered in that article by using a martingale argument
Similar work can also be found in Gerbfgf]. In this article we extend previous
models by using an autoregressive process to model both the premiums and the
claims We also include investment incomes in our model

Suppose thaW;, W, ...} is a sequence of independent and identically distrib-
uted(i.i.d) nonnegative random variabldset the common distribution function of
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W beG(x) = P(W=x) andE(W) < +oo, where an arbitrar\\ is denoted byV. We
assume thafX;, X,,...} is a sequence of nonnegative random variables and

Xk:\/\ﬁ(—‘rbxk*l’ k:l’273""’
Xo = Xo,

where 0= b < 1. Here X; denotes the premium collected during the time interval
[i —1,i], or theith year We assume that the premiums at the beginning of a sub-
sequent year are an upgrade of last year’s premium plus a random nois©term
possible interpretation of this model is the followiriche paramete can be inter-
preted as the proportion of last year’s businesgsich will remain in this year’s
portfolio. The parameteb measures the degree of correlatithb = 0, then the
premium process becomes aind random sequence and the premium collected at
any time interval is independent of old informatidinb is close to 1then the process
becomes very dependeAtlarge part of the old customers will stay in the new time
period W can be thought of as the premium income in the ye&mlom the new
business in the yede« Suppose we are at time 0 npthen last year’s premium
income is knownWe denote it bykg.

In addition we assume thdtY;,Y,,...} is a sequence of nonnegative random
variables and

Yk=Zk+aYk,1, k:1,2,3,...,
Yo = Yo,

where{Z,} is a sequence ofiid nonnegative random variableéadependent of
{W;,W,, ...} and 0= a < 1. Here Y, denotes the claims during the inter{at- 1,i ],
or theith year Similar to the premium process caslee parametea can be inter-
preted as the proportion of the old business in the new portfstiome 0, we know
the claim amount of the last yedrhe claim amount of last year is denoted gy
Note thata andb are not necessarily equal since this is only one interpretation of the
model The model could be applied to different situations

Let the common distribution function &f; be F(x) = P(Z = x), where an
arbitrary Z; is denoted byZ and we assume th&Z < +occ. This completes the
description of the first-order autoregressive models for the premium and claim
processes

Remark 1:In the above modelve assume that = 0 andb = 0. This is necessary

if we want both the premium random variables and the claim random variables to be
nonnegativeln Bowers et al[2], a first-order autoregressive process was used to
model the claim process and it was assumed that the parameter is in betdieen
and 1 When the parameter is negatjyeis true that the claim process may take a
negative value with a positive probabilitfowever as long as the expected claim is
positive and the probability of the claim being negative is sptiad model is still a
reasonable onén the sense that it can still be used to fit the practical data and
provides a reasonable approximation to the practical problefnsourse it is an
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incorrect model theoreticallyln our mode]J if we do not require the premium and
the claim to be nonnegative with a probability gfvte can also assume thatl <
a<land—1< b < 1. Allthe results in this article can be extended to this case
without any difficulty.

Now, we can specify the surplus process of an insurance company by the fol-
lowing model Let U, be the surplus at timeand letr be the compound interest rate
Here we assume thatis a constantr = 0). Let x denote the initial surplu§hen
the dynamic of the surplus is given by

Up=X(A+1r)"+ D XA+ =YY, 1+ (1)
i=1 i=1
Here we assume that the claily is paid at the end of the time period and the

premiumy; is paid at the beginning of the time peridd this article we will also
assume that the net-profit condition is trtieat is

E[X]1>E[Y].
This condition is equivalent to
1_—E[Z]+ayo<1—bIE[W]+bx0 (2)
1- 1-b
foralli =1,2,.... The following condition implies conditiof2) and it is easy to

check
E[W]>E[Z] and b=a.
We define the ruin probability for this model as

n=1

(X, Yo, Xo) = P(U =0)|Up =X, Yo = Yo, Xo = ) (3

Remark 2: The above net-profit conditiof2) is only a sufficient condition for the
ruin probability being less than. A necessary condition for the ruin probability
being less than 1 is that

E(2) (1+r)”—1_va1—a”]_ E(W) [(1+r) (1+r)”—1_vb1—b”]
1—-bv 1-b

1-—av r l1-a
does not tend to infinity as — oo, wherev = 1/(1+r).

In this article we discuss both exponential and nonexponential upper bounds for the
ruin probability

3. EXPONENTIAL BOUND

Assume that the moment generating functiorzadxists in an appropriate region
Suppose thaa < (1+ bv?)/v — 1 andE[W] > E[Z]; we also assume that there is
anR > 0 satisfying the equation
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E [exp(—l_—RbU )] E [exp(%)] =1 v=(1+r)"% 4)

Then Ris called the adjustment coefficient

Remark 3:If X=C(i.e,,b=0,W = C, andCis a constantv =1, anda = 0, then
R is the adjustment coefficient in the simple discrete-time model without interest
income and correlatian

Remark 4:Under the assumption that the moment generating functighexfists
we can prove that there is &> 0 satisfying Eq(4). Note that the positive solu-
tion of Eq (4) may not be uniquef this is the casgthe adjustment coefficient is
chosen as the smallest positive solution

THEOREM 1: For x = 0,
exp(—RX)

= = 5
¢(X,YO,X0) E[exp(_RvTUT)‘T<OO]a ( )
where
~ av
U,=U,— Yn Xn,
1- 1-bo
T=inf{n:U, =0},

x=Up.
Inequality (5) is an equality when= 0.
Proor: Consideringl,(x) = e ",
Fo=0o{W,Z,i =nk
that is 7, is ac-field generated byW, }i_; and{Z; }[_,. Then
E(Mn(X)| F-1)

=E[exp(—Rv”<U - Y, + b X))‘]—" ]

" l-a " 1-b "))

=E{[exp<—Rv”v‘1<Un_l+ ! W, — v Zn>>”}}_1}.
1-bv l-av

FromU,_, is %,_;-measurablgheW,’s are independent random variahlasdz,’s
are independent random variahleg have

E(Ma(X)| Fn-1)

N 1 v
= exp(—Rv" tU,_,)E [exp(—Ru”1 ( W, — Zn)>]

1-bv 1-av

. ) ) 1 B v Un*l
= exp(—Rv Un—l)E[<eXp< R<1— R —— Zn>>> }
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1

Because" ' = (1/(1 + r))"~* =< 1, wherer is the interest rate and= 0, —x*"
(x> 0) is a convex functionBy Jensen’s inequality

E{_<6Xp<_R< 1—1bv U Z>>>}
TR

From the definition of adjustment coefficient and the assumption{tiNat\,, ...}
is independent ofZ,, Z,, ...}, we have

AN
E<<eXp<_R<1 e Z)))) =1

E(My(X)| F1) = exp(—Ro" U0, ) .

So

and

Then M,(x) is anF,-sup-martingaldéresp a martingale when = 0).

Let T be the time of ruin and leh, be a positive integeiThen T [ ny is a
boundedF,-stopping timeBy using the Doob’s bounded stopping time theoyesm
have

E(Mo(X)) = E(Myny(X));
that is
E(e ™) = E(e R Unyr)
=E(e ™| T=ny)P(T=ny)
+ E(e R"™Yn |T > ng)P(T > ng)
=E(e ®"Ur|T=ny)P(T=ny).
Lettingny — +oo, we obtain
E(e ™) = E(e ™" |T < +00)P(T < +x)
= E(e Y| T < +00) (X, Yo, Xo).
From this (5) is proved [ |

In Bowers et al[ 2], the insurer’s claim costs are modeled by an autoregressive
process and the premium is assumed to be a constant over different intéveals
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assumethat=0(i.e, X, =W,i=12,...,arelii.d. random variablesand we also

assume that the moment generating functior exists We now defineR > 0 as the
solution of the equation

E[exp(—RX)]E [exp(%)] =1

Then as a special case of Theoremnie have the following corollary

CoroLLARY 1: For x= 0,

exp(—RR)
lp(xv yO) = T ’
E[exp(—Rv"U7)|T < o0]
where
N av
U,=U,— 11— Yo,
T=inf{n:U, = 0},
)/( = Uo.

4. NONEXPONENTIAL BOUND

A problem with the above exponential bound is that when the moment generating
function ofZdoes not exist in the appropriate regiame cannot use.itn such a case
a special class of functions are used to obtain an upper bound

We say a distributiorB(X) is a new worse than usddNWU) distribution
if B(x) is a distribution function(d.f.) of a nonnegative random variable and
B(x) =1 — B(x) andB(x)B(y) = B(x + y) for x= 0 andy = 0. We say thaB(x)
is a new better than usé®BU) if B(x)B(y) = B(x + y) for x= 0 andy = 0. An
important subclass of the NWU class is the class of absolutely continuous distri-
bution with a decreasing failure rat®FR), whereB(x) is DFR if the associated
failure rate—(d/dx)In B(x) is nonincreasing ix.

The following result provides a nonexponential bound for the ruin probability in
our setup

THEOREM 2: Suppose x [av/(1— av)]y, + b(1+ bv)xg = 0, By(x) is a NWU d.f.,
B,(x) isa NBU d.f., and

o W
E{ v Bo| 02— =1 (6)
B, <51 — z) 1-bv
l1-—av
forall 0 < 6; < 1land0 < §, < 1. Also assume that

Bi(y — x) = Bi(y){B(x)} 7}, y=X (7)
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Then,
_ av
(X, Yo, Xo) = By | x— 1-a Yo + b(1+ bw)xo |. (8)
—av
PrOOF:

n n
Up=X(1+1)"+ D X1+ )" = DY (1+ )"k

k=1 k=1

_(1+ )n<_ﬂav +Mb
ST T T Ty T T T,

n _ 1— (bv)nfiJrl n 11— (av)nfiJrl
F Yt YW - > ————Z ).
2v —p WXV T 2

i=1

_ [ 1= (b))t )
i—1 [
Bz<v 1-thv W

H" = ]-2[ _ n—i+1
i=1 I§1<vi 1—(av) Zi>

1-—av

Let

From Eq (6), we know thatH,, is a supermartingal&he ruin probability

¢(X’ yO’XO) = P{ Ul(un < 0)}

<) n 11— (au)nfiJrl n ) 1— (bv)anl
_ i Z_ i—1 _VVI
P{nLJ1<i—10 l-aw I i:ZJ.U 1-bv
1— (av)" 1— (bv)" >}
-yt ————b
TXT T T Ty,
oo 11— (av)n—i+1 n ‘ 1— (bl})n_i+l
= |—Z__ Iil—VV,
I e
av
>X—myo+b(1+bv)xo
) 11— (av)nfwl n ) 1— (bv)anl
:| P '—Z-— |71—W
mPlU(Ee e n S

av
>X— H Yo+ b(1+ bv)X0>}. 9)
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Sincex — [av/(1 — av)]yo + b(1 + bv)xy > 0, similar to Yang[16], we have

lﬁ(X,yo,Xo)

av
>X—Hyo+b(l+ bv)x,

1
N
=limPiU| /o 1—(@" o 1- ()
N— oo n— B i Zi _ i—1 VV,
' 1((2” l-aw i:E:LU 1-bv > >
1
av
B, (x 1 Yo+ b(1+ bv)x0>
1
= lim P{ max n 1— (a)" it N1 — ()it +
N— oo 1=n=N —_— 7 - -1~ W,
((2 1-a 20 1- b ) )

1
=
_ av
Bi| x— myo-i- b(1+ bv)Xx,

_ n ) 1— (bv)nfiJrl
-1 7 \\/
Bz<i21v - vv,)

= lim P{ max - 1 (@)
N—oo 1=n=N _ S 1—(aw)
i=1 l-aw
1
=

_ av
Bl<x— 1= Yo+ b(1+ bu)x0>

E ( (bl})n |+1W>
n 2\Y 1—-bv '

= lim Py max IT{ — (au>n
Blv — Z,

_ av
B, (X - m Yo+ b(1+ bv)X0>

av _ av
= ¢<X - E Yo +b(1+ bU)X0> B, <X - m Yo +b(1+ bv)X0>, (10)
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whereg is a function andh(x — [av/(1— av)]yo + b(1+ bv)x,) = 1. Thereforethis
theorem holds u

From Theorem 2we have the following results

COROLLARY 2: Assume x- [av/(1 — av)]yo + b(1 + bv)x, = 0 and suppose that
B(x) is a NWU d.f. and satisfies the following:

() B(y—x)=B(y)e™fory=x.
1
(i) E _< v E[e %MW < 1 for all 0 < &, < 1 and
61' Z)

B
1—av

0<68, <1
Then,

(X, Yo) = |§<X_ % Yo+ b(1+ bU)Xo>-

CorOLLARY 3: Suppose that x [av/(1 — av)]yy + b(1 + bv)xy, = 0 and B(x) is
a DFR d.f. with a failure rate of g(x) = (d/dx)In B(x) and p= lim,_,, ug(x) > 0

1
E! /5 \ \E[eorWa-bl]<
(ot

1—av

forall 0 <6, <1land0< 6, < 1. Then,
_ av
(X, Yo) = B|x— 1= g Yot b+ bo)% ).

5. EXAMPLES

In this section we present some examplékhe examples are for illustrating the
tightness of the upper bounds in this article and the relationship between the param-
eters of the model and the ruin probabilitiégpplication of this model to a real-
world problem and model fitting will be an interesting future research topfe
simulate the true ruin probabilities and compare them to the results obtained from
the upper bound&Ve will use only the numerators of the derived upper bouhds

not difficult to check thatin our examplesthe denominators of the derived upper
bounds are greater thanThis will disclose the accuracy of the upper bounds we
obtained in this articleWe can see thain most of the casgshe upper bounds are
about three to five times the true ruin probabilitiegcept in Example 4 However

it is not easy to obtain the true ruin probability in geneféle upper boundsike the

ones in this articlgare very easy to obtaiand in most of the practical problenvge

only need a conservative upper bound for the ruin probabilitythe following
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TABLE 1. X =1 andZ Is Weibull
x=15 X=2 Xx=25

Yo=0 0.0723(0.3048 0.0593(0.2051) 0.0436(0.1380
Yo=0.1 0.0726(0.3073 0.0594(0.2068 0.0436(0.1392
Yo=0.2 0.0728(0.3098 0.0594(0.2085H 0.0437(0.1403
Yo = 0.3 0.0731(0.3123 0.0596(0.2101) 0.0439(0.14149
Yo= 0.4 0.0736(0.3148 0.0597(0.2119 0.0441(0.1426
Yo = 0.5 0.0741(0.3174 0.0602(0.2136 0.0442(0.1437)
Yo = 0.6 0.0744(0.3199 0.0603(0.2153 0.0443(0.1449
Yo = 0.7 0.0745(0.322H 0.0605(0.2171) 0.0443(0.1461)
Yo = 0.8 0.0745(0.325)) 0.0610(0.2188 0.0445(0.1473
Yo=1 0.0750(0.3309 0.0615(0.2224) 0.0449(0.1497)

simulationswe used 2000 time intervals so that the true ruin probability could be a
little larger than the simulated results

Example 1:Let P(X = ¢) = 1, wherec is a positive constantVe letc = 1 in this
example Z follows a Weibull distribution with a density function given by

f,(z) = 2ze’? forz> 0.

Let R be the solution to Eq(4). The other parameters used in this example are
r =0.08 anda = 0.1. Then we haveR = 0.7921 It is easy to check that all of the
required conditions are satisfiethe simulation results and upper bourisisown in
parenthesesare given in Table 1

From Table 1we can see that ify increases when the initial surpluss fixed,
then the ruin probability also increas&incey, denotes the initial clairthis is just
saying that when the claim is largéne ruin probability will be largeltis also clear
that when the initial surplus increaséise ruin probability decreases

Example 2: In this examplewe assume that both the premium process and the claim
process follow autoregressive modéhMe assume that/ andZ are Weibull distrib-
uted The density function foZ is the same as that in Example 1 and the density
function forWis given by

fw(W) = weV72  for x > 0.

Letr andabe the same as in Example 1 anddet 0.1. By solving Eq (4), we have
the adjustment coefficier® = 1.40496 The simulation results and upper bounds
(shown in parenthesgare given in Table 2

The results from this example indicate that for a fixed initial surplusygnthe
ruin probability decreases whegincreasesThis is because the initial premium is
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TABLE 2. Both X andZ Are Weibull

Xo=0 Xo=0.2 Xo= 0.4 Xo = 0.6 Xo= 0.8
x=1.5, 0.0417 0.0415 0.0414 0.0414 0.0411
Yo=0 (0.1215 (0.1178 (0.1142 (0.1108 (0.1074
X=2, 0.0211 0.0204 0.0201 0.0200 0.0189
Yo=0 (0.0602 (0.0584 (0.0566 (0.0549 (0.0532
x=1.5, 0.0418 0.0414 0.0413 0.0412
0=02 (0.1213 (0.11273 (0.1140 (0.1105
X=2, 0.0207 0.0203 0.0201 0.0194
Yo=0.2 (0.0601) (0.0582 (0.0565H (0.0547

large ifxq is large Since the premium process follows a time-series mogéddeing
large will result in the premiums during later time periods also being large

Example 3:Let P(X = ¢) = 1, wherec is a positive constantf Z~ N(p, o2), then
Ris the solution to

+oo
efcRJ eRz;x/(lfav)
—00

We can work out that

g (W¥20% gy = 1.
N2mo

_ 20— [w/d-a))
o?(v/(1—av))?

Letthe parameters pe=10, 2 = 3% r =0.08, a= 0.5, andc = 22. ThenR=0.3557
and all of the conditions in this article for obtaining the upper bound are satisfied
Note that the Normal distribution may take negative vajlesveveyin our exam-
ple, it has a very small probability of taking a negative valg€l%). Also, for the
Normal distributionthe adjustment coefficiefR has a closed-form expressidfor
this reasonin the literaturethe Normal distribution has been used as a claim ran-
dom variable distributiorAn example of this is in the standard textbook by Bowers
et al [2]. The simulation results and upper bounds are given in Table 3

The resultsin Table 3 clearly indicate that when the initial surplus increthses
ruin probability decreaselt again shows that ag increasesthe ruin probabilities
also increase

Example 4:Let P(X = ¢) = 1, wherec is a positive constanAssume thaZ ~
Gammadn, A). Then Ris the solution to

+oo 1
efcRJ m ef/\x/\nxnfleva/(lfau) dX — 1;
0
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TABLE 3. X =22 andZ Is Normal

Yo=0 Yo=1 Yo=2
X=2 0.1093(0.4910 0.2576(0.6671) 0.4357(0.9065
Xx=3 0.0961(0.3440 0.1011(0.467H 0.2534(0.6352
X=4 0.0551(0.2410 0.0632(0.327H 0.0741(0.4451)
X=5 0.0402(0.1689 0.0445(0.2295 0.0518(0.3119
X=6 0.0303(0.1183 0.0384(0.1608 0.0455(0.2185H
X=7 0.0298(0.0829 0.0302(0.1127) 0.0314(0.1531
X=8 0.0238(0.0581) 0.0251(0.0789 0.0316(0.1073

that is

—cR

A -R/A— @)
_ e ,

Herg we chosea = 0.08 n=2, A =4, c=1, anda= 0.3. Using numerical methods
we can find thaR = 1.9333 Similarly, choosinga = 0.2, we haveR = 2.5231 The
parameters used in this exampde in other examplesre for the purpose of dis-
closing the relationship between the upper bound and the true ruin prohaiility
we would also like to see the impact of the parameten the ruin probabilities
When we chose the parametevge checked that these numbers satisfied all the
required conditionsThe simulation results and upper bounds are given in Table 4
This example shows that the ruin probability increases vairoreasesrhis is
because the claims will be largeafs large(a largeaimplies that a large proportion
of the claim in the previous time period will be likely to occur in a later time péeriod

Example 5 (Nonexponential Boundyhis example provides some numerical re-
sults obtained using the nonexponential upper bound obtained in this artithés
example we assume tha®(X = ¢) = 1 and that is a positive constant.et Z be
inverse Gaussian distributed with parametexs0, yu> 0, andg > 0. Its probability
density is given by

f,(z) = Mz} "te e (#B), z=0.
Herg we chosqu=1, 8 =1, andA = —1. Then M = (0.2799 1,
B,(x) = (14 kx)"@e™™ k>0,a>0,
EZ(X) — e*p(l‘Fl’*ﬁ)X‘

In this examplewe assume that the parametarandr satisfy the relatiora = r.
Then B;(x) is a NWU df. andB,(x) is a NBU df. Moreover

Bi(y — x) = Bi(y)(Bx(x)™* forally=x.
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TABLE 4. X =1 andZ Is Gamma

Yo=0 Yo=0.3 Yo= 0.4 Yo= 0.5 Yo = 0.6 Yo = 0.8 Yo= 0.9 Yo=1 Yo=11
x=0.8, 0.0323 0.0328 0.0337 0.0348
a=03 (0.2662 (0.2867) (0.3089 (0.3327
x=0.8, 0.0170 0.0180 0.0200 0.0210
a=0.2 (0.1578 (0.1671) (0.1770 (0.1874
x=1, 0.169 0.0231 0.0243 0.0257
a=03 (01447 (01948  (0.299 (0.2260
x=1 0.0009 0.0119 0.0135 0.0138
a=02 (0.802 (0.1009 (0.1068 (0.1137)
x=12, 0.0154 0.0256 0.0322 0.0361
a=03 (0.1539 (0.1782 (0.1919 (0.2067)
x=12, 0.0083 0.0087 0.0089 0.0093
a=0.2 (0.0683 (0.0766 (0.0811 (0.0859
x=1.5, 0.0109 0.0130 0.0141 0.0142
a=03 (0.0997) (0.1074 (0.1157) (0.1247)
x =15, 0.0051 0.0054 0.0055 0.0059
a=0.2 (0.0359 (0.0381) (0.0403 (0.0427)
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TABLE 5. X = 0.45 andZ Is Inverse Gaussian

Yo = 0 Yo= 1 Yo = 3
X=2 0.0771(0.1329 0.1423(0.3170 0.4719(0.7569
X=3 0.0313(0.048H 0.0612(0.1156 0.0843(0.2759
x=4 0.0114(0.0177) 0.0272(0.0422 0.0744(0.1006

Choosec such that

1
E|l _ 1 B,(6c) | =1 for0<é&<1.
et

1+r—a

If k=a = 0.1, we require that = 0.4372

If we choosec = 0.45, then all of the conditions in Theorem 2 are satisfiElde
simulation results and upper bounds wiaen 0.5 andr = 0.08 are given in Table.5

The upper bound in this example provides a better bound for the ruin probability
than in other exampleJhis at least shows that the exponential upper bound is not
necessarily better than the nonexponential bound
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