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G-structures on Irreducible
Hermitian Symmetric Spaces of Rank > 2
and Deformation Rigidity

Ngaiming Mok*

In June 1997 the author gave a series of three lectures in the Postech Inter-
national Conference in Several Complex Variables. The first two lectures were
introductory in nature, entitled “Cones of minimal rational curves and complex
structure”, building up towards the third lecture, on “Deformation rigidity of ir-
reducible Hermitian symmetric spaces of the compact type”. One objective of the
lectures was to provide the background for joint works of the author with Jun-
Muk Hwang, especially our work on deformation rigidity. The present article is an
amplified version of these lectures. Consistent with the focus of the lectures and
the background of the audience, which is primarily in the area of Several Complex
Variables, we emphasize the complex-analytic and differential-geometric aspects,
notably analytic continuation, Hartogs extension, holomorphic distributions and
the Gauss map. These techniques, taken together with results from the deforma-
tion theory of rational curves, will lead to our proof of deformation rigidity at the
end of the article.

Here is a more detailed description of the contents. In §1 we present first of all
irreducible Hermitian symmetric spaces S as compactifications of Euclidean spaces,
introduce Harish-Chandra coordinates, leading to special G-structures, called S-
structures, in the case of rank > 2. The relevant general theory of Hermitian
symmetric spaces will only be mentioned and illustrated by examples. In §2 we
study the varieties W, of highest weight tangents of the associated S-structures,
introduce the method of analytic continuation to give a complex-analytic and geo-
metric proof of Ochiai’s theorem characterizing S in the case of rank > 2 as the
only compact simply-connected manifolds admitting flat S-structures. An impor-
tant element of the proof is the use of the Gauss map on Wy C PT,(S). The
projective varieties W, agree with the varieties C, of minimal rational tangents,
which in the case of S consist simply of tangents of degree-1 rational curves. The
first two sections can be understood with a minimal background in Algebraic Ge-
ometry. The deformation theory of rational curves in the context of deformation
rigidity [HM2] will be taken up in §3, where we discuss the notions of minimal ratio-
nal curves, varieties of minimal rational tangents C, and distributions W spanned
by C, at generic points. In 84, the last section, we present the basic ideas of the
proof of the rigidity of S under Kihler deformation, which consists of recovering
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flat S-structures on the central fiber from limits of S-structures at generic fibers.
The crux of the proof is the linear non-degeneracy of the generic variety of minimal
rational tangents C, on the central fiber, which we obtain by means of results on
the integrability of distributions spanned by minimal rational tangents.

Besides giving a proof of deformation rigidity, one primary goal of the arti-
cle is to illustrate the role played by complex-analytic and differential-geometric
methods in the general study of problems regarding complex structures of Fano
manifolds. Such techniques enter into play in a variety of problems. In the broader
context, these methods should be understood as tools for the study of deforma-
tion theory of curves, notably of rational curves, on projective manifolds. The
case of irreducible Hermitian symmetric spaces [HM1,2] serve as first examples,
to be followed by rational homogeneous spaces of Picard number 1 [HM4,5; Hw].
They deal with deformation rigidity, algebro-geometric characterizations and holo-
morphic mappings. Such methods, taken together with techniques from projective
geometry, have begun to be applied in [HM5] to a class of Fano manifolds that
include rational homogeneous spaces and most Fano complete intersections. For
a more thorough overview on varieties of minimal rational tangents, especially for
an in-depth discussion of algebro-geometric techniques, a substantial part of which
is missing from the present article, we refer the reader to [HM5]. For a survey of
S-structures and algebro-geometric characterizations of S, we refer the reader to
[HM3].

The author would like to thank the organizers of the conference, especially
Professor Kang-Tae Kim, for their invitation and hospitality. Needless to say, the
contents of the lectures and the article were fruit of collaboration and numerous
discussions with Jun-Muk Hwang, to whom the author would like to express his
gratitude.

§1 Harish-Chandra coordinates and S-structures

(1.1) The present article, which follows up on lectures given by the author in
the Postech International Conference in Several Complex Variables in June 1997,
is meant to provide some background and illustration for a series of recent joint
works of the author with Jun-Muk Hwang [HM1-5], which surrounds the question
of recapturing complex-analytic properties of Fano manifolds from their varieties
of minimal rational tangents. To focus attention we concentrate on the first of the
series [HM2], on deformation rigidity, with an eye on explaining basic notions in a
concrete context. The interested reader can then read the surveys [HM3,5], where
problems and techniques are treated in much broader contexts. To start with we
state the Main Theorem of [HM2].

Main Theorem. Let S be an irreducible Hermitian symmetric space of the com-
pact type. Let 7 : X — A be a regular family of compact complex manifolds over
the unit disk A. Suppose X, := w~!(t) is biholomorphic to S for t # 0 and the
central fiber X = X, is Kahler. Then, X is also biholomorphic to S.

The proof of the Main Theorem relies on the one hand on the study of rational
curves in the central fiber, on the other hand on the study of G-structures arising
from irreducible Hermitian symmetric spaces S of the compact type and of rank >
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2. We will start with an illustration of the latter in the case of Grassmannian
G(p,q); p,q = 2.

(1.2) Letp,g > 2and W be a (p+q)-dimensional complex vector space. We denote
by G(p,q) the Grassmannian of all p-planes E C W. Given any [E] € G(p,q), the
annihilator EL C W* is a ¢g-plane in the dual space W*. This gives an isomorphism
G(p,q) = G(q,p)-

As is well-known G(p,q) is covered by a finite number of charts ¢ : Cc" —
G(p, q), as below. Denote by M (g, p; C) the complex vector space of g-by-p matrices,
and by I, the p-by-p identity matrix. Consider the subset @ C G(p,q) consisting

of all p-planes Ez generated by the column vectors of [IZ ], Z € M(q,p;C), with
P

respect to a fixed ordered basis (ep+1y--- »Eptqi€1s- - ,ep). Then the map ¢ :
M(q,p;C) = Q C G(p,q); M(p,q;C) = CP% is such a chart. G(p, g) is then covered
by a finite number of such charts, obtained by permuting the basis vectors in the
ordered basis. An open subset 2 C G(p, q) obtained with respect to some choice of
ordered basis of W will be called a Euclidean cell.

Any linear automorphism of W induces a biholomorphic automorphism of
G(p,q). All biholomorphic automorphisms of G(p,q) in the identity component
Aut,(G(p, q)) are obtained this way, and we have Auto(G(p,q)) =2 GL(p+4;C)/C".
For ® € Aut,(G(p,q)), the restriction of @ to a Euclidean cell @ = M(q,p;C) can
be described as fractional linear transformations, as follows. ® € Aut,(G(p,q))

is defined by a linear transformation ®, € GL(W), represented by [é g with

respect to the ordered basis (ept1,... ,€nj€1,--- ,ep), where A € GL(g,C), etc.
Then &, transforms the p-plane Ez, represented by IZ], to the p-plane spanned
p

A B|[Z]| |[AZ+B . .
by the column vectors of [C D [I] = CZ+D]' Provided that CZ + D is

invertible, ®,(Ez) = Ea(z), where ®(Z) = (AZ + B)(CZ + D) L

Recall that G(p,q) is covered by a finite number of charts consisting of Eu-
clidean cells . On the overlapping regions the transition maps are induced by
automorphisms of W corresponding to a change of basis, and thus given by frac-
tional linear transformations, as described. The Jacobian matrices of the transition
maps are of a particular type, as follows. Let Z'=%(2)=(AZ+B)(CZ + D) 1,

A B

C D
at each point of a Euclidean cell can be identified with the vector space M(q,p;C)
of g-by-p matrices. Whenever det(CZ + D) # 0, & is holomorphically defined at Z
and d®(Z) is invertible. For the differential d®(Z), identified as a Jacobian matrix,
we have

€ GL(p+ q,C), be a fractional linear transformation. The tangent space

d®(Z)(X) = AX(CZ+D)™' - (AZ + B)(CZ + D)"'cx(z+ D)™
—[A-(AZ+ B)(CZ+D)™*C}X(CZ+ D)™ .

Hence, d®(Z)(X) = Q(Z)XP¢Z), where Q(Z) € GL(g,C), P(Z) € GL(p,C).
Thus the charts consisting of Euelidean cells endow G(p, g) with a special structure
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as a complex manifold. It gives in particular a trivialization of the holomorphic tan-
gent bundle over each Euclidean cell, so that the transition functions for the holo-
morphic tangent bundle takes values in a proper subgroup G & GL(pg, C) where G
consists of linear transformations y on M (p, ¢; C) = CP? of the form y(X) = QXP,
Q € GL(q,C), P € GL(p,C). This gives an example of a holomorphic G-structure,
which we formalize, as follows.

Let n be a positive integer. Fix an n-dimensional complex vector space V
and let M be any n-dimensional complex manifold. In what follows all bundles
are understood to be holomorphic. The frame bundle F(M) is a principal GL(V)-
bundle with the fiber at x defined as F(M), = Isom(V,Ty(M)), the set of linear
isomorphisms from V to the holomorphic tangent space at x.

Definition 1.2.1 (G-structures). Let G C GL(V) be any complex Lie subgroup.
A holomorphic G-structure is a G-principal subbundle G(M) of F(M). An element
of G, (M) will be called a G-frame at . For G # GL(V) we say that G(M) defines
a holomorphic reduction of the tangent bundle to G.

On an m-dimensional smooth manifold, the choice of a Riemannian metric
corresponds to a reduction of the structure group of the tangent bundle from the
general linear group GL(m, R) to the orthogonal group O(m). Riemannian geom-
etry may be regarded as the geometry of smooth O(m)-structures. A Riemannian
manifold is locally isometric to the Euclidean space if and only if there exists a
covering by smooth coordinate charts on which orthonormal frames can be chosen
to consist of the same basis vectors at each point, when tangent vectors at different
points are identified by the standard trivialization on coordinate charts. We may
call this a flat smooth O(m)-structure. On complex manifolds we have the following
analogous notion of flat holomorphic G-structures.

Definition 1.2.2. Let ¢, : Uy, — V be a chart on M. In terms of Euclidean
coordinates we identify F(U,) with the product GL(V) x U,. We say that a G-
structure G(M) on M is flat if and only if there exists an atlas of charts {p, :
U, — V'} such that the restriction G(U,) of G(M) to U, is the product G x U, C
GL(V) x U,.

In the example of the Grassmannian we discussed a moment ago, we have
in fact a flat holomorphic G-structure defined by the charts consisting of Eu-
clidean cells. Here we take V = M(q,p;C), and G C GL(V,C) to be the im-
age under the homomorphism © : GL(q,C) x GL(p,C) — GL(M(q,p;C)) de-
fined by ©(Q,P)(X) = QXP for all X. G is isomorphic to the quotient of
GL(q,C) x GL(p,C) by a copy of C*, and is reductive, with the semisimple part
isomorphic to the quotient of SL(q,C) x SL(p,C) by a finite group.

G-structures with G = ©(GL(q,C)) x GL(p,C); p, g > 2; will be referred to as
Grassmann structures. A complex manifold M then admits a Grassmann structure,
if and only if the holomorphic tangent bundle T(M) admits a non-trivial decom-
position as the tensor product A ® B, where rank(A) = p, rank(B) = q. In [HM1]
we proved a general theorem about flatness of G-structures on uniruled projective
manifolds (cf. §3 for the definition of “uniruled”), for G reductive and connected.
In the case of Grassmann structures it says that a uniruled projective manifold
admitting a Grassmann structure is biholomorphic to some G(p, q).

»

(1.3) In the description of Grassmann structures, there is an associated linear
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representation of G on T, (M), and an associated rational homogeneous submanifold
W, C T,(M) consisting of projectivizations of highest weight vectors. Fixing a
G-frame ¢ € Isom(M(q,p;C), To(M)), W, is the set of all [p(X)], where X €
M(g;p;C) is a matrix of rank 1. W, C PT,(M) is well-defined, independent of
the choice of ¢, since rank(QXP) = rank(X), whenever P and Q are invertible.
We call W, varieties of highest weight tangents. On each Euclidean cell 2 of the
Grassmannian G(p, q), the bundle W|qa — Q is a constant family with respect to
Euclidean coordinates on §2.

For any irreducible Hermitian symmetric space S of the compact type, there
is the notion of Harish-Chandra coordinates, which generalizes the charts on Eu-
clidean cells Q, as described. For the general theory we refer the reader to Wolf
[Wo] and Mok [Mk2]. Fix a canonical metric g on S. In what follows the nota-
tion G, as customary, will mean the identity component of the group of isometries
of S. Fix o € S and let K C G be the isotropy subgroup at o. The isotropy
representation of K on T,(S) is faithful, so that K can be identified as a linear
subgroup of GL(T,(S)). K is reductive, with a one-dimensional centre. The com-
plexification K€ then acts irreducibly on 7,(S) and there is an associated variety
of highest weight tangents W,. Here by a highest weight vector we mean a highest
weight vector of the semisimple part of K€. A KC-structure will also be called an
S-structure. We have

Proposition 1.3.1. On S, Euclidean translations on a Harish-Chandra coordinate
chart Q) extend to a biholomorphic automorphism of S. As a consequence in terms of
trivializations given by Harish-Chandra coordinates the bundle W — S of varieties
of highest weight tangents is a constant family when restricted to 2, and the S-
structure on S is flat.

We list in the following table all irreducible Hermitian symmetric spaces S =
G/K of the compact type and their varieties of highest weight orbits W, at a
reference point o € S. It turns out that W, C PT,(S) is itself biholomorphic to a
Hermitian symmetric space of the compact type of rank 1 or 2, and is irreducible
except in the case of Grassmannians G(p,q); p,q > 2. There the rank-1 matrices
correspond to decomposable tensors u®v, and the highest weight orbit is the image
of PP~1 x P9~ in PP?~! by the Segre embedding given by o([u],[v]) = [u® v]. In
the table O will stand for the octonions (Cayley numbers).
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Table of irreducible Hermitian symmetric spaces S

of the compact type and their varieties of highest weight tangents W,

Type G K G/K=S8 W, Embedding
I |SU(p+4q)|SUWP) xU(g)| Gp,g) |PP~!xPI™'| Segre
II SO(2n) U(n) G (n,n) | G(2,n—2) | Pliicker
I Sp(n) U(n) G!(n,n) pr! Veronese
IV [SO(n+2)| SO(n) x SO(2) Q" Q"2 by O(1)
\' Eg Spin(10) x U(1) {P2(0) @ C| G (5,5) by O(1)
VI E; Es x U(1) exceptional | P2(0) ®g C Severi

(1.4) An irreducible Hermitian symmetric space S of the compact type is a Fano
manifold, i.e., a projective manifold with ample anti-canonical line bundle. Any
Fano manifold is covered by rational curves, by Mori [Mo]. For the general notion
of minimal rational curves, we refer the reader to [HM2]. In the case of S, the
Picard group of holomorphic line bundles is infinite cyclic, and we have the notion
of degree with respect to the positive generator O(1) of Pic(S). It turns out that
the vector space I'(S, O(1)) defines a holomorphic embedding 7 : S — PV of § into
some PV, in such a way that there exists lines of PV lying on 7(S). Such lines
C are degree-1 rational curves on S with respect to O(1) and they are the only
degree-1 curves. For S minimal rational curves as defined in [HM2] are precisely
the degree-1 rational curves.

The S-structures on S, determined by the bundle W — S of highest weight
orbits, is intimately related to the space of minimal rational curves on S, which we
will illustrate here by the case of Grassmannians.

For S = G(p,q), T : G(p,q) — PV is given by the Pliicker embedding, as
follows. For a p-plane E in W = CP*? with basis {e1,... ,e,} we define 7([E]) =
[ex A--- Aep] € PAPW, which is clearly defined independent of the choice of basis.
Choose a system of Harish-Chandra coordinates on a Euclidean cell £ such that
[E] corresponds to the origin. Let X € M(q,p;C) be a tangent vector at [E] and
consider the Euclidean line L on ) passing through [E] such that X is tangent
to L. For each t € C we have a point [E;] € L where E; is spanned by {e; +

tn,...,ep + tnp} corresponding to the column vectors of [t}X . If X is a matrix
P
of rank-1, then 7,...,7, are proportional to each other, say n; = c;n for some

n € Span{epi1,...,e,}, and some ¢; € C. Then (e +tm) A--- A (ep +tnp) =
(e +taam) A---A(ep+tcyn) = e1 A~ Aep +tnAw for some w € AP~E. In
other words, 7(L) is a line on PAPW. We have shown that for z = [E] € G(p,q),
each [a] € W, is tangent to a minimal rational curve C = L. As 7(C") is a line
on PAPW for any minimal rational curve C’, there is only one C with T,,C = Ca.
Furthermore, if C' is any minimal rational curve on G(p, ) passing through [E], and
y(t) = tY + O(t?) is a local parametrization of C at [E], then all column vectors
of Y are proportional, i.e. Y is of rank 1, by an expansion of 7(-y(t)) as in the
above. We have thus demonstrated the following proposition in the special case of

S=G(p,q)- :
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Proposition 1.4.1. Let S be an irreducible Hermitian symmetric space of the
compact type, z € S and W, C PT,(S) be the variety of highest weight orbits at
z. Then W, is precisely the variety C; of all [a] € PT,(S) tangent to a minimal
rational curve C. Furthermore, for each [a] € W, the minimal rational curve C is
uniquely determined by [a].

C. as defined above will be called the variety of minimal rational tangents. For
a conceptual and uniform proof of W, = C,, using Grothendieck’s splitting theorem
[Gr] for principal G-bundles over rational curves with G reductive, we refer the
reader to [HM1].

For a local holomorphic curve I' on a complex manifold X we have a tautologi-
cal lifting I" of T" to PT'(X) by lifting each z € T to its tangent line [Ty, (T')] € PT:(X).
In terms of Harish-Chandra coordinates we have the following description of min-
imal rational curves which in the case of G(p,q) follows from the preceding dis-
cussion. Here we use the term Euclidean cell for the image of a Harish-Chandra
coordinate chart.

Proposition 1.4.2. Let S be an irreducible Hermitian symmetric space of the
compact type. Non-empty intersections of minimal rational curves with Euclidean
cells §) are precisely affine lines L = C'NS} whose tangents lie on W. In other words,
the tautological lifting L of L to PT(S) is a constant section of W over L, in terms
of Harish-Chandra coordinates.

(1.5) In what follows G-structures and fiber bundles are understood to be holo-
morphic. The notion of flatness for a holomorphic G-structure on a complex man-
ifold M can be expressed as a system of differential equations on the G-structure.
From this description it is easy to deduce that flatness is a closed condition. More
precisely, we have

Definition-Proposition 1.5.1. Let V be an n-dimensional vector space, G C
GL(V) be a Lie subgroup. Let m : A™ x A — A be the projection to the second
factor, T™ be the relative tangent bundle of the regular family m : A™ X A — A,
and F™ be the relative frame bundle with FT = Isom(V,TF). Let G™ C F™
be a principal G-bundle. We call G a holomorphic family of G-structures on
A™. Suppose the G-structure G™|an (s} is flat for t # 0. Then, the G-structure
G™|anx {0} is also flat.

By going to prolongation bundles in the theory of G-structures, the proof can
be reduced to the Frobenius conditions, cf. Singer-Sternberg [SS]. We are contented
with an illustration in the case of S-structures, as follows.

Example. Consider the case of S-structures with S = @™, n > 3. In what
follows by a holomorphic metric we mean a holomorphic non-degenerate covariant
symmetric tensor 6, given locally by £6;;dz* ® dz’ with det(f;;) # 0. A germ of
holomorphic Q™-structure at z € X gives a germ of holomorphic metric § at z,
unique up to conformal factors (i.e., scalar multiples). Flatness of the Q™-structure
amounts to saying that 6 is conformally equivalent to the flat holomorphic metric.
We say that 0 is conformally flat if and only if it is conformally equivalent to the
flat holomophic metric. As in Riemannian geometry, @ is conformally flat if and
only if the (conformally invariaht) Bochner-Weyl tensor Wk, vanishes. Obviously
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the vanishing of Wjjx, is a closed condition. For the interpretion of flatness of S-
structures in general in terms of “curvature tensors”, which measure obstructions
to prolongation of KC-structures, cf. [HM3].

(1.6) On the projective space any two distinct points can be joined by a minimal
rational curve. While this is obviously not the case for irreducible Hermitian sym-
metric spaces S of rank > 2, as C,(S) # PT,(S), it is always possible to join any
two distinct points by a chain of minimal rational curves. We will say that a chain
K = Cy, + --- + C,, of minimal rational curves is non-overlapping, if and only if
C; N Cj41 is a single point, and C; N Cr = @ whenever |k — j| > 2. We have more
precisely

Proposition 1.6.1. For S of rank r any two distinct points x,y € S can be joined
by a non-overlapping chain K = Cy + - - - + C,, of minimal rational curves for some
m,1<m<r.

Proposition 1.6.1 follows readily from the following result, which is consequence
of the Polysphere Theorem (c¢f. Wolf [Wo] or Mok [Mk2]).

Proposition 1.6.2. For a polysphere (P')* denote by Ly, 1 < k < s, the holomor-
phic line bundle obtained by pulling back the positive generator O(1) on the k-th
direct fact P} by the canonical projection. Let S be an irreducible Hermitian sym-
metric space of the compact type of rank r and denote by L the positive generator
of its Picard group. Then, there exists a holomorphic embedding o : (P')" — S
suchthat o L2 L1 ®---® L,.

Since the analogue of Proposition 1.6.1 holds obviously for the polysphere,

Proposition 1.6.2 implies readily the validity of Proposition 1.6.1 for S. We will
illustrate Proposition 1.6.2 by the example of Grassmannians G(p, q). Without loss
of generality we assume that p < q. Then G(p, q) is of rank r = p.
Example. For z,y € G(p,q) distinct choose a Euclidean cell  C G(p,q) so
that z,y € Q and z is the origin and y is represented by Z € M(q,p;C). Let
@ € GL(q,C) and P € GL(p,C) be arbitrary. Then, ®(Z) = QZP extends to
an automorphism of G(p,q). Let D C M(q,p;C) be the vector subspace D = CP,
consisting of matrices of the form

G
diag(¢1y. .. ,Gp) = 0
C

Then, P, @ can be chosen such that QZP € D. Thus, to join z to y without loss of
generality we may assume that Z € D. We describe D C G(p, q) as a polysphere, as
follows. Let (ept1,... ,en;e1,...,€p) be the ordered basis of W = CP*9 as in (1.2).
Then, Z = diag((y, . .. ,(p) represents the p-plane Ez = Span{e; +{1€py1,... ,ep+
(pe2p}. For 1 < k < p write Vi = Cex + Cepyi. Then, D c G(p,q) consists of

all p-planes spanned by some {vi,...,vp}, v € Vi, from which it follows that
D =~ (P')P. Let 7: G(p,q) — PAPW be the Pliicker embedding and write Cy, for
any rational curve on D corresponding to some (ay, ... ,ak—1) X P! X (@41, .. ,ap)

under the biholomorphism D = (P!)?. Each aj, j # k, corresponds to a line in Vi,
generated by some uy € Vi. Then 7(Ck) = {[ur A+ Atug—1 AUk Atggr A=+ A
up] : vx € Vi}, which shows readily that 7(Cy) is a line C on PAPW. In fact, if
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w = Ui A AUg_1 A€ AUEL1I N+ AUp and W' = U1 A+ Aug_1Aeppk AUg1 A+ - AUp,
then C = P(Cw + Cw'). Thus, each Cj is a minimal rational curve, as desired.

§2 Analytic continuation of local isomorphisms of flat S-structures

(2.1) To each irreducible Hermitian symmetric space S of the compact type and
of rank > 2 one can associate a flat S-structure by means of Harish-Chandra
coordinates, as we have illustrated in §1. For the question on deformation rigidity,
it is essential to be able to recover S from the associated S-structure, as given in

Theorem 2.1.1 (Ochiai [Oc]). Let S be an irreducible Hermitian symmetric
space of the compact type and of rank > 2. Let X be a compact simply-connected
complex manifold with a flat S-structure. Then, X is biholomorphic to S.

Given an S-structure on X we have an associated bundle W C PTx of varieties
of highest weight orbits. The assumption that X admits a flat S-structure means
that given any z € X, some neighborhood U, of z can be identified with an open
set U on S in such a way that W|y, agrees with the bundle C | over U of varieties of
minimal rational tangents. The proof of Theorem 2.1.1 in [Oc] is algebraic in nature.
In its place, we will present in this section a complex-analytic and geometric proof.
First of all, Theorem 2.1.1 is a consequence of the following result on extending
local isomorphisms of holomorphic S-structure.

Theorem 2.1.2 (Ochiai [Oc]). Let S be an irreducible Hermitian symmetric
space of the compact type and of rank > 2. Denote by m : C — S the bundle of
varieties of minimal rational tangents. Let U, V C S be two connected open sets
and f : U — V be a biholomorphism such that fCluv =Clv. Then, f extends to a
biholomorphic automorphism of S.

Theorem 2.1.2 implies Theorem 2.1.1, as follows. For X as in Theorem 2.1.1
admitting a flat S-structure, choose a connected open neighborhood U, of x and
a biholomorphism f : U, = U C X onto some open subset U of X such that
fx(W|v,) = Clu. Starting with one choice of z and f, Theorem 2.1.2 allows us
to continue f holomorphically along any continuous curve, by matching different
fy on Uy on intersecting regions using global automorphisms of S. This leads to
a developing map, which is well-defined on X since X is simply connected. The
resulting unramified holomorphic map F : X — § is necessarily a biholomorphism,
since S is simply connected.

We will give an alternate proof of Theorem 2.1.2 by means of analytic con-
tinuation, along the lines of Mok-Tsai [MT]. Let C C S be a minimal rational
curve. Recall that the tautological lifting C of C lies on C. Such liftings define a
holomorphic 1-dimensional foliation F of C. The proof of Theorem 2.1.1 will be
divided into 3 steps. First we will show that any S-structure-preserving local biholo-
morphism is necessarily F-preserving. Then, we will show that any JF-preserving
local biholomorphism on S extends to a birational self-map F by means of anlaytic
continuation. Finally, we argue that F is unramified, and conclude that Fis a
biholomorphic automorphism by Hartogs extension on anti-canonical sections.

As preparation for our pgoof of Theorem 2.1.2 we discuss here some prelimi-
naries in projective geometry involving the second fundamental form of projective
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submanifolds, i.e., differentials of their Gauss map. For this will need the ensuing
standard lemma on rulings of local complex submanifolds of Euclidean spaces and
Zak’s theorem on tangencies. For a complex manifold B and a complex submani-
fold A C B we denote by N4 p the holomorphic normal bundle of A in B. When
B is endowed a Kéhler metric for z € A we will identify the vector space Nap ,
with the orthogonal complement T;-(A) of T,.(A) in T, (B) with respect to g.

Lemma 2.1.3. Let @ C C" be a domain and Z C Q be a closed complex sub-
manifold. At z € Z denote by o, : T,(Z) x T,(Z) — Nzq,, the second funda-
mental form with respect to the Euclidean flat connection 57 on . Denote by
Ker(o,) C T,(Z) the complex vector subspace of all n such that o,(r,n) = 0 for
any 7 € T,(Z). Suppose Ker(o,) is of the same positive rank d on Z. Then,
the distribution 2 — Ker(c,) is integrable and the integral submanifolds are open
subsets of d-dimensional affine linear subspaces.

Proof. At z € Z, let 1,§, 7 be germs of holomorphic vector fields on Z such that 7,
¢ are Ker(o)-valued. We proceed to prove that /,£ is also Ker(o)-valued. Since
¢ is torsion-free for any germ of holomorphic vector field x at z € Z we have
[, T] = VxT — VX, and x is Ker(o)-valued if and only if for any choice of 7, 7,7
is tangent to Z, or equivalently </, x is tangent to Z. Since v is flat, we have

V() = Vn(V-E) + Vinr€ »

which implies that 7,(75€) is tangent to Z and hence that ¥7,{ is Ker(o)-valued.
Together with [n,£] = 7n€ — V¢n it follows that [Ker(o), Ker(c)] C Ker(o). The
distribution Ker(o) is hence integrable, and on an integral submanifold ¥, the
tangent bundle T'(X) of X is invariant under parallel transport with respect to v.
In other words, ¥ is an open subset of some affine-linear subspace of C", as desired.

a

Theorem 2.1.4 (Special case of Zak’s Theorem on tangencies, Zak [Za]).
Let W C PV be a k-dimensional complex submanifold other than a projective linear
subspace and PE C PV be a k—dimensional projective subspace. Then, the set of
points on Z at which PFE is tangent to Z is finite.

From Zak’s Theorem and Lemma 2.1.3 we conclude

Proposition 2.1.5. Let W C PV be a k-dimensional projective submanifold other
than a projective linear subspace. For w € W denote by 0y, : T,,(W) x T,,(W) —
Nw\pr . the second fundamental form in the sense of projective geometry. Then,
Ker(oy) =0 for a generic point w € W,

Proof. For the canonical projection w : CN*1 — {0} — PV write Z = 7~ 1(W).
The Proposition is equivalent to stating that for a generic @ € Z, Ker(o,) = Ca
for the second fundamental form o4 : To(Z) X Ta(Z) — Nz cn+1, in the sense
of Euclidean geometry. Suppose otherwise, Ker(c,) would define a d-dimensional
distribution on some non-empty open subset D of Z for some d > 2, defining by
Lemma 2.1.3 a ruling of D by open subsets ¥ of affine linear spaces. Clearly we can
choose D C Z to be invariant under scaling. Then, the closure ¥ contains o, so that
¥ is actually contained in a d-dimensional complex vector subspace. Furthermore,
since T, (X) = Ker(oa), T(Z) is parallel along ¥, and there is a (k +1)-dimensional
vector subspace E of C¥*! such that F is tangent to Z along ¥ at any non-zero
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a € . PE is tangent to W C PV along PE, which is of dimension d —1 > 1. As
this contradicts Zak’s Theorem on tangencies, Proposition 2.1.5 is established. 5

Remark. Proposition 2.1.5 is equivalent to saying that the Gauss map on W is
generically finite-to-one. For a more self-contained proof of the latter fact, which
precedes Zak [Za], we refer the reader to Ein [Ei].

(2.2) For the proof of Theorem 2.1.2 of Ochiai’s, as explained we start with

Proposition 2.2.1. Let S be an irreducible Hermitian symmetric space of the
compact type and of rank > 2, and 7 : C — S be the bundle of varieties of minimal
rational tangents. Let U, V C S be connected open subsets of S and f:U-V
be a biholomorphic map such that f,(C|ly) = C|v. Then, for the 1-dimensional
holomorphic foliation F on C defined by liftings C' of minimal rational curves C,
we have f*(]'_l'rr-l(V)) = }-Iw—l(U)‘

The foliation F on C has the following crucial property: for a non-zero vector
n tangent to F at [a], dn(n) must be proportional to a. Thus, at [a], F is defined
by a lifting of Ca to Tjs)(C). On Cly = 7~ 1(U), F and f*F define two liftings of
the tautological line bundle L to T(C), and the difference of these liftings define at
r € U a twisted vertical holomorphic vector field in T'(C;, Hom(L,T(C:)). As the
latter space is in fact non-zero, this does not yield the Proposition. Consistent with
the emphasis of these lectures we will give a proof of Proposition 2.2.1 basing on the
existence of Harish-Chandra coordinates. We use the fact that the two foliations
are obtained from each other by a local map f on S and exploit the symmetry of
the Hessian D?f.

The proof given here is elementary in nature, avoids the use of isotropy repre-
sentations as in [HM3, (2.5), Lemma 4], and shows how the Gauss map on C. enters
into the picture. A result stronger than Proposition 2.2.1 holds in a general setting
on uniruled projective manifolds. For the proof, which relies on the deformation
theory of rational curves, we refer the reader to [HMS].

Proof of Proposition 2.2.1. Denote by 7 the Euclidean flat connections on both
U and V and write 7' for the pulled-back connection f*v7 on U. Denote by
(21,.-- y2n) T€SP. (W1,... ,Wn) Harish-Chandra coordinates on U resp. V. Fix
a base point z € U. Without loss of generality we may assume that df(z) is
the identity map with respect to (2z;) and (wy). For a non-zero tangent vector
a=3 a"% at = by abuse of notations we will write % for the constant vector
field on U which is equal to a at z. We have

é] . d
Vb%a_zﬁ=f (vf*};f; f*%)

At the point  we have
) -8 . ,}32fk.3...
/ _— = LS ¥ i A
vy?; 0zp (2) ;a b 02;0z; Oz (2),

where f *5%(:5) is ide_ntiﬁéél'~ with 5‘2’:(3:) since df (z) = id.
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Denote by C;, C Tx(S) the cone of all minimal rational tangent vectors at
z, so that C, is the projectivization of C; — {0}. For a € C;, a # 0, we will
write P, C T.(X) to consist of all vectors tangent to C, C T»(X) at a. Thus,
Tio)(Cz) & P,/C,. Write (uy,...,un) resp. (vy,...,v,) for the standard fiber
coordinates for the tangent bundles T(U) resp. T(V) with respect to the Harish-
Chandra coordinates (z;) resp. (w;).

Consider now at x two non-zero minimal rational tangent vectors a and 8. «
and B will also be considered as points on C, or as points on Cy, y = f(x), when
we identify T, (U) with T, (V) via df, Let C be the minimal rational curve on §
passing through z with Tz(C’) = Ca. Write CNU = L and let L' be the graph of the
constant section of C|y; over L containing 8. Then f, L’ is a section of C|y over f(L)
containing df (3) = 8. Suppose p and v are two vectors tangent to C|y at the point
B € C, such that for the canonical projection 7 : T(V) — V we have n(u) = 7(v).
Then the difference i — v projects to zero, and is hence a vertical tangent vector,
i.e., belonging to Ts(C;). Although Ts(C;) and Pjs correspond to each other they
are different vector spaces with T3(C,) C T3(T,(X)) and Ps C T;(X). At the point
B by Proposition 1.4.2 we may take v to be the horizontal tangent vector a, and u
to be the pull-back of the horizontal vector a by f, i.e.,

A
‘a+za 070z Bun

It follows that the difference

; 0°fF o
_V_Za 02;0z; 8uk€Tﬁ(C)

7.77

Equivalently, that
2 ok
Za B o°fF 9 € Py,

i 82:0z; A%

where we identify T, (U) with T, (V) via df. Since the left hand side is symmetric
in a and B we conclude that

sz(aa/g)epanpﬁ9

where D2f denotes the Hessian. Endow V with the standard Euclidean inner
product with respect to the Harish-Chandra coordinates (wy). Now fix a and let
B = a(t), a(0) = a, be a smooth real one-parameter family of minimal rational
tangent vectors defined for small ¢ such that a(t) = a + t€ + t2(;, where £ € P, is
tangent to C at a and (: is orthogonal to P,. Then,

D?f(o, o + t€ +t2¢¢) € Po N Pyy). (%)

For a complex vector subspace B of a finite-dimensional Hermitian vector space A
and for n a vector in A we denote by pr(n, B) the orthogonal projection of 7 into
B. We denote by Bt the orthogonal complement of B in A. Observe that

D2 f(a,a+t€ +t2¢) € P, = D?f(a,a), D*f(a,f) € Pa,
so that “pr (sz(a,é),Pj(t)) = O(t).
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Using this and the second half of (*) we have
D?f(a, a(t)) = D? (e, &+t + £2¢;) € Pagyy = pr(D*f(0,0), Py ) = O(t%).

We are going to deduce from this that D?f(a, ) is proportional to a. Towards
that end we need

Lemma 2.2.2. Let 2 C C” be a domain and Z C 2 be a closed complex submani-
fold. Atz € Z denote by 0, : T,(Z)xT,(Z) — Ng|q,. the second fundamental form
with respect to the Euclidean flat connection on §). Let T be a vector tangent to
Z at z and v : (—¢,€) — Z,v(0) = z, be a smooth curve such that v'(0) = 2Re(n).
Identify vectors at different points of Q0 by the standard trivialization T = 2 x C".
Then, pr(r, TAYl(t)(Z)) = O(t?) if and only if 0,(7,7) =0

Proof. Let 7(t) be a smooth vector field of (1,0)-tangent vectors along -y such that
7(0) = 7 and 7(t) is tangent to Z at (t). With respect to the Euclidean flat
connection v/, we have 7/(0) = v7,7(0). In what follows for z € Z we write T;- for
T} (Z). Since

ou(r,m) = pr( Vo 7(0),T),

we have
F0)eT, <= o,(r,m)=0

Consider now the vector field 7 — 7(¢) along 7y, which vanishes at t = 0. Then,
%I(O) € Tz(Z) Aand (T - ?)’(0) € Tz(Z) ’
e, T=7+tu+O0(t?)

for some p = —7'(0) € T,(Z). Finally,

p’I‘(T, szt)) = p'r((‘r -7)+7,T (t)) (T -7, T;,L(t))

=t-pr(u, Ty ) + O,

so that
pr(T T (t)) Ot?) <= p € T,(Z2) &= o.(1,n) =0,

as desired. 7

End of proof of Proposition 2.2.1. We have proven that for each non-zero a € Ce,
D?f(a,a) € P,, and it remains to show that this forces the stronger property that
D?f(a,a) is proportional to a. Note that T3(C.) is identified with Pg. On the
smooth curve a(t), |t| < €, a(0) = a, a’(0) = 2Re(n), n € T (C.) = P,, we already

know that
pr(D*f(eya), Py ) = O(E2).

By Lemma 2.2.2, for 7 tangent to C, at o we have

pr (7, Payy) = O(#?) <= Ga(r.m) =0.
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Since a’(0) is an arbitrary (1, 0)-vector tangent to C, at a we conclude that
Oa (sz(a, a),n) =0

for any 7 € P,. In other words, D? f(a, a) lies in Ker(oa). By Proposition 2.1.5,
for the projective submanifold C. C PT,(S), Ker(o,) = Ca for a generic a € C,, s0
that D?f(a,a) € Ca for a generic a € C. and hence for every a € C,. Clearly this
implies that f : U — V preserves the 1-dimensional foliation F, i.e. f*(Fly) =
Flu. The proof of Proposition 2.2.1 is complete. 5

(2.3) We are now led to consider an F-preserving biholomorphism f : U — V;
U,V C S connected open sets. We proceed to extend f to a biholomorphic auto-
morphism of S, by the method of analytic continuation.

To illustrate our approach consider the case of projective spaces P*, n > 2.
Although C; = PT,(P") in this case, PT(P") is still equipped with a 1-dimensional
holomorphic foliation whose leaves are liftings L of lines L on P*. The problem of
extending F-preserving biholomorphisms still makes sense on P". Restrict now to
the case of n = 2 and take U = B2 C C? C P? to be the unit ball. We have

Lemma (for illustration). Let f : B2 — V be a biholomorphism onto V C P?
such that f transforms any non-empty open subset LN B? of a line L into an open
subset of some line L' C P2. Then, f extends to a biholomorphic automorphism
F:P?2 - P2,

Proof. The dual space (P2)* of lines in P? is itself biholomorphic to P2. Let D C
(P2)* be the open subset consisting of all lines L such that LN B? # §. We proceed
to determine D. Let [wo, w1, w2) be homogeneous coordinates on P? and C* C P? be
the affine part corresponding to zp # 0. A line L C P? is defined by a homogeneous
linear equation 1jgwo+n1wo+n2w2 = 0, (10, M1,72) # 0. In the affine part wo # 0 we
write (21, z2) = (3%, 32) for inhomogeneous coordinates. For a line L not passing
through [1,0,0], 7o # 0, and L is given by & 21 +£222+1 = 0 where (£1,&2) = %, %)
are inhomogeneous coordinates for the affine part of (P2)* corresponding to 7o # 0.
The distance of L to the origin o € B? in terms of the Euclidean metric on C%is

given by dist(o; L) = m, which is < 1 if and only if |£1]? + |€2]2 > 1. In

other words, D C (P?)* cobsists precisely of points [1o,71,72] € (P2)* such that
either o = 0 (and L is a line through the origin o in B?), or 7o # 0 and (§1,&2) =
(Z,2) is exterior to the unit ball (B?) in C2 C (P?)*, C? corresponding to 1o # 0.
Whenever LN B2 # § it is a disk on L and hence connected. The assumption that
f: B2 >V C P?is F-preserving implies that f(L N B?) is a connected open
subset of some line. Thus, f induces a holomorphic map f * . D > P2 As
DNC? = {(&1,&) : |&1]2 +|&2|? > 1}, D is strongly pseudoconcave, and by Hartogs
extension theorem f* : D — P? extends to a meromorphic map f * L (P2)* — (P2)~.
Applying the same argument to the restriction of f~' : V = B? to some Euclidean
ball we conclude that f * is a birational map. ;jFrom the fact that f : B2 & V is
a biholomorphism it follows that there exists some Euclidean ball (B%)” C (P?)*
such that f * |(p2)+ —(B2y is a biholomorphism onto (P%)* — G for some open subset
G c.(B?)". The extension j# : P2 — P? must therefore be holomorphic and is
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hence a biholomorphic automorphism of (P?)*. From this one readily recovers a
biholomorphic automorphism F : P2 — P? extending f : B2 - V.

The same line of argument when applied to P*, n > 3, is already not so
straightforward. The moduli space of all lines on P" is G(2,n — 1), the Grass-
mannian of 2-planes in C**1. One can define a holomorphic map on some open
neighborhood D of a projective (n — 1)-plane P*~! C G(2,n — 1) corresponding
to all lines passing through a fixed base point z, € P*. To be able to extend f
meromorphically in one step to G(2,n — 1), of dimension 2n — 2, one would have
to find a tubular neighborhood G of P*~! with smooth boundary, G CC D, such
that G is (2n — 3)-pseudoconcave, by Andreotti-Grauert [AG]. In practice, this
amounts to representing G as {¢ < 0}, ¢ smooth in a neighborhood of G, such
that dp|ac # 0 and v—1 68¢|TC(G) has at least one negative eigenvalue for every
z € 8G. In place of implementing this we adopt a more direct way of analytically
continuing f along lines, as follows.

Lemma (provisional). For n > 3 let f : B® — V be a biholomorphism onto
V C P™ such that f transforms open subsets of lines onto open subsets of lines.
Then, f extends to a birational map F : P* — P",

Proof. Let L, C P" be a line such that L, N B™ is non-empty. L, N B™ is a disk
on the line L,. By assumption f(L,N B") is an open subset of some line L], C P".
The same applies to a line L C P™ such that [L] is sufficiently close to [L,], with
f(LNB™) c L' C P*, so that the assignment f #([L]) = L' defines a holomorphic
map in a neighborhood of [L,] in G(2,n — 1). Let p : PT(P") — G(2,n — 1) be
the universal family of lines on P*. Then f# o p is defined in a neighborhood of
the lifting Lof Lto PT(P™). We proceed next to define a meromorphic map f in
a neighborhood of L. In what follows we will more generally be dealing with F-
preserving meromorphic maps f : © --» P* on a domain 2 C P". By this we mean
that at a generic point of §2, f is a local biholomorphism and F-preserving. By the
identity theorem on holomorphic functions if the germ of f is a local biholomorphism
and F-preserving at some point z, € §2, then f is F-preserving on 2.

Let now D be an open neighborhood of L, C ]PT(]P") on which f *o p is defined,
z, € L, a point at which f is defined, o1, o : W — PT(P") be two distinct
holomorphic sections over some neighborhood of mo such that o;(W) C D i=1,2.
Let £, C W x P™ be the intersection Graph(f opooy)N Graph(f o poos).
Here by the graph of the meromorphic map f#opoo;; i = 1,2; we mean the
topological closure of the graph of f# o p o o; over the open subset W; C W where
f#opoa; is holomorphic. (W —W; is a complex-analytic subvariety of W ) There is
a unique irreducible component ¥ of ¥, such that the canonical projection ¥ — W
is surjectlve ¥ is the topological closure of Graph(f# o poo;)NGraph(f#opoay),
where o}, o} are the restriction of o1, 02 to W1NW,. If f is defined on a non-empty
connected open subset W, of W, then, denoting g = f|w,, £ is the graph of some
meromorphic § over W such that §|lw, = g. This observation, together with the
following obvious lemma, implies readily that the germ of f at o € B" admlts an
extension f : U — P™ to some tubular neighborhood U of L.

Lemma 2.3.1. Let W, Cc W C P™ be non-empty connected open subsets of P™.
Let g : W, — P™ be an F-preserving meromorphic map. Suppose g o p is defined
on the graph of two distinct holomorphic sections o1,02 : W — PT(P™) over W.
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Define now ¥ C W x P™ to be the unique irreducible component of Graph(g# )
pooy)N Graph(g# o p o a2) which projects onto W. Then, X is the graph of an
F-preserving meromorphic map § : W — P" such that §|w, = g.

Proof of Lemma (provisional) continued. We note that in the application of Lemma
2.3.1 the important thing is to have some holomorphic section of PT'(P™) over W.
There is no difficulty with finding such local sections on tubular neighborhoods of
pieces of the line L since the lift L of L to PT(P") already lies in the domain of
definition of f *o -

Recall that f : B® =2 V C P" is an F-preserving biholomorphism, i.e., f
transforms intersections of B™ with lines to open subsets of lines. The preceding
argument shows that, for any line L passing through o, the germ of f at o can
be analytically continued to some open neighborhood U of L. Since every point
y € P*, y # o, can be joined to o by a unique line L, implementing the procedure
of anlaytic continuation simultaneously on all such lines we obtain a well-defined
JF-preserving meromorphic map f : P* — P" extending f : B™ = V. Arguing with
f~1 we conclude that f :P™ — P" is birational, as desired. [

The proof that f' is a biholomorphism requires a little work, which will be
taken up in (2.4) in a more general context. For irreducible Hermitian symmetric
spaces S of rank > 2 as in Theorem 2.1.2, 2 distinct points z,y € S may or may
not be joined by a line. However, as explained in (1.6) any 2 distinct points can
be joined by a non-overlapping chain of lines, by the Polysphere Theorem. The
same argument as for P", replacing PT(P™) by the bundle 7 : C — § of varieties of
minimal rational tangents, on which the holomorphic foliation F is defined, leads
to the following result on analytic continuation.

Lemma 2.3.2. Let K = C; + Cy + - -+ + Cy, be a non-overlapping chain of lines
on S, 0o € C; and f be a germ of F-preserving meromorphic map at o. Then,
there exists a tubular neighborhood U of K and an F-preserving meromorphic
map f:U — 8 such that f extends the germ f.

For an open ball Q C C™ C S consider the space M = Mg of all F-preserving
meromorphic maps f : {2 --+ S. Denote by 7 : ) — S the hull of maximal existence
of M, which is a Riemann domain over S, i.e., 7 is a local biholomorphism. (Such
a hull can be constructed for any family of meromorphic maps, ¢f. Narasimhan
[Na]). ;From the universality of the hull, if 7’ : @' — S is any Riemann domain
over S such that any f € Q admits a (unique) extension to €', then there is a
canonical map 7 : ' — ! extending the identity map on the univalent domain
Q C . By Lemma 2.3.2, any f € M can be analytically continued along tubular
neighborhoods of non-overlapping chains of lines. Since S is rationally connected
by a non-overlapping chain of lines, it follows that = : ) — § is surjective. However
it is not clear that 7 is injective. We will now prove that it is in fact the case by
making use of C*-actions on S. This will yield

Proposition 2.3.3. In the notations of Theorem 2.2.1, f : U — V extends to a
birational map F : § --+ S. » T

Proof. We fix a system of Harish-Chandra coordinates on a Euclidean cell = C™
on S, and take §2 to be the uni¢ ball on C", 0 € Q. For A € C* we denote by
A:C*—>C" the mapping A\(z) = (Az1,...,A2,). A extends to a biholomorphism
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of S, defining a C*-action on S. Let now A € C*, |A| < 1. Write {5 = %Q
The biholomorphism X : Q1,5 —  is F-preserving, inducing a bijection between

Mg and Mg, ,. It extends therefore to a biholomorphism Ql o ). Denote
also by A : 0 /A= ) the extended map. 0 / is equivalently the hull of Q with
respect to the family {fla : f € Mgq,,,} C Mq. By universality there is a local
biholomorphism 7 : Q-0 /» extending the identity map on Q,and AoT: Q-0
extends the self-map ) : © — Q. From now on we will write A for Ao 7.

We proceed to prove that 7 : ) — S is injective and hence a biholomorphism.
To start with, we show that 7~ 1(0) is a single point. Suppose otherwise. Let (3,
(o € 771(0), {1 # (2. There exists some connected open neighborhood U of o such
that 7—1(U) is a disjoint union of open sets Uq, @ € A, with {; € Ui, {3 € U,. Let
~ be a continuous curve on 9) joining {; to (2.

For A sufficiently small A(m(7)) C U, so that A(y) C #~'U, and for all ¢ € 7,
X € U, for a unique «, contradicting with A(; € Uy, A2 € Us. Now the same
argument works with o replaced by any z € 0, using C*-actions A, with centres z.
(In this case \; : @ — Q for X sufficiently small.) We conclude that 7 : 2 — S is
univalent over €. jFrom this we proceed to prove that 7 is univalent over S.

Suppose y € S is such that 7~ !(y) contains at least 2 distinct points (1, Co-
Consider now the simultaneous extension of A: @ — ©; 0 < [A| < 1; to A: Q- .
Given any continuous curve <y on ), some Ao; |Ao| < 1; and the knowledge of
Ao in a vicinity of v, A¢ is uniquely determined for X sufficiently close to A, and
¢ sufficiently close to v, by lifting Aw(§). From this it follows that A¢ depends
holomorphically and jointly on (A,&). For a similar reason for X sufficiently close
to 1, A& # Af2. On the other hand, since

(A1) = A(r(€1)) = Ay) = A(m(&2)) = 7(A&2)

we see that if A is chosen small enough such that m(\y) € U, we must have A§; =
Aé2. This contradicts with the identity theorem on holomorphic functions, and
we conclude that 7 :  — S is univalent, hence a biholomorphism. We can now
identify the hull = : ) — S for Mg as S itself. Returning to Proposition 2.3.3, we
have proven that f : U — V extends to a rational map F on S. Applying the same
arguments to the inverse mapping f -1.Vy — U we conclude that F': § --» S is a
birational map. The proof of Proposition 2.3.3 is complete.

(2.4) For the proof of Theorem 2.1.2 (and hence Theorem 2.1.1) it remains to
establish

Proposition 2.4.1. Let S be an irreducible Hermitian symmetric space of the
compact type and F : S --+ S be a birational self-map. Suppose for a generic line
L of 8, F|1, is a biholomorphism of L onto a line L'. Then, F is a biholomorphic
automorphism of S.

Proof. We denote by Z C S the set of indeterminacies of F and by R the rami-
fication divisor of F|s_z. The union B = RUZ C S is a subvariety. To prove
Proposition 2.4.1 we claim that it suffices to show that R = 0. Assuming R = 0,
then for any holomorphic anti-ganonical section s € 'S, K gl), F*s is well-defined
on S — Z and extends to a holororphic section over S by Hartogs extension, since
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Z is of codimension > 2. Applying the same argument to the inverse map F~!, we
conclude that F induces a linear isomorphism 8 : I'(S, Kg') — I'(S, Kg*), which
induces a projective-linear isomorphism: [8*] : PT'(S, Kg')* — PI'(S, K3')*. Iden-
tifying S as a complex submanifold of PI'(S, K5')*, F is nothing other than the
restriction of [6*] to S, thus a biholomorphism.

It remains to show that F is unramified on S—Z. Suppose otherwise. Let z € R
be a smooth point. Since C, C PT,(X) is not contained in any hyperplane there ex-
ists some line L passing through =, L ¢ B = RUZ, such that F|;, maps L biholomor-
phically onto a line L', so that dF(x) # 0. For y = F(x), dF(z) : T;(S) — Ty(S)
has a non-trivial kernel. The projective linear map [dF(z)] : PT,(S) --+ PTy(S)
induces a rational map [dF(z)]|c, : C; --+ C, with image lying in a linear section
T of Cy, £ & Cy, as Cy is not contained in any hyperplane section. It follows that
[dF(z)]|c, : C; --» Cy must have positive-dimensional generic fibers. In particu-
lar, there exist a holomorphic one-parameter family of lines {L, : t € A} passing
through z such that L, = L and such that each L; is mapped biholomorphically
onto the same L', so that F fails to be locally biholomorphic at a generic point of
L, contradicting the choice of L. With this we have proven that F' is unramified
on S — Z. Consequently, F': § — S is actually a biholomorphic automorphism, as
explained.

§3 Minimal rational curves on the central fiber and the distribution
spanned by their tangents

(3.1) A projective manifold is said to be uniruled if deformations of some rational
curve cover the whole manifold. By Mori’s theory any Fano manifold is uniruled.
In what follows we will give a very informal introduction on the deformation theory
of rational curves to the extent necessary for the understanding of [HM2]. We refer
the reader to Kolldr [Ko] for the general theory of rational curves, and to [HM5]
for a more systematic introduction.

To start with we need some preliminaries on holomorphic vector bundles on
the Riemann sphere P!. On P! the isomorphism class of a holomorphic line bundle
is determined by its degree. A holomorphic line bundle of degree k is denoted by
O(k). Thus, the tangent bundle T'(P') is isomorphic to O(2), because there exists
a holomorphic vector field with two isolated zeros, e.g., the Euler vector field given
by z% on C C P'. In general holomorphic vector bundles on compact Riemann
surfaces are complicated objects, but in the case of P! we have Grothendieck’s
splitting theorem, which says that any rank-r holomorphic vector bundle V over
P! splits into a direct sum of holomorphic line bundles O(a;) @ - - - @ O(a,) such
that the degrees a;, counting multiplicities, are uniquely determined by V. (cf.
Grauert-Remmert [GR)] for a proof). For example, the tangent bundle T'(P™), when
restricted to a projective line (i.e., a degree-1 rational curve) P! C P, splits into
O(2)®[O(1)]". A holomorphic vector bundle V over P! is said to be semipositive
whenever each a; > 0. Suppese X C P is a projective submanifold, and C C P" is
a projective line already contained in X, such that T(X)|¢ is semipositive, then it
must be of the form O(2) ® [O(1)]P & 0. T(X)|c is semipositive whenever T(X) is
spanned by global sections, i.e., by holomorphic vector fields on X. This is the case
for Hermitian symmetric spaces S of the compact type, as S is homogeneous. For
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S irreducible, H»(S,Z) = Z, and there exists a holomorphic embedding 7 of S into
some PV, defined by the positive generator O(1) of the Picard group of S, such that
7 induces an isomorphism 7, : Hy(S,Z) & Hy(PV, Z), as exemplified by the Pliicker
embedding on Grassmannians. Rational curves C on S of degree 1 with respect
to O(1) are then projective lines on PV. Since T(S)|c C T(PV)|c and T(S)|c is
semipositive, it follows that T'(S)|c 2 O(2) @ [O(1)]? ® O with K3'-C =p+2,
for every degree-1 (rational) curve C C S.

Let X be a projective manifold. By a parametrized rational curve we mean a
non-constant holomorphic map f : P! — X. The image of f is called a rational
curve. Given a holomorphic family f; : P! — X, t € A, of parametrized rational

curves, the derivative %‘o f: defines a holomorphic section of fyT(X). However,

given a member f, of the space H ol(P!, X) of parametrized rational curves in X,
and ¢ € T(P!, £2T(X)), it is not always possible to fit f, into a holomorphic family
of f; € Hol(P!, X), such that %L,ft = . Setting in power series f; = f+ot+gat?+
... locally, the obstruction of lifting to higher coefficients lies in H' (P!, f3T(X)). In
case the latter vanishes, Hol(P!, X) is smooth in a neighborhood U of [f,], and the
tangent space at [f] € U can be identified with ['(P!, f*T'(X)). This is in particular
the case whenever f*T(X) is semipositive on X. In this case deformations of f
sweep out some open neighborhood of C' = f(P'). We call f a free rational curve,
and X is said to be uniruled.

Each irreducible component H of Hol(P!, X) can be given the structure of a
quasi-projective variety. Aut(P') acts on H and the quotient space H/Aut(P') can
be endowed the structure of a quasi-projective variety such that H — H/Aut(P')
realizes H as a principal G-bundle with G = Aut(P') = PSL(2,C). When each
member [f] of H is free, H/Aut(P') is non-singular.

We denote by Hol((P!,0); (X, z)) the space of all parametrized rational curves
f:P' - X, f(0) = € X. In analogy with the deformation of parametrized
rational curves we can also consider deformations of parametrized rational curves
f : P! — X fixing one point, f(0) = z. Candidates for infinitesimal deformation are
then given by I'(P!, f*T'(X)®mg), where mo denotes the maximal ideal sheaf of 0 on
P!. For f*T(X) semipositive each Grothendieck direct summand of f*T'(X)®mo =
f*T(X)®0O(-1) is of degree > —1. The obstruction to deforming f fixing 0 given by
H(P!, f*T(X) ® mp) must then vanish, since H'(P',O(a)) = 0 whenever a > —1.

(3.2) Let now S be an irreducible Hermitian symmetric space of the compact
type and of rank > 2 and consider a regular family 7 : X — A of compact Kéhler
manifolds over the unit disk such that the fiber X; := 7 ~1(t) is biholomorphic to S
for ¢t # 0. There is a holomorphic line bundle L on X such that the restriction of L
to each X;, t # 0, is isomorphic to O(1). Taking positive powers of L, by the Direct
Image Theorem I'(X,, L*) must grow like k", n = dim S, so that X, is Moisezon.
Since X, is Kahler and Moisezon, it must be projective-algberaic, by MoiSezon’s
Theorem. We write X for X, and also denote L|x by O(1).

We consider some degree-1 rational curves C; C X; for some t # 0. Deforma-
tions of C) as a subvariety in X fill up each X; for ¢ # 0 and must therefore fill up
X = X,. Since C, is of degree-1 and X = X, is also Kahler, C) cannot decompose
under deformation, viz., every deformation C of C; lying on X must also be of
degree 1 with respect to O(1)- and is hence irreducible and reduced. Thus, X is
uniruled by such degree-1 rational curves C.
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Consider now one choice of such a rational curve C C X, represented by
fo : P — X, such that f3T(X) is semipositive, and consider H C Hol(P!, X)
the irreducible component containing [f,] as a member. For every [f] € H we call
C = f(P') a minimal rational curve. Collect the set of all [g] € H such that ¢*T'(X)
fails to be semipositive. The set £ of all C’ = g(P!) cannot fill up an open subset of
X, otherwise infinitesimal deformations of some choice of such g must generate all
tangent directions at some point of C’, i.e., g*T'(X) is semipositive, a contradiction.
By our choice of H, D := H/Aut(P*) is compact (since C does not decompose under
deformation) and hence projective. The subset £ C D is a subvariety, and they fill
up a proper subvariety E C X. For z ¢ E consider H, = Hol((P!,0); (X,z))NH.
Then, H, is non-singular. Let Aut(P!,0) be the subgroup of Aut(P!) fixing 0.
Aut(P1,0) acts on H, and M, := H,/Aut(P!,0) can be endowed the structure of
a projective manifold. We call M, the normalized Chow space of minimal rational
curves marked at . For y € X;, t # 0, M, similarly defined is irreducible, and
is isomorphic to the variety C,(S) of minimal rational tangents as defined in (1.2).
By deforming [C] € M, to X;, t # 0, we see readily that M, is connected.

(3.3) For z € X — E, M, parametrizes free minimal rational curves C' marked
at z. Representing C by f : P! — X, we say that C is standard if f*T(X) &
0(2)®[0(1)]P 01 for some p, g > 0. We argue briefly that for a genericz € X —F
and a generic choice of [C] € M,, C is standard. (For details we refer the reader
to [Mkl1] or [HM3,5].) Otherwise one can obtain a one-parameter family of [C]
on D containing a pair of distinct points 1 # z2, and hence construct a ruled
surface 7 : R — B over a non-singular algebraic curve B. There is an associated
tautological holomorphic map F : R — X of maximal rank, together with two
disjoint holomorphic sections By, By of 7 : R — B, corresponding to z; and zq,
so that By resp. Bs C R are exceptional divisors blown down to z, resp. z3. As
R— B; — By is a holomorphic C*-bundle, the compactifying divisors B; and B, must
have opposite self-intersection numbers, contradicting with Grauert’s blowing-down
criterion (that B; - B; < 0 for i = 1,2). The preceding argument is a special case
of Mori’s break-up trick in [Mo].

Let now z € X — E be generic and [C] € M, be a standard minimal rational
curve, represented by f : P! — X, f(0) = z. Then, df : T(P!) —» f*T(X) =
0(2) ® [O(1)]P & O must be injective, as T(P') = O(2). We associate to [C]
the tangent space df(To(P')) C T»(X). This way we obtain a map defined for
[C] € M, standard (and more generally for [C] immersed at 0). The extension
of this map to a rational map &, : M, --» PT,(X) will be called the tangent
map. ;From the description of infinitesimal deformations, the tangent map ®, is
generically finite-to-one. (More details will be given in (4.1).) Let M2 C M, be
the Zariski-dense open subset on which ®, is holomorphic. The strict transform
®(M32) of M, under ®,, to be denoted by C,, is called the variety of minimal
rational tangents at z € X. For the natural projection 7 : T(X) — {0} — PT;(X),
we denote by C; C T;(X) the cone of minimal rational tangent vectors defined by
Cr = 7 }(Cz) U {0}. We summarize the relevant facts in

Proposition 3.3.1. Let S be an m’eduable symmetric space of the compact type
and of rank > 2. Let m : X — A be a regular family of compact Kihler manifolds
such that for t # 0, X; = n~1(t) is biholomorphic to S. Then, for the central fiber
X = X,, and for a generic point € X, the normalized Chow space M, of minimal
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rational curves marked at x is a projective manifold, a generic member [C] € M,
is a standard minimal rational curve, and the tangent map ®, : M, --+ C, is a
generically finite-to-one rational map.

(3.4) To recover an S-structure on the central fiber X, one major difficulty is the
possibility that generic varieties of minimal rational tangents are linearly degener-
ate, i.e., contained in hyperplanes. In this case we would have a proper meromor-
phic distribution W on X such that at a generic point z € X, W, is spanned by
the cones C, C T, (X). Regarding such distributions we have

Proposition 3.4.1. Suppose C, C PT,(X) is linearly degenerate at a generic
point, and write W G T(X) for the proper meromorphic distribution spanned by
Cz C Ty(X). Then, W is not integrable.

Proof. We argue by contradiction. There is a subvariety A = Sing(W) C X of
codimension > 2 such that W is holomorphic on X — A. Suppose W is integrable.
We assert that the leaves L of the foliation on X — A defined by W are closed
subvarieties of X — A such that L C X are subvarieties. Recall that for z € X — F,
every minimal rational curve passing through z is free and M, is irreducible. To
prove the assertion take x € X — A — E, write V; for the subvariety swept out by
minimal rational curves emanating from z. Then, V; is irreducible and tangent to
W at a generic point. Inductively let Vi, ; C X — A for the subvariety swept out by
minimal rational curves emanating from Vi — E, Vkt1 = Vg, ;. The process must
stop in a finite number of steps to give a chain V1 & -+ & Vi = Vinyq such that
Vo, is irreducible, T, (V,,) = W, at generic points z, by the integrability of W. For
the leaf L, of W passing through z, we have L, = V,, N (X — A) and L, = V.

There is a projective variety £ parametrizing subvarieties of X, such that a
generic member of £ represents the closure L of some leaf L of W on X — A, and
each L is represented by a member of £. Let N' C £ be a hypersurface and denote
by H C X the divisor swept out by N. For a minimal rational curve C, lying on
some L such that [L] ¢ N, the intersection C, N H can only lie on A = Sing(W).
For C, a free rational curve some deformation C of C, will avoid A since A C X is
of codimension > 2, so that C N H = @. However, since X is of Picard number 1,
H C X is an ample divisor, and every curve on X must intersect H, a contradiction.
In other words, W cannot be integrable.

§4 Rigidity of irreducible Hermitian symmetric spaces under Kéhler de-
formation

(4.1) For S an irreducible Hermitian symmetric space of the compact type, 7 :
X — A aregular family with X; := n~1(t) & S for ¢t # 0, assuming that varieties
of minimal rational tangents C, C PT,(X); X = X,; are linearly degenerate,
we have proven in §3 the non-integrability of the meromorphic distribution W &
T(X) spanned at generic points by C,. We proceed now to produce a sufficient
condition for the integrability of W, which will eventually contradict Proposition

3.4.1, proving that W = T(X).’



102 NGAIMING MOK

We start with a more precise description of the tangent map. Let f : P! — X
be a parametrized free minimal rational curve, f(0) = z and df(0) # 0, i.e., f is
immersed at 0. Let z be the Euclidean coordinate on C C P* and (21,...,2,) be
local holomorphic coordinates at z € X such that (21(z),...,z.(x)) = (0,...,0).
Write C = f(P!). Let F(t,2) = z(a + t€ + O(t2)) + O(2?); t, z sufficiently small;
be a local parametrization of minimal rational curves such that fi(z) = F(t,z2)
parametrizes C;, C, = C, f, = f. Here the implicitly understood constants in
O(t?) resp. O(2?) are independent of z resp. t. The tangent vector %|—of: €
Tis)(Hz) is given by o(z) = 2§ + O(2?). ¢ depends on the parametrization of
C;. Once %5(0, 0) = a is fixed, £ is uniquely determined modulo Ca. We have
Tip(Ha) = TP, £*T(X), and Tioy(Mo) = Tyy(Ha)/df (D', T(P') ® mo). For
the tangent map ®, : M, --» C, we have ®,([C;]) = [a+t&+O0(t?)] € PT,(X). For
o € Ti5)(Hc) let T € Tic(My) be its residue class. Then d®,(7) € Tjs)(C;) is given
by d®,(7) = £ mod Ca under the identification Tjo)(PT; (X)) with T (X)/Ca. We
note that the latter identification depends on the choice of a (i.e., changes when
is replaced by a proportional vector). From the preceding description d®.(%) = 0
if and only if, composing with an automorphism of P! fixing 0 if necessary, o
can be chosen to vanish to second order at 0. In case C is standard, we have
f*T(X) = 0(2) ® [0(1)]P @ 0, and any o € I'(P!, f*T(X) ® mo) vanishing to the
second order must be tangent to C. In other words, d®;([C]) : Ti¢|(Mz) — Tjo)(Cz)
is an isomorphism and ®, : M, --+ C, is generically finite-to-one, as stated in
(3.2). Letting df (0)(To(P')) = Ca by abuse of notations we write Py, for the image
of (O(2) @ [O(1)]P)o under df(0). Then Tiy)(Cz) = Po/Ca.

For notational simplicity alone we will argue as if standard minimal rational
curves were always embedded. We note that although the Grothendieck direct
summands are not uniquely determined, the positive part P, is a priori indepen-
dent of the choice of Grothendieck decomposition, as follows. Let y be a point on
C distinct from z. Then, P, C T.(X) is the vector subspace spanned at z by
I'(C,T(X)®m,).

(4.2) We return now to the question of integrability of the distribution W on X
spanned by C; at generic points, assuming W & T(X). First of all we look for a
sufficient condition in terms of C;. By the Frobenius condition, W is integrable
if and only if for any two W-valued holomorphic vector fields 7, ' on some open
set U C X — A, A = Sing(W), the Lie bracket [n,7'] is also W-valued. Clearly,
for z € U, [n,7'](z) € W, if either n(z) = 0 or'#'(z) = 0, from the local formula
of the Lie bracket. It follows that for 7, ' in general, [,7']{z) mod W depends
only on 7(z) and #/(z). This defines the Frobenius form ¢, : AW, — T (X)/W,
such that W is integrable if and only ¢ = 0. To show that W is integrable it is
therefore sufficient to verify that over some non-empty open subset U C X — A, for
any = € U there exists pairs of germs of W-valued holomorphic vector fields (n,7’)
at z such that

(a) ¢(n,n')(z) =0;
(b) the set of all (n An')(z) for such pairs (,n’) span AW, as a vector space.
Let now E, C A?W, be the subspace Span{a A¢:a € C.,€ € P,}. We prove

Proposition 4.2.1. Suppose at generic points x € X we have E; = A?W,. Then,
W is integrable. EE
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Proof. Let C C X be a standard minimal rational curve marked at z, T, (C) =Ca.
Let y € C be a point distinct from z. Consider a holomorphic one-parameter
family {f; : t € A.} of parametrized standard minimal rational curves marked
at y, € > 0, £:(0) = y, fo(P!) = C. Write f,(P') = Ci;; Co = C. Then, ¥4t €
T(P!, f+T(X) ® mg), corresponding to oy € I'(C, T(X) ® my). Assume 0,(z) # 0.
For any t € A, ¢ € P!, z = f;(¢) and 0 # B € T,(Cy), as observed 0:(¢) = x € Pg,
so that the surface swept out by {C; : t € A} gives a germ of complex-analytic
surface ¥ at z such that T, (X) = Span{3, x} C W, for any z € X. In other words, &
is an integral surface of W. Thus, % and %% correspond to W-valued holomorphic
vector fields  resp. 7 on ¥ such that [,7'] = 0 on %, so that ¢(n,n')(z) = 0. Since
[a] € C; is arbitrary, 0,(0) = £ € P, can be chosen arbitrarily, and by assumption
E; := Span{aN€:a € C, € € P,} = A’W,, both conditions (a) and (b) preceding
the Proposition are satisfied, and W is integrable, as desired.

(4.3) To study the distribution W on the central fiber, we need to understand
generic varieties of minimal rational tangents C; C PT;(X) as subvarieties, in order
to verify hypotheses in Proposition 4.2.1. Consider a holomorphic section o : A, —
X defined for some ¢ > 0 such that o(0) = z. For t # 0; Cor) C PT,()(X3) is
projectively equivalent to C,(S) C PT,(S) on the model manifold S. It is difficult
to study the projective geometry of C; directly as limits of C,(;j. On the other
hand, we have the Chow spaces M, ;) of minimal rational curves marked at o(t)
and tangent maps ®,(;) : Moy --* Co(r), Which is an isomorphism for ¢ # 0.
It is easier to study {M,(;)} as a regular family of projective manifolds. Recall
from (1.3) that C,(S) is itself biholomorphic to a Hermitian symmetric space of
the compact type, and is irreducible except in the case of G(p,q) of rank > 2,
where C,(G(p, q)) is isomorphic to PP~! x P4~!, embedded in PP?~! by the Segre
embedding.

Considering the regular family M,y — A, 0(0) = z, we argue in [HM2,83]
by induction that M, = C,(S). This can be achieved by induction on dimension,
except for the case of § = G(p,q), p,q > 2, where there is the difficulty that
as abstract manifolds, PP~! x P?~! are not rigid under Kéhler deformation, as
exemplified by the deformation of P! x P! to any Hirzebruch surface of even genus
(cf. Siu [Si,3.1]). In the latter case the key phenomenon is that limits of direct
factors may decompose in the central fiber. In our situation we need the extra
interpretation of individual direct factors PP~1 x {b} resp. {a} xPY~" as parameter
spaces for families of lines through a fixed base point of projective subspaces = PP
resp. P? in G(p,q). These projective subspaces are of degree 1 with respect to
0(1), so that their limits under deformation cannot decompose in the central fiber.
Basing on this and on the study of intersections of limiting projective subspaces
on the central fiber, in the case of S = G(p,q) we can still prove in [HM2] that
M, = PP~1 x P4~! for a generic point z on the central fiber X.

At a generic point x € X on the central fiber X of m: X — A, C; C PT;(X) is
the image of the tangent map ®, : M, --» C;. As explained M; is biholomorphic
to Co(S) for the model S. Let o : A — X be a holomorphic section, o(0) = z. The
family o* M consisting of {M,;) : t € A} is holomorphically trivial. Identifying
o*M — A with Co(S) x & — A, Co(S) C PTo(S), there is a holomorphic family
of linear maps ¢; : T,(S) — T, (1)(X:) such that @4() : Moy --» Co(t) is induced
by [¢i] : PT,(S) — PT,)(Xe), ®ory = [@()]IM,,- Suppose the distribution
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W G T(X). Let E; = Span{aA{:a € Cs,a # 0,6 € P,}. By Proposition 4.2.1
W is integrable if E, = A2W,. We are going to establish

Proposition 4.3.1. For the model variety of minimal rational tangents C,(S ) and
E, C A2T,(S) defined by E, = Span{fa A€ : a € Co,a # 0, € P,}, we have
E, = A*T,(S).

E, is the image of E, under the canonical linear projection A2T,(S) — A2W,
induced by ¢, : T,(S) — W. Given Proposition 4.3.1, at a generic point x on the
central fiber X, we have E, = A?W,, so that W & T'(X) is integrable, contradicting
Proposition 3.4.1. In other words, given Proposition 4.3.1, we have proven by
contradiction that W = T'(X), so that C, C PT,(X) is congruent to C,(S) C PT,(S)
for a generic z € X. By the latter we mean that there exists a projective linear
isomorphism v : PT,(S) — PT,(X) such that v(Co(S)) = C..

For the proof of Proposition 4.3.1 we will make use of the following descrip-
tion of C,(S) obtained from C*-actions on the latter derived from Grothendieck’s
splitting theorem (¢f. [HM2,85]).

Fact. At [a] € Co(S), dimC,o(S) = p, one can choose inhomogeneous coordinates
such that the affine part of C,(S) is the graph of a vector-valued quadratic polyno-
mial in p variables.

Example.

(1) For § = Q*, n > 3, Co(S) = Q"% — P™!. Since any two non-degenerate
complex bilinear forms are conjugate to each other, we may choose Euclidean
coordinates (wy,...,wn—1) on To(Q™) = C™ such that C,(S) is defined by
WoWn_1 — Wi —w} — -+ —w2_, = 0. We have [1,0,...,0] € Co(S). In terms
of inhomogeneous coordinates zx = %ﬁ, 1 < k < n, the affine part of C,(S5) is
given by the graph of the quadratic polynomial z,—1 = 2% + 2% + -+ - + 22_,.

(2) For S = G(p,q), p,q > 2, Co(S) & PP~ x P=! > PP9~1, defined by the
Segre embedding, which arises from ¢ : C? x C? — CP @ C? = CP?, p(u,v) =
u®v. Write {e;}o<i<p—1 resp. {€;}o<j<q—1 for bases of CP resp. C? and
take @ = ¢(eo,€0). Then the affine part of C,(S) is given by the graph of
F:Crte-2 _, ¢clp—D(e=1) | where

F(z1y.vo s 2p—1;C1y - -+ yCg=1) = (2i{j)1<i<p-1,1<j<q~1 -

Proof of Proposition 4.3.1. We give here a proof of the Proposition assuming
the preceding description of C, = C,(S) in inhomogeneous coordinates. In a
neighborhood of [a] € C,,[8] € C, is described by 8 = a + z1e1 + -+ + z,€p +
Q(z1,--- ,2p), where (21, --,2n—1) are inhomogeneous coordinates, with corre-
sponding Euclidean basis (e, ,en—1); and, writing A = Span {e1,--- ,e,} and
B = Span{ept1, -+ ,en—1}, Q@ : A — B is a vector-valued quadratic polyno-
mial. Let now {a(t) : t € A}, a(0) = @, be a holomorphic curve on C,. Then,
o/ (t) € Pay) and a(t)Ad/(t) € E,. Furthermore (a(t)Ad/(t)) = a(t) Aa"(t) € E,.
It follows that o A € E, whenever n € A or n = D2Q(¢,£) for some & € A,
where D?Q is the vector-valued Hession of @Q, which can be identified with the
second fundamental form o, of C, in Tx(X) at a with respect to the flat con-
nection on T;(X). By polarization a An € E, also for n = 04(&,£’) whenever
€,¢ € A. But since Q is quadratic, the linear span of G, is the same as the linear
span of all derivatives of 3 up to'the second order. By the linear non-degeneracy
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of Gy, Span{oa(£,€')} = Span{8:9;Q(0)} = B. Consequently, a A To(S) C E,.
Varying a we conclude that A’T,(S) = Eo, as desired. ]

(4.4) Over the total space X’ of the regular family 7 : X — A consider the fibered
space C — X of varieties of minimal rational tangents. For each z € X, t # 0,
C. C PT,(X) is congruent to Co(S) C PTo(S). From (4.3) we see that this holds
also for a generic point = on the central fiber X = X,. Using Hartogs extension we
strengthen this to the following result.

Proposition 4.4.1. Let 7: X — A be a regular family of compact Kéhler man-
ifolds such that the fibers X, = m~1(t) are biholomorphic to S. Then, for any
z € X = X,, the variety of minimal rational tangents C; C PT; (X) is projectively
equivalent to Co(S) C PTo(S) on the model manifold S.

For the proof of Proposition 4.4.1 we will make use of

Proposition 4.4.2 (Matsushima-Morimoto [MM]). Let V be a finite-
dimensional complex vector space and H C GL(V) be a linear reductive subgroup.
Then, GL(V)/H is a Stein manifold.

Example. Consider the case of S = Q", n 23,V = T,(S), H = K€ is the
group of linear transformations preserving a fixed non-degenerate complex bilinear
form up to a multiplicative constant. Then, GL(n,C)/K® parametrizes the set of
all proportionality classes of non-degenerate complex bilinear forms. Consider the
vector space E of complex bilinear forms on C". Let & C E be the subvariety of
all complex bilinear forms, represented by (ai;)1<i j<n With respect to a fixed basis
of C", such that det(a;;) = 1. Then ¥ is affine-algebraic and GL(n,C)/K Cisa
quotient of £ by a finite group, hence afffine-algebraic and a fortiori Stein.

Proof of Proposition 4.4.1. In the case of S-structures with H = K€, o € S, the
choice of a linear isomorphism ¢ : T,(S) = C™ determines a projective submanifold
Z, c Pr! with Z, = [£)(Co(S)). For v € K€, Z, = Z o, so that GL(n, C)/K°®
parametrizes the set of all submanifolds Z c P"~! projectively equivalent to Co(S).
For the regular family = : X — A there is a proper subvariety E C X such that
C, is projectively equivalent to C,(S) for alz € X —E. Foranyy € X and U
an open neighborhood of y such that T(U) is holomorphically trivial, we obtain
from the varieties C; a holomorphic map ¢ : X — E — GL(n,C)/K€. Since
GL(n,C)/K C is Stein by Proposition 4.4.1, it can be holomorphically embedded as
a closed analytic subvariety of some Euclidean space, by the embedding theorem of
Bishop-Narasimhan-Remmert. It follows that 1 extends holomorphically across £
by Hartogs extension. ;From this we conclude that all varieties of minimal rational
tangents C, are projectively equivalent to the model Co(S ), as desired. The proof
of Proposition 4.4.1 is complete.

End of Proof of the Main Theorem. By Hirzebruch-Kodaira [HK] we may assume
that S # P", i.e., rank(S) > 2. Let F — X be the holomorphic frame bundle of X.
For z € X let H; C F. be the subset of all linear isomorphisms ¢ : Tp(S) — Tx(X)
such that [¢](Co(S)) = C;. Then the holomorphic subbundle of frames H — X
defines a KC-structure. For each t # 0 we have a holomorphic K C_structure H(t)
on X; such that H(t) converges to ‘H as t tends to 0, in the obvious sense. Each
H(t) is flat on X, for'¢ # 0. By Definition-Proposition 1.5.1, H is also flat on X.
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Since X is simply-connected, it is biholomorphic to S by Theorem 2.1.1. The proof
of the Main Theorem is complete.
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