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Thermal stability of current gain in InGaP/GaAsSb/GaAs
double-heterojunction bipolar transistors
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The thermal stability of current gain in InGaP/GaAsSb/GaAs double-heterojunction bipolar
transistors(DHBTS) is investigated. The experimental results show that the current gain in the
InGaP/GaAsSb/GaAs DHBTs is nearly independent of the substrate temperature at collector
current densities>10 A/cn?, indicating that the InGaP/GaAsSb/GaAs DHBTs have excellent
thermal stability. This finding suggests that the InGaP/GaAsSb/GaAs DHBTs have larger
emitter-base junction valence-band discontinuity than traditional GaAs-based HBZ0®
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GaAs-based heterojunction bipolar transistoHBTS) Another attractive narrow band gap base material is
have been widely used for power amplifiers in wireless andsaAsSb, which has been used in InP/GaAsSb/InP HBTs by
high-speed digital applications. Compared with rival siliconBolognesiet al®*® The lattice-matched InP/GaAsSb/InP
bipolar and GaAs field-effect transistor devices, HBTs haveHBT has demonstrated excellent high frequency and high-
several advantages, including high linearity, high transconspeed performance. However, GaAsSb as the base layer in
ductance, high power added efficiency, and low hpise. the GaAs technology has had limited success because the
These advantages have made GaAs HBT the preferred teciaterials are not lattice matched. Early work showed a poor
nology for many military and commercial applications. current gain due to the use of a thick GaAsSb layer well
However, GaAs HBTs have a relatively large base-emitteRbove the critical layer thickness!? Although the current
turn-on voltage due to the large band gap of GaAs used a@ain could be improved by using a pseudomorphic GaAsSb
the base layer, and this limits the minimum operating voltagdayer as the base and a GaAs layer as the enfittixe de-
and increases the power consumption in circuit applications/ices showed a large recombination current at the GaAs
In addition, AIGaAs/GaAs HBTs suffer from current gain emitter depletion region. Recently, we have developed a
degradation at elevated temperature, which leads to a negfiGaP/GaAsSb/GaAs double-heterojunction bipolar transis-
tive differential resistance and current collapse liny ~ ©oF (DHBT) with low turn-on voltage and high current
curvest? Although InGaP/GaAs HBTs have less tempera-9@in-""~By using a narrow-energy band gap GaAsSb layer

ture dependence on current gain than AlGaAs/GaAs HBTs 25 the base, the turn-on voltage of the device is reduced. The
there is still observable gain degradation and negative differ? turn-on voltage makes possible better power-added effi-
ential resistance, especially for the semi-ordered-'€ncy and lower operating voltage, which in turn allows the

InGaP/GaAs HBT.The main reason for current gain deg- “S€ of smaller and lighter batteries. This is of critical impor-

radation in GaAs-based HBTs is believed to be the |0Wtance for any battery-operated device such as a cell ph_one.
valence-band offset(AE,) at the emitter-base(EB) On the other hand, by using an InGaP layer as the emitter,
heterojunctior?. In order t<\)/ realize low-voltage, low-power the desirable band lineup at the emitter-base heterojunction is

and high reliable operation, it is essential to develop ne pbtained, for the band gap offset at the InGaP/GaAsSb in-

GaAs-based HBTs with low turn-on voltage and better the\r'iferface mainly appears on the valence biitiis suggests

S . . that the blocking effect oAE,, on the base-to-emitter back-
mal stability. In terms of this requirement, future GaAs HBTsin'ection hole current would be more significant and, there-

should use low energy band gap materials as the basellay re, the InGaP/GaAsSh/GaAs DHBT is expected to have
LO red_uce t_he tuk:n—cl)(r; \k/oltage.IAt the slame tlt;ne,dth; emltterhigher current gain and better thermal stability than tradi-

ase junction should keep a large valence-band off&&1 5,5 Gaas HBTs. In this letter, we study the temperature
which would prevent the degradation of the current gain aHependence of current gain of the InGaP/GaAsSh/GaAs
elevated temperature. HBTS.

Two different narrow band gap materials have been de-  1he |nGaP/GaAsSb/GaAs DHBT structure was grown
veloped. The first is InGaA_zsN, which has been used as thg, 4 semi-insulating100) GaAs substrate by metalorganic
base layer by several group ‘However, InGaAsN material  chemical vapor deposition. Trimethylgallium, trimethylin-
typically displays gegfaded minority carrier properties Com-giym, trimethylantimony, tertiarybutylphosphine, and tertia-
pared W'th_GaAév' leading to the reduction of dc current ypytylarsine were used as the organometallic sources. Car-
gain and high frequency performance. Although these unfapon and silicon were used ag- and n-type dopants,
vorable characteristics can be suppressed by the insertion gdspectively. The device nominal structure consists of a
graded layers between the base and collector junfttis 500 nm GaAs subcollectofn>3x 108 cm™3), a 500 nm

complicates the transistor design and fabrication. GaAs collector(n=5x 10" cm3), a 50 nm GaAsSbh base
(Sb composition =10.4%p=8X 10'8 cm™3), a 50 nm InGaP

¥Electronic mail: bpyan@eee.hku.hk emitter (n=3x 107 cm™®), a 150 nm GaAs layern=4
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FIG. 1. (Color onling Representative Gummel plots for FIG. 3. (Color onling Normalized current gain vs substrate temperature for
InGaP/GaAsSh/GaAs DHBT with an emitter area of ¥QmD0 um?. the InGaP/GaAsSh/GaAs DHBTSs at collector current of 1 and 10 mA.

x10®cm?), a 50nm compositionally graded tion of collector current for a InGaP/GaAsSb/GaAs DHBT
In,GaAs_.cap layer (x=0-0.5n>1x10cm™3) and a with emitter size of 10 100 um? as the substrate tem-
50 nm InGaAs s cap ohmic contact layer(n>1  perature was varied from 20 to 180 °C. It can be seen that,
X 10* cm™3). The Sb composition was confirmed by high- at current densitieslc>10 Alcn?, the measured current

resolution x-ray diffraction measurement. The surface morgains nearly overlap for different substrate temperature, in-
phology was observed by atomic force microscope and nélicating that the current gain of the DHBTS is basically in-
cross-hatched patterns associated with misfit dislocationdependent of temperature. For clarity, Fig. 3 shows the cur-
were observed. This suggests that the GaAsSb base layer®t gain, normalized by its value at room temperature, as a
fully strained. The structure was fabricated into devices usfunction of the substrate temperature at collector current of 1
ing optical lithography and chemical wet selective etchingand 10 mA, respectively. The current gain at 180 °C varies
for mesa definition. only 3% forJc of 10 A/cn?, and 6% for alc of 100 A/cnf?.

Figure 1 shows the Gummel plots of a large area devicd his result is significantly different from that of the conven-
of 100X 100 um?. The device demonstrates a current gaintional AlGaAs/GaA$ and semi-ordered InGaP/GaAs
greater than unity at ultra-small collector current density of 1BTS" in which the current gain degrades with the increase
1x10°% A/cm? The device also displays a low turn-on volt- of temperature. The excellent thermal stability of current
age, 0.914 V, atl.=1 A/cn?, which is 0.18 V lower than gain in the InGaP/GaAsSb/GaAs DHBT is attributed to the
that of conventional InGaP/GaAs HBYsMeasured Gum- band alignment particular to the InGaP/GaAsSb heterojunc-
mel plots are near-ideal. The ideality factor of the collectortion. In general, the decrease of the current gain with
current is 1.03. The base current has different ideality factoré¢mperature depends on the valence band discontinuity

depending on the current level. The ideality factor of basdAEy) of the base-emitter heterojunction. For traditional
current is near 2.0 at the low current level. At high currentAlGaAs/GaAs and InGaP/GaAs HBTSs, the valence band

level, the ideality factor is 1.30. In comparison with discontinuity at the EB heterojunction was estimated to be

GaAs/GaAsSh/GaAs DHBT the recombination current of 0.19° and 0.43 eV} respectively. When Sb composition is
InGaP/GaAsSh/GaAs DHBT is greatly reduced due to thdncorporated into GaAs base, the energy band gap of the base
use of InGaP as emitter layer instead of GaAs. material is reducet®* The band gap reduction depends on

Figure 2 illustrates the measured current gain as a fundncorporated Sb composition. For 10.4% Sb composition,

calculated band gap reduction is about 0.186 eV. Thus the
total valence discontinuity at the InGaP/GaAsSb heterojunc-
10° e J : tion should be the sum of 0.43 and 0.186 eV, i.e., 0.616 eV.

] That means that the valence discontinuity in the
InGaP/GaAsSb heterojunction is much larger than that in
traditional AlGaAs/GaAs and InGaP/GaAs heterojunction.
The larger the valence band discontinuity, the more
remarkable the blocking effect on the base-to-emitter back-
injection holes. Therefore, the current gain of the
120 °C InGaP/GaAsSh/GaAs DHBT exhibits better thermal stabil-
100 °C ] ity than traditional GaAs-based HBTs. On the other hand, the
80°C ] base sheet resistance also influences the thermal stability of
60 °C 1 the current gain. The base sheet resistance was measured as
10° S——— . 8300()/sq using transmission-line patterns. Although it is
10° 10° 10" 10° 10? 10" large relative to that of traditional GaAs base, the influence

of it on thermal stability of the current gain is not significant
Collector Current (A) compared with the contribution from band alignment, be-
FIG. 2. (Color onling Measured current gain vs collector current of Cause the current gains measured at different substrate tem-

InGaP/GaAsSb/GaAs DHBT at different substrate temperatures. peratures keep constant even at the small current of 0.1 mA.
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