

 PDF Download
3670865.3673525.pdf
20 January 2026
Total Citations: 0
Total Downloads: 339

 Latest updates: <https://dl.acm.org/doi/10.1145/3670865.3673525>

EXTENDED-ABSTRACT

Nonprogressive Diffusion on Social Networks: Approximation and Applications

YUNDUAN LIN, University of California, Berkeley, Berkeley, CA, United States

HENG ZHANG, Arizona State University, Tempe, AZ, United States

RENYU ZHANG, Chinese University of Hong Kong, Hong Kong, Hong Kong

ZUOJUN MAX SHEN, The University of Hong Kong, Hong Kong, Hong Kong

Published: 08 July 2024

[Citation in BibTeX format](#)

EC '24: 25th ACM Conference
on Economics and
Computation

*July 8 - 11, 2024
CT, New Haven, USA*

Conference Sponsors:
SIGECOM

Open Access Support provided by:

University of California, Berkeley

Chinese University of Hong Kong

The University of Hong Kong

Arizona State University

Nonprogressive Diffusion on Social Networks: Approximation and Applications

YUNDUAN LIN, University of California, Berkeley, USA

HENG ZHANG, Arizona State University, USA

RENYU ZHANG, The Chinese University of Hong Kong, China

ZUO-JUN MAX SHEN, The University of Hong Kong, China

Nonprogressive diffusion describes the spread of behavior on a social network, where agents are allowed to reverse their decisions as time evolves. It has a wide variety of applications in service adoption, opinion formation, epidemiology, etc. Two common approaches to analyzing network diffusion are: microfounded methods, which capture the detailed network topology and the stochastic evolution of agent states but often lead to computational challenges, and macroscopic methods, which simplify the diffusion process.

Our work bridges these two approaches in the context of nonprogressive diffusion. We investigate nonprogressive diffusion through a micro-founded, dynamic and stochastic model, which captures local network effects and individual heterogeneity. Within this model, we propose the Fixed-Point Approximation (FPA) scheme to approximate the limiting adoption probability of each agent. To validate this approach, we develop a nontrivial “fixed-point sandwich” technique, establishing an insightful error bound. This bound indicates its superior performance for large and dense networks, which are otherwise challenging to simulate.

We also introduce novel network structure metrics to gauge the performance of the FPA scheme: the *inverse in-degree centrality* and the *inverse in-degree density*. These metrics provide valuable insights into both node-level and network-wide characterizations, serving as reliable indicators for the performance of FPA in diverse network configurations. Our large-scale empirical studies highlight the FPA scheme’s superior performance over a wide range of networks. It achieves a mean absolute percentage error of less than 3.48% among all tested real-world networks while concurrently accelerating computation by factors ranging from 70 to 230, compared with traditional simulation methods.

Moreover, the FPA scheme further paves the way for optimizing operational decisions, such as the influence maximization problem in the nonprogressive diffusion context. It allows for straightforward problem formulation and algorithm development, that are not just computationally efficient but also yield near-optimal solutions.

A full version of this paper can be found at:

https://drive.google.com/drive/folders/1N7nb38tIGaru7Nvn19AHxoOBceE1-irJ?usp=share_link.

CCS Concepts: • **Theory of computation** → **Social networks; Exact and approximate computation of equilibria.**

ACM Reference Format:

Yunduan Lin, Heng Zhang, Renyu Zhang, and Zuo-Jun Max Shen. 2024. Nonprogressive Diffusion on Social Networks: Approximation and Applications. In *Conference on Economics and Computation (EC ’24), July 8–11, 2024, New Haven, CT, USA*. ACM, New York, NY, USA, 1 page. <https://doi.org/10.1145/3670865.3673525>

Authors’ Contact Information: Yunduan Lin, yunduan.lin@berkeley.edu, University of California, Berkeley, Berkeley, CA, USA; Heng Zhang, hengzhang24@asu.edu, Arizona State University, Tempe, AZ, USA; Renyu Zhang, philipzhang@cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong, China; Zuo-Jun Max Shen, maxshen@hku.hk, The University of Hong Kong, Hong Kong, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

EC ’24, July 8–11, 2024, New Haven, CT, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0704-9/24/07

<https://doi.org/10.1145/3670865.3673525>