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Sodium-glucose cotransporter 2 inhibitors (SGLT2is) and glucagon-like peptide-1
receptor agonists (GLP-1 RAs) have transformed the management of type 2 diabetes,
obesity and cardiorenal disease. Beyond their established glycaemic and weight-
lowering effects, both drug classes consistently lower blood pressure (BP), a benefit
that remains relatively underrecognized. This review provides an integrated synthesis
of trial evidence, real-world data and meta-analyses examining the antihypertensive
effects of SGLT2is and GLP-1 RAs. Across cardiovascular, heart failure, renal and
obesity trials, modest but clinically meaningful BP reductions have been observed in
diverse populations, including individuals without diabetes. These effects appear
largely independent of glycaemic control and offer additive value in high-risk patients
with overlapping comorbidities. The totality of evidence supports the strategic incor-
poration of these agents into future antihypertensive frameworks, warranting further

investigation in dedicated blood pressure-focused trials.
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1 | INTRODUCTION

Arterial hypertension (AH) affects more than 1.2 billion people world-
wide, and its prevalence continues to rise, particularly in the context
of increasing rates of type 2 diabetes mellitus (T2DM) and obesity,
which often coexist and have common pathophysiological causes.! In
people with T2DM or obesity, AH significantly increases the risk of
cardiovascular events, stroke, heart failure and chronic kidney dis-
ease.>® Nevertheless, it remains one of the most modifiable risk fac-
tors in clinical practice.*

Patients with T2DM are more likely to have AH than the general
population, and hypertensive patients are more likely to have T2DM,
with AH occurring in 50% to 80% of patients with T2DM.%>¢ When it
comes to obesity, 60% to 76% of overweight or obese patients have
AH.”

The coexistence of AH and cardiometabolic diseases has shown a
multiplicative increase in cardiovascular morbidity and all-cause mor-
tality.® Also, AH has been shown to be responsible for up to 75% of
cardiovascular disease in T2DM.? In addition, patients with AH and
T2DM have a 66% higher risk of all-cause mortality and more than
twice the risk of cardiovascular mortality than patients with either dis-
ease alone.®

Despite advances in pharmacotherapy and risk factor control, car-
diovascular death is the leading cause of death in patients with con-
comitant metabolic disease and AH.1011

Conventional antihypertensive agents often do not fully address
the complex blood pressure patterns and pathophysiological mecha-
nisms seen in patients with metabolic disorders, such as the abnormal
nocturnal blood pressure behaviour (non-dipper or riser pattern) that
is common in this population.'?

Sodium-glucose co-transporter-2 inhibitors (SGLT2is),*?

origi-
nally developed as antihyperglycaemic agents, also provide cardiovas-
cular and renal benefits, including a blood pressure-lowering effect in
patients with and without T2DM, via mechanisms beyond lowering
blood glucose levels, including improved tubuloglomerular feedback,
improved hemodynamics and decreased sympathetic nervous system
activity.'* These multifactorial effects contribute to fewer hospitaliza-
tions, slower progression of kidney disease and lower mortality, mak-
ing SGLT2is a key therapy in the treatment of heart failure and
chronic kidney disease.*>*¢

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs),*” which
are primarily used as antihyperglycaemic agents, have proven to be
effective and versatile agents in the treatment of metabolic diseases
such as T2DM and obesity. They are also increasingly being used as
effective therapeutic options with nephroprotective properties in dia-
betic kidney disease, demonstrating their cardioprotective capabilities
in reducing cardiovascular events, lowering blood pressure and other
metabolic effects such as nonalcoholic fatty liver disease.*®*?

Although the cardiorenal benefits are well described, the antihy-
pertensive effects of GLP-1 RAs and SGLT2is are often underesti-
mated or not comprehensively reviewed. There is a need to
summarize the findings from various clinical trials and real-world data.

This review aims to provide a comprehensive overview of the

antihypertensive effects of SGLT2is and GLP-1 RAs. It is based on
mechanistic findings, results from large clinical trials and emerging

real-world evidence.

2 | PATHOPHYSIOLOGICAL MECHANISMS
OF BLOOD PRESSURE REDUCTION

The blood pressure-lowering effects of SGLT2is and GLP-1 RAs, pre-
viously regarded as side effects, have recently garnered growing
attention due to their consistent potency in both clinical trials and
real-world studies. Most importantly, this potency unfolds well
beyond the control of glycaemia, revealing multi-factorial mechanisms
that may affect intravascular volume, endothelial function, autonomic
activities and inflammatory pathways (Figure 1). Understanding these
mechanisms may not only facilitate the application of more clinically
optimized principles but also lead to integration when these agents
are used in patients with T2DM, obesity and cardiovascular or renal
diseases in the treatment of hypertension.2®

21 | Mechanisms of blood pressure reduction
with SGLT2 inhibitors

SGLT2is exert antihypertensive effects through an interplay of hemo-
dynamic and vascular mechanisms, several of which manifest early in

treatment and remain stable over time.

2.1.1 | Osmotic diuresis and volume contraction
By inhibiting glucose and sodium reabsorption in the proximal renal
tubule, SGLT2is induce osmotic diuresis. This mechanism reduces
plasma volume and preload, particularly in individuals who are
volume-sensitive, such as those with heart failure or diabetic nephrop-
athy. The resultant BP decline is typically observed within days of
therapy initiation and contributes to improved cardiac unloading and
natriuretic efficiency. These inhibitors induce osmotic diuresis primar-
ily by inhibiting the reabsorption of glucose and sodium in the proxi-
mal renal tubules, leading to increased urinary excretion of both
glucose and sodium. The resulting glucosuria creates an osmotic gradi-
ent that draws water into the tubular lumen, thereby increasing uri-
nary volume (osmotic diuresis) and promoting natriuresis, particularly
in the early phase of therapy.?%?2

Mechanistically, SGLT2is act at the S1 segment of the proximal
tubule where the SGLT2 transporter is located and reduces reabsorp-
tion of glucose and sodium that has been filtered. This will increase
delivery to the distal nephron of both sodium and glucose, thereby
enhancing osmotic diuresis, thus causing a transient natriuresis.
Therefore, these agents produce an effect different from loop or thia-
zide diuretics because they act upstream in the nephron and do not
create significant loss of potassium; however, all renal conserving

mechanisms will eventually make up for any sodium loss in the urine
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Complementary mechanistic pathways of SGLT2 inhibitors and GLP-1 receptor agonists in blood pressure reduction.

Abbreviations: RAAS, Renin angiotensin aldosterone system; eNOS, endothelial nitric oxide synthase.

by enhancing absorption elsewhere in the nephron.?®2* The natri-
uretic effect is typically transient, as compensatory mechanisms in the
distal
the osmotic diuresis from persistent glucosuria continues.

nephron eventually increase sodium reabsorption, but

25,26

2.1.2 | Natriuresis and restoration of
Tubuloglomerular feedback

SGLT2is potentiate natriuresis independently of glycaemia. Concomi-
tant inhibition of sodium-hydrogen exchanger 3 (NHE3) also promotes
natriuresis, allowing tubuloglomerular feedback to reduce glomerular
hyperfiltration and intrarenal renin-angiotensin-aldosterone system
(RAAS) activation, factors that may lead to stable blood pressure con-
trol therapy.??

SGLT2 inhibition decreases sodium reabsorption at the proximal
tubule, therefore increasing distal delivery of sodium to the nephron.
Increased delivery of downstream nephron segments activates tubu-
loglomerular feedback, resulting in afferent arteriolar vasoconstriction,
decreasing intraglomerular pressure, believed to be not only a site of
kidney damage but also instrumental in eliciting protective effects
from these drugs.?>?* The natriuresis seen with SGLT2is is quite dif-
ferent from any traditional diuretic; SGLT2is act before the loop of
Henle, and their diuresis manifests as a mixture of natriuresis with
osmotic diuresis caused by glucosuria.”

The initial natriuresis and osmotic diuresis result in a slight

decrease in plasma volume and blood pressure. It is assumed that this

accounts for part of the cardiovascular benefits seen in large outcome
trials. When administered with loop diuretics, SGLT2is exhibit a syner-
gistic natriuretic effect that can be clinically significant in treating vol-
ume overload associated with heart failure. The long-term natriuretic
impact of SGLT2is is not sustained because compensatory sodium
reabsorption in the distal nephron limits continued sodium loss.?®
SGLT2is also transiently activated by the RAAS as a likely physio-
logical response to natriuresis and volume contraction; however, they
do not appear to chronically activate the intrarenal RAAS. Other
mechanistic insights include reduced sympathetic nervous system
activity and increased energy metabolism within the kidney, which

may further explain the cardiorenal benefits of SGLT?2is.2’

2.1.3 | Reduction in arterial stiffness

SGLT2is are proven to decrease arterial stiffness, a major pathway of
cardiovascular risk by way of combined direct effects on the vascula-
ture and indirect systemic changes through several mechanistic path-
ways that extend beyond glycaemic control. These improvements in
arterial compliance complement the early hemodynamic effects driven
by natriuresis and volume contraction.

Mechanistically, SGLT2is enhanced endothelial function by
increasing nitric oxide (NO) bioavailability, thereby restoring
endothelium-dependent vasodilation, which has been impaired due to
any pathological condition. This occurs through reduced oxidative

stress in response to lowered NADPH oxidase activity and the
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expression of pro-inflammatory signalling pathways such as NF-kB.
Collectively, these effects reduce endothelial dysfunction and improve
vascular tone 3031

Apart from their positive effects on endothelial function, SGLT2is
also exert direct actions on vascular smooth muscle cell contraction,
proliferation and migration. This is involved in preventing maladaptive
remodelling and stiffening of the arterial wall. Preclinical studies also
indicate attenuation of fibrosis and extracellular matrix accumulation,
which would lead to improved elasticity of the vasculature.3?

Changes in systemic hemodynamics with SGLT2 inhibition result
in a modest reduction in plasma volume, afterload and blood pressure,
which contribute to reduced arterial wall stress and improved arterial
compliance. Other ancillary effects that may further advantage the
vasculature include weight loss and reduced serum uric acid levels.

Recent evidence suggests that SGLT2is also improve cell
metabolism and ionic homeostasis. These include the modulation of
sodium-hydrogen exchanger activity and mitochondrial function,
which further facilitate vascular resilience against arterial stiffening.>°

Clinical evidence also supports a modest but measurable reduc-
tion in arterial stiffness with SGLT2 inhibition. A systematic review
and meta-analysis confirmed a modest, but statistically significant
reduction in pulse wave velocity in patients with type 2 diabetes.>*
Furthermore, mechanistic and preclinical studies demonstrate
improvements in endothelial function, suppression of oxidative stress
and inflammation and direct vascular smooth muscle remodelling with
SGLT2 inhibition.32>%¢ Importantly, experimental models show that
SGLT2 inhibitors can blunt arterial stiffening even in the absence of
measurable blood pressure changes.®” These additions clarify the evi-
dence base for BP-independent effects of SGLT2 inhibitors.

214 |
modulation

Modest weight loss and metabolic

Weight loss with SGLT2is is mainly mediated through the induction of
glycosuria, which leads to a net caloric loss. By inhibiting SGLT2 in the
proximal renal tubules, these agents prevent the reabsorption of fil-
tered glucose, resulting in urinary glucose excretion and a daily caloric
deficit of approximately 200-300 kcal/day in patients with T2DM.
The loss of these calories is the primary mechanism for weight
reduction.®

However, the weight loss has always been less than what would
be predicted based on the total caloric deficit from glycosuria. Quanti-
tative modelling and clinical studies demonstrate that compensatory
mechanisms, particularly an increase in energy intake — hyperphagia
— attenuate the expected weight loss. For example, Ferrannini et al.
found that only about 29% of the predicted weight loss was realized;
the rest was made up for by an adaptive increase in calories con-
sumed. This compensatory hyperphagia is most probably mediated by
central mechanisms, which are typically activated in response to a
negative energy balance.>?

With SGLT2is treatment, significant metabolic changes extend far
beyond mere loss of calories. With glycosuria accompanying reduced

plasmatic levels of glucose and insulin, conditions favour lipolysis and
more efficiently support fatty acid oxidation. Available data suggest
that SGLT2 inhibition initiates a shift in substrate utilization from car-
bohydrates to lipids, thereby enhancing both ketogenesis and gluco-
neogenesis. This change in metabolism is associated with decreases in
fat mass, particularly visceral adiposity, as demonstrated in both clini-
cal and mechanistic studies.*®

Emerging data also suggest an important role for neurohormonal
pathways. Preclinical evidence suggests that the hepatic glycogen
depletion induced by SGLT2is activates a specific neurocircuitry path-
way involving the liver, brain and adipose tissue. This then results in
sympathetic outflow to adipose tissue, increasing lipolysis via protein
kinase A (PKA) signalling that gets activated through this pathway.
Further support for this mechanism comes from observations of
weight loss attenuation in animal models that have undergone hepatic
vagotomy, hence suggesting involvement of the liver-brain-adipose
axis in mediating part of the weight loss effect.**

Body composition studies confirm that the major component of
weight loss achieved through SGLT2-induced is due to fat mass, with
minimal or negligible effect on skeletal muscle mass and no significant
decrease in muscle strength. The selective reduction of adiposity is
clinically meaningful, as it can improve insulin sensitivity, hepatic stea-

tosis and the cardiometabolic risk profile.*®

215 | Autonomic effects

SGLT2is are increasingly recognized not only for their metabolic and
renal effects, but also for their modulation of autonomic nervous sys-
tem activity. Evidence from both preclinical and clinical studies indi-
cates that SGLT2is reduce blood pressure and do not elicit reflex
tachycardia, which is typically observed when sympathoinhibition
occurs.*? The normal circadian patterning of both blood pressure and
sympathetic nerve activity (SNA) by these agents in animal models of
metabolic syndrome and hypertension further supports their role in
autonomic regulation.*®

The mechanisms underlying these effects are multifactorial. At
the level of hemodynamics, SGLT2is promoted natriuresis and
osmotic diuresis by contracting plasma volume, thereby reducing car-
diac preload. This would be described as volume reduction, increasing
the probability of lowering pressure; however, it is not accompanied
by compensatory increases in heart rate. This suggests that SGLT2is
blunt sympathetic outflow, potentially through central or renal
mechanisms.**

At the renal level, experimental data have revealed several path-
ways by which SGLT2is may reduce the sympathetic nerve activity.
Norepinephrine has been found to upregulate SGLT2 expression, such
that its inhibition reverses this upregulation and normalizes diuretic
responses, particularly in models of heart failure.*> Also, improving
the intrarenal milieu by reducing hypoxia, inflammation, oxidative
stress and congestion, SGLT2is may suppress afferent renal nerve sig-
nalling. This, in turn, reduces central sympathetic outflow to the kid-

neys and other organs.*®
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Molecular markers also support these findings. Reductions in the
expression of tyrosine hydroxylase—the key enzyme involved in the
synthesis of catecholamines—have been noted both in the heart and
kidney, elicited by SGLT2 inhibition, independent of any changes in
glycaemia or blood pressure.>>*”

Taken together, current evidence supports a consistent sym-
pathoinhibitory effect of SGLT2is across various levels of regulation.
By reducing systemic and renal sympathetic tone, these agents can
enhance the cardiovascular and renal protective benefits they have

already established.*®

2.2 | Mechanisms of blood pressure reduction
with GLP-1 receptor agonists

GLP-1 RAs lower BP through mechanisms that are distinctively neuro-
hormonal and metabolic, with pronounced central and endothelial
effects. Although dual GLP-1/GIP RAs, such as tirzepatide, may share
overlapping mechanisms, their specific impact on blood pressure regu-
lation remains insufficiently elucidated in the current literature and is

therefore not discussed further in this section.

221 | Appetite suppression and substantial
weight loss

GLP-1 RAs are among the most effective pharmacotherapeutic agents
capable of inducing significant and sustained weight loss in individuals
with overweight or obesity. They primarily act by suppressing appetite
centrally through complicated neuroendocrine signalling mechanisms.
Centrally, GLP-1 RAs activate important hypothalamic nuclei and
change nerve pathways in areas like the lateral septum—a part now
known to play a significant role in controlling feeding actions. Studies
in animals have shown that activating GLP-1R-carrying nerve cells in
this area is necessary for drugs like liraglutide to induce less eating,
and disrupting this pathway weakens both the reduction in food
intake and weight loss.*?~>?

Clinically, GLP-1 RAs, including liraglutide and semaglutide gener-
ate dramatic dose-dependent reductions in bodyweight, often inde-
pendent of glycaemic status. Recent studies consistently report mean
weight losses ranging from approximately 5% with liraglutide over
treatment durations of 26 to 72 weeks.’>>® Semaglutide is singled
out as the best single agent GLP-1 RA for weight reduction among
non-diabetics. Reductions in waist circumference and improvements
in several markers for cardiometabolic risk usually accompany weight
loss.>

A distinguishing feature of GLP-1 RAs is their multifaceted mech-
anism of action. In addition to central appetite regulation, they delay
gastric emptying and modulate gastrointestinal hormone secretion,
further enhancing satiety and reducing caloric intake.>> Peripherally,
they enhance insulin secretion, suppress glucagon release, improve
lipid metabolism and mitigate adipose tissue inflammation, collectively

supporting broader metabolic benefits. Reduction in visceral adiposity
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associated with GLP-1 RA therapy may attenuate sympathetic overac-
tivity and improve insulin sensitivity; however, GLP-1- sympathetic
nervous system (SNS) interactions extend beyond adiposity changes
and are further detailed in section 2.2.4. These downstream effects
may help ameliorate vascular tone and lower blood pressure, further
reinforcing the cardiometabolic profile of these agents.>*

GLP-1 RAs are generally well tolerated, with gastrointestinal
adverse events the most common and presenting as nausea, vomiting,
diarrhoea and constipation. These events are typically transient and
dose-related. Serious adverse outcomes and treatment discontinua-
tions remain relatively rare. Discontinuation of therapy results in
weight regain, thereby emphasizing the need for either long-term
pharmacologic treatment or the integration of lifestyle interventions
to maintain clinical benefit.>%>3

Beyond gastrointestinal effects, hemodynamic adverse events
such as orthostatic hypotension and transient syncope may occasion-
ally occur, particularly in individuals with long-standing diabetes, auto-
nomic dysfunction, or those receiving concomitant antihypertensive
therapy. While these phenomena are generally mild and self-limiting,
they warrant clinical attention given the frequent polypharmacy and
potential for cumulative volume depletion in this population.>® Both
SGLT2 inhibitors and GLP-1 receptor agonists can modestly lower
intravascular volume or alter vascular tone, which may unmask pos-
tural symptoms in susceptible patients. Accordingly, careful dose titra-
tion and individualized adjustment of concomitant antihypertensive
agents are advised to minimize the risk of symptomatic hypotension

without compromising cardiometabolic benefit.>”

2.2.2 | Renal sodium handling and natriuresis
The clinically relevant effects of GLP-1 RAs on renal sodium handling
include natriuresis primarily through a direct tubular mechanism and
by modulating the RAAS. The natriuresis observed with GLP-1 is
unrelated to glycosuria, unlike the case with SGLT2is, as it is glucose-
independent and sustained across various glycaemic states. Studies in
healthy humans and animal models acutely infused with GLP-1 have
shown increased urinary sodium excretion in the absence of changes
in glomerular filtration rate (GFR) or renal plasma flow (RPF), which
supports a tubular site of action rather than a hemodynamic effect.
That this effect is mediated explicitly by GLP-1 receptor activation is
evidenced by attenuation of natriuresis when the selective GLP-1RA,
exendin 9-39, is administered.>®

At the mechanistic level, GLP-1R expressed in the proximal tubule
inhibits the activity of NHE3, likely via a phosphorylation cascade
mediated by a PKA-dependent pathway. As such, inhibition will result
in reduced proximal sodium reabsorption, leading to an increase in the
fractional excretion of both sodium and lithium. Molecular studies fur-
ther support increased phosphorylation of NHE3 and decreased trans-
porter activity elicited by exposure to GLP-1, thereby confirming this
as a tubular mechanism.>?:°
Apart from their tubular effects, GLP-1 RAs also involve hormonal

mediators of fluid balance. They suppress the circulating levels of
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angiotensin |l, thereby lowering activation of the RAAS and permitting
natriuresis independent of any changes in either GFR or RPF. The
natriuretic effect of GLP-1 demonstrates volume-dependence: that is,
it is enhanced in states of volume expansion. This supports a putative
functional GLP-1-renal axis, most probably coming into play in patho-
logical states characterized by extracellular fluid overload.®*

In models of diabetic nephropathy, GLP-1 and agents that
increase endogenous GLP-1 levels, such as dipeptidyl peptidase-4
(DPP-4) inhibitors, further reduce sodium reabsorption by lowering
the expression and activity of the epithelial sodium channel (ENaC).
This mechanism may be involved in sensitivity to salt and water reten-
tion.®? The other way around, there is less natriuresis or diuresis
induced by GLP-1 RA in states of hypertension. This is most probably
explained by reduced expression of renal receptors for GLP-1 and

increased degradation of the peptide.®

2.2.3 | Endothelial function and NO bioavailability
GLP-1 RAs exert notable vascular benefits, particularly through
enhancement of endothelial nitric oxide synthase (eNOS) activity and
attenuation of oxidative stress. These effects improve
endothelial-dependent vasodilation, reduce arterial stiffness and pro-
mote microvascular recruitment in peripheral tissues—mechanisms
that collectively contribute to cardiovascular protection. Preclinical
and clinical evidence consistently demonstrate that GLP-1 RAs,
including exenatide and liraglutide, improve endothelial function in
individuals with and without T2DM. Importantly, many of these vas-
cular effects appear to be at least partially independent of glycaemic
control. Mechanistically, GLP-1 RAs stimulate eNOS phosphorylation,
leading to increased NO production and enhanced vasodilatory capac-
ity of the endothelium. These findings are supported by in vitro and
in vivo studies, which have demonstrated increased NO generation
and eNOS activity in human endothelial cells and isolated arterioles
following exposure to GLP-1 Ras.6*¢°

The vasoprotective actions of these agents are mediated via the
GLP-1 receptor, as evidenced by the reversal of these effects upon
administration of receptor antagonists. Downstream signalling
involves activation of the AMPK/PI3K-Akt/eNOS axis, which pro-
motes NO bioavailability and counters oxidative stress, thereby safe-
guarding endothelial integrity under metabolic stressors such as
hyperglycaemia and dyslipidaemia. Additionally, GLP-1 RAs reduce
the expression of endothelial activation markers, including soluble
intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM-1), further underscoring their anti-inflammatory
and anti-atherogenic potential ¢

Clinical studies corroborate these findings, reporting improve-
ments in coronary flow velocity reserve and peripheral microvascular
perfusion in patients treated with GLP-1 RAs. Although the magnitude
of improvement in flow-mediated dilation (FMD) varies across popula-
tions and comparator treatments, the prevailing consensus is that
GLP-1 RAs contribute to vascular health through NO-dependent

mechanisms and suppression of oxidative pathways.®”

2.24 | Sympathetic nervous system modulation
These mechanisms operate independently of weight change, under-
scoring that GLP-1-SNS interactions are not solely explained by
reductions in visceral adiposity. A distinctive characteristic of GLP-1
RAs is their capacity to penetrate the blood-brain barrier and modu-
late activity of the autonomic nervous system. They act on important
brain stem structures, including the nucleus tractus solitarius (NTS)
and area postrema, to reduce central sympathetic outflow, increasing
parasympathetic tone. This pathway mainly explains their effects on
lowering both systolic and diastolic blood pressure.

GLP-1 RAs act through both the central and peripheral pathways.
Experimental findings suggest that the application of GLP-1 in both
central and peripheral locations may induce a dose-dependent
increase in sympathetic activity. This is due to the activation of GLP-1
receptors located within medullary autonomic regulatory centres,
which are associated with catecholaminergic neurons projecting to
sympathetic preganglionic neurons. Activation of these pathways is
associated with upregulation of markers involved in neuronal excita-
tion and catecholamine biosynthesis.*®¢?

In human studies, GLP-1 infusion has been shown to increase
muscle sympathetic nerve activity (MSNA), but not accompanied
by significant changes in cardiac autonomic balance, as measured by
heart rate variability (HRV) spectral analysis. Clinically, this translates
to modest increases in resting heart rate observed with GLP-1 RA
therapy. This phenomenon is considered a class effect and may result
from direct stimulation of the sinoatrial node or mild
sympathoexcitation.”®

Despite these autonomic effects, large-scale cardiovascular out-
come trials have not shown an elevated risk of heart failure hospitali-
zation with GLP-1 RA use. Conversely, these agents are safe to use
and confer benefit among patients with T2DM who have established
cardiovascular disease. They cannot be characterized as drugs for the
management of heart failure since their effect on cardiac outcomes is
relatively neutral.”*

Evidence interestingly suggests a bidirectional interaction
between the sympathetic nervous system and endogenous GLP-1
secretion. Sympathetic activation through adrenergic signalling
inhibits the release of GLP-1 from intestinal L cells, which may be
involved in regulating postprandial glucose levels as well as central
glucose sensing.”? This feedback loop underscores the complexity of
GLP-1 signalling in metabolic and autonomic control.

2.2.5 | Anti-inflammatory and antioxidant effects

GLP-1 RAs exhibit potent anti-inflammatory and antioxidant proper-
ties that significantly contribute to vascular protection and improved
endothelial function. Recent studies have indicated that GLP-1 RAs
reduce circulating levels of inflammatory biomarkers, such as tumour
necrosis factor-alpha (TNF-a), interleukin-6 (IL-6) and C-reactive pro-
tein, as well as malondialdehyde, a marker of oxidative stress. At the

same time, they increase the expression of adiponectin, an anti-
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inflammatory adipokine, thereby promoting a more favourable vascu-
lar environment.”374

Notably, these effects occur independently of glycaemic control
and are associated with reductions in systolic blood pressure, accom-
panied by improvements in endothelial-dependent vasodilation. The
underlying mechanisms relate to increased bioavailability of NO and
reduced oxidative damage to the endothelium.”>7¢

At the molecular level, GLP-1 RAs reduce vascular inflammation
by downregulating leukocyte adhesion to the endothelium and inhibit-
ing the infiltration of inflammatory cells into the vascular wall. They
also act to prevent eNOS uncoupling, which is associated with oxida-
tive stress and related vasodilatory pathology. Preserved eNOS cou-
pling would most likely preserve NO-mediated vascular tone,
accompanying a reduction in peripheral vascular resistance.>”””

Preclinical and clinical studies support the ability of GLP-1 RAs to
restore or preserve endothelial function across the spectrum of cardi-
ometabolic conditions, including diabetes, obesity and hypertension.
Vasoprotective effects are attributable, at least in part, to direct
actions on endothelial cells. This further supports the therapeutic rele-
vance of GLP-1 RAs in cardiovascular risk reduction.”®

However, the relationship between these anti-inflammatory and
antioxidant effects and blood pressure regulation is more nuanced.
Meta-analyses consistently show modest reductions in systolic blood
pressure, with the magnitude of lowering more closely linked to weight
loss and glycaemic improvement than to direct anti-inflammatory path-
ways.”? One analysis nevertheless demonstrated a strong correlation
between CRP reduction and systolic pressure decline, suggesting that

t.3 Conversely,

inflammation may contribute to hemodynamic benefi
ambulatory blood pressure studies in patients with type 2 diabetes did
not confirm a significant effect, indicating that these vascular effects

may occur independently of blood pressure modulation.®®

2.3 | Overlapping and distinct mechanisms
between the two classes

Despite targeting different molecular sites, these two classes of antihy-
perglycaemic agents have several downstream effects that lead to low-
ering blood pressure, improving metabolism and protecting organs.

Volume adjustment is a major overlapping pathway. SGLT2is pre-
cipitate rapid plasma volume reduction through glucosuria-induced
osmotic diuresis and natriuresis, primarily by inhibiting proximal
sodium transport and NHE3 activity.®%®? On the other hand, GLP-
1RAs induce natriuresis without glucosuria, primarily by inhibiting
NHE3 in the proximal tubule through cAMP-PKA signalling, while also
altering RAAS activity. These effects are glucose-independent and
explain the distinct temporal profiles of blood pressure lowering—
early onset with SGLT2is and gradual with GLP-1Ras.8>84

Another benefit, common in both, is weight reduction. SGLT2is
induces modest weight loss by calorie loss through urinary glucose
excretion, which may be partially offset by compensatory hyperpha-
gia. GLP-1RAs, in contrast, precipitate potent central appetite sup-
pression, delay gastric emptying and more pronounced and sustained
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weight loss. These downstream metabolic effects reduce sympathetic
activity and vascular resistance.®®

Both classes improve endothelial function, reduce oxidative stress
and lower systemic inflammation, which in turn reduces arterial stiffness.
SGLT2is increase NO bioavailability-related mechanisms and reductions
in NADPH oxidase activity, whereas GLP-1RAs increase eNOS phos-
phorylation together and activate anti-inflammatory pathways.2”

Autonomic modulation is substantially different between the two
classes. SGLT2is primarily decreases sympathetic tone through
peripheral mechanisms, including renal afferent nerve modulation and
improved renal milieu. GLP-1RAs penetrate the blood-brain barrier,
thereby acting directly at central autonomic nuclei (NTS, area post-
rema), resulting in robust sympathetic outflow inhibition concomi-
tantly with vagal tone facilitation.8887

Regarding glycaemic control, both classes lower glucose levels by
mechanisms independent of insulin, with a low risk of hypoglycaemia.
SGLT2is by producing glucosuria, and GLP1-RAs increase the secre-
tion of insulin, suppress glucagon secretion and delay gastric empty-
ing. More specifically, SGLT2is may increase the secretion of glucagon
that GLP-1RAs would suppress through their inhibitory effect medi-
ated via somatostatin, supporting the notional mechanistic rationale
for combination therapy.”®

These converging and diverging actions not only explain their effi-
cacy but also suggest complementary therapeutic value when used in
combination. A comparative summary provides an overview of these
mechanisms and their relative contributions (Table 1).

Though different in mechanistic profiles, they share overlapping
pleiotropic effects on weight, endothelial function, inflammation and
blood pressure. Therefore, these agents are intended to be complemen-
tary in the management of T2DM with coexisting hypertension and car-
diovascular risk.”* Their combination leverages renal and neurohormonal

pathways, justifying integrated use in appropriately selected patients.

3 | GLP-1RASANDGLP-1/GIP
RAS - EVIDENCE FROM PIVOTAL RCTS

Pivotal randomized trials of GLP-1 RAs and dual GLP-1/GIP RAs have
consistently demonstrated modest but clinically relevant reductions in
blood pressure, in addition to their established glucose-lowering and
cardiometabolic benefits. In cardiovascular outcome trials (CVOTSs)
among patients with T2DM, these agents appear to exert a greater
influence on systolic blood pressure (SBP) than diastolic blood pres-
sure (DBP), likely reflecting their effects on arterial compliance, natri-
uresis and weight loss-mediated hemodynamic changes.

In the LEADER trial, which evaluated liraglutide vs. placebo in
patients living with T2DM at high cardiovascular risk, statistically sig-
nificant BP effects were observed over 36 months. Compared to pla-
cebo, liraglutide reduced systolic BP by 1.2 mmHg (95% Cl, —1.9 to
—0.5), while diastolic BP was paradoxically 0.6 mmHg higher (95% ClI,
0.2 to 1.0). These findings highlight a modest net antihypertensive
effect, with the greater SBP reduction suggestive of improved vascu-

lar tone or reduced central arterial stiffness.”?
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SGLT2 inhibitors vs. GLP-1 receptor agonists -

TABLE 1

BELANCIC T AL.

comparative mechanisms of blood pressure reduction.

GLP-1 RAs/GLP-1-GIP

Mechanism SGLT2 inhibitors RAs
Osmotic +++ —
diuresis (glucosuria-induced
volume loss)
Natriuresis ++ IF
(transient; proximal (GLP-1R-mediated NHE3
tubule/NHE3 inhibition)
inhibition)
Appetite ot +++
suppression (central hypothalamic
GLP-1R activation)
Weight loss + AFAFAr
(caloric loss (substantial; appetite and
via glucosuria) gastric emptying)
Endothelial ++ ++
function (| oxidative stress and (1 NO, | inflammation)
improvement AGE)
Sympathetic + AFAFE
modulation (indirect; kidney- (direct CNS-mediated)®
mediated)?
Arterial ++ +
stiffness (endothelial and (partly through weight
reduction smooth muscle loss and NO
effects) enhancement)
Central . AFAFr
autonomic (via NTS, area postrema)
modulation
Onset of BP Rapid (within days) Gradual, dose-dependent
effect

+ mild effects;++ moderate effects; +++ strong effect; —-- no direct
effects.

1Although SGLT2 expression has been observed in the hypothalamus and
may modulate AMPK signalling in preclinical models, SGLT2 inhibitors do
not exert clinically relevant appetite-suppressing effects. Increased
appetite has been reported as a compensatory response to caloric loss
through glucosuria.

25GLT2 inhibitors may indirectly reduce sympathetic activity through
renal mechanisms, including decreased afferent signalling, volume
contraction and improved tubuloglomerular feedback. These effects are
peripherally mediated.

3GLP-1 RAs act directly on central autonomic control centres, such as the
nucleus tractus solitarius and area postrema, reducing sympathetic tone and
enhancing vagal output. SGLT2 inhibitors do not appreciably cross the blood-
brain barrier and therefore lack direct CNS-mediated autonomic effects.

In SUSTAIN-6, which investigated subcutaneous semaglutide in
two doses (0.5 mg and 1.0 mg weekly) among patients with T2DM
and high cardiovascular risk, a dose-dependent reduction in SBP was
observed. The 0.5 mg dose resulted in a mean SBP decrease of
1.3 mmHg vs. placebo (P = 0.10, not statistically significant), while the
1.0 mg dose yielded a 2.6 mmHg reduction (P < 0.001), underscoring
a potentially pharmacodynamic gradient in BP-lowering efficacy.”®

Beyond diabetes-focused CVOTs, trials in people without diabetes,
primarily targeting obesity, demonstrate a more pronounced antihyper-

tensive effect, likely mediated by greater weight reduction. Meta-

analytic evidence supports a direct, dose-response relationship
between weight loss and BP reduction. A BMI decrease of 2.27 kg/m?
is associated with SBP and DBP reductions of 5.79 mmHg and
3.36 mmHg, respectively, while a BMI decrease of 4.12 kg/m? confers
even greater reductions (—6.65 mmHg SBP, —3.63 mmHg DBP). Nota-
bly, individuals achieving >3 kg/m? reduction experience amplified ben-
efits, reinforcing the synergistic role of weight loss in BP control.”*

In the SCALE trial, liraglutide 3.0 mg daily resulted in 8.0% mean
weight loss from baseline, alongside a significant SBP reduction of
—2.8 mmHg (difference vs placebo; 95% Cl, —3.56 to —-2.09;
P < 0.001) and DBP reduction of —0.9 mmHg (95% Cl, —1.41 to
—0.37; P <0.001). While absolute BP reductions were modest, the
directionally consistent results support an adjunct role in hypertension
management, particularly in obese patients.””

The STEP 1 trial, evaluating semaglutide 2.4 mg weekly in adults
with obesity, reported a placebo-adjusted SBP reduction of
5.10 mmHg (—6.16 mmHg with semaglutide vs — 1.06 mmHg with
placebo), accompanying a substantial 14.9% mean bodyweight reduc-
tion. The impact on DBP was not specified, but the magnitude of sys-
tolic reduction highlights semaglutide's relevance beyond glycaemic
control.?®

In the SELECT trial, which assessed semaglutide 2.4 mg in a non-
diabetic obese population with established cardiovascular disease,
BP-lowering effects were again evident. Semaglutide reduced SBP by
3.82 mmHg vs. 0.51 mmHg with placebo, resulting in a placebo-
corrected reduction of —3.31 mmHg (95% Cl, —3.75 to —2.88). DBP
decreased by 1.02 mmHg with semaglutide vs. 0.47 mmHg with pla-
cebo (difference —0.55 mmHg; 95% Cl, —0.83 to —0.27), affirming a
preferential effect on SBP.?”

Dual agonist tirzepatide has shown even greater efficacy. In
SURMOUNT-1, participants receiving tirzepatide achieved mean SBP
reductions of 6.2 mmHg compared to 1.0 mmHg with placebo, along-
side unprecedented mean weight loss of up to 20.9%.” These find-
ings suggest superior cardiorenal and hemodynamic benefits, although
long-term CVOT data are still pending.

The upcoming SURPASS-CVOT and SURMOUNT-MMO trials
are expected to clarify the full cardiometabolic and BP-lowering
effects of tirzepatide in both diabetic and non-diabetic popula-
tions.”?1% Given its dual incretin mechanism and brilliant weight
reduction efficacy, tirzepatide may emerge as the most powerful phar-
macological adjunct for hypertension in the context of metabolic

disease. 10!

4 | GLP-1RAS AND GLP-1/GIP RAS -
REAL-WORLD DATA AND META-ANALYSES

41 | GLP-1receptor agonists - evidence from
meta-analyses

Two early meta-analyses of first-generation GLP-1RAs provided early
evidence for exenatide twice daily, exenatide every week and liraglu-

tide once daily in reducing blood pressure.’°>°® |n a Bayesian
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(Continued)

TABLE 2

Study type included (no.

of studies quantitatively

synthesized)*

RCTs

4
haes

Certainty of evidence

Outcomes

Comparator

Intervention

Population
T2DM

Authors

107
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Generally high to

vs. Placebo

NMA with indirect comparisons to placebo
and nine other antidiabetic drug classes

GLP-1 RA

moderate certainty
using CINeMA

SBP: —2.9 mmHg (95% Cl — 3.4 to —2.4)

(n = 204)

DBP: —0.3 mmHg (95% CI — 0.5 to 0.0)

vs. SGLT2i

SBP: 0.6 mmHg (95% Cl — 0.1 to 1.2)

DBP: 1.2 mmHg (95% Cl 0.9 to 1.5)

BELANCIC T AL.

Moderate certainty

SBP: —3.4 mmHg (95% Cl — 4.0 to —2.8)

Placebo

GLP-1 RA

Overweight or

RCTs

108

(SBP) and low certainty
(DBP) using GRADE

DBP: —1.1 mmHg (95% CI — 1.5 to —0.7)

obese adults with or
without diabetes

(n = 30)

‘Number of individual studies included in the largest meta-analysis of a blood pressure outcome.

Abbreviations: CINeMA: Confidence In Network Meta-Analysis framework; DPB: diastolic blood pressure; GLP-1RA: glucagon-like peptide-1 receptor agonists; GRADE: Grading of Recommendations Assessment,
Development and Evaluation; NMA: network-meta analysis; RCT: randomized controlled trial; SBP: systolic blood pressure; SGLT2i: sodium-glucose co-transporter 2 inhibitor; T2DM: type 2 diabetes mellitus.

network meta-analysis, Sun et al. estimated the probability rankings of
the best treatments for SBP and DBP, indicating potential differences
in the effects of distinct GLP-1 RAs medications and dose regimens.
The top three regimens and corresponding estimated reductions in
SBP and DBP are summarized in Table 2.

Recent meta-analyses have synthesized studies of semaglutide.
For example, Ali et al. evaluated the effects of specific GLP-1 RA med-
ications on SBP in 35 placebo-controlled RCTs using network meta-
analysis.'®* As compared to placebo, the largest reductions in SBP
occurred with liraglutide and exenatide 10 mcg twice daily among
individuals with diabetes, while efpeglenatide < 6 mg daily and sema-
glutide once weekly resulted in the largest reductions among individ-
uals without diabetes. By contrast, An et al. reported that oral and
subcutaneous semaglutide were most effective for SBP and subcuta-
neous semaglutide for DBP, in a network meta-analysis comparing
GLP-1 RAs medications.*®® In a pairwise meta-analysis of 30 studies
enrolling adults with overweight or obesity, Wong et al. reported that
patients receiving oral vs. subcutaneous formulations of GLP-1 RA
and trials with larger reductions in bodyweight were associated with
greater reductions in SBP and DBP. They also found that changes in
SBP, but not DBP, were greater among studies enrolling patients
without diabetes vs. those with diabetes.*%®

When indirectly compared to SGLT2is in a network meta-analysis,
GLP-1 RAs as a class had limited evidence of a difference in reduc-
tions in SBP, but were associated with a significant increase in
DBP.107 Among individual GLP-1-RAs, semaglutide (oral and subcuta-
neous) and exenatide (twice daily) were associated with the largest
reductions in SBP, yet only exenatide (twice daily) was associated with
reductions in DBP as compared to placebo. Rivera et al. also found
that semaglutide and exenatide produced the largest reductions in
SBP and DBP.”?

Collectively, the evidence from meta-analyses demonstrates that
GLP-1 receptor agonists reduce both systolic and diastolic blood pres-
sure, with the magnitude of diastolic reduction approximately half that
observed for systolic pressure—a proportional pattern consistent with
most established antihypertensive classes. Importantly, these trial-
derived estimates likely underestimate the true clinical effect, as many
participants were normotensive at baseline and some antihyperten-
sive agents were discontinued during study periods.*°? Moreover,
data from ambulatory blood pressure monitoring (ABPM) indicate a
more pronounced and sustained reduction, particularly in hyperten-
sive individuals, further supporting the antihypertensive relevance of
GLP-1-based therapies.**°

4.2 | GLP1 receptor agonists Real-world evidence

Owing to their limited uptake in many countries, real-world
evidence investigating the effects of GLP-1 RAs on blood pressure are
currently limited to small-scale studies, with early evidence from these
studies demonstrating the effects of GLP-1 RAs on blood pressure in
clinical practice (Table 3). A large cohort study conducted at a single

diabetes clinic and South Korea examined a wide range of clinical
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TABLE 3 Effects of GLP-1 RA on blood pressure outcomes in select real-world studies.
Authors Design Population Intervention Comparator Outcomes
11 Cohort Mayo Clinic Health System Semaglutide None 1) Change in SBP
study, (USA) subcutaneous and DBP from
electronic  Individuals with injections baseline to last
health BMI 2 27 kg/m? who were follow-up visit
records prescribed at least 2) Change in no.
3 months of subcutaneous of
semaglutide for the purpose antihypertensive
of weight medications from
loss with any dose (0.25, baseline to last
0.5,1,1.7,2and 2.4 mg) follow-up visit
n = 304
Mean age 49 years
112 Cross- Patients who visit clinicians ~ SGLT2i GLP-1RA  Change in office
sectional of members of the (n = 384) (n = 160) SBP and DBP
study, Kanagawa Physicians from baseline
survey Association (Japan)
data T2DM (and CKD for
SGLT2i group), prevalent
use of SGLT2i or GLP-1 RA
for at least one year and
blood pressure >
130/80 mmHg
n =544
Mean age 58 to 64 years
113 Cohort Diabetes clinic at Seoul Initiate GLP-1  Initiate Seated SBP and
study, National University RA SGLT2i DBP mean
clinical Bundang Hospital (South (n = 528) (n = 1584) change from
records Korea) baseline
Adults with T2DM
n=2112

Mean age 56 years

]
A

Effect

SBP: —6.8 mmHg
(95% Cl — 8.5 to
-5.1)

DBP:

—2.6 mmHg
(95% Cl — 3.9 to
-1.2)

No. of
antihypertensive
medications: 3.6
(0.8)t0 2.9 (1.2)

SBP: —4.5 to
—7.1 mmHg
DBP: —3.2 to
—4.2 mmHg
Most point
estimates from
different
analyses were
not statistically
significant

Effect size not
reported, but
numerically
lower in SGLT2i
group
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Limitations

1) Treated group
only pre- post-
comparison (not
adjusted for
comparator group)
2) Estimates not
adjusted for
confounding
factors

3) Descriptive
analysis only

4) No information
on other GLP-1/
GIP medications or
follow-up data
beyond 12 months

1) Restricted to
prevalent users and
adherent patients
could result in
selection bias of a
healthier cohort

2) Different
eligibility criteria for
exposure groups
(CKD for SGLT2i
survey)

3) Appears to be a
one-time survey
from a group of
physicians, may not
be broadly
generalizable

1) Blood pressure
not primary
outcome of the
study

2) Magnitude of
effect not reported
3) Single-centre
study from South
Korea, and findings
may not be broadly
generalizable

Abbreviations: CKD: chronic kidney disease; DPB: diastolic blood pressure; GLP-1RA: glucagon-like peptide-1 receptor agonists; SBP: systolic blood
pressure; SGLT2i: sodium-glucose co-transporter 2 inhibitor; T2DM: type 2 diabetes mellitus.

outcomes, including blood pressure, between patients using GLP-1
RAs and SGL2Tis.2*® Over four years of follow-up, SBP and DBP were
on average lower among individuals prescribed SGL2Ti during the first
two years, but were not statistically different between treatments at
four years. Using physician survey data, Kobayashi et al. found that
patients with T2DM had increased odds of achieving better blood
pressure control with SGLT2is as compared to GLP-1 RAs treatment,
although differences in SBP and DBP changes were not statistically
different.?*? Ghusn et al. described decreases in systolic and diastolic
blood pressure up to 12 months among patients with recorded blood

pressure information who were prescribed weekly subcutaneous

semaglutide injections for weight loss.21* Further real-world studies in
more diverse populations are therefore needed to understand the
comparative long-term effects of different GLP-1/GIP RAs drugs in

clinical practice.

5 | SGLT2INHIBITORS - EVIDENCE FROM
PIVOTAL RCTS

Although a limited number of randomized controlled trials (RCTs) have

been specifically designed to investigate the effects of SGLT2is on
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Randomized controlled trials evaluating the impact of SGLT2 inhibitors on blood pressure.

Study population HTN, n (%)
Patients with T2DM 6667 (95)
n = 7020

Age: 63.2 years

Patients with T2DM and 825 (100)
HTN

n =825

Age: 60.2 years

Patients with T2DM and 132 (100)
uncontrolled nocturnal

HTN

n=132

Age: 70 years

HFrEF patients (NYHA 2698
class II-1V) (72.3)

n = 3730

Age: 66.8 years

HF patients with LVEF> 5424

40% (NYHA class 1I-IV) (90.5)
n = 5988

Age: 71.9 years

Patients with CKD NA

(eGFR) of at least 20 but
less than 45 mL per
minute per 1.73 m?

n = 6609

Age:63.8 years

Diabetic patients at high NA
CV risk

n=17 160

Age: 64 years

HFrEF patients (NYHA 3510 (74)
class II-1V)

n = 4744

Age: 66.4 years

HF patients with LVEF> 5553

40% (NYHA class 1I-1V) (88.6)
n = 6263

Age: 71.6 years

Patients with CKD NA

eGFR of 25 to 75 mL per
minute per 1.73 m2

n = 4304

Age: 61.9 years

Diabetic patients with 613 (100)
HTN

n=613

Age:56.3 years

Diabetic patients with 449 (100)
HTN

n = 449

Age:57 years

Diabetic patients at high 9125 (90)
CV risk

n =10 142

Age:63.3 years

Intervention

Empagliflozin
vs. placebo

Empagliflozin
vs. placebo

Empagliflozin
vs. placebo

Empagliflozin
vs. placebo

Empagliflozin
vs. placebo

Empagliflozin
vs. placebo

Dapagliflozin
vs. placebo

Dapagliflozin
vs. placebo

Dapagliflozin
vs. placebo

Dapagliflozin
vs. placebo

Dapagliflozin
vs. placebo

Dapagliflozin
vs. placebo

Canagliflozin
vs. placebo

Follow-up

3.1 years

12 weeks

12 weeks

52 weeks

52 weeks

2 years

4.2 years

18.2 months

2.3 years

2.4 years

12 weeks

12 weeks

188.2 weeks

Outcome

Higher reduction in office SBP (—4.0 mmHg) and DBP
(—1.5 mmHg) with empagliflozin

Greater decrease in office SBP (—3.9 mmHg) and DBP
(—1.9 mmHg) and in ABPM SBP (—3.4 mmHg) and DBP
(—1.4 mmHg) with empagliflozin 10 mg

Higher decrease in office SBP (—4.8 mmHg) and DBP
(—1.9 mmHg) and in ABPM SBP (—4.2 mmHg) and DBP
(—1.7 mmHg) with empagliflozin 25 mg

Reduction in office SBP (—8.6 mmHg) and DBP (—2.0 mmHg)
with empagliflozin 10 mg
Decrease in ABPM SBP (—7.7 mmHg) and DBP (—2.9 mmHg)
with empagliflozin 10 mg

Reduction in office SBP (—2.4 mmHg) with empagliflozin
10 mg compared to placebo

Reduction in office SBP (—1.8 mmHg) with empagliflozin
10 mg

SBP (2.6 £0.3 mmHg) and DBP (—0.5 + 0.2 mmHg) were
lower in the empagliflozin arm compared to placebo arm at
the end of follow-up

Reduction in office SBP (—2.7 mmHg) and DBP (—0.7 mmHg)
with dapagliflozin 10 mg

Reduction in office SBP (—1.3 mmHg) with dapagliflozin
10 mg

Beneficial effect of dapagliflozin on clinical outcomes was
more pronounced in patients with a baseline
SBP > 128 mmHg.

Changes in BP were not assessed.
Increase in BP was defined as safety endpoint and no such
events were reported in the dapagliflozin treatment arm.

Dapagliflozin on top of renin angiotensin system blockade
resulted in a reduction in office SBP (—3.1 mmHg) and ABPM
SBP (—2.9 mmHg) compared to placebo

Dapagliflozin on top of combined antihypertensive therapy
led to a reduction in office SBP (—4.3 mmHg) compared to
placebo

Greater reduction compared to placebo in office SBP
(—3.9 mmHg) and DBP (—1.4 mmHg) with canagliflozin
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TABLE 4 (Continued)

Authors  Study population HTN, n (%) Intervention Follow-up Outcome

12 Diabetic patients with 113 (100) Canagliflozin 6 weeks Greater reduction compared to placebo in ABPM SBP
HTN vs. placebo (—3.3 mmHg) and DBP (—1.9 mmHg) with canagliflozin
n=113 100 mg, and reduction in ABPM SBP (—4.9 mmHg) and DBP
Age:58.6 years (—2.9 mmHg) with canagliflozin 300 mg were observed.

130 Patients with diabetes NA Ipragliflozin 24 weeks Decline in office SBP (—1.2 mmHg) and DBP (—1.3 mmHg)
n=139 vs. placebo with ipragloflozin 50 mg
Age:57.5 years

i Patients with diabetes NA Luseogliflozin 24 weeks Reduction in office SBP (—5.6 mmHg) and DBP (—2.5 mmHg)
n=158 vs. placebo with luseogliflozin 2.5 mg
Age:59.3 years

132 Patients with diabetes NA Tofogliflozin 24 weeks Reduction in office SBP (—3.6 mmHg) and DBP (—4.2 mmHg)
n =229 vs. placebo with tofogliflozin 10 mg

Age:57.3 years

Abbreviations: ABPM: Ambulatory blood pressure monitoring, CKD: Chronic kidney disease, CV: Cardiovascular, DBP: Diastolic blood pressure, eGFR:
Estimated glomerular filtration rate, HFrEF: Heart failure with reduced ejection fraction, LVEF: Left ventricular ejection fraction, NA: Not available, NYHA:
New York Heart Association, SBP: Systolic blood pressure; T2DM: Type 2 Diabetes Mellitus.

blood pressure, their impact on blood pressure has been assessed as
secondary or safety endpoints across a range of patient populations,
including individuals with T2DM, atherosclerotic cardiovascular dis-
ease, heart failure and chronic kidney disease.***'1> An overview of
representative RCTs is provided in Table 4.

The EMPA-REG OUTCOME trial is a landmark randomized con-
trolled trial that evaluated the effects of empagliflozin on cardiovascu-
lar outcomes in patients with T2DM. In addition to its established
cardiovascular benefits, empagliflozin was associated with higher
reductions in SBP and DBP (—4 mmHg and —1.5 mmHg) compared to
placebo.’® A subsequent trial, the EMPA-REG BP study, specifically
examined the antihypertensive effects of empagliflozin and demon-
strated significant reductions in both office-based and 24-hour ambu-
latory systolic and diastolic blood pressure. The extent of the
reduction in blood pressure was found to be dependent on the dosage
administered, with a greater decrease observed in patients receiving
25 mg once daily in comparison to those receiving 10 mg once
daily.**” Further post hoc analyses by Mancia et al. explored the
influence of the number and class of concomitant antihypertensive
medications on blood pressure responses to empagliflozin. Their find-
ings confirmed that the blood pressure-lowering effect of empagliflo-
zin was sustained and consistent across subgroups receiving none,
one or two antihypertensive agents. Moreover, this effect was inde-
pendent of the specific class of antihypertensive therapy.'*® The
blood pressure-lowering effect of empagliflozin was further con-
firmed in a multicentre RCT conducted in Japan, which demonstrated
significant reductions in both systolic and diastolic blood pressure
among patients with T2DM and uncontrolled hypertension.*'®

Empagliflozin studies in patients with heart failure revealed
extremely positive results, establishing it as the standard treatment
for all types of heart failure.*®* In the EMPEROR-Reduced trial, which
included patients with heart failure with reduced ejection fraction
(HFrEF), treatment with empagliflozin led to a reduction in SBP of
2.4 mmHg after 52 weeks of follow-up.**? Similarly, in patients with

heart failure with preserved ejection fraction (HFpEF), empagliflozin
was associated with a 1.8 mmHg decrease in SBP at the end of
52 weeks.*2° The EMPA-KIDNEY trial evaluated the impact of empa-
gliflozin on the progression of chronic kidney disease (CKD). After
2 years of follow-up, the SBP and DBP were lower in the empagliflo-
zin group than in the placebo group: —2.6 + 0.3 mmHg and
—0.5 + 0.2 mmHg, respectively.'??

The DECLARE-TIMI 58 trial constitutes the pivotal RCT assessing
the effects of dapaglifiozin in individuals with type 2 diabetes on car-
diovascular outcomes. Over a median follow-up of 4.2 years, adminis-
tration of dapagliflozin 10 mg once daily was associated with a higher
decline in office-measured SBP (—2.7 mmHg) and DBP (—0.7 mmHg)
compared to placebo arm.'?? Weber et al. demonstrated that dapagli-
flozin exerts additional blood pressure-lowering effects when admin-
istered alongside either RAAS blockade monotherapy or combination
antihypertensive regimens, as shown in placebo-controlled random-
ized trials involving hypertensive patients with T2DM.125127 The
blood pressure-lowering effect of dapagliflozin was also evident in the
DAPA-HF trial, which enrolled patients with HFrEF. Beyond its dem-
onstrated efficacy in reducing the composite outcome of worsening
heart failure or cardiovascular death, dapagliflozin compared to pla-
cebo was related to a greater reduction of 1.3 mmHg in office-
measured systolic blood pressure.'?® The DELIVER trial included
patients with heart failure and a left ventricular ejection fraction
(LVEF) of more than 40%, randomizing them into dapagliflozin and
placebo groups. Dapagliflozin was found to be associated with better
cardiovascular outcomes, with greater benefits observed in patients
with a SBP of over 128 mmHg.*?* The DAPA-CKD trial established
the benefits of dapagliflozin for renal outcomes in patients with CKD,
but changes in blood pressure were not evaluated. However, an
increase in blood pressure was not observed in any cases in the dapa-
gliflozin group.*?®

Canagliflozin, another SGLT2i was evaluated in patients with

T2DM and increased cardiovascular risk. In the CANVAS Programme,
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canagliflozin significantly reduced the incidence of the primary com-
posite endpoint—comprising cardiovascular death, nonfatal myocar-
dial infarction or nonfatal stroke—although it was concomitantly
associated with an increased risk of lower-limb amputations. Blood
pressure was assessed as a secondary endpoint, with canagliflozin
producing higher reductions compared to placebo in office SBP and
DBP of —3.9 mmHg and —1.4 mmHg.'?® Another RCT involving
patients with diabetes and hypertension also demonstrated the blood
pressure-lowering effect of canagliflozin after six weeks of follow-up.
The blood pressure reduction was greater with higher doses of
canagliflozin.*??

Tofogliflozin, luseogliflozin and ipragliflozin are SGLT2is primarily
utilized in Asian populations. Their antihypertensive effects in individ-
uals with T2DM have been demonstrated in RCTs with relatively small
sample sizes. Among these agents, tofogliflozin exhibited a dose-
dependent reduction in blood pressure when compared to placebo,
suggesting a potential pharmacodynamic relationship between dosage
and antihypertensive efficacy. 0132

In summary, SGLT2is appear to exert a blood pressure-lowering
effect that is consistent across various patient populations. This anti-
hypertensive effect is generally dose-dependent, with higher doses
associated with greater reductions in blood pressure. Given these
properties, SGLT2is may hold potential as an adjunctive therapy in the
management of resistant hypertension. Although studies conducted in
Japan and Korea have reported findings consistent with those from
trials conducted in European and North American populations, it
remains important to acknowledge that geographic and ethnic differ-
ences may modulate the extent of blood pressure response to
SGLT2is therapy.

6 | SGLT2INHIBITORS - REAL-WORLD
DATA AND META-ANALYSES

6.1 | SGLT2 and combined SGLT1/2
inhibitors - evidence from meta-analyses

Several meta-analyses have investigated the effects of SGLT2is on
blood pressure outcomes from randomized controlled trials. Among
these meta-analyses, the range of average reductions in office
SBP/DBP was 2.4-5.0/1.4-2.3 mmHg and 24 h ambulatory SBP/DBP
was 3.3-3.8/1.7-1.8 mmHg (Table 5). In a network meta-analysis,
Tsapas et al. reported that among nine antidiabetic drug classes,
SGLT2is produced the largest reductions in SBP.1®” When compared
to placebo, specific SGLT2i medications associated with the largest
reductions in SBP were canagliflozin, ertugliflozin and dapagliflozin,
while those with the largest associated reductions in DPB were empa-
gliflozin, dapagliflozin and canagliflozin. The availability of combined
SGLT1/2 inhibitors has also raised the question about whether they
impact blood pressure beyond the effects observed with SGLT2i. To
answer this question, Teo et al. performed a network meta-analysis
to compare the effects of SGLT2i (dapagliflozin, empagliflozin, canagli-
flozin, ipragliflozin, ertugliflozin and luseogliflozin) and SGLT1/2

inhibitors (licogliflozin and sotagliflozin) on blood pressure in patients
with diabetes.'*? There was little evidence of a difference between
SGLT2 and SGLT1/2 inhibitors, with low to moderate certainty. The
evidence available from meta-analyses to date supports similar effects
of SGLT2i and SGLT1/2i on blood pressure, which have recently been
reproduced in several real-world (observational) studies.

Although the absolute reductions in blood pressure appear
modest—typically in the range of 2 to 5 mmHg—their clinical signifi-
cance is far greater than the numbers suggest. Large-scale meta-
analyses and major clinical guidelines consistently demonstrate that
even small declines in systolic blood pressure (SBP) yield measurable
reductions in cardiovascular risk. A 2 mmHg lower SBP is associated
with significant decreases in stroke mortality and ischemic heart dis-
ease deaths at the population level, while a 5 mmHg reduction corre-
sponds to an approximate 10% relative reduction in major
cardiovascular events, including stroke and myocardial infarction, irre-
spective of baseline blood pressure or cardiovascular status.**® The
relationship between SBP and cardiovascular risk is log-linear, with no
clear lower threshold and benefits extend even to individuals in the
high-normal range.*

For stroke prevention specifically, a 5 mmHg reduction in SBP
confers around a 10% lower relative risk of recurrent stroke and other
major cardiovascular events in both primary and secondary prevention

contexts. '

More intensive BP lowering—such as targeting
SBP < 130 mmHg—yvyields further reductions in stroke and ischemic
outcomes, as confirmed by network meta-analyses and recent guide-
line recommendations.}® The absolute benefit is most pronounced in
high-risk groups, yet the proportional risk reduction per mmHg of SBP
lowering remains remarkably consistent across different risk strata.’*”

From a clinical standpoint, these data underscore that the blood
pressure reductions achieved with SGLT2 inhibitors and GLP-1 recep-
tor agonists are not merely ancillary effects but carry tangible prog-
nostic value. Their consistent 2-5 mmHg average decrease translates
into meaningful population-level cardiovascular  protection—
comparable to the benefit expected from first-line antihypertensive

therapies.

6.2 | SGLT2 inhibitors - Real-world evidence

Emerging real-world evidence indicates that SGLT2i treatment is asso-
ciated with reductions in blood pressure, reductions in the use of anti-
hypertensive medications and a lower risk of incident hypertension
(Table 6). Two well-performed cohort studies using primary care data
from the UK reproduced results from RCTs, reporting similar average
reductions in office SBP of 1.8-3.1 mmHg as compared with DPP4i
or sulfonylureas, but they did not assess DBP.1#?">2 A smaller cohort
study from Spain also found similar reductions in SBP and DBP for
SGLT2i vs. DPP4i and sulfonylureas.’®® An et al. used electronic
health records from California to evaluate changes pre-post SGLT2i
initiation, but did not have a comparator group.'*® SGLTi use was
associated with reductions in both SBP and DBP, as well as reductions

in the number of antihypertensive drugs used. After SGLT2i initiation,
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(Continued)

TABLE 6

Limitations

Effect

Comparator Outcomes

Intervention

Population

Design

Citation
152

1) Required to have baseline and follow-up
BP, could result in selection bias for more

adherent patients

SGLT2i vs. DPP4i

Mean difference in SBP

at 2 years

1) Initiate
DPP4i

Linked CPRD-Hospital SGLT2i

Cohort study,
electronic
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—1.8 mmHg (95% Cl — 3.2 to

—-0.5)

Episodes Statistics (United

Kingdom)

2) Initiate

health records

2) Long-term reduction in SBP beyond two

years was not assessed

SGLT2i vs. sulfonylurea

sulfonylurea

Adults treated with

—3.1 mmHg (95% Cl — 4.4 to

-1.7)

metformin who intensify to
second-line treatment

Mean age 60 years

3) No information on comparing to GLP-1RA

n = 7958 (SBP cohort)

BELANCIC T AL.

Abbreviations: DPP4i: dipeptidyl peptidase-4 inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; HR: hazard ratio; SGLT2i: sodium-glucose co-transporter 2 inhibitor; T2DM: type 2 diabetes

mellitus.

one-third of participants were able to discontinue at least one antihy-
pertensive medication. In a cohort study in Japan, among individuals
without hypertension at baseline, Suzuki et al. found that SGLT2i use
was associated with a 9% relative decrease in an incident diagnosis of
hypertension.*>® Taken together, these real-world studies comple-
ment findings from meta-analyses of RCTs and demonstrate that
reductions in the use of antihypertensive medications occur fre-

quently in clinical practice.

7 | FUTURE DIRECTIONS AND RESEARCH
AGENDA

Although there are solid data demonstrating that both SGLT2is and
GLP-1 RAs produce modest but clinically relevant reductions in BP,
there are important gaps that should be addressed by further
research. BP-specific trials need to be at the top of the research
agenda and in the development of clinical practice.

Most of the evidence comes from diabetes and cardiovascular
outcome studies in which BP is quantified as a secondary endpoint.
Well-controlled, prospective clinical trials with primary endpoints for
hypertension are needed to confirm the antihypertensive efficacy and
safety profile of these drugs, especially in people with hypertension
but not obesity or diabetes.

Recent high-quality syntheses highlight what the next generation
of trials should include: hypertension-dedicated RCTs with prespeci-
fied BP endpoints; standardized and reproducible BP assessment
anchored in ABPM; and direct head-to-head comparisons both across
classes (SGLT2 inhibitors vs GLP-1 receptor agonists) and within clas-
ses (different molecules). These features would improve comparability
and sharpen causal inference for BP-mediated benefit.?>*

There is a need for mechanistic studies to clarify the relative role
of weight loss, natriuresis, increased arterial compliance and other
hemodynamic changes in lowering BP.

In addition, head-to-head comparison studies between different
SGLT2is, GLP-1 RAs and dual GLP-1/GIP agonists are needed to dif-
ferentiate class- and drug-specific BP effects and comparative efficacy
vs. standard antihypertensives.

More research should be conducted to investigate long-term BP
variability, durability of response and outcomes such as hypertension-
mediated organ damage or major cardiovascular events.

Studies should be designed to assess blood pressure response by
ethnicity, gender, age and baseline blood pressure to detect potential
heterogeneity of antihypertensive response in patient subgroups and
identify those most likely to benefit.

More attention needs to be paid to standardization of blood pres-
sure measurement, such as the use of ambulatory blood pressure
monitoring (ABPM), unattended automated office BP measurement
and inclusion of populations with different hypertension phenotypes
with or without cardiometabolic disease.

In addition, studies with longer follow-up are needed to investi-
gate the sustained antihypertensive effect and long-term safety in

real-world populations.
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Shown evidence suggests a potential additive role for these
agents in the treatment of hypertension, particularly in patients with
obesity, metabolic syndrome or type 2 diabetes. Future hypertension
guidelines should consider the inclusion of SGLT2is and GLP-1 RAs as
adjunctive antihypertensive therapies, depending on the results of rel-
evant trials. Altogether, ongoing studies should strive to close these
important knowledge gaps and maximize the inclusion of these thera-
peutics in personalized hypertension management. Incorporating the
blood pressure-lowering effects of SGLT2 inhibitors and GLP-1
receptor agonists into current ESC/ESH and AHA/ACC guidelines
could enhance cardiovascular risk reduction, particularly in patients
with diabetes or obesity.

Dedicated trials of SGLT2 inhibitors combined with GLP-1 recep-
tor agonists, with primary outcomes specifically designed for blood
pressure reduction, are crucial to unlock their complementary poten-
tial and maximize cardiovascular benefit. Such studies would not only
delineate additive hemodynamic effects but also clarify mechanistic
interactions across renal, metabolic and vascular domains—ultimately
shaping future guideline integration.

Given their high cost and uneven global availability, addressing
implementation challenges and health-equity considerations is essen-
tial to ensure that the benefits of SGLT2 inhibitors and GLP-1 recep-
tor agonists reach patients in low- and middle-income settings.

8 | CONCLUSION

SGLT2 inhibitors and GLP-1 receptor agonists lower blood pressure
consistently across populations with type 2 diabetes, obesity, cardio-
vascular disease and chronic kidney disease. Although the magnitude
of reduction is modest, the effect is reproducible, clinically meaningful
and largely independent of glycaemic control.

The available evidence supports a conceptual shift: from viewing
these drugs solely as antidiabetic agents to recognizing their role
within an integrated, multi-system treatment strategy, in which blood
pressure reduction contributes to broader cardiovascular and renal
protection. Their distinct yet complementary mechanisms also pro-
vide a rationale for combination therapy in selected high-risk
individuals.

Nonetheless, key limitations persist. Few trials have prioritized
blood pressure as a primary endpoint, leading to heterogeneity in
measurement approaches and limited precision in effect estimates.
Long-term outcomes related to blood pressure, particularly with
newer agents such as dual agonists, remain insufficiently
characterized.

Future research should prioritize trials specifically designed to
evaluate blood pressure effects, including direct comparisons between
drug classes and assessment across clinically relevant subgroups. In
the interim, optimal implementation will require multidisciplinary col-
laboration to align therapeutic strategies with the overlapping patho-
physiology of metabolic, cardiovascular, renal and hypertensive

disease.
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8.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-
sponding entries in http://www.guidetopharmacology.org, and are
permanently archived in the Concise Guide to PHARMACOLOGY
2023/24.1541%°
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