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ANKLE1 processes chromatin bridges by
cleaving mechanically stressed DNA

Huadong Jiang1,2,5, Fei He1,3,5, Nannan Kong1, Jie Long3, Yu Ching Poon1,
Rajvee Shah Punatar 4, Zhichun Xu1, Yuanliang Zhai 2, Stephen C. West 4,
Artem K. Efremov 3,6 & Ying Wai Chan 1,6

Chromatin bridges experience significant tension due to spindle fiber pulling
and cell migration. Uncontrolled breakage of chromatin bridges by acto-
myosin contractile forces leads to detrimental consequences. The existence of
specialized mechanisms that process chromatin bridges to prevent cata-
strophic rupture remains uncertain. Here, we uncover a unique property of
ANKLE1, a midbody-tethered endonuclease implicated in chromatin bridge
processing, in sensing and responding toDNA tension and supercoiling during
cell division.Using single-molecule analyses, we found thatANKLE1 specifically
cuts supercoiled or mechanically stretched DNA. At higher stretching forces,
ANKLE1 cleaves both strands of negatively supercoiled DNA, mirroring con-
ditions in which stretched chromatin bridges lose histones to expose nega-
tively supercoiledDNA. Thesefindings show thatANKLE1 acts as aDNA tension
sensor that resolves stretched chromatin bridges. Our study highlights the
significance of mechanical forces in DNA bridge processing, enhances our
understanding of how cells preserve genome integrity during cell division.

Chromatin bridges primarily arise from dicentric chromosomes
resulting from chromosome fusion due to erroneous DNA repair
or ectopic recombination between heterologous chromosomes1–3,
and the accumulation of unresolved DNA linkages between sister
chromatids4,5. These bridges can become trapped by the cleavage
furrow in late telophase, activating the Aurora B-dependent
abscission checkpoint, which delays cytokinesis and allows a
final attempt to process the trapped chromatin6–10. Persistent
chromatin bridges continuously stretch and extend due to cell
migration, gradually losing nucleosomes and exposing naked
DNA11–14. Eventually, they break under actomyosin contractile
forces, leading to a range of detrimental consequences such as
micronuclei formation, complex genomic rearrangements (e.g.,
breakage-fusion-bridge (BFB) cycle, chromothripsis, and onco-
gene amplification), and activation of the GMP-AMP synthase
(cGAS)-stimulator of interferon genes (STING) pathway15–27.

C. elegans LEM-3 and its human ortholog ANKLE1 are endonu-
cleases that localize to the midbody and are implicated in processing
chromatin bridges at the end of cell division15,28–30. Biochemical studies
have shown that LEM-3 and ANKLE1 exhibit nucleolytic activities on
supercoiled DNA15,31,32, or various branched DNA species, including
flaps, replication forks, and four-way Holliday junctions (HJs)30,33,34.
LEM-3 was proposed to resolve DNA bridges by cleaving recombina-
tion intermediates, functioning in a genetic pathway parallel to the
structure-specific endonucleases SLX-4-SLX-1 and MUS-8129. However,
ANKLE1 knockouts in human and mouse cells do not exhibit a reduc-
tion in sister chromatid exchange (SCE) levels, disputing a direct role
for ANKLE1 in cleaving joint molecules15,35.

In this work, we propose that ANKLE1 operates independently of
the resolution pathways and acts directly on chromatin bridges. Fur-
thermore, we show that the DNA cleavage activity of ANKLE1 is
enhanced by DNA tension and supercoiling. Its midbody localization
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and unique substrate preference allow it to effectively process stret-
ched chromatin bridges during the final stages of cell division.

Results
ANKLE1 is recruited to the midbody by RACGAP1 to prevent
overstretching of bridges
We previously demonstrated that exogenous ANKLE1, when over-
expressed, localizes to the midbody in a centralspindlin-dependent
manner15. To exclude the possibility that this localization was an arti-
fact of overexpression, we employed CRISPR/Cas9 technology to tag
endogenous ANKLE1 with GFP in eHAP cells (Fig. 1a).We observed that
endogenous ANKLE1-GFP colocalizes with RAC GTPase-activating

protein-1 (RACGAP1) in a bulge-like structure at the midbody,
flanked by PLK1 and CEP55 staining (Fig. 1b, c). Importantly, we found
that MKLP1 and RACGAP1 could be co-immunoprecipitated with
ANKLE1 in telophase (Fig. 1d). The N-terminal Ankyrin repeats domain
(1–128 aa) of ANKLE1 is essential for ANKLE1’s midbody recruitment15.
We showed that GFP-ANKLE1129–615 did not interact with MKLP1 and
RACGAP1, while the LEM domain of ANKLE1 was dispensable for mid-
body localization (Fig. 1e and Supplementary Fig. 1a, b). We further
confirmed that ANKLE11–128 is sufficient to localize to the midbody
(Supplementary Fig. 1c). Immunoprecipitation revealed that GFP-
ANKLE11–128 interacts with overexpressed Myc-RACGAP1 but not with
Myc-MKLP1 (Supplementary Fig. 1d, e). Similarly, ANKLE11–128 does not
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Fig. 1 | ANKLE1 is a midbody-tethered endonuclease for processing chromatin
bridges. aCell extracts from ANKLE1−/− cells, GFP-ANKLE1 overexpressed (OE) cells,
wild-type (WT) eHAPcells, and eHAP cellswithANKLE1 endogenously taggedwith a
mAID-GFP tag, were analysed by western blotting using the indicated antibodies.
b, c Cells with ANKLE1 endogenously tagged with a GFP tag were fixed for immu-
nofluorescence. ANKLE1-mAID-GFP (green), CEP55/PLK1 (red), RACGAP1 (blue),
and DNA (blue) were visualized. d Cell extracts were prepared from telophase-
enriched HeLa cells and HeLa cells stably expressing GFP-ANKLE1. GFP-ANKLE1
immunoprecipitates were analysed by western blotting with the indicated anti-
bodies. e Cell extracts were prepared from cells expressing GFP, GFP-ANKLE1FL,

GFP-ANKLE1129–615, or GFP-ANKLE1ΔLEM. GFP immunoprecipitates were analysed by
western blotting with the indicated antibodies. f HCT116 WT and ANKLE1−/− cells
were treated with ICRF-193 for 16 h and fixed for immunofluorescence. LAP2
(green), 53BP1 (red), and DNA (blue) were visualized. Arrows pointing stretched
chromatin bridges. Scale bars, 10 µm. g Quantification of the length of chromatin
bridges, n = 59 and 114 bridges in WT and ANKLE1−/− cells, respectively, from three
independent experiments. The dotted lines represent the third quartile, median,
and first quartile. Statistical significance value was determined with unpaired two-
tailed Mann–Whitney test. Source data are provided as a Source Data file.
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interact with the N-terminal, middle, and C-terminal region of MKLP1
(Supplementary Fig. 1f, g), but it strongly interacted with a RACGAP1
truncation (Myc-RACGAP61–292) containing the ECT2-interacting basic
region and the cysteine-rich zinc-binding domain (Supplementary
Fig. 1h, i). To exclude potential effects of the Myc tag on binding, we
also tested interactions using FLAG-tagged full-length and truncated
RACGAP1 constructs. Consistently, ANKLE1 interacted with both full-
length RACGAP1 and RACGAP161–292 tagged with a FLAG tag (Supple-
mentary Fig. 1j, k). These results indicate that ANKLE1 is a bona fide
midbody protein recruited to the midbody through interaction with
RACGAP1.

We measured the length of extended chromatin bridges, visua-
lized by immunostaining of LAP2, in HCT116 wild-type and ANKLE1−/−

cells and found significantly longer bridges in the ANKLE1−/− cells
(Fig. 1f, g). These results indicate that ANKLE1 processes chromatin
bridges to prevent their overstretching.

Non-overlapping roles for ANKLE1 and GEN1/MUS81 in chro-
mosome segregation
In human mitotic cells, two independent resolution pathways exist:
one mediated by GEN1 and the other by the SMX complex, which is
composed of SLX1-SLX4, MUS81-EME1, and XPF-ERCC136–40. To inves-
tigate the genetic relationship of ANKLE1, GEN1, and MUS81, we
employed single knockout cells (ANKLE1−/−, GEN1−/− andMUS81−/−)15 and
depleted the other nucleases via siRNAs to generate double-deficient
cells (Supplementary Fig. 2a). As expected, loss of GEN1 and MUS81,
which eliminates the cell’s ability to resolve recombination
intermediates41–43, resulted in increased formation of both chromatin
bridges and ultrafine anaphase bridges (UFBs) (Supplementary
Fig. 2b–e). In contrast, loss of both ANKLE1 and GEN1 or MUS81
(ANKLE1−/− + siGEN1 and ANKLE1−/− + siMUS81) did not result in a higher
number of DNA bridges.

Next, we evaluated whether overexpression of ANKLE1 could
compensate for the loss of GEN1. GEN1−/− cells expressing FLAG-
GEN1 or GFP-ANKLE1 were treated with control or MUS81 siRNAs
(Supplementary Fig. 3a). Inactivation of both GEN1 and MUS81
resulted in >80% loss of survival. Notably, the expression of
exogenous GEN1, but not ANKLE1, significantly reduced cell
death (Supplementary Fig. 3b). Additionally, we found that
GEN1−/− + siMUS81 cells exhibited a substantial increase in the
number of G1-specific 53BP1 foci. This increase could be fully
rescued by the expression of exogenous GEN1 but not ANKLE1
(Supplementary Fig. 3c, d). Furthermore, we found that over-
expression of FLAG-GEN1 could not compensate for the loss of
ANKLE1 (Supplementary Fig. 3e–g). These cellular studies indicate
that ANKLE1 does not directly participate in the resolution of
recombination intermediates and that ANKLE1, GEN1, and MUS81
have non-overlapping roles in chromosome segregation.

Specificity of DNA cleavage by ANKLE1 nuclease
Previously, small synthetic DNA substrates were used to analyze
the ability of ANKLE1 to cleave various branched DNA species33,34.
To more closely mimic the characteristics of true recombination
intermediates, we employed a 1.8 kb long DNA that contained
double HJs, in which the two HJs were separated by a maximum of
746 base pairs of homologous sequence, enabling branch
migration within the homology region44. Whereas this substrate
was cleaved efficiently by GEN145, yielding three DNA product
bands (~800, ~900, and ~1000 bp), corresponding to the expec-
ted crossover (824 and 983 bp) and non-crossover products (903
and 904 bp), no cleavage was observed with ANKLE1 (Fig. 2a, b).
Similarly, GEN1 cleaved circular single-stranded фX174 virion DNA
(5386 bases) due to the presence of secondary structures sus-
ceptible to structure-specific endonuclease cleavage, whereas
ANKLE1 was unable to cleave this DNA (Fig. 2c, d).

In contrast to GEN1, however, ANKLE1 was able to cut negatively
supercoiled plasmid DNA into mostly nicked circular and a small
portion of linear products (Fig. 2e and Supplementary Fig. 4a–c).
ANKLE1’s ability to cleave plasmid was dependent on superhelicity, as
it failed to cut linearized plasmids (Fig. 2e). Furthermore, ANKLE1 did
not cleave nicked circular plasmids or linearized plasmids containing a
nick (Supplementary Fig. 4c), indicating that ANKLE1 does not cleave
the DNA strand opposite a nick.

We hypothesize that ANKLE1 creates a nick on a supercoiled
plasmid, releasing superhelical stress, rendering the resulting nicked
circular DNA unsuitable for further cleavage due to loss of torsional
stress. Experiment using S1 nuclease, which cleaves the DNA strand
opposite a nick, demonstrated that ANKLE1-generated nicked circles
primarily contained a single nick (Fig. 2f). An alternative explanation
for this activity of ANKLE1 is that it targets secondary structures, such
as cruciform, formed in the plasmids. To test this, we employed the
cruciform-forming sequence containing plasmid pIRbke8mut, which
contains an inverted repeat sequences that can be extruded to form a
cruciform structure46,47. GEN1, which cuts cruciform by coordinated
bilateral cleavage to produce linear products45,46, could not cleave
pcDNA4/TO plasmids but readily cleaved pIRbke8mut into linear forms.
In contrast, ANKLE1 cleaved both supercoiled plasmids, generating
nicked circles (Fig. 3a–d). Additionally, we previously demonstrated
that ANKLE1 cleaves various plasmids15. Together, we conclude that
ANKLE1 is an endonuclease with specificity for supercoiled DNA.

Next, we explored ANKLE1’s activity on DNA using two C-terminal
fragments of ANKLE1: ANKLE1331–615 (containing both the LEM and GIY-
YIG domains) and ANKLE1399–615 (containing only the GIY-YIG domain)
(Supplementary Fig. 5a–d). As observed with the full-length protein,
both fragments cleaved supercoiled plasmids predominantly into
nicked circles and a small fraction of linear DNA (Fig. 4a–d), and did
not cleave double HJ or фX174 ssDNA (Supplementary Fig. 5e, f). To
ensure that the observed activity of ANKLE1 was not due to possible
contamination, we purified a catalytically dead version of ANKLE1,
ANKLE1331–615(Y453A), using the same purification protocol (Supplemen-
tary Fig. 6a). Importantly, ANKLE1331–615(Y453A) did not cleave supercoiled
plasmids (Supplementary Fig. 6b), confirming that the observed clea-
vage activity was not due to contamination.

ANKLE1 binds specifically to supercoiled DNA
Importantly, electrophoretic mobility shift assays (EMSA) revealed
that both ANKLE1331–615 and ANKLE1399–615 readily associated with
supercoiled plasmids but not with linearized DNA (Fig. 4e, f). This
demonstrates that ANKLE1 specifically binds to supercoiled DNA. The
observed upshifts in the EMSA were not due to DNA cleavage, as the
addition of 5mM EDTA completely inhibited ANKLE1’s activity (Sup-
plementary Fig. 6c). We also tested ANKLE1331–615(Y453A) in EMSA, which
produced similar DNA-binding shifts with supercoiled plasmids (Sup-
plementary Fig. 6d), further confirming that the upshifts were due to
binding rather than cleavage. As a control, we conducted EMSA to
detect the interaction between BAF (barrier-to-autointegration factor)
and supercoiled or linearized plasmids. Clear upshifts of both DNA
forms could be observed (Supplementary Fig. 6e), indicating that our
assay is sensitive enough to reveal the interaction between proteins
and long linear DNA. Interestingly, the absence of the LEM domain in
ANKLE1399–615 did not significantly affect ANKLE1’s activity or its DNA
binding affinity, indicating that the LEM domain is not essential for
these functions.

ANKLE1 specifically cuts both strands of negatively supercoiled
DNA under tension
The specificity of ANKLE1 for supercoiled plasmids led us to hypo-
thesize that ANKLE1 targets mechanically stressed DNA. To investigate
the impact of tension and supercoiling on ANKLE1’s nuclease activity,
we employed magnetic tweezers to apply stretching forces and
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negative supercoiling to a 4100-bp long linearDNAmolecule. TheDNA
was subjected to constant tension of either 0.5 pNor 5 pN, andANKLE1
was introduced into the experimental chamber (Fig. 5a). These forces
are physiologically relevant as previous single-molecule studies
showed that forces between 3 and 10 pN can induce nucleosome
unfolding13,14, a phenomenon observed in stretched chromatin bridges
between daughter cells11, suggesting that the tension experienced by
chromatin bridges is comparable to the forces applied in our experi-
ments. At a lower force (0.5 pN), negative supercoiling (superhelical
density σ = −0.05, 20 negative turns) induced plectoneme formation
and reduced the DNA end-to-end extension (Fig. 5b). We observed an
increase in DNA extension associated with the release of DNA super-
coiling as ANKLE1 nicked the DNA (Fig. 5b).

After verifying our setup, we studied the cleavage of negatively
supercoiled DNA (σ = −0.1, 40 negative turns) under a load of 0.5 pN.
The half-life of the DNA was determined to be 410 ± 10 s (Fig. 5e green
line and Supplementary Fig. 7a). However, this approach cannot be
used tomeasure ANKLE1 activity at a higher force (1.5–5 pN) due to the
prevention of plectoneme formation caused by partial melting of

negatively supercoiled DNA, which maintained its end-to-end exten-
sion similar to that of torsionally relaxed DNA (Fig. 5c and Supple-
mentary Fig. 8). To discernwhether ANKLE1 nicked the DNAunder this
higher force condition, we applied positive supercoiling (40 positive
turns × 2) to the DNA every 5min. Intact DNA showed decreased end-
to-end distances due to plectoneme formation, whereas those of
nicked DNA remained unchanged (Fig. 5c). Intact DNA was then rota-
ted back to the original negatively supercoiled state for subsequent
measurements. Remarkably, some beads detached from the surface
under higher force, indicating that ANKLE1 cleaved both strands of
negatively supercoiled DNA (Fig. 5d). For the remaining attached
beads, positive supercoiling was applied every 5min to check if the
DNA became nicked. The fraction of uncleaved DNA was plotted,
revealing a half-life of 146 ± 4 s (Fig. 5e red line and Supplementary
Fig. 7b). We also plotted the fraction of negatively supercoiled DNA
with one or both strands cut by ANKLE1 (Fig. 5f). At a lower force
(0.5 pN), ANKLE1 only cleaved one strand of DNA. At a higher force
(5 pN), ANKLE1 cleaved both strands of DNAwith a half-life of 220 ± 4 s
(Fig. 5f and Supplementary Fig. 7c). Collectively, these findings
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demonstrate that ANKLE1’s nuclease activity is enhanced by tension
and that it specifically cleaves both strands of negatively supercoiled
DNA under higher tension, with a faster cleavage rate for the second
DNA strand.

We also investigated the effect of lower and higher forces on the
cleavage of positively supercoiled (40 positive turns, superhelical
density σ =0.1) and torsionally relaxed DNA by ANKLE1. Notably, in
both cases ANKLE1 only cleaved one strand of the DNA. Higher force
increased the cleavage rate of positively supercoiled DNA by ANKLE1
approximately sixfold, reducing the half-life from 780 ± 10 s at 0.5 pN
to 130 ± 5 s at 5 pN (Fig. 6a and Supplementary Fig. 7d, e). To measure
the fraction of cleavednon-supercoiledDNA, positive supercoilingwas
applied to the DNA every 5min. Under lower force, non-supercoiled
DNA remained uncleaved by ANKLE1 (cleavage time » 1800 s, Fig. 6b).
However, higher force led toDNA cleavagewith a half-life of 360 ± 60 s
(Fig. 6b and Supplementary Fig. 7f). In summary, these results show
that both tension and supercoiling accelerate the cleavage of the first
DNA strandbyANKLE1, while negative supercoiling is necessary for the
cleavage of the second strand (Fig. 6c).

To determinewhether this tension-sensitive cleavage is specific to
ANKLE1, we tested GEN1’s ability to cleave stretched DNA in the mag-
netic tweezers assay. Our results showed that, under either 0.5 pN or
5 pN load, GEN1 did not show a clear ability to cleave negatively
supercoiled DNA (σ = −0.1) (Supplementary Fig. 9). This result sup-
ports the conclusion that the enhancement of cleavage activity by
tension is specific to ANKLE1.

Analysis of ANKLE1 activity under varying forces and super-
helical densities
To determine whether the activity of ANKLE1 continuously increases
with tension, we used magnetic tweezers to apply varying forces (0.5,

1.5, 5, and 10 pN) on negatively supercoiled DNA (σ = −0.1). We
observed that the average DNA cleavage time, indicated by bead
detachment, significantly dropped fromapproximately 600 s at0.5 pN
(2 out of 10 beads detached) to about 240 s at 5 pN (12 out of 13 beads
detached) (Fig. 6d, e and Supplementary Fig. 10a–d). Notably,
increasing the force beyond 5 pN did not further reduce the cleavage
time, indicating that a tension of 5 pN is sufficient to fully activate
ANKLE1. This was confirmed by the maximum detachment rate of
beads at 5 pN (Fig. 6e).

Next, we examined the effect of different superhelical densities on
ANKLE1 activity by incubating negatively supercoiled DNA at
σ = −0.025, −0.05, −0.075, and −0.1,maintained under a constant force
of 5 pN, with ANKLE1. Our results demonstrated a continuous increase
in ANKLE1 cleavage activity with higher negative supercoiling densities
(Fig. 6f and Supplementary Fig. 10c, e–g), with over 90% of the beads
detached at σ = −0.075 and −0.1 (Fig. 6g). These findings suggest that
bothmechanical tension and superhelical density are critical factors in
modulating ANKLE1 nuclease activity, with a few piconewtons of ten-
sion sufficient to fully activate cleavage and higher negative super-
coiling enhancing the enzyme’s efficiency.

Discussion
Tension- or supercoiling-sensitive proteins play critical roles in pre-
serving genomic stability by regulating various DNA processes. For
example: (i) negative supercoiled DNA recruits adenosine deami-
nases acting on RNA (ADARs) to edit dsRNA48, (ii) high stretching
force decreases the rate at which type II topoisomerases can relax
DNA49, and (iii) the human DNA translocase PICH50,51, and the bac-
terial RecA recombinase52 both exhibit an increased binding affinity
for stretched DNA. Our study uncovers a previously unidentified
aspect of ANKLE1’s role in preserving genome integrity: its role as a
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DNA tension sensor. We have demonstrated that ANKLE1 exhibits
increased cleavage activity when acting on negatively supercoiled
and mechanically stretched DNA. Interestingly, many restriction
enzymes are also influenced by mechanical stretching. For example,
a stretching force greater than 0.7 pN strongly inhibits the activity
if two-site restriction enzymes but not one-site enzymes53. This
inhibition is likely due to the prevention of DNA looping, which is
necessary for the enzymes that require interaction at two
separate sites to cleave DNA. In contrast, ANKLE1’s activity is
enhanced by mechanical stress, indicating a different mechan-
osensitive profile.

Previously, it was shown that the cytoplasmic exonuclease TREX1
acts on bridge DNAwhen chromatin bridge stretching leads to the loss
of nucleosomes11–14. The discovery of ANKLE1’s tension-sensitive
activity implies that mechanical stretching of chromatin plays a
more significant role in chromosome segregation than previously
appreciated. DNA wraps around nucleosomes, reducing the DNA
linking number by −1.0 to −1.5 per single nucleosome54,55. Given the
average DNA length per nucleosome in chromatin (~170–220 bp), the
dissociation of nucleosomes would release negative DNA supercoils
with a superhelical density of the order ofσ ≈ −0.09 to−0.06. Thus, the
DNA superhelical density σ = −0.1 used in our single-molecule experi-
ments closely approximates the physiologically relevant range.
Therefore, nucleosome unfolding due to chromatin bridge stretching
exposes DNA for ANKLE1 cleavage near the midbody. As our magnetic

tweezers assays revealed that ANKLE1 cleaves both strands of stret-
ched, negatively supercoiled DNA, we propose that ANKLE1 can inde-
pendently resolve chromatin bridges (Fig. 6h). Supporting this
hypothesis, our earlier studies showed that ANKLE1−/− cells exhibit
more severe phenotypes than TREX1−/− cells when treated with drugs
that induce chromatin bridges15. Moreover, ANKLE1 has been shown to
cleave mitochondrial DNA, which is known to be negatively
supercoiled56, further reinforcing the idea that ANKLE1 has evolved to
target supercoiled/mechanically stressed DNA in specific cellular
contexts. This tension/supercoiling sensitivity could be attributed to
ANKLE1’s specific recognition of local melting induced by negative
supercoiling and tension.

In contrast to C. elegans LEM-3, human ANKLE1 does not cleave
replication/recombination intermediates, emphasizing its unique
substrate preference. We propose that in humans, SMX and GEN1
function as the primary nucleolytic resolution pathway that acts on
intermediates that escape BTR-mediated HJ dissolution, whereas
ANKLE1 has evolved touse its unique tension-recognitionproperties to
cleave any intermediates that persist through anaphase.

Methods
Plasmid construction
To endogenously tag ANKLE1 with a mini-Auxin-inducible degron
(mAID) and a GFP tag, a plasmid expressing sgRNA targeting the last
exon of ANKLE1 was generated. A pair of annealed oligonucleotides

- supercoiled

- linear

- nicked circular

- supercoiled

- linear

- nicked circular

ANKLE1331-615 ANKLE1399-615

0 5 10 20 40 0 5 10 20 40 (nM) 0 1 2 4 8 0 1 2 4 8

ANKLE1331-615 ANKLE1399-615

time (min)

a

b

0 250 500 750 1000 0 250 500 750 1000 ANKLE1331-615 (nM)

Supercoiled DNA Linear DNA

0 250 500 750 1000 0 250 500 750 1000 ANKLE1399-615 (nM)

Supercoiled DNA Linear DNA

Free scDNA

Complex/Free linear DNA

Free scDNA

Complex/Free linear DNA

e f

0 nM

5 nM

10 nM

20 nM

40 nM

0 min

1 min 

2 min

4 min

8 min

c

d
Nicked circular Linear Supercoiled

0

20

40

60

80

100

D
N

A 
cl

ea
ve

d 
(%

)

ANKLE
1
33

1-6
15

ANKLE
1
39

9-6
15

ANKLE
1
33

1-6
15

ANKLE
1
39

9-6
15

ANKLE
1
33

1-6
15

ANKLE
1
39

9-6
15

0

20

40

60

80

100

D
N

A 
cl

ea
ve

d 
(%

)

ANKLE
1
33

1-6
15

ANKLE
1
39

9-6
15

ANKLE
1
33

1-6
15

ANKLE
1
39

9-6
15

ANKLE
1
33

1-6
15

ANKLE
1
39

9-6
15

Nicked circular Linear Supercoiled

6000

bp

3000

6000

bp

3000

6000

bp

3000

2000

6000
bp

3000

2000

Fig. 4 | ANKLE1 specifically binds to and cleaves supercoiled DNA independent
of its LEM domain. a pcDNA4/TO (1 nM) was incubated with the indicated con-
centrations of ANKLE1331–615 or ANKLE1399–615 for 10min. bQuantification of the DNA
products, as determined in (a). Plots show mean± SD from n = 3 independent
experiments. c pcDNA4/TO (1 nM) was incubatedwith ANKLE1331–615 or ANKLE1399–615

(20 nM) for the indicated times. d Quantification of the DNA products, as

determined in (c). Plots show mean ± SD from n = 3 independent experiments.
e, f ANKLE1331–615 or ANKLE1399–615 were incubated with supercoiled or linearized
pUC19 plasmids, and the complexes were analysed by agarose gel electrophoresis.
Free DNA and DNA-protein complex are indicated. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-025-65905-7

Nature Communications |        (2025) 16:10855 6

www.nature.com/naturecommunications


(target sequence: AGGCCCGGGGCTGAGTGCTG) was cloned into
pX330 vector (Addgene #42230) according to the published
protocol57. Two donor plasmids (pUC-SP-ANKLE1-mAID-Clover) for
endogenous tagging were based on pMK289 (Addgene #72827) and
constructed according to the previous protocol58. In brief, a plasmid
pUC-AP-ANKLE1 with ~500-bp homology arms was synthesized from
gene synthesis (ATCG). The fragment ofmAID-Clover-Neo was cut out
from pMK289 by BamHI (New England Biolabs) and cloned into pUC-
SP-ANKLE1 to generate pUC-SP-ANKLE1-mAID-Clover (Neo). pUC-SP-
ANKLE1-mAID-Clover (Zeo) was also generated by replacing Neo-
resistant gene to Zeocin-resistant gene. Full-length ANKLE1,
ANKLE1129–615, and ANKLE11–128 were generated as described15.
ANKLE1ΔLEM was generated by PCR and cloned into a pcDNA3.1+/N-
eGFP and a pcDNA5/FRT/TO (Thermo Fisher) vectors. The MKLP1 and
RACGAP cDNA cloned in pCMV3-N-FLAG were purchased from Sino
Biological (Cat. No. HG19110-NF and HG18716-NF, respectively). The
various MKLP1/RACGAP1 truncations were generated by PCR and

cloned into a pcDNA3.1-3 ×Myc or pcDNA5-3 × FLAG vectors. GEN1-
3 × FLAG was cloned into a pcDNA4/TO (Thermo Fisher) vector as
described previously59. The sgRNA vectors for generating ANKLE1−/−,
MUS81−/−, and GEN1−/− cells were cloned in the pX459 (Addgene
#62988) or pX330 vectors as described previously15. ANKLE331–615 and
ANKLE1399–615 were generated by PCR from codons optimized ANKLE1
for E. coli expression (GeneArtGene Synthesis) and cloned into apCold
TF vector (Takara), carrying an N-terminal trigger factor chaperone
and a 6 ×His tag. ANKLE331–615(Y453A) was generated using QuikChange
lightning multi-site directed mutagenesis (Agilent). The cDNA of BAF
(SinoBiological, Cat. No.HG16240-G)was cloned into a pET28a (Merck
Millipore) vector with a N-terminal 6 ×His tag.

Biological resources
HeLa and HCT116 cells were obtained from ATCC. eHAP cells were
obtained fromHorizonDiscovery. Flp-INT-REx 293 cellswereobtained
from Thermo Fisher. U2OS Flp-In T-Rex cells was a gift from Erich Nigg
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Fig. 5 | ANKLE1 nuclease exhibits greater activity on supercoiled and
mechanically stretched DNA. a Schematic diagram illustrating the magnetic
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induce negative or positive supercoiling and plectoneme formation. See text for
details. b Nicking of negatively supercoiled DNA (σ = −0.05) by ANKLE1. The mag-
netic bead attachment to single DNA was first validated by supercoiling of DNA
under 1.5 pN load, where DNA extension remained unchanged with negative
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validation, the load was reduced to 0.5 pN, negative supercoiling was applied and
ANKLE1 was added. Nicking was detected by an increase in DNA extension due to
the release of supercoiling. Post-nicking, DNA extension remained unchangedwith
positive rotation of the bead. The upper plot shows the DNA extension change vs
time, and the lower plot shows turns vs time. c Nicking of negatively supercoiled

DNA (σ = −0.1) by ANKLE1 under 5 pN load. After validation of the DNA bead under
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positively supercoiling DNA. The upper plot shows the DNA extension change vs
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respectively. fGraph showing the fraction of negative supercoiled DNAwith one or
two strands cut under lower and higher forces. Source data are provided as a
Source Data file.
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(University of Basel). eHAP cells were cultured in IMDM medium
(Thermo Fisher). All other cell lines were cultured in DMEM medium
(Thermo Fisher). Cells were cultured in medium supplemented with
10% fetal bovine serum (Cat No. 10270106, Thermo Fisher) and
penicillin-streptomycin (100U/mL, Thermo Fisher) at 37 °C in 5% CO2.
To generate eHAPANKLE1-mAID-GFP cell line, eHAP cells were transfected
with pX330-sgANKLE1 targeting the last exon and the two donor
plasmids using Lipofectamine 2000 (Thermo Fisher) according to the
manufacturer’s instructions. Colonies resistant to both geneticin and

zeocin were picked and expanded. To generate U2OS cells expressing
ANKLE1WT and ANKLE1ΔLEM, U2OS Flp-In T-REx cells were co-transfected
with the pcDNA5/FRT/TO plasmids encoding ANKLE1WT or ANKLE1ΔLEM

and pOG44 plasmids that encode Flp recombinase (1:9 ratio) using
Lipofectamine 2000. Hygromycin-resistant colonies were picked and
expanded. Protein expression was induced by adding doxycycline
(1μg/mL). To generate stable HeLa and HCT116 cells expressing dif-
ferent constructs of ANKLE1 or GEN1, cells were transfected with
pcDNA3.1+ or pcDNA4/TO plasmids encoding the protein of interest
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Fig. 6 | The effect of varying forces and superhelical densities on the activity of
ANKLE1. a Graph showing the fraction of uncleaved positively supercoiled DNA
(σ =0.1) over time. n = 23 and 19 for DNA under higher and lower forces, respec-
tively. bGraph showing the fraction of uncleaved non-supercoiled DNAover times.
n = 32 and 10 for DNA under higher and lower forces, respectively. c Table sum-
marizing the half-lives of uncleaved DNA when incubated with ANKLE1. The half-
lives were calculated by fitting the data to an exponential decay function (see
Supplementary Fig. 7).dBar graph showing the average cleavage time of negatively
supercoiled DNA (σ = −0.1) under the indicated forces. The number of beads that
detached from the surface is indicated in the graph. Error bars represent the

mean ± SEM. e A bar graph showing the percentage of beads detached from the
surface as in (d). Thenumberof total beads examined is indicated in the graph. fBar
graph showing the average cleavage time of negatively supercoiled DNA
(σ = −0.025, −0.05, −0.075, −0.1) under a tension of 5 pN. The number of beads that
detached from the surface is indicated in the graph. Error bars represent the
mean ± SEM. g Bar graph showing the percentage of beads detached from the
surface as in (f). The number of total beads examined is indicated in the graph.
hModel of how ANKLE1 is involved in resolving stretching chromatin bridges. See
text for the details. Source data are provided as a Source Data file.
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using Lipofectamine 2000, and geneticin- or zeocin-resistant colonies
were picked and expanded.

siRNA transfection
siRNA transfection was performed using Lipofectamine RNAiMAX
(Thermo Fisher). Cells were seeded one day before siRNA treatment
and transfected with 25 nM of siRNA. The following siRNAs41 were
used: control siRNA: UAAUGUAUUGGAACGCAUA; GEN1 siRNA:
GUAAAGACCUGCAAUGUUA; MUS81 siRNAs: CAGCCCUGGUGGAUC-
GAUA and CAUUAAGUGUGGGCGUCUA. siRNAs were purchased from
GenePharma.

Cell extracts, western blotting, and immunoprecipitation
Cell lysates were prepared by lysing cells in Tris-lysis buffer (50mM
Tris-HCl pH 7.5, 150mM NaCl, 0.5% NP-40, 1mM EDTA, 1mM DTT)
supplemented with protease inhibitors (Thermo Fisher). The lysates
were incubated on ice for 30min and then cleared by centrifugation
(18,000× g for 30min at 4 °C). For western blotting of ANKLE1, RIPA
buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 1% Triton ×-100, 0.5%
sodium deoxycholate, 0.1% SDS, and 5mM EDTA) was used to lyse the
cells. Protein concentrations were determined using Bradford Assay
and equal amounts of total proteins were loaded in each lane of the
SDS gel. Proteins were transferred to nitrocellulose membranes (Bio-
Rad). After blocking with 5% non-fat milk in PBST (PBS + 0.1% Tween
20), membranes were incubated with primary and secondary anti-
bodies sequentially. Proteins were detected by SuperSignal West Pico
Chemiluminescent Substrate (Thermo Fisher) and the Bio-Rad Che-
miDoc MP Imaging System. For immunoprecipitation, telophase cells
were enriched by nocodazole shake-off and released into fresh med-
ium for 1.5 h. Enrichment of telophase cells were validated by micro-
scopy analysis. Cell extracts (~1mg) were incubated with GFP-trap
beads (Chromotek) at 4 °C with gentle rotation for 1 h. The beads were
washed extensively with Tris-lysis buffer, and boiled directly in 2× SDS
sample buffer at 95 °C for 5min.

Immunofluorescence and microscopy
Immunofluorescence was carried out as described previously60. In
brief, cells were grown on coverslips and fixed with PTEMF buffer
(20mM PIPES pH 6.8, 0.2% Triton ×-100, 10mM EGTA, 1mM MgCl2,
and 4% formaldehyde) for 10min. Fixed cells were blocked with 3%
BSA in PBS for 30min and then incubated with primary antibodies
diluted in 3% BSA in PBS for 1 h, washed with PBS and incubated with
secondary antibodies diluted in 3% BSA in PBS for 1 h. DNAwas stained
with DAPI (10 µg/mL). The coverslips were washed twice with PBS and
then mounted with Prolong Diamond antifade mountant (Thermo
Fisher) onmicroscope slides. Imageswere acquired using aNikon Ti60
microscope equipped with DS-Ri2 camera under 40× objective by NIS-
Elements D (5.30.03) software, or a DeltaVision Ultra microscope
(Cytiva Life Sciences) equipped with a PlanApo 60×/1.50 oil immersion
objective and aCoolSNAPHQcamera (Photomertrics) using SoftWoRx
DV AcquireUltra (1.2.3) software. DeltaVision images at single focal
planes were processed with a deconvolution algorithm, and optical
sections were projected using maximum intensity projection into one
picture using SoftwoRx (7.2.2). Images were adjusted using Adobe
Photoshop2023. The lengthof chromatin bridgeswasmeasuredbyFiji
(ImageJ 2.14.0).

Reagents
Geneticin (500 µg/mL), hygromycin (100 µg/mL), zeocin (50 µg/mL),
blasticidine (5 µg/mL), and puromycin (0.5 µg/mL) were obtained from
Thermo Fisher. Nocodazole, ICRF-193, and doxycycline were obtained
from Sigma-Aldrich. The following enzymes were obtained from New
England Biolabs: BamHI (R3136), EcoRI (R0101), PvuI (R3150), EcoRV
(R3195), HindIII (R0104), KasI (R0544), Nb.BsmI (R0706), Nt.BspQI
(R0644), and T4 DNA ligase (M0202). S1 nuclease (EN0321) was

obtained from Thermo Fisher. Proteins were detected by western blot-
ting or immunofluorescence using the following primary antibodies:
rabbit anti-ANKLE1 (1:500, raised against full length ANKLE1 purified in
denatured condition)15, rabbit anti-GFP (1:5000, Abcam ab290), mouse
anti-GFP (1:1000, Roche 11814460001), mouse anti-α-tubulin (1:5000,
Sigma 00020911), rabbit anti-Aurora B (1:2000, Abcam ab2254), mouse
anti-CEP55 (1:500, Santa Cruz Biotechnology sc-374051), mouse anti-
PRC1 (1:500, Santa Cruz Biotechnology sc-376983), mouse anti-PLK1
(1:1000, Santa Cruz Biotechnology sc-17783), goat anti-RACGAP1 (1:400,
Abcamab2270),mouse anti-MKLP1 (1:200, SantaCruz Biotechnology sc-
390113), rabbit anti-PICH (1:100, Cell Signaling 8886S), mouse anti-RPA
(1:1000, Abcam ab2175), rabbit anti-53BP1 (1:1000, Abcam ab36823),
mouse anti-Cyclin A (1:200, Santa Cruz sc-271682), rabbit anti-GEN1
(1:500, raised against GEN1890–908)46, mouse anti-MUS81 (1:1000, Santa
Cruz Biotechnology sc-47692), mouse anti-FLAG M2 (1:1000, Sigma
F1804), mouse anti-Myc 9E10 (1:1000, Thermo Fisher MA1-980), and
mouse anti-LAP2 (1:2000, BD Biosciences 611000). For western blotting,
primary antibody detection was performed using HRP-conjugated goat
anti-mouse, goat anti-rabbit, and rabbit anti-goat antibodies (1:2000,
Bio-Rad 1706515, 1706516, 1721034). For immunofluorescence, primary
antibody detection was performed using secondary antibodies con-
jugated to Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 555, and Alexa
Fluor 647 against rabbit, mouse, or goat immunoglobulin heavy and
light chain (1:2000, Thermo Fisher A11001, A11070, A11010, A31570, and
A21447).

Clonogenic cell survival assay
Cells were first transfected with siRNAs for 24 h. 200 cells were seeded
in 6-well plates. Cell mediumwas changed every 3 days. Colonies were
stained for ~2min with 40mg/mL crystal violet solution (Sigma-
Aldrich) containing 20% ethanol, and then washed twice with water.

Protein expression and purification
GEN1 and full-length ANKLE1 were purified as described previously15,45.
To purify ANKLE1331–615, ANKLE1331–615(Y453A), and ANKLE1399–615 proteins,
the plasmids were transformed into One Shot™ BL21 Star™ DE3 E. coli
competent cells (Thermo Fisher). Transformed BL21 cells were grown
in LBmedium at 37 °C until the OD600 of the culture reached ~0.6. The
culture was quickly cooled down to 15 °C (in ice water for 30min). The
expression of ANKLE1 was induced by addition of 0.5mM of isopropyl
β-D-thiogalactoside (IPTG) (ThermoFisher) and incubated at 15 °Cwith
shaking for 24 h. Cells were harvested and resuspended in lysis
buffer (25mM HEPES pH7.5, 500mM NaCl, 10% glycerol, 0.2% NP-40,
0.5mg/mL lysozyme, 10mM imidazole, 1mM phenylmethanesulfonyl
fluoride (PMSF), and protease inhibitor tablets (Thermo Fisher)) and
then disrupted in a high-pressure homogenizer (Union-Biotech). The
lysate was clarified by centrifugation at 18,000 × g for 1 h at 4 °C. The
supernatant was incubatedwith Ni-NTA agarose beads (Qiagen) for 2 h
at 4 °C. Thebeadswerewashedfive times inwashbuffer (25mMHEPES
pH7.5, 500mMNaCl, 10% glycerol, 0.2%NP-40, and 30mMimidazole).
Proteins were eluted with His elution buffer (25mM HEPES pH7.5,
100mM NaCl, 10% glycerol, 0.2% NP-40, and 300mM imidazole). To
further purify the proteins, the eluate (~3mL)was loadedon aHiTrapQ
HP anion exchange chromatography column (Cytiva), then eluted
from the column with a continuous gradient of NaCl from 100mM to
1M in 30 column volumes using a AKTA pure system (GE Healthcare).
The fractions were collected and analysed by SDS-PAGE followed by
Coomassie bule staining. Peak fractions containing pure ANKLE1 pro-
teins were pooled. The proteins were then aliquoted, frozen in liquid
nitrogen, and stored in −80 °C freezer. For purification of BAF, the
pET28a-6xHis-BAF plasmids were transformed into One Shot™ BL21
Star™DE3 E. coli cells. Cellsweregrown at 37 °C andprotein expression
was induced with 0.5mM IPTG at OD600 of ~0.8. After 2 h, cells were
harvested and resuspended in lysis buffer (25mM HEPES pH 7.5,
150mM NaCl, 1mg/ml lysozyme) with 1mM PMSF and protease
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inhibitors, then sonicated. Lysates were centrifuged for 30min at
18,000 × g, and the supernatant was discarded. The pellet containing
BAF was solubilized in buffer (25mM HEPES pH 7.5, 150mM NaCl,
25mMimidazole)with 6Mguanidiniumchloride and agitated for 1 h at
4 °C. The lysate was centrifuged again, and the supernatant was incu-
bated with Ni-NTA agarose beads for 2 h at 4 °C. The beads were
washed extensively with solubilization buffer, and the protein was
eluted with solubilization buffer containing 400mM imidazole. The
eluted protein was dialyzed overnight in buffer B (100mM potassium
phosphate pH 6.5, 5mM EDTA, 200mM NaCl). The dialyzed proteins
were supplemented with 100mM DTT and incubated for 2 h at 40 °C
to reduce disulfide bonds. Proteins were then loaded onto a Superdex
200 10/300 GL size exclusion chromatography column (Cytiva) run
with buffer B. Fractions containing monomeric BAF were pooled, ali-
quoted, frozen in liquid nitrogen, and stored at −80 °C.

Nuclease assay
Different DNA substrates were incubated with ANKLE1 or GEN1 in
cleavage buffer (50mM Tris-HCl pH 8.0, 1mM DTT) at 37 °C. For
ANKLE1, the cleavage buffer was supplemented with 1mM or 10mM
MnCl2. For GEN1, the cleavage buffer was supplemented with 1mM
MgCl2.ΦX174 single-stranded circular virionDNAwas purchased from
New England Biolabs (N3023). The double Holliday junction substrate
was generated as described44. Cruciform extrusion of plasmid
pIRbk8mut was stimulated by incubation for 90min at 37 °C in 50mM
Tris-HCl pH 7.5, 50mM NaCl, and 0.1mM EDTA. Digestion with EcoRI
was used to determine the efficiency of cruciform extrusion. DNA
products (in 10 µL reaction volume) were deproteinized by the addi-
tion of 2.5 µL of 5× stop buffer (100mM Tris-HCl pH 7.5, 50mM EDTA,
2.5% SDS, and 10mg/mL proteinase K) and incubation for 60min at
37 °C. The products were analysed by0.8% agarose gel electrophoresis
running in 1× TBE buffer (90mM Tris base, 90mM boric acid, 2mM
EDTA), stained with 1:10,000 SYBR Gold (Thermo Fisher) and imaged
with a Gel Doc 2000 System (Bio-Rad). Reaction products were
quantified using Image Lab 6.1 software (Bio-Rad). To analyse the
reaction products by alkaline agarose gel electrophoresis, a 1% alkaline
agarose gel was prepared by first dissolving agarose in boiled water,
followed by addition of 50× alkaline buffer (1.5M NaOH and 50mM
EDTA) until 1% agarose in 1× alkaline gel buffer was made. Deprotei-
nized DNA samples were mixed with an equal volume of 2× alkaline
loading buffer (60mM NaOH, 2mM EDTA, 20% Ficoll 400, 0.06%
Bromocresol Green) and run into 1% alkaline agarose gel in 1× alkaline
gel buffer (30mM NaOH and 1mM EDTA).

Electrophoretic mobility shift assays (EMSA)
EMSA was carried out for 15min at room temperature by mixing dif-
ferent concentrations of ANKLE1331–615, ANKLE1399–615, ANKLE1331–615(Y453A)

or BAF with 0.5 nM of supercoiled or linearized pUC19 plasmids in
10 µL binding buffer (50mM Tris-HCl pH 8.0, 0.5mM DTT, 100 µg/mL
BSA, 50mM NaCl, 5mM EDTA, 5% glycerol). Complexes were sepa-
rated by 0.8% TBE agarose gel in per-chilled 0.5× TBE buffer, stained
with 1:10,000 SYBR Gold and imaged with a Gel Doc 2000 System
(Bio-Rad).

DNA preparation for magnetic tweezers experiments
DNA is prepared as described previously61,62. In brief, 6.5 kb DNA
constructs were used, which were assembled from three different
parts −4.1 kb middle part dsDNA, and 1 kb biotin-labeled and
digoxigenin-labeled dsDNA end segments (handles) that were
used to attach the DNA constructs to the glass surface coated
with anti-digoxigenin antibodies at one end and streptavidin-
coated paramagnetic bead at the other end. The middle 4.1 kb
part was obtained by digestion of pcDNA3.1(+) plasmid by HindIII
and KasI restriction enzymes (New England Biolabs). As for the
biotin- and digoxigenin-labeled DNA handles, they were

synthesized using pcDNA3.1(+) plasmid as a template in a PCR
reaction containing a mixture of dATP, dCTP, dGPT nucleotides,
and biotin-16-dUTP and digoxigenin-11-dUTP nucleotides (Roche),
respectively. Biotin-labeled DNA was then digested by KasI and
digoxigenin-labeled DNA handle was digested by HindIII. After
DNA gel purification, all the three DNA parts were ligated toge-
ther using T4 ligase (New England Biolabs) overnight at 16 °C.

Magnetic tweezers experiments
A commercially available magnetic tweezers and microscopy
instrument (BioPSI) was used. Magnetic tweezer experiments
were performed as described previously61,62. In brief, flow cham-
bers of 40 ~ 50 μL volume were used, which were prepared from
two #1 glass coverslips spaced by two adhesive strips (Grace Bio-
Labs). The bottom coverslip used in these chambers, was pre-
treated in a plasma chamber and coated with dopamine hydro-
chloride (Macklin). After the chamber assembly, anti-Digoxigenin
Fab fragments (Roche) were covalently bound to the dopamine
hydrochloride. To avoid non-specific binding of DNA to the sur-
face of the flow chambers, the chamber working surface was
blocked with 2% BSA solution in 1× PBS buffer by incubating it
overnight at 4 °C. On the day of experiment, the DNA constructs
were washed into the flow chamber at 0.1 ~ 0.2 ng/μL concentra-
tion in the washing buffer (50mM KCl, 10mM Tris, 1 mM MgCl2,
pH 7.5) and incubated for 10min at room temperature. After that,
1 μm sized magnetic beads (Invitrogen) coated with streptavidin
were added to the chamber and incubated for another 10min.
Unbound DNA and magnetic beads were then removed by wash-
ing the chamber with the washing buffer. After DNA constructs
capable of supercoiling were found in the flow chamber, the
washing buffer was replaced with the working buffer (50mM Tris,
1 mM DTT, 10mM MnCl2, pH 8.0). Experiments were conducted at
25 °C. To apply a constant load and to supercoil the DNA con-
structs, a pair of Neodymium magnets mounted onto a transla-
tional and rotational micromanipulator stage were used, which
allowed a full 3D control of the magnets’ position/rotation angle.
The magnitude of the stretching force was controlled by chan-
ging the distance between magnets and the flow chamber con-
taining the DNA molecules attached to magnetic beads. Winding
and unwinding of the DNA constructs attached to magnetic beads
was done by rotating the magnet in counterclockwise and
clockwise direction, respectively.

Statistics and reproducibility
Sample sizes were determined based on previous experience to obtain
statistical significance and reproducibility. All measurements were
taken from distinct samples. Error bars represent mean± standard
deviation (SD) from at least n = 3 independent experiments, unless
otherwise specified. The half-lives of theDNAwere calculated by fitting
the data to an exponential decay function using OriginPro 2021. For
data assumed to be normally distributed, an unpaired two-tailed t-test
was used. For data not assumed to be normally distributed, a
Mann–Whitney test was performed. Statistical tests were conducted
using GraphPad Prism 10 software. A p-value of less than 0.05 was
considered statistically significant. Exact p-values were indicated
above the graphs, except when p <0.0001 and p >0.05 (not sig-
nificant, ns). Each experiment was repeated at least three times, with
the exception of the those presented in Figs. 1d, e and 4e, f, Supple-
mentary Fig. 1g, i, k (two experiments were performed) and Figs. 1a–c,
2e, f, and 3b, d, and Supplementary Figs. 1b–e, j, 2a, 3a, e, 4c, 5b, d–f,
6a–e, 8, and 9 (one experiment was performed).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All data andmaterials reported in this study are available upon request
from the corresponding authors. Source data are provided with this
paper as a Source Data file. Source data are provided with this paper.
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