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Abstract
In this paper, we consider the decomposition of theta series for lattice cosets of ternary
lattices.We show that the natural decomposition into an Eisenstein series, a unary theta
function, and a cuspidal form which is orthogonal to unary theta functions correspond
to the theta series for the genus, the deficiency of the theta series for the spinor genus
from that of the genus, and the deficiency of the theta series for the class from that of
the spinor genus, respectively. These three pieces are hence invariants of the genus,
spinor genus, and class, respectively, extending known results for lattices and verify-
ing a conjecture of the first author and Haensch. We furthermore extend the definition
of p-neighbors to include lattice cosets and construct an algorithm to compute repre-
sentatives for the classes in the genus or spinor genus via the p-neighborhoods.

Keywords Theta series · Ternary lattice cosets · Half-integral weight modular
forms · Siegel–Weil theorems

Mathematics Subject Classification Primary 11F37 · 11F60 · 11E20 · 11H55

1 Introduction and statement of results

In this paper, we are interested in an interplay between the algebraic and analytic
theories of quadratic lattice cosets, which are linked by their theta series, with a
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particular interest in the ternary case. Let V be a positive definite quadratic space over
Q with the associated non-degenerate symmetric bilinear form

B : V × V −→ Q with Q(x) := B(x, x)

for any x ∈ V . For a Z-lattice L on V of rank k and a non-zero vector ν ∈ V , we
call L + ν a lattice coset or shifted lattice. If ν ∈ L , then the lattice coset L + ν is
nothing but the lattice L . By suitable scaling of the quadratic map Q, if necessary, we
may assume that Q(L + ν) ⊆ Z. The theta series �L+ν of L + ν is defined to be the
generating function for the elements of L + ν of a given norm, that is, the following
function defined on the upper-half complex plane H,

�L+ν(z) =
∑

x∈L+ν

q Q(x) =
∑

n≥0

r(n, L + ν)qn,

where r(n, L + ν) := |{x ∈ L + ν : Q(x) = n}| and q := e2π i z (z ∈ H). It is well
known that �L+ν is a modular form of weight k/2 for some congruence subgroup
and a character (for an explicit statement, see Proposition 2.3). Hence �L+ν naturally
splits into the sum of two pieces; namely,

�L+ν = EL+ν + CL+ν,

where EL+ν is an Eisenstein series andCL+ν is a cusp form, and this splitting is unique
because it is an orthogonal splitting under the Petersson inner product. Generalizing
work of Siegel [23] and Weil [30] (who considered the ν = 0 case), Shimura [22]
showed that EL+ν is equal to

�gen(L+ν) := 1∑
K+μ∈gen(L+ν) o(K + μ)−1

∑

K+μ∈gen(L+ν)

�K+μ

o(K + μ)
, (1.1)

where o(K + μ) is the number of automorphs of the lattice coset, and the sums run
over a complete set of representatives of the classes in the genus gen(L + ν) of L + ν.

On the other hand, for the ternary case (when k = 3), the cusp form CL+ν is further
decomposed into two pieces,

CL+ν = UL+ν + fL+ν,

whereUL+ν is in the space of unary theta functions and fL+ν is a cusp form orthogonal
to unary theta functions with respect to the Petersson inner product. In the case of
lattices, Schulze-Pillot [20] showed that one may isolate the unary theta functions in
this decomposition by taking a weighted average analogous to (1.1), with the sum
instead running over classes of the spinor genus of the associated lattice.

Motivated by Schulze-Pillot’s result and examples that resolved questions related
to representations of sufficiently large integers by lattice cosets, Haensch and the first
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author [8, Conjecture 1.3] conjectured that the same decomposition holds for lattice
cosets. Namely, setting1

�spn+(L+ν) := 1∑
K+μ∈spn+(L+ν) o+(K + μ)−1

∑

K+μ∈spn+(L+ν)

�K+μ

o+(K + μ)
,

where the sum runs over a complete set of representatives of the proper classes in the
proper spinor genus spn+(L + ν) of L + ν and o+(K + μ) is the number of proper
automorphs of the lattice coset (we refer the reader to Section 2.1 for the definition of
the proper genus gen+(L + ν), the proper spinor genus spn+(L + ν), and the proper
class cls+(L + ν) of L + ν), they conjectured the following.

Conjecture 1.1 For a quadratic lattice L and ν ∈ QL, we have

�spn+(L+ν) = EL+ν + UL+ν,

where UL+ν is a linear combination of unary theta functions that only depends on
spn+(L + ν).

In this paper, we prove that Conjecture 1.1 is true, with Uspn+(L+ν) = UL+ν , and
obtain a dictionary between natural objects occuring in the algebraic theory of lattice
cosets and the orthogonal projections of �L+ν into the subspaces of Eisenstein series,
unary theta functions, and cusp forms orthogonal to unary theta functions. Let L + ν

be a ternary lattice coset and consider the natural splitting of its theta series

�L+ν = �gen+(L+ν) + (�spn+(L+ν) − �gen+(L+ν)) + (�L+ν − �spn+(L+ν))

= EL+ν + UL+ν + fL+ν .

(1.2)
Here the theta series �gen+(L+ν) and �spn+(L+ν) are defined as (2.8) and (2.9) (or the
above), respectively. Our main result is that the two splittings of �L+ν in (1.2) indeed
coincide termwise.

Theorem 1.2 Conjecture 1.1 is true. Moreover, the following hold:

(1) EL+ν(z) = �gen+(L+ν)(z) is an invariant of gen+(L + ν) (Corollary 4.3),
(2) UL+ν(z) = �spn+(L+ν)(z) − �gen+(L+ν)(z) is an invariant of spn+(L + ν) (The-

orem 5.6),
(3) fL+ν(z) = �L+ν(z) − �spn+(L+ν)(z) is an invariant of cls+(L + ν) (Theorem

6.2).

Remark 1.3

(1) As noted above, we scale our lattice cosets so that they are integral. Hence in
Corollary 4.3, Theorem 5.6, and Theorem 6.2, L +ν is replaced with aL +ν with
ν ∈ L , where this scaling is done so that we may start with an arbitrary integral
lattice L . In order to translate these theorems into the forms listed above, see the
definitions in Section 2 for the precise setting.

1 We often distinguish between the genus (resp. spinor genus) and the proper genus (resp. proper spinor
genus), adding a + to the notation when investigating the proper classes.
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(2) Note that if ν /∈ L , then gen(L +ν)may not coincide with gen+(L +ν) (for exam-
ple, see [2, Example 4.5]). However, our result combined with Shimura’s result
in [22] on the Eisenstein series EL+ν implies that �gen(L+ν)(z) = �gen+(L+ν)

when k = 3. We expect that �gen(L+ν) = �gen+(L+ν) for k ≥ 4, but we do not
investigate this question here and are not aware of a proof in the general case.

(3) As noted above, if ν ∈ L , then the splitting (1.2) of �L+ν = �L was obtained in
previouswork of Schulze-Pillot [20] for ternary lattices. In fact, for a ternary lattice
L , we know that gen(L) = gen+(L), spn(L) = spn+(L), and cls(L) = cls+(L)

because−1V is an automorph of L with determinant−1. Hence the theta series of
the proper genus and the spinor genus coincide with that of the genus and spinor
genus, respectively. Schulze-Pillot determined UL from algebraic properties of
the p-neighborhood of ternary lattices. In Section 3.2, we extend the concept of
p-neighborhoods of ternary lattices to that of ternary lattice cosets, and study
some algebraic properties and their interplay with the Hecke operators on �L+ν .
We also provide a way to explicitly determine UL+ν (see Corollary 5.7).

(4) There is a natural connection between lattice cosets and quadratic forms with
congruence conditions, so Theorem 1.2 yields a natural splitting for theta func-
tions of quadratic forms with congruence conditions. Along this vein, Duke and
Schulze-Pillot [7] proved a similar statement with a modified definition of con-
gruence class (genus, spinor genus) modulo N (∈ N) that agrees with ours in the
case of lattices. Their definitions of congruence class and genus coincide with that
of van der Blij [29], who proved the Siegel–Weil formula for quadratic forms with
congruence conditions. We note that although the definitions for these algebraic
objects are different, their corresponding theta series should coincide because the
splitting �L+ν = EL+ν + UL+ν + fL+ν is unique (see [7, Lemma 4]). Methods
for computing the congruence classes in the congruence genus (or in the congru-
ence spinor genus) have also not been studied, as far as the authors know, but in
Section 6.2 we use an object constructed to prove Theorem 1.2 (3) to design an
algorithm that returns a full set of representatives of the proper (spinor) genus in
our setting.

In order to prove Theorem 1.2, we investigate the action of the Hecke operators on
theta series of lattice cosets in Theorem 2.5 and Theorem 4.1. Defining the conductor
of L +ν to be the minimal a such that aν ∈ L , the action of the Hecke operators reveal
a connection between L + ν and other lattice cosets K + μ with the same conductor.
As a side-effect, we establish a definition of p-neighborhoods of shifted lattices (see
Section 3.2); in the case of lattices, these p-neighborhoods have played an important
role in explicit constructions of the genus and spinor genus (see [17]), a task which has
previously proven difficult for shifted lattices. After establishing these connections,
most of the results involving the theta series of the spinor genus can be obtained via
measure-theoretic results already in the literature, up to a few tricky technical details
that arise from the relations between shifted lattices coming from the same initial
lattice.

The splitting (1.2) of �L+ν is also useful for determining which sufficiently-large
positive integers are represented by L + ν and it gives an asymptotic formula for
r(n, L+ν). The n-th Fourier coefficient of theEisenstein series EL+ν is kind of explicit
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in the sense that one may write it as a product of local representation densities, using
the Siegel–Weil formula for lattice cosets proved by Shimura [22]. Moreover, as long
as n goes to infinity with bounded divisibility by certain (finitely many) “bad” primes
and n is locally represented (i.e., there are no obstructions coming from congruence
conditions), it grows at least like n1/2−ε. The Fourier coefficients of UL+ν also grow
as fast as that of EL+ν , but these are sparse; namely, the coefficients are supported on
finitelymany square classes (see Theorem 5.6). Furthermore, onemay explicitly deter-
mine UL+ν by computing only finitely many coefficients of �spn+(L+ν) −�gen+(L+ν)

(see Corollary 5.7). On the other hand, a result of Duke [6] implies that the absolute
value of the n-th Fourier coefficient of fL+ν grows at most like n3/7+ε, and hence the
contribution from this termmay generally be considered to be an error term. Therefore,
every sufficiently-large positive integer n which has bounded divisibility at the “bad”
primes, is locally represented by L + ν, and does not belong to any of the finitely
many exceptional square classes is represented by L + ν.

For a given shifted lattice L + ν, one can naively obtain the splitting �L+ν =
EL+ν + UL+ν + fL+ν by constructing a basis of the corresponding space of modular
forms and applying linear algebra directly. However, the dimension of the space grows
somewhat quickly with respect to the discriminant of the lattice and the conductor
of the shifted lattice, so this is only practical for relatively small discriminants and
conductors. Our result circumvents the need to do high-dimensional linear algebra,
yielding an independent algorithm for computations. This algorithm requires only the
construction of a system of representatives of the proper classes of gen+(L + ν) and
spn+(L + ν). Using our modification of the definition of the p-neighborhood of a
lattice to that of lattice cosets, there is an algorithmic way, at least in principle, to list
out the representatives, generalizing the algorithm in [17] for finding representatives
in the case of lattices (see Section 6 for further details).

The paper is organized as follows. We first give some preliminary definitions and
known results in Section 2. Especially, the particular space of modular forms in which
the theta series�L+ν lies is described, and the Hecke operators are defined. In Section
3, we introduce some algebraic structure of lattice cosets including p-neighborhoods
of lattice cosets. In Section 4, we discuss how the action of the Hecke operators on
the theta series of lattice cosets is related to its p-neighborhood, and determine the
Eisenstein series EL+ν . We investigate UL+ν in Section 5, and we finally determine
that fL+ν is orthogonal to unary theta functions in Section 6.

2 Preliminaries

2.1 Quadratic lattice cosets

We introduce some definitions of quadratic spaces, lattices, and lattice cosets, and
describe our setting for lattice cosets. We refer readers to [15] for more details.

As in the introduction, let V be a positive definite quadratic space over Q with the
associated non-degenerate symmetric bilinear form

B : V × V −→ Q with Q(x) = B(x, x)
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for any x ∈ V and the special orthogonal group

O+(V ) = {σ ∈ GL(V ) : B(σ x, σ y) = B(x, y) for any x, y ∈ V and det(σ ) = 1}.

Let θ : O+(V ) → Q×/(Q×)2 be the spinor norm map (cf. [15, §55]) and denote its
kernel by

O ′(V ) = {σ ∈ O+(V ) : θ(σ ) = 1}.
Let O+

A (V ) and O ′
A(V ) be the adélizations of O+(V ) and O ′(V ), respectively.

A finitely-generated Z-module (hence free Z-module) L in V is called be a lattice
on V if QL = V . Let � = �Q be the set of all spots (or places) including the infinite
spot ∞. We denote the localization of a lattice L in the localization Vp of V at p by
L p for any prime spot p and L∞ = V∞.

Consider a lattice L on V . For any non-zero vector v0 ∈ V , we define the shifted
lattice in V to be the set L + v0. The conductor of a shifted lattice L + v0 is defined to
be the smallest positive integer a such that av0 ∈ L . We can always realize a quadratic
Diophantine equation as being induced from a shifted lattice in some quadratic space
(see Section 1 of [27]). This is equivalent to study the set aL + ν (where ν = av0) in
V , which is a coset in L/aL . Hence, throughout this article, the term “lattice coset",
or simply “coset", always refers to the set aL + ν, where L is a lattice on V , a is a
positive integer, and ν ∈ L whose conductor with respect to aL is equal to a. This is
to emphasize the role of the conductor of lattice cosets in our results.

We always assume that any lattice L is integral, that is, B(L, L) ⊆ Z so that we
have Q(aL + ν) ⊆ Z. The discriminant dL of L is the determinant of the matrix
A = (B(ei , e j )) for a basis {ei } of L , and the level NL is defined to be the smallest
positive integer N such that N A−1 has coefficients in Z.

From [2, Lemma 4.2] or [27, Lemma 1.2], O+
A (V ), O+(V ), and O ′

A(V ) all act on
aL + ν. Hence we may define

gen+(aL + ν) := the orbit of aL + ν under the action of O+
A (V )

which is called the proper genus of aL + ν,

spn+(aL + ν) := the orbit of aL + ν under the action of O+(V )O ′
A(V )

which is called the proper spinor genus of aL + ν, and

cls+(aL + ν) := the orbit of aL + ν under the action of O+(V )

which is called the proper class of aL + ν. Clearly,

cls+(aL + ν) ⊆ spn+(aL + ν) ⊆ gen+(aL + ν).

Set

O+(aL+ν)={σ ∈ O+(V ) : σ(aL+ν)=aL+ν} and o+(aL+ν) = |O+(aL+ν)|.



Theta series of ternary quadratic lattice cosets Page 7 of 39     5 

Thegroups O+(aL p+ν) for anyprime p and O+
A (aL+ν)maybedefined analogously.

The number of (proper) classes in gen+(aL + ν) is called the class number of
aL +ν. It is well-known that the class number is equal to the number of double cosets
in O+(V )\O+

A (V )/O+
A (aL +ν) and this is finite (see [27, Corollary 2.3], see also [2,

Corollary 4.4]). The number g+(aL + ν) analogously counts the number of (proper)
spinor genera contained in the (proper) genus. The next proposition recalls and extends
[31, Proposition 2.5].

Proposition 2.1 Let aL + ν be a coset on a quadratic space V over Q, and let θ be
the spinor norm map defined on O+

A (V ). If dim(V ) ≥ 3, then the number of proper
spinor genera in gen+(aL + ν) is given by

[IQ : Q× ∏

p∈�

θ(O+(aL p + ν))]. (2.1)

Moreover, suppose that dim(V ) = 3 and let x ∈ V be a non-zero vector with Q(x) = n
and V = Qx ⊥ W . Then the spinor norm map induces an isomorphism

O+
A (V )/O+(V )O ′

A(V )O+
A (W )O+

A (aL+ν)∼= IQ/Q×NE/Q(IE )
∏

p∈�

θ(O+(aL p+ν)),

where E = Q(
√−ndL), IQ and IE are the idèle groups, and NE/Q is the norm map.

Proof The first assertion was made in [31, Proposition 2.5], but we provide a brief
proof for completeness. Note that for a u, v ∈ O+

A (V ), the coset v(aL +ν) belongs to
spn+(u(aL + ν)) if and only if v ∈ O+(V )O ′

A(V )uO+
A (aL + ν). This group is equal

to O+(V )O ′
A(V )O+

A (aL + ν)u since O ′
A(V ) contains the commutator subgroup of

O+
A (V ). Hence, the number of proper spinor genera is given by

[O+
A (V ) : O+(V )O ′

A(V )O+
A (aL + ν)].

On the other hand, by [15, 102:7], the spinor norm map θ induces the isomorphism

O+
A (V )/O+(V )O ′

A(V )O+
A (aL + ν)

∼=−→ IQ/Q× ∏

p∈�

θ(O+(aL p + ν)). (2.2)

Furthermore, we show that the map θ induces the following isomorphism

θ : O+
A (V )/O+(V )O ′

A(V )O+
A (W )O+

A (aL + ν)
∼=−→ IQ/Q×NE/Q(IE )

∏

p∈�

θ(O+(aL p + ν)). (2.3)

We first note that −ndL is not a square in Q since it is a negative number so that
θ(O+(Wp)) = NEp/Qp (E×

p ) for any p | p. Hence, the map in (2.3) is well-defined.
The surjectivity of (2.3) follows from that of (2.2). Finally, assume that a s = (sp) ∈
O+

A (V ) satisfies θ(s) = b · j · i for some b ∈ Q×, j = ( jp) ∈ NE/Q(IE ), and
i = (i p) ∈ ∏

p∈� θ(O+(aL p + ν)). Since all the θ(s∞), j∞, and i∞ are positive
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numbers, we should have b > 0. Thus, b = θ(σ ) for some σ ∈ O+(V ) by [15,
101:8]. On the other hand, i p = θ(	p) and jp = θ(h p) for some	p ∈ O+(aL p +ν)

and h p ∈ O+(Wp) for any p ∈ �. Since θ(sp) = θ(σ )θ(h p)θ(	p) for any p ∈ �,
we may conclude that

s ∈ σ · h · 	 · O ′
A(V ) ⊆ O+(V )O ′

A(V )O+
A (W )O+

A (aL + ν),

where h = (h p) ∈ O+
A (W ) and 	 = (	p) ∈ O+

A (aL + ν). Thus the map in (2.3) is
injective. This completes the proof of the proposition. ��

2.2 Modular forms

We briefly introduce modular forms of half-integral weight below. We refer readers
to [14] for an introduction to modular forms of integral weight or for more details.

For a positive integer N , we require natural congruence subgroups of SL2(Z)

defined by

0(N ) = {(

a b
c d

) ∈ SL2(Z) : c ≡ 0 (mod N )
}
,


1(N ) = {(
a b
c d

) ∈ 
0(N ) : a, d ≡ 1 (mod N )
}
.

For a γ = (
a b
c d

) ∈ 
0(4) and κ ∈ 1
2 + Z, define the slash operator on a function

f : H → C by

f |κ γ (z) =
( c

d

)
ε2κd (cz + d)−κ f (γ z),

where εd = 1 if d ≡ 1 (mod 4), εd = i if d ≡ 3 (mod 4), and
( ·

·
)
is the Kronecker–

Jacobi–Legendre symbol. We call f a (holomorphic) modular form of weight κ on

 ⊆ 
0(4) (
 a congruence subgroup containing

(
1 1
0 1

)
) with character χ if

(1) f |κγ = χ(d) f for any γ = (
a b
c d

) ∈ 
,
(2) f is holomorphic on H,
(3) f (z) grows at most polynomially in y as z = x + iy → Q ∪ {i∞}.
We moreover call f a cusp form if f (z) → 0 as z → Q∪{i∞}. The space of modular
forms (resp. cusp forms) of weight κ , character χ and congruence subgroup 
, will
be denoted by Mκ(
, χ) (resp. Sκ(
, χ)). The space of Eisenstein series, denoted by
Eκ(
, χ), is the orthogonal complement of Sκ(
, χ) in Mκ(
, χ) with respect to the
Petersson inner product (for an introduction and properties of the inner product, see
[12, Chapter III]). If f is a modular form for a congruence group 
 containing

(
1 1
0 1

)
,

then f has a Fourier series expansion

f (z) =
∞∑

n=0

a(n)qn,

where q = e2π i z . In particular, if f is a cusp form, then a(0) = 0.
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For κ ≥ 3/2, let f (z) =
∞∑

n=1
a(n)qn ∈ Sκ(
0(N ), χ) (4 | N ). For a square-free

positive integer t , define the t-th Shimura lift by

Ft (z) =
∞∑

n=1

At (n)qn,

where At (n) is defined by

∞∑

n=1

At (n)n−s =
( ∞∑

m=1

χ(m)

(−1

m

)κ− 1
2
(

t

m

)
mκ− 3

2−s

)( ∞∑

m=1

a(tm2)m−s

)
.

Shimura [21] proved that Ft (z) ∈ M2κ−1(
0(Nt ), χ
2) for a suitable Nt . Later, Niwa

[13] showed that Nt can be taken as N/2 independently of t . For κ ≥ 5/2, Ft is a cusp
form, but the situation is more complicated when κ = 3/2, requiring a more careful
analysis of the space

Ut (N , χ) := S3/2(
0(N ), χ) ∩
{

f (z) =
∞∑

n=1

a(n)nqtn2
}

spanned by unary theta functions. Specifically from the results in [4], [11], [26], the
t-th Shimura lift Ft of f is a cusp form if and only if f belongs to the orthogonal
complement U⊥

t of Ut in S3/2(
0(N ), χ) with respect to the Petersson inner product.
For a Dirichlet character ψ modulo mψ , consider

h(z, ψ) =
∞∑

n=1

ψ(n)nqn2 .

Note that the space Ut (N , χ) is spanned by

{
h(tu2z, ψ) : u ∈ Z, 4tm2

ψu2 | N , ψ = χ

(−4t

·
)}

. (2.4)

This follows from the fact that the spaces h(tu2z, ψ) for different t orψ are orthogonal
to each other with respect to Petersson inner product and the modularity given in [21,
Proposition 2.2].

2.3 Elementary theta functions

Let k be a positive integer, A a positive definite k × k symmetric matrix, h an element
in Zk , and N a positive integer satisfying the following conditions:

Both A and N A−1 have coefficients in Z; Ah ∈ NZk . (2.5)
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In [21], Shimura defined the theta function

ϑ(z; h, A, N , P) =
∑

x∈Zk , x≡h (mod N )

P(x) · qxt Ax/2N2
, (2.6)

where P(x) is a spherical function of order ν ∈ Z≥0 with respect to A. In this article,
we only concern the case when P(x) = 1where ν = 0, or P(x) = x with k = 1where
ν = 1. Indeed, the function h(z, ψ) defined in (2.4) is given by a linear combination
of the theta functions corresponding to the latter case (see [21, Proposition 2.2]).
Moreover, Shimura [21] proved the following transformation formula of the theta
functions.

Proposition 2.2 [Proposition 2.1 of [21]] Let ϑ(z; h, A, N , P) be defined by (2.6)
under the assumption (2.5), and let γ = (

a b
c d

) ∈ SL2(Z) with b ≡ 0 (mod 2) and
c ≡ 0 (mod 2N ). Then

ϑ(γ (z); h, A, N , P) = e(ab · ht Ah/2N2)

(
det(A)

d

)(
2c

d

)k
ε−k

d (cz + d)(k+2ν)/2ϑ(z; ah, A, N , P),

where e(z) := e2π i z .

2.4 Masses of genera and spinor genera

For h = spn+(aL + ν) or gen+(aL + ν), define the mass of h by

Mass(h) :=
∑

aK+μ∈h

1

o+(aK + μ)
, (2.7)

where the sum runs over a system of proper classes in h. Using Lemma 5.3 and [27,
Corollary 2.5], one may relate the masses of the proper spinor genus and the proper
genus of a shifted lattice via

Mass(spn+(aL + ν)) = 1

g+(aL + ν)
Mass(gen+(aL + ν))

= Mass(gen+(aL))

∏
p<∞[O+(aL p) : O+(aL p + ν)]

g+(aL + ν)
,

where g+(aL + ν) is the number of proper spinor genera in gen+(aL + ν). Generally
speaking, each of the factors on the right-hand side of the above equation may be
explicitly computed; Mass(gen+(aL))may be deterimined via theMinkowski–Siegel
formula and for almost all prime p we have [O+(aL p) : O+(aL p + ν)] = 1, while
these indices can be computed in general. Based on work of Xu [31, Proposition 2.5],
a formula for g+(aL + ν) is given in Proposition 2.1 and in practice one can evaluate
the quantities there, although a general formula is not known.
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In Section 6, we develop an algorithm for computing the representatives of the
proper (spinor) genus of a shifted lattice, which could in principle be used to directly
compute (2.7) via the definition, after an appropriate calculation of o+(aK + μ).

2.5 Theta series for cosets

Let aL + ν be a coset on a quadratic space V of rank k. Note that Q(aL + ν) ⊆ Z

since we are assuming B(L, L) ⊆ Z. For a positive integer n, we define

R(n, aL + ν) := {x ∈ aL + ν : Q(x) = n} and r(n, aL + ν) := |R(n, aL + ν)|,
and the theta series �aL+ν(z) of the coset aL + ν is defined as

�aL+ν(z) :=
∑

x∈aL+ν

q Q(x) =
∞∑

n=0

r(n, aL + ν)qn .

Note that any coset in gen+(aL + ν) has conductor a. We define the theta series
�gen+(aL+ν)(z) of gen

+(aL + ν) and r(n, gen+(aL + ν)) by

�gen+(aL+ν)(z) =
∞∑

n=0

r(n, gen+(aL + ν)) · qn

:= 1

Mass(gen+(aL + ν))

⎛

⎝
∑

aK+μ∈gen+(aL+ν)

�aK+μ(z)

o+(aK + μ)

⎞

⎠

(2.8)
and the theta series �spn+(aL+ν)(z) of spn

+(aL + ν) and r(n, spn+(aL + ν)) by

�spn+(aL+ν)(z) =
∞∑

n=0

r(n, spn+(aL + ν)) · qn

:= 1

Mass(spn+(aL + ν))

⎛

⎝
∑

aK+μ∈spn+(aL+ν)

�aK+μ(z)

o+(aK + μ)

⎞

⎠ .

(2.9)
The summation runs over a system of representatives of proper classes in the proper
genus or in the proper spinor genus of aL + ν.

For any non-zero integer d, let χd denote the character χd(·) = ( d
·
)
obtained from

the Kronecker symbol. The following proposition shows that the theta series of cosets
of rank k are modular forms of weight k/2.

Proposition 2.3 Let aL + ν be a coset on a quadratic space V of rank k. Let NL be
the level of L and dL the discriminant of L. Then

�aL+ν(z) ∈
{

Mk/2(
0(4NLa2) ∩ 
1(a), χ4dL ) if k is odd,

Mk/2(
0(4NLa2) ∩ 
1(a), χ(−1)k/24dL
) if k is even.
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Proof Let L = Ze1+· · ·+Zek , A the Grammatrix of L with respect to the basis {ei },
and let v = (v1, . . . , vk)

t where ν = v1e1 + · · · vkek for some vi ∈ Z. We abbreviate
N := NL for ease of notation. Note that both a A and (Na)−1(a A) = N−1A have
coefficients in Z, and (a A)(Nv) ∈ (aN )Zk . Moreover,

ϑ(2az; Nv, a A, Na, 1) =
∑

x∈Zk , x≡Nv (mod Na)

q2a·xt (a A)x/2(Na)2

=
∑

x∈Zk , x≡v (mod a)

qxt Ax = �aL+ν(z).

For any γ = ( p q
r s

) ∈ 
0(4Na2), the matrix γ ′ =
(

p 2aq
r/2a s

)
∈ 
0(2Na), and note

that 2a(γ z) = γ ′(2az). By Proposition 2.2, we have

�aL+ν(γ z) = ϑ(2a(γ z); Nv, a A, Na, 1) = ϑ(γ ′(2az); Nv, a A, Na, 1)

= e

(
p(2aq)N 2aQ(ν)

2(Na)2

)(
ak det(A)

s

)(
2(r/2a)

s

)k

ε−k
s

(r z + s)k/2ϑ(2az; pNv, a A, Na, 1)

=
(

dL

s

)(r

s

)k
ε−k

s (r z + s)k/2�aL+pν(z).

Hence we have obtained for any γ = ( p q
r s

) ∈ 
0(4NLa2) that

(�aL+ν |k/2γ )(z) = χ(s)�aL+pν(z) = χ(γ )�aL+pν(z), (2.10)

where χ = χ4dL if k is odd, and χ = χ(−1)k/24dL
if k is even. Furthermore, if p ≡ 1

(mod a), thenwehave�aL+pν(z) = �aL+ν(z), and hence this proves the proposition.
��

The next proposition allows us to decompose the space Mk/2(
0(4NLa2) ∩

1(a), χ4dL ) into the spaces Mk/2(
0(4NLa2), χχ4dL ).

Proposition 2.4 Let k, M, and N be positive integers such that M | N, and let ψ be
a Dirichlet character modulo N. Then

Mk/2(
0(N ) ∩ 
1(M), ψ) =
⊕

χ

Mk/2(
0(N ), χψ),

where χ runs over all Dirichlet characters modulo M such that χ(−1) = ψ(−1) if k
is odd, and χ(−1) = (−1)k/2ψ(−1) if k is even.

Proof The proposition for the case when k is even was proved in [3, Theorem 2.5].
The case when k is odd may also be proved in the same manner. ��
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Now let k be an odd positive integer, M and N positive integers such that M | N ,
and ψ a Dirichlet character modulo N . For a prime number p, we define the Hecke
operator T (p2) on the space Mk/2(
0(N ) ∩ 
1(M), ψ) by

T (p2) =
⊕

χ

T |N
k/2,χψ(p2),

where χ runs over all Dirichlet characters modulo M , and T |N
k/2,χψ(p2) is the Hecke

operator on the space Mk/2(
0(N ), χψ) defined in [21]. The following theorem shows
the relation between Hecke operators and Fourier coefficients of theta series�aL+ν(z)
of cosets.

Theorem 2.5 Let k ≥ 3 be an odd integer, aL + ν a coset of rank k, NL the level of
L, dL the discriminant of L, and let p be a prime number. Put

(�aL+ν |T (p2))(z) =
∑

n≥0

b(n)qn .

If p | 4NLa2, then b(n) = r(p2n, aL + ν). If p � 4NLa2, then

b(n) = r(p2n, aL + ν) +
(−1

p

)λ (4dL n

p

)
pλ−1 · r(n, aL + p̄ν)

+
(
4dL

p2

)
pk−2 · r(n/p2, aL + p̄2ν),

where λ = (k − 1)/2, and p̄ is an integer which is an inverse of p modulo a.

Proof Noting that

�aL+ν(z) ∈ Mk/2(
0(4NLa2) ∩ 
1(a), χ4dL ) =
⊕

χ(mod a)

Mk/2(
0(4NLa2), χχ4dL ),

let us write �aL+ν(z) = ∑
χ (mod a)

fχ (z) for some fχ (z) = ∑
n≥0

aχ (n)qn ∈
Mk/2(
0(4NLa2), χχ4dL ). By the definition of T (p2) and by [21, Theorem 1.7],
we have b(n) = ∑

χ bχ (n) with

bχ (n) := aχ (p2n)+
(
4dL

p

)(−1

p

)λ ( n

p

)
pλ−1χ(p)aχ (n)+

(
4dL

p2

)
pk−2χ(p2)aχ (n/p2).

(2.11)

Note that if p | 4NLa2, then
(
4dL

p

)
χ(p) = 0, and hence b(n) = ∑

χ(mod a)

aχ (p2n) =
r(p2n, aL + ν). Now we assume that p � 4NLa2. Let m be an integer such that
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(m, 4NLa2) = 1. Then there is a matrix γm = ( ∗ ∗∗ m
) ∈ 
0(4NLa2). Note that by

(2.10),

χ4dL (m)�aL+m̄ν(z) = (�aL+ν | k
2
γm)(z) =

∑

χ(mod a)

( fχ | k
2
γm)(z)

= χ4dL (m)
∑

χ(mod a)

χ(m) fχ (z),

where m̄ is an integer which is an inverse of m modulo a. By comparing the Fourier
coefficients of both sides, we have

r(n, aL + m̄ν) =
∑

χ(mod a)

χ(m)aχ (n). (2.12)

for any integer n ≥ 0 and (m, 4NLa2) = 1. Plugging in the equalities (2.12) with
m = p and m = p2 into (2.11), we have the formula in the statement of the theorem.

��
Now we define some notations for the ternary case, the case when k = 3. We put

U =
⊕

χ(mod a)

Uχ and U⊥ =
⊕

χ(mod a)

U⊥
χ ,

where

Uχ =
⊕

t :square-free
Ut (4NLa2, χχ4dL ) ⊆ S3/2(
0(4NLa2), χχ4dL ),

andU⊥
χ denotes the space orthogonal toUχ in S3/2(
0(4NLa2), χχ4dL ). We note that

each subspace occuring in the decomposition of Uχ is an eigenspace for the Hecke
operators T (p2), as follows.

Proposition 2.6 [Hilfssatz 2 of [20]] Let p be a prime number such that p �

4NLa2. Then Ut (
0(4NLa2), χχdL ) is an eigenspace for T (p2) with eigenvalue

χ(p)
(−tdL

p

)
(p + 1).

3 Some algebraic structure of lattice cosets

In this section, we introduce several lemmas regarding algebraic structures of lattice
cosets, which will be used in the following sections.

3.1 Genera of lattice cosets with the same conductor

The following lemma shows some properties shared by the cosets of conductor a in
(aL + Zν)/(aL).
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Lemma 3.1 Let s be an integer coprime to the conductor a of aL + ν. We have the
following:

(1) O+(aL +ν) = O+(aL +sν) and O+(aL p +ν) = O+(aL p +sν) for any prime
p.

(2) If gen+(aL + ν) = �1≤i≤hgencls+(aLi + νi ), then gen+(aL + sν) =
�1≤i≤hgencls+(aLi + sνi ).

(3) If spn+(aL + ν) = �1≤i≤hspncls+(aLi + νi ), then spn+(aL + sν) =
�1≤i≤hspncls+(aLi + sνi ).

Proof (1) Let σ ∈ O+(aL + ν). Then σ(aL) = aL and σ(ν) − ν ∈ aL . Multiplying
by s, we have σ(sν) − sν ∈ saL ⊆ aL , hence σ ∈ O+(aL + sν). Likewise, we have
O+(aL +sk−1ν) ⊆ O+(aL +skν) for any k ∈ N. Note that aL +ν = aL +sorda(s)ν,
where orda(s) ≥ 1 is the order of s modulo a in the multiplicative group (Z/aZ)×.
Therefore, we have

O+(aL + ν) ⊆ O+(aL + sν) ⊆ O+(aL + sorda(s)ν) = O+(aL + ν),

which proves the first statement. The equalities for local cosets follow in the same
manner.

(2) Noting that any coset in gen+(aL + sν) has conductor a, let aK + μ ∈
gen+(aL + sν) be any coset in the proper genus of aL + sν. Then for any prime
p, there exists σp ∈ O+(Vp) such that σp(aK ) = aL and σp(μ) − sν ∈ aL p. Let s̄
be an integer which is an inverse of s modulo a. Then σp(s̄μ) − s̄sν ∈ s̄aL p ⊆ aL p.
Since s̄sν − ν ∈ aL p, we have

σp(s̄μ) − ν = σp(s̄μ) − s̄sν + s̄sν − ν ∈ aL p.

Hence σp(aK + s̄μ) = aL p + ν for any prime p, that is, aK + s̄μ ∈ gen+(aL + ν).
Therefore, σ(aK + s̄μ) = aLi + νi for some σ ∈ O+(V ) and 1 ≤ i ≤ hgen. One
may easily show that this σ ∈ O+(V ) satisfies σ(aK + μ) = aLi + sνi . This proves
the second statement.

(3) The third statement may also be proved similarly as the proof of the second
statement. ��

3.2 p-neighborhood of lattice cosets

Let p be a prime number such that p � 4NLa2. Let p̄ be an integer which is an inverse
of p modulo a. Define Rp(aL + ν) to be the set of cosets aK + μ with conductor a
satisfying the following:

(1) aKq + μ = aLq + p̄ν for any prime q �= p.
(2) (L p : L p ∩ K p) = (K p : L p ∩ K p) = p and Q(K p)Zp = Zp.

From the second condition, K p is also a Zp-maximal lattice, hence K p is isometric
to L p by an element in O+(Vp), due to the uniqueness of a Zp-maximal lattice up to
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isometry. Furthermore, by the local theory of lattices (cf. [15, 82:23]), there exists a
basis {e1, e2, e3} of L p such that

Q(e1) = −dL , Q(e2) = Q(e3) = 0, B(e1, e2) = B(e1, e3) = 0, B(e2, e3) = 1,

and {e1, p−1e2, pe3} is a basis of K p. (3.1)

Noting that aK p + μ = K p + μ = K p, aL p + p̄ν = L p + ν = L p, and pK p ⊆ L p,
we have

aK + μ ∈ gen+(aL + p̄ν) and p(aK + μ) ⊆ aL + ν

for any aK + μ ∈ Rp(aL + ν) (for further details, see (4.3) below). Hence for
n ∈ N, one may note that r(p2n, aL + ν) > 0 if r(n, aK + μ) > 0 for some
aK + μ ∈ Rp(aL + ν).

For an n ∈ N and an x ∈ R(p2n, aL + ν), we define

πp(x, aL + ν) = |{aK + μ ∈ Rp(aL + ν) : x ∈ pK p}|.

These numbers for special types of latticeswere considered in [16], andwere computed
by means of quaternion orders. The following lemma provide some properties about
what we have just defined.

Lemma 3.2 Let aL + ν be a ternary coset with conductor a, p a prime number such
that p � 4NLa2, x ∈ R(p2n, aL+ν) and dL the discriminant of L. Under the notations
given above, we have the following.

(1) For any k ∈ Z≥0, aK +μ ∈ Rp(aL+ν) if and only if aK + p̄kμ ∈ Rp(aL+ p̄kν).
(2) |Rp(aL + ν)| = p + 1.

(3) πp(x, aL + ν) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ∈ L p \ pL p,

1 +
(−dL n

p

)
if x ∈ pL p \ p2L p,

p + 1 if x ∈ p2L p.

Proof (1) Let k ∈ Z≥0. For any prime q �= p, note that aKq + p̄kμ = aLq + p̄k+1ν

if and only if
Kq = Lq and p̄kμ − p̄k+1ν ∈ aLq

If (a, q) = 1, then aKq + p̄kμ = Kq + p̄kμ = Kq = Lq = aLq + p̄k+1ν.
Otherwise, we have q | a so that ( p̄, q) = 1. Hence μ − p̄ν ∈ aLq if and only
if p̄kμ − p̄k+1ν ∈ aLq . Therefore, from the definition of the set Rp(aL + p̄kν),
aK + μ ∈ Rp(aL + ν) if and only if aK + p̄kμ ∈ Rp(aL + p̄k+1ν).

(2) Note that two cosets are equal if and only if they are locally equal at all prime
spots. Hence by the definition of the set Rp(aL + ν), we need only to investigate how
many distinct Zp-lattices K p satisfy (L p : L p ∩ K p) = (K p : L p ∩ K p) = p and
Q(K p)Zp = Zp. Putting M = pK p and recalling (3.1), this is equivalent to finding
all sublattices M of L p with elementary divisors (also called invariant factors) 1, p, p2

such that Q(M)Zp = p2Zp.
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To find possible sublattices M of L p, we fix a basis {e1, e2, e3} of L p such that

Q(e1) = −dL , Q(e2) = Q(e3) = 0, B(e1, e2) = B(e1, e3) = 0, and B(e2, e3) = 1,

which is known to exist by the local theory of lattices.
We then choose three Zp-linearly-independent elements

a1 = a11e1+a21e2+a31e3, a2 = a12e1+a22e2+a32e3, a3 = a13e1+a23e2+a33e3

of L p that generate sublattices with the desired properties. Note that if we correspond
any sublattice Zpa1 + Zpa2 + Zpa3 of L p to the matrix A = (ai j ) ∈ M3(Zp) with
det(A) �= 0, then the sublattices of L p with invariant factors 1, p, p2 correspond to
the left cosets of the double cosets

GL3(Zp) · diag(1, p, p2) · GL3(Zp)/GL3(Zp).

Moreover, every left coset from the above contains exactly one element in the set

C = {C = (ci j ) ∈ M3(Z) :cii = pki for some ki ∈ Z≥0, c11c22c33 = p3,

ci j = 0 if i < j, and 0 ≤ ci j < cii if j ≤ i}

of lower-triangularmatrices of determinant p3. Therefore, if we search for thematrices
in C whose corresponding sublattice has norm p2Zp, and check whether these indeed
have invariant factors 1, p, p2 in L p, one may conclude that our pK p is one of the
following:

M1,u,v = Zp(e1 + ue2 + ve3) + Zp(pe2 + pwe3) + Zp(p2e3),

M2 = Zp pe1 + Zpe2 + Zp p2e3, and M3 = Zp pe1 + Zp p2e2 + Zpe3,
(3.2)

where 0 < u, w < p and 0 < v < p2 are integers satisfying

− dL + 2uv ≡ 0 (mod p2) and v + uw ≡ 0 (mod p). (3.3)

Note that u, v, w are not divisible by p, and that if 0 < u < p is determined, there is
only one choice for 0 < v < p2, and hence 0 < w < p is also determined. Therefore,
there are p − 1 + 2 = p + 1 cosets aK + μ in Rp(aL + ν), namely, the cosets
aK + μ ∈ Rp(aL + ν) such that pK p is one of the Zp sublattices M1,u,v , M2, or M3
of L p.

(3) From the definition of πp(x, aL +ν), it suffices to count the number of sublattices
of L p in (3.2) containing a given x ∈ R(p2n, aL + ν). Since any sublattice in (3.2)
contains p2L p, we have πp(x, aL +ν) = p +1 if x ∈ p2L p. On the other hand, note
that for a σp ∈ O(L p), we have

(L p : L p ∩ σp(K p)) = (σp(L p) : σp(L p) ∩ σp(K p)) = (L p : L p ∩ K p),

(σp(K p) : L p ∩ σp(K p)) = (σp(K p) : σp(L p) ∩ σp(K p)) = (K p : L p ∩ K p).
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Hence, if there is a vector x ′ ∈ L p with Q(x) = Q(x ′) and a σp ∈ O(L p) (not
necessarily a rotation) such that x ′ = σpx , then

πp(x, aL + ν) = |{aK + μ ∈ Rp(aL + ν) : x ∈ pK p}|
= |{aK + μ ∈ Rp(aL + ν) : σpx ∈ p · σp(K p)}|
= |{aK ′ + μ′ ∈ Rp(aL + ν) : x ′ ∈ pK ′

p)}|,

where aK ′ + μ′ is the coset in Rp(aL + ν) such that aK ′
p + μ′ = K ′

p = σp(K p) and
aK ′

q + μ′ = aKq + μ for any prime q �= p.

If x ∈ L p \ pL p, then x ′ := e2 + p2n
2 e3 ∈ L p \ pL p satisfies Q(x) = Q(x ′).

Hence by [9, Theorem5.4.1], there exists aσp ∈ O(L p) such thatσpx = x ′.Moreover,
among the sublattices of L p in (3.2), only M2 contains x ′. Hence, πp(x, aL +ν) = 1.

Now we consider the case when x ∈ pL p \ p2L p. First, assume that
(−dL n

p

)
= 1.

Then n = −ε2dL for some ε ∈ Z×
p . Hence x ′ = pεe1 satisfies Q(x ′) = −p2ε2dL =

p2n = Q(x) and x/p, x ′/p ∈ L p \ pL p. Again by [9, Theorem 5.4.1], there exists a
σp ∈ O(L p) such that σp(x/p) = x ′/p, hence σpx = x ′. It is clear that both M2 and
M3 contain x ′. Assume that a sublattice M1,u,v contains x ′ = pεe1. Then

pεe1 = pε(e1 + ue2 + ve3) + b(pe2 + pwe3) + c(p2e3)

for some b, c ∈ Zp, so that b = −εu and ε(v−wu) = −cp. Hence v ≡ uw (mod p).
However, by (3.3), we have 2v ≡ v + uw ≡ 0 (mod p), which is a contradiction.
Hence

πp(x, aL + ν) = 2 = 1 +
(−dL n

p

)
.

In the case when
(−dL n

p

)
= −1 or 0, one may argue in the same way to show that

πp(x, aL + ν) = 0 or 1, respectively, by taking x ′ = pe2 + pn
2 e3; the details are left

to the interested reader. This completes the proof of the lemma. ��

4 Hecke Operators on the theta series

In this section, we discuss how the action of the Hecke operators on the theta series
of cosets is related to its p-neighborhood (p � 4NLa2). For two cosets aL + ν and
aM + ξ , we put

cp(aL + ν, aM + ξ) = |{aK + μ ∈ Rp(aL + ν) : aK + μ ∈ cls+(aM + ξ)}|.

Let aK + μ ∈ Rp(aL + ν) and let {aLi + νi }1≤i≤h be a set of representatives of
proper classes of gen+(aL + ν). Since Rp(aL + ν) ⊆ gen+(aL + p̄ν), Lemma
3.1 implies that aK + μ ∈ cls+(aL j + p̄ν j ) for some 1 ≤ j ≤ h. Moreover, if
σ(aK +μ) = aL j + p̄ν j for some σ ∈ O+(V ), then σ(aK + p̄kμ) = aL j + p̄k+1ν j
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for any k ∈ Z≥0. Therefore, together with Lemma 3.2 (1), we have

cp(aL + ν, aL j + p̄ν j ) = cp(aL + p̄kν, aL j + p̄k+1ν j )

for any k ∈ Z≥0. Hence for 1 ≤ i, j ≤ h, the following are defined independent of
k ∈ Z≥0:

πi j (p2) := cp(aLi + p̄kνi , aL j + p̄k+1ν j ) = cp(aLi + νi , aL j + p̄ν j ).

For any k ∈ Z≥0, put

�Gk (z) :=
⎡

⎢⎣
�aL1+ p̄kν1

(z)
...

�aLh+ p̄kνh
(z)

⎤

⎥⎦ .

We now describe a generalization of the Eichler’s commutation relation for cosets as
follows.

Theorem 4.1 Let aL + ν be a ternary coset with conductor a, and let p be a prime
number such that p � 4NLa2. We have

(�aL+ν |T (p2))(z) =
∑

aK+μ∈Rp(aL+ν)

�aK+μ(z). (4.1)

Furthermore, for any k ∈ Z≥0, we have

�Gk |T (p2) = (πi j (p2))�Gk+1 .

Proof According to the discussion above, the furthermore part of the theorem follows
immediately once we prove (4.1). Hence it suffices to show (4.1), that is, by Theorem
2.5, for any n ∈ N,

r(p2n, aL + ν) +
(−4dL n

p

)
r(n, aL + p̄ν) + p · r(n/p2, aL + p̄2ν)

=
∑

aK+μ∈Rp(aL+ν)

r(n, aK + μ). (4.2)

To show (4.2), we will count the sum
∑

x∈R(p2n,aL+ν)

πp(x, aL + ν) in two different

ways. First, note that for any aK + μ ∈ Rp(aL + ν), we have

{
p(aK + μ)q = p(aL + p̄ν)q = aLq + p̄pν = aLq + ν for any prime q �= p,

p(aK + μ)p = pK p ⊆ L p = (aL + ν)p.

(4.3)
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Hence, x ∈ R(p2n, aL + ν) with x ∈ pK p if and only if x ∈ p(aK + μ) with
Q(x) = p2n. Thus,

∑

x∈R(p2n,aL+ν)

πp(x, aL + ν) =
∑

x∈R(p2n,aL+ν)

∑

aK+μ∈Rp(aL+ν)

x∈pK p

1

=
∑

aK+μ∈Rp(aL+ν)

∑

x∈p(aK+μ)

Q(x)=p2n

1

=
∑

aK+μ∈Rp(aL+ν)

r(n, aK + μ),

(4.4)

and the last term is equal to the right-hand side of (4.2).
On the other hand, by Lemma 3.2 (3), the sum

∑

x∈R(p2n,aL+ν)

πp(x, aL +ν) is equal

to
∑

x∈L p\pL p

πp(x, aL + ν) +
∑

x∈pL p\p2L p

πp(x, aL + ν) +
∑

x∈p2L p

πp(x, aL + ν)

=
∑

x∈L p\pL p

1 +
∑

x∈pL p\p2L p

(
1 +

(−dLn

p

))
+

∑

x∈p2L p

(1 + p)

=
⎡

⎣
∑

x∈R(p2n,aL+ν)

1

⎤

⎦+
(−4dL n

p

)
·
⎡

⎣
∑

x∈pL p\p2L p

1

⎤

⎦+ p ·
⎡

⎣
∑

x∈p2L p

1

⎤

⎦ ,

(4.5)
whereweomit the condition Q(x) = p2n in the intermediary sums for ease of notation.

Note that if p | n, then
(−4dL n

p

)
= 0, and if p � n, then x/p ∈ L p if and only if

x/p ∈ L p \ pL p since Q(x/p) = n and Q(L p) ⊆ Zp. Moreover, x ∈ aL + ν with
x ∈ pk L p if and only if x/pk ∈ aL + p̄kν for any k ∈ Z≥0. Hence the last equation
of (4.5) is equal to

r(p2n, aL + ν) +
(−4dL n

p

)
r(n, aL + p̄ν) + pr(n/p2, aL + p̄2ν),

which is equal to the left-hand side of (4.2). This completes the proof of the theorem.
��

We next use the above theorem to investigate the first piece in the splitting (1.2), the
Eisenstein series part of the theta series of a coset aL +ν. Specifically, we evaluate the
action of the Hecke operators T (p2) on the theta series �gen+(aL+ν)(z) for the genus.

Theorem 4.2 Let aL + ν be a ternary coset with conductor a, and let p be a prime
number such that p � 4NLa2. Then, we have

(�gen+(aL+ν)|T (p2))(z) = (p + 1)�gen+(aL+ p̄ν)(z).
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Proof Let {aLi +νi }1≤i≤h be a set of representatives of proper classes of gen+(aL+ν).

Note that
h∑

i=1

1
o+(aLi +νi )

=
h∑

j=1

1
o+(aL j + p̄ν j )

by Lemma 3.1 (1). Thus, by Theorem 4.1,

it suffices to show that

h∑

i=1

1

o+(aLi + νi )

h∑

j=1

cp(aLi + νi , aL j + p̄ν j )�aL j + p̄ν j (z) = (p + 1)
h∑

j=1

�aL j + p̄ν j (z)

o+(aL j + p̄ν j )
.

(4.6)

Note that for aK + μ ∈ Rp(aLi + νi ), if aK + μ ∈ cls+(aL j + p̄ν j ), then there is
a σ ∈ O+(V ) such that aK + μ = σ(aL j + p̄ν j ). Hence we have

o+(aL j + p̄ν j )cp(aLi +νi , aL j + p̄ν j ) = |{σ ∈ O+(V ) : σ(aL j + p̄ν j ) ∈ Rp(aLi +νi )}|,

and it follows from the definition of Rp(aLi +νi ) that σ(aL j + p̄ν j ) ∈ Rp(aLi +νi )

if and only if σ−1(aLi + p̄2νi ) ∈ Rp(aL j + p̄ν j ). Hence we have

o+(aL j + p̄ν j )cp(aLi + νi , aL j + p̄ν j )

= |{σ ∈ O+(V ) : σ−1(aLi + p̄2νi ) ∈ Rp(aL j + p̄ν j )}|
= o+(aLi + p̄2νi )cp(aL j + p̄ν j , aLi + p̄2νi )

= o+(aLi + νi )cp(aL j + p̄ν j , aLi + p̄2νi ),

where the last equality holds by Lemma 3.1 (1). Hence, the left-hand side of (4.6) is
equal to

h∑

j=1

h∑

i=1

cp(aLi + νi , aL j + p̄ν j )

o+(aLi + νi )
�aL j + p̄ν j (z)

=
h∑

j=1

h∑

i=1

cp(aL j + p̄νi , aLi + p̄2νi )

o+(aL j + p̄ν j )
�aL j + p̄ν j (z)

=
h∑

j=1

�aL j + p̄ν j (z)

o+(aL j + p̄ν j )

h∑

i=1

cp(aL j + p̄ν j , aLi + p̄2νi )

= (p + 1)
h∑

j=1

�aL j + p̄ν j (z)

o+(aL j + p̄ν j )
,

where in the last step we note that the inner sum evaluates to |Rp(aL j + p̄ν j )|, which
is p + 1 by Lemma 3.2 (2). This proves (4.6), completing the proof of the theorem. ��

In the special case that p ≡ ±1 (mod a) (and p � 4NL ), Theorem 4.2 yields that
�gen+(aL+ν)(z) is an eigenform of the Hecke operators T (p2) with eigenvalue p + 1,
yielding the conclusion that the theta series for the genus is an Eisenstein series.
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Corollary 4.3 The theta series �gen+(aL+ν)(z) is an Eisenstein series. In particular,

�gen+(aL+ν)(z) = �gen(aL+ν)(z).

Proof Let {aLi +νi }1≤i≤h be a set of representatives of proper classes of gen+(aL+ν).
According to the result of Shimura [22], �aLi +νi (z) − �gen(aL+ν)(z) is a cusp form
for any 1 ≤ i ≤ h, hence

�gen+(aL+ν)(z) − �gen(aL+ν)(z) = 1
∑h

i=1 o+(aLi + νi )−1

h∑

i=1

�aLi +νi (z) − �gen(aL+ν)(z)

o+(aLi + νi )

is also a cusp form. Since Shimura [22] also showed that�gen(aL+ν)(z) is an Eisenstein
series, it suffices to show that �gen+(aL+ν)(z) is an Eisenstein series. By Proposition
2.4, it is enough to show that the projection π ′(�gen+(aL+ν)(z)) to U⊥ and the projec-
tions πt,χ (�gen+(aL+ν)(z)) to Ut (4NLa2, χχ4dL ) for any positive square-free integer
t and for any even Dirichlet character χ modulo a are equal to zero.

Let p be a prime such that p ≡ 1 (mod a) and p � 4NLa2. Since the projection π ′
commutes with the Hecke operator T (p2) and p̄ ≡ 1 (mod a), Theorem 4.2 implies
that

π ′(�gen+(aL+ν)(z))|T (p2) = π ′(�gen+(aL+ν)|T (p2)(z))

= π ′((p + 1)�gen+(aL+ν)(z)) = (p + 1)π ′(�gen+(aL+ν)(z)).

If π ′(�gen+(aL+ν)(z)) �= 0, then its Shimura lifts would be non-zero cusp forms of
weight 2, which would be eigenfunctions of T (p) for all p � 4NLa2 such that p ≡ 1
(mod a) with eigenvalue p + 1. This contradicts the Weil bounds proven by Deligne
[5], and hence π ′(�gen+(aL+ν)(z)) = 0.

By Theorem 4.2 and Proposition 2.6, and since the Hecke operator commutes with
πt,χ , we have for any prime number p such that p � 4NLa2,

(p + 1)πt,χ (�gen+(aL+ p̄ν)(z)) = πt,χ (�gen+(aL+ν)|T (p2)(z))

= (πt,χ (�gen+(aL+ν)))|T (p2)(z)

= χ(p)

(−tdL

p

)
(p + 1)πt,χ (�gen+(aL+ν)(z)).

(4.7)
Note that if there is a prime p satisfying

p � 4NLa2, p ≡ 1 (mod a) and

(−tdL

p

)
= −1, (4.8)

then χ(p) = 1 and hence (4.7) implies that πt,χ (�gen+(aL+ν)(z)) = 0.
Let s be the square-free part of tdL , s0 be the odd part of s, g = (a, s0), and

s0 = g · g′. Note that (a, g′) = 1 since s0 is square-free. Assume that g′ �= 1. Then
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for any p ≡ 1 mod a, since p ≡ 1 (mod g), quadratic reciprocity implies that

(−tdL

p

)
=
(−s/s0

p

)(
g

p

)(
g′

p

)
=
(−s/s0

p

)
(−1)

g−1
2 · p−1

2 ·1·(−1)
g′−1
2 · p−1

2

(
p

g′

)
.

By the Chinese remainder theorem, we may choose p ≡ 1 (mod 8) so that the above
simplifies as (−tdL

p

)
=
(

p

g′

)
.

By the Chinese remainder theorem and Dirichlet’s theorem on primes in arithmetic
progressions, we may choose p in any congruence class relatively prime to g′, and
hence we may choose

(
p
g′
)

= −1, yielding a prime satisfying the conditions in (4.8),

and hence we are done.
Now we may assume that g′ = 1, or equivalently, s | 2a. We first consider the case

when ord2(a) ≤ 2 and 2 | s. We may take a prime p ≡ 1 (mod a) such that p ≡ 5
(mod 8). Then, using quadratic reciprocity and noting that p ≡ 1 (mod s0) because
s0 | a, we have

(−tdL

p

)
=
(−2

p

)(
s0
p

)
= (−1) ·

(
p

s0

)
= −1.

Also, when ord2(a) ≤ 1 and s ≡ 1 (mod 4), one may similarly show that any prime

p ≡ 1 (mod a) with p ≡ 3 (mod 4) satisfies
(−tdL

p

)
= −1. Since there exists p

satisfying the conditions in (4.8) in either case, we are done with these cases.
Now we are left with the cases when s | a and either 8 | a, ord2(a) = 2 with 2 � s,

or ord2(a) ≤ 1 with s ≡ 3 (mod 4). Note that in these cases, if p ≡ −1 (mod a),
then one may check that

(−tdL

p

)
=
(−s/s0

p

)
(−1)

s0−1
2 · p−1

2

(
p

s0

)
=
(−s/s0

p

)
(−1)

s0−1
2 · p−1

2 (−1)
s0−1
2 = −1.

Furthermore, for any prime p ≡ −1 (mod a), we have by Lemma 3.1 that

�gen+(aL+ p̄ν)(z) = �gen+(aL−ν)(z) = �gen+(aL+ν)(z).

Therefore,with a prime p ≡ −1 (mod a), noting thatχ(p) = 1 for any even character
χ modulo a, (4.7) again implies that πt,χ (�gen+(aL+ν)(z)) = 0. This completes the
proof of the corollary. ��

5 The theta series of the spinor genera

In this section, we usemeasure theory to obtain Theorems 5.4, 5.6 andCorollary 5.7 on
relations of the representation numbers r(n, spn+(aM + ξ)) for proper spinor genera
in the same proper genus. Actually, Teterin [28] already stated Theorem 5.4 and the
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first part of Theorem 5.6, and proved those by giving a brief explanation. Moreover,
he claimed a stronger statement in [28, Theorem 1 (2)] on an explicit formula for
the difference of the representation numbers for two proper spinor genera. However,
there seems to be a minor error in his proof which leads to an incorrect statement (see
Remark 5.8 for a counter-example). Although we believe that his assertion can be
modified to yield a correct statement, we propose an alternative way to obtain such an
explicit formula in Corollary 5.7. For the rest of this section, we provide some detailed
explanation for the proof of the theorems for the convenience of the reader. The idea
of using measure theory originally comes from Kneser [10] and Schulze-Pillot [19].

Let V be a quadratic space and x �= 0 be a non-zero vector of V . Let O+(V , x)

denote the fixed group of x in O+(V ), and let O+(aL+ν, x) = O+(V , x)∩O+(aL+
ν).

A representation (x, aL+ν) of a number n by a coset aL+ν is given by a x ∈ aL+ν

with Q(x) = n. We say that two representations (x, aL + ν) and (y, aM + ξ) are
equivalent or belong to the same representation class if there is a u ∈ O+(V ) with
ux = y and u(aL +ν) = aM +ξ , in which case we write (x, aL +ν) ∼= (y, aM +ξ).
In particular, we have

(x, aL + ν) ∼= (y, aL + ν) if ux = y with u ∈ O+(aL + ν),
(x, aL + ν) ∼= (x, aM + ξ) if u(aL + ν) = aM + ξ with u ∈ O+(V , x).

The class of a representation (x, aL + ν) is denoted by [(x, aL + ν)]. Local represen-
tation classes are defined in the same way. We abuse notation and write ∼= for local
equivalence as well.

For x ∈ V and y ∈ aM + ξ with Q(x) = Q(y), it follows from Witt’s theorem
that there is a representation (x, aM ′ + ξ ′) that is equivalent to (y, aM + ξ). Hence,
if we are only interested in the classes of represention of a number n, we can restrict
ourselves to representations with fixed x ∈ V satisfying Q(x) = n.

We say (x, aL + μ) and (y, aM + ξ) belong to the same genus if (x, aL p + ν) ∼=
(y, aMp + ξ) for every prime spot p including ∞. Note that the classes of represen-
tations of Q(x) by cosets in the genus of aL + ν are in one-to-one correspondence
with the double cosets O+(V , x)uO+

A (aL + ν) with u ∈ O+
A (V ) and x ∈ u(aL + ν),

and for u ∈ O+
A (V ) for which x ∈ u(aL + ν), the genus of (x, u(aL + ν)) is given

by the double coset O+
A (V , x)uO+

A (aL + ν).
Now we consider two Haar measures

μ = μ∞ ×
∏

p<∞
μp and λ = λ∞ ×

∏

p<∞
λp

on O+
A (V , x) = O+∞(V , x)× ∏

p<∞
O+

p (Vp, x) and O+
A (V ) = O+∞(V )× ∏

p<∞
O+

p (Vp),

respectively. Since we are dealing with the case when V is positive definite, the mea-
sures are finite. The measure r(x, aL +ν) of the representation (x, aL +ν) is defined
as

r(x, aL + ν) = μ∞(O+∞(V , x)/O+(aL + ν, x)) = μ∞(O+∞(V , x))

o+(aL + ν, x)
.
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This value is uniquely determined once the normalization ofμ is determined. Since we
are only interested in comparing ratios of measures with each other, the normalization
factor always cancels and hence does not matter for our consideration (see Lemma
5.3). The only property we need is that the normalization can be carried out in such a
way that under u ∈ O+(V , x) the measure on O+∞(V , x) transfers into the measure
on O+∞(V , ux). Hence, the measure is invariant for equivalent representations and is
also referred to as the representation measure of the representation class.

Note that the system of representatives of classes in the genus of a representation
(x, aL + ν) may be obtained from O+

A (V , x) · (x, aL + ν) and the classes of repre-
sentations in the genus of (x, aL + ν) intersected with O+

A (V , x) · (x, aL + ν) are
in one-to-one correspondence with the double cosets O+(V , x)uO+

A (aL + ν, x) with
u ∈ O+

A (V , x).
Now we provide three lemmas which translate the language of the number of

representations r(n, aL + ν) of n ∈ N into that of the measure of a representation
(x, aL + ν) with Q(x) = n.

Lemma 5.1 For any element u = (u p) ∈ O+
A (V , x), we have

r(x, u(aL + ν)) = μ(O+(V , x)\O+(V , x)uO+
A (aL + ν, x))

∏

p<∞
μp(O+(aL p + ν, x))−1.

Proof We roughly follow the argument of Kneser [10], modified for our case. Note
that μ is right-invariant and uO+

A (aL + ν, x)u−1 = O+
A (u(aL + ν), x). Hence

μ(O+(V , x)\O+(V , x)uO+
A (aL + ν, x)) = μ(O+(V , x)\O+(V , x)uO+

A (aL + ν, x)u−1)

= μ(O+(V , x)\O+(V , x)O+
A (u(aL + ν), x)).

(5.1)

On the other hand, since

O+(V , x)\O+(V , x)O+
A (u(aL + ν), x)

∼= (O+(V , x) ∩ O+
A (u(aL + ν), x)

) \O+
A (u(aL + ν), x)

∼= (O+∞(V , x)/O+(u(aL + ν), x)
)×

∏

p<∞
O+(u p(aL p + ν), x)

is a fundamental domain and O+(u p(aL p + ν), x) = u p O+(aL p + ν, x)u−1
p , it

follows from the left and right invariance of μp that (5.1) is equal to

μ∞
(
O+∞(V , x)/O+(u(aL + ν), x)

) ∏

p<∞
μp(O+(aL p + ν, x)).

This completes the proof of the lemma. ��
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Lemma 5.2 Let aL + ν be a coset on V and let x ∈ V with Q(x) = n. Then there are
bijections

{[x, u(aL + ν)] : [u] ∈ O+(V , x)\O+
A (V )/O+

A (aL + ν), x ∈ u(aL + ν)}
←→ {[(x, aM + ξ)] : aM + ξ ∈ gen+(aL + ν), x ∈ aM + ξ}
←→ {[(y, aLi + νi )] : Q(y) = n, y ∈ aLi + νi , 1 ≤ i ≤ h},

where {aLi +νi }1≤i≤h is a fixed set of representatives of proper classes of gen+(aL +
ν).

Proof The first bijection follows from the definition of the genus of the representation
(x, aM + ξ). To construct the second map, let (x, aM + ξ) be a representation with
aM + ξ ∈ gen+(aL + ν). Note that aM + ξ = u(aLi + νi ) for some u ∈ O+(V ) and
1 ≤ i ≤ h. We define a map � from the second set into the third set by �([(x, aM +
ξ)]) = [(ux, aLi +νi )]. One may check that� is well-defined and is a bijection. This
proves the lemma. ��
Lemma 5.3 Let aL + ν be a coset on V and let x ∈ V be such that Q(x) = n. We
have

r(n, aL + ν) = λ∞(O+∞(V ))

μ∞(O+∞(V , x))

(∑
r(y, aL + ν)

)
λ∞(O+∞(V )/O+(aL + ν))−1,

where the sum runs over a system of representatives of the classes of representations
(y, aL+ν) of n by aL+ν. Moreover, taking h to be either spn+(aL+ν) or gen+(aL+
ν), we have

r(n, h) = λ∞(O+∞(V ))

μ∞(O+∞(V , x))

⎛

⎝
∑

aM+ξ∈h
r(x, aM + ξ)

⎞

⎠

×
⎛

⎝
∑

cls+(aM+ξ)∈h/∼

λ∞(O+∞(V )/O+(aM + ξ))

⎞

⎠
−1

,

where the first summation runs over a system of representatives of the classes of
representations [(x, aM + ξ)] with aM + ξ ∈ h. Furthermore, the denominator

∑

cls+(aM+ξ)∈spn+(aL+ν)/∼

λ∞(O+∞(V )/O+(aM +ξ)) = λ∞(O+∞(V ))·Mass(spn+(aL +ν))

has the same value for all proper spinor genera in gen+(aL + ν), where

Proof Note that the group O+(aL + ν) acts on the set R(n, aL + ν) = {y ∈ aL + ν :
Q(y) = n}, and the orbit of y ∈ R(n, aL + ν) with respect to this action corresponds
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to the representation class of (y, aL + ν). Therefore,

r(n, aL + ν) =
∑

[y]:orbits
|{σ y : σ ∈ O+(aL + ν)}| =

∑

[(y,aL+ν)]

o+(aL + ν)

o+(aL + ν, y)
,

where the last sum runs over a system of representatives of the classes of represen-

tations (y, aL + ν) of n by aL + ν. Noting that r(y, aL + ν) = μ∞(O+∞(V ,y))

o+(aL+ν,y)
and

λ∞(O+∞(V )/O+(aL + ν)) = λ∞(O+∞(V ))

o+(aL+ν)
, we obtain the first equality of the lemma

after noting that μ∞(O+∞(V , y)) only depends on Q(y) = n.
The moreover part of the lemma when h = gen+(aL + ν) follows by the second

bijection in Lemma 5.2 together with the proof of the first equality of the lemma. The
proof for the case when h = spn+(aL + ν) may also be done in the same manner
since the second bijection of Lemma 5.2 still holds when restricted to spn+(aL + ν)

by the same argument.
Finally, applying a similar argument as in Lemma 5.1, one may show that for any

u ∈ O+
A (V ),

∑

cls+(aM+ξ)∈spn+(u(aL+ν))/∼

λ∞(O+∞(V )/O+(aM + ξ))

= λ(O+(V )\O+(V )O ′
A(V )uOA(aL + ν))

∏

p<∞
λp(O+(aL p + ν))−1

= λ(O+(V )\O+(V )O ′
A(V )OA(aL + ν))

∏

p<∞
λp(O+(aL p + ν))−1

The last equality holds because O+(V )O ′
A(V )uO+

A (aL + ν) = O+(V )O ′
A(V )O+

A
(aL + ν)u since O ′

A(V ) contains the commutator group of O+
A (V ), and λ is invariant

under right multiplication (see also [27, Theorem 2.4]). This proves the furthermore
part of the lemma. ��

Now we are ready to prove Theorem 5.4, which relates the representation numbers
for different spinor genera in the genus of a shifted lattice aL + ν for a ternary lattice
L

Theorem 5.4 Let t be a square-free positive integer, aL + ν be a ternary lattice coset,
and set E = Q(

√−tdL). Then we have

(1) If θ(O+(aL p + ν)) � NEp/Qp (E×
p ) for a prime p (p | p), then

r(tm2, spn+(aL + ν)) = r(tm2, spn+(aM + ξ))

for all m ∈ N and aM + ξ ∈ gen+(aL + ν).
(2) If θ(O+(aL p +ν)) ⊆ NEp/Qp (E×

p ) for all primes p (p | p), then the genus splits
into two half-genera and

r(tm2, spn+(aL + ν)) = r(tm2, spn+(aM + ξ))
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for all m ∈ N and aM + ξ in the same half-genus of aL + ν with respect to t .

Proof Let V be the ternary quadratic space containing aL + ν and for n = tm2 we let
x ∈ aL + ν be a vector with Q(x) = n. We furthermore let W denote the subspace
orthogonal to x in V , that is, V = Qx ⊥ W . Recall that the proper spinor genera from
the gen+(aL + ν) correspond to the double cosets O+(V )O ′

A(V )uO+
A (aL + ν) with

u ∈ O+
A (V ), and note that by Lemmas 5.1 and 5.3, the contribution of the genus of

(x, aL + ν) to r(n, spn+(u(aL + ν))) is μ∞(O+∞(V , x))−1Mass(spn+(aL + ν))−1

times

μ(O+(V , x)\O+
A (V , x)∩O+(V )O ′

A(V )uO+
A (aL+ν))

∏

p<∞
μp(O+(aL p+ν, x))−1.

(5.2)
Since O ′

A(V ) contains the commutator group of O+
A (V ), u can be extracted to the

right. If u ∈ O+
A (V , x), then by the right invariance ofμ, (5.2) is independent of u. On

the other hand, note that O+(V )O ′
A(V )uO+

A (aL +ν) = O+(V )O ′
A(V )vO+

A (aL +ν)

for some v ∈ O+
A (V , x) if and only if

u ∈ O+(V )O ′
A(V )O+

A (V , x)O+
A (aL + ν), (5.3)

and by Proposition 2.1, noting that O+
A (V , x) = O+

A (W ), it is equivalent to

θ(u) ∈ Q×NE/Q(IE )
∏

p∈�

θ(O+(aL p + ν)).

Wenaturally split the index giving the number of proper spinor genera in gen+(aL+ν)

from Proposition 2.1 into

⎡

⎣IQ : Q× ∏

p∈�

θ
(
O+ (aL p + ν

))
⎤

⎦=
⎡

⎣IQ : Q×NE/Q(IE )
∏

p∈�

θ(O+(aL p+ν))

⎤

⎦

×
⎡

⎣Q×NE/Q(IE )
∏

p∈�

θ(O+(aL p + ν)) : Q× ∏

p∈�

θ
(
O+ (aL p + ν

))
⎤

⎦ . (5.4)

We claim that the first factor in (5.4) is always either 1 or 2, and these precisely
correspond to the cases (1) and (2) of the theorem, respectively. To show this, we first
evaluate the first factor in (5.4). Note that [IQ : Q×NE/Q(IE )] ≤ 2 by [15, 65:21] and
this index is equal to 2 if and only if−ndL /∈ (Q×)2. In particular, the first factor in (5.4)
is at most 2. Furthermore, we have [IQ : Q×NE/Q(IE )

∏
p∈�

θ(O+(aL p + ν))] = 2 if

and only if

∏

p∈�

θ(O+(aL p + ν)) ⊆ Q×NE/Q(IE ) and − ndL /∈ (Q×)2
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⇔
∏

p∈�

θ(O+(aL p + ν)) ⊆ NE/Q(IE ) and − ndL /∈ (Q×)2 (5.5)

Only the assertion for the last ⇒ need some explanation. For fixed p ∈ �, let x(p) ∈
θ(O+(aL p + ν)), and consider i = (iq) ∈ ∏

q∈�

θ(O+(aLq + ν)) such that i p = x(p)

and iq = 1 for any q �= p. Then there exist b ∈ Q× such that b · i ∈ NE/Q(IE ).

Since b is a local norm at every spot q �= p, the Hilbert symbol
(

b,−tdL
q

)
= 1 for

any q �= p. By the Hilbert reciprocity law, we have
(

b,−tdL
p

)
= 1, hence b is a local

norm at p. Since b · i p is a local norm at p, x(p) = i p is also a local norm at p, hence
proving the assertion.

The condition in (5.5) precisely splits into the two cases (1) and (2) given in the
theorem. If (5.5) holds, then we are in case (2) and the first factor on the right-hand
side of (5.4), which is precisely the index of the group on the right-hand side of (5.3) in
O+

A (V ) by Proposition 2.1, is 2. Hence gen+(aL + ν) is divided into two half-genera,
both containing the same number of proper spinor genera given by the second factor
in (5.4), which can be rewritten as

[
O+(V )O ′

A(V )O+
A (V , x)O+

A (aL + ν) : O+(V )O ′
A(V )O+

A (aL + ν)
]
,

in such a way that the genus of the representation (x, aL + ν) makes the same con-
tribution to r(n, spn+(aM + ξ)) for any coset aM + ξ in the same half-genus of
aL + ν.

Otherwise, if (5.5) does not hold, thenwe are in case (1) and the genus of (x, aL+ν)

makes the same contribution to r(n, spn+(u(aL + ν))) for any u ∈ O+
A (V ).

Note that the conditions in (5.5) do not depend on aL + ν and x , but only on
gen+(aL + ν), dL and n. Hence, as we run through all genera of representations
(x, u(aL + ν)) with u ∈ O+

A (V ), the determination of whether gen+(aL + ν) splits
into two halves remains the same. Therefore, by Lemmas 5.2 and 5.3, we conclude
the theorem. ��
Remark 5.5 If the rank of L is greater than 3, then the orthogonal complement W of
a vector x in V is of rank at least 3. Hence there is a v ∈ O+

A (W ) = O+
A (V , x) such

that u ∈ O ′
A(V )v. Thus the value (5.2) is independent of u ∈ O+

A (V ) so that we have
r(n, spn+(aM + ξ)) are the same for any aM + ξ ∈ gen+(aL + ν). This provides a
proof for Teterin’s statement [28, Theorem 1 (1)].

From the above theorem, we may show the difference of two theta series
�spn+(aL+ν)(z) and �gen+(aL+ν)(z) is in the space U , which determines the second
piece in the splitting (1.2).

Theorem 5.6 The Fourier coefficients of �spn+(aL+ν)(z) − �gen+(aL+ν)(z) are sup-
ported on ⋃

t∈Tgen+(aL+ν)

tZ2

where
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Tgen+(aL+ν) :=
⎧
⎨

⎩t ∈ N : t is square-free,
∏

p∈�

θ
(
O+(aL p + ν)

) ⊆ NQ(
√−tdL )/Q

(
IQ(

√−tdL )

)
⎫
⎬

⎭

is a finite set. Furthermore, we have �spn+(aL+ν)(z) − �gen+(aL+ν)(z) ∈ U.

Proof Note that for any prime p such that p � 4NLa2 (hence p � dL ), we have

θ(O+(aL p + ν)) = θ(O+(L p)) = Z×
p (Q×

p )2,

which contains non-square units, and hence p � t for any t ∈ Tgen+(aL+ν). There-
fore, the set Tgen+(aL+ν) is a finite set, and it follows from the independence of the
spinor masses in Lemma 5.3 and the equality in Theorem 5.4 (1) that the Fourier
coefficients of �spn+(aL+ν)(z) − �gen+(aL+ν)(z) are supported on square classes in⋃

t∈Tgen+(aL+ν)
tZ2, yielding the first claim.

It remains to show that f (z) := �spn+(aL+ν)(z)−�gen+(aL+ν)(z) ∈ U . Recall that

f (z) ∈ S3/2(
0(4NLa2) ∩ 
1(a), χ4dL ) =
⊕

χ(mod a)

S3/2(
0(4NLa2), χχ4dL ),

and write f (z) = ∑
χ(mod a) fχ (z) for some fχ (z) ∈ S3/2(
0(4NLa2), χχ4dL ).

We claim that the Fourier coefficients of fχ (z) are also supported on the square
classes in Tgen+(aL+ν) for each Dirichlet character χ modulo a. If we show the claim,
then we have

fχ (z) ∈
⊕

t∈Tgen+(aL+ν)

Ut (
0(4NLa2), χχ4dL ),

which implies the theorem. Let f (z) = ∑
n≥1

a(n)qn and fχ (z) = ∑
n≥1

aχ (n)qn . Note

that for any s ∈ (Z/aZ)×, there exists an integer s0 with s0 ≡ s (mod a) such that
γs0 = ( ∗ ∗∗ s0

) ∈ 
0(4NLa2). Using the modularity of fχ , we have

f |3/2γs0(z) =
∑

χ(mod a)

fχ |3/2γs0(z) = χ4dL (s0) ·
∑

χ(mod a)

χ(s) fχ (z). (5.6)

On the other hand, by (2.8), (2.9), (2.10), and Lemma 3.1, we have

f |3/2γs0(z) = χ4dL (s0) · (�spn+(aL+s0ν)(z) − �gen+(aL+s0ν)(z)), (5.7)

where s0 is an integerwhich is an inverse of s0 modulo a. Note that T = Tgen+(aL+ν) =
Tgen+(aL+s0ν) since O+(aL p + ν) = O+(aL p + s0ν) for any prime p by Lemma 3.1
(1). Comparing Fourier coefficients of the right-hand sides of (5.6) and (5.7), we may
conclude that for any positive integer n outside any of the square classes in

⋃
t∈T tZ2,

∑

χ(mod a)

χ(s)aχ (n) = 0.
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Since the above equality holds for any s ∈ (Z/aZ)×, it follows from the orthogonality
of the Dirichlet characters modulo a that aχ (n) = 0 for any χ modulo a. This proves
the claim, hence completing the proof of the theorem. ��

Onemay observe from the proof of the above theorem that for aM+ξ ∈ gen+(aL+
ν), the differences �spn+(aL+sν)(z) − �spn+(aM+sξ)(z) for any integer s coprime to
the conductor a of aL + ν share some property. The following corollary describes
some relation on their Fourier coefficients.

Corollary 5.7 Let t be a square-free positive integer and let s be an integer coprime
to the conductor a of a coset aL + ν. Let aM + ξ be a coset in gen+(aL + ν), and
define as(n) by

r(tn2, spn+(aL + sν)) − r(tn2, spn+(aM + sξ)) = as(n) · n.

If as(n) is not identically zero, then 4t | 4NLa2. If 4NLa2 = 4t · t ′ ·b2 with square-free
t ′, then as(n) is defined modulo b and satisfying

(1) as(nm) = asm̄(n)
(−4tdL

m

)
if (m, 4NLa2) = 1,

(2) as(n) = 0 if b | n,

where m̄ is an integer which is an inverse of m modulo a.

Proof Note that if πt denotes the projection onto Ut = ⊕χ(mod a)Ut (4NLa2, χχ4dL ),
then

fs(z) :=
∑

n≥1

as(n)nqtn2 = πt (�spn+(aL+sν)(z) − �spn+(aM+sξ)(z)).

Write fs(z) = ∑
χ(mod a)

fs,χ (z)with fs,χ (z) = ∑
n≥1

as,χ (n)nqtn2 ∈ Ut (4NLa2, χχ4dL ).

Since the space Ut (4NLa2, χχ4dL ) is spanned by (2.4) with N �→ 4NLa2 and χ �→
χχ4dL , we have 4t | 4NLa2 and as,χ (n) is defined modulo b, hence so is as(n).
Furthermore, we have

as,χ (nm) = as,χ (n)χ(m)

(−4tdL

m

)

for any integer m with (m, 4NLa2) = 1. On the other hand, following the same
argument used in the proof of Theorem 5.6 to obtain (5.6) and (5.7), we have for any
integer m with (m, 4NLa2) = 1 that (noting that (m, 4dL) = 1, hence χ4dL (m) �= 0)

∑

χ(mod a)

χ(m) fs,χ (z) = fsm̄(z), hence
∑

χ(mod a)

χ(m)as,χ (n) = asm̄(n) for any n ∈ N.

Therefore, for any integer m with (m, 4NLa2) = 1, we have

as(nm) =
∑

χ(mod a)

as,χ (nm) =
∑

χ(mod a)

as,χ (n)χ(m)

(−4tdL

m

)
= asm̄(n)

(−4tdL

m

)
.
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This proves (1). To prove (2), we note that as in the proof of Corollary 4.3, there is

a prime p such that p � 4NLa2, p ≡ ±1 (mod a), and
(−4tdL

p

)
= −1. Also, by

Lemma 3.1, we have as(n) = as p̄(n) for any p ≡ ±1 (mod a). If b | n, then since
as(n) is defined modulo b, we have

as(n) = as(np) = as p̄(n)

(−4tdL

p

)
= −as(n),

and hence as(n) = 0. This completes the proof of the corollary. ��

Remark 5.8 We remark a failure of the statement of Teterin [28, Theorem 1 (2)] by
giving a counter-example. Let L = Ze1 + Ze2 + Ze3 be a ternary lattice with a basis
{ei }whose corresponding Grammatrix is a diagonal matrix diag(1, 1, 1). Put a = 12
and ν = 5(e1+e2 +e3) ∈ L . According to [28, Theorem 1 (2)], in order for a positive
integer m ∈ tZ2 with a square-free t to satisfy

r(m, spn+(aL + ν)) − r(m, gen+(aL + ν)) �= 0,

one should necessarily have t |NL . Since NL = 1, the only candidate is t = 1.
However, this turns out to be wrong since Haensch and the first author verified in

[8] that

�spn+(aL+ν)(z) = �gen+(aL+ν)(z) − 1

8

∑

r∈Z
r≡1 (mod 4)

rq3r2

by explicitly constructing representatives of proper classes in spn+(aL + ν) and
gen+(aL + ν), respectively, and by checking that the first finitely many (up to a
certain number coming from the so-called “valence-formula") Fourier coefficients of
the both sides are equal. We refer readers to [8, Lemma 5.1 and (5.2)] for details on
this example. The error in [28] occurs because Teterin uses a slightly incorrect basis
for the space of unary theta functions in the second-to-last line in step 2 of his proof
at the bottom of [28, page 2707], assuming that the basis elements all have the shape

∑

r∈Z
r≡s (mod a)

χ(r)rqtr2 .

However, one can have r ≡ s (mod d) for some d | a, in which case t may have a
common divisor with a. This precisely occurs in the example above, where d = 4 and
t = 3, with a = 12.
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6 Comparison of the theta series of ternary lattice cosets in the same
spinor genus

6.1 Deficiency between theta functions of proper classes and proper spinor
genera

Let p be a prime number such that p � 4NLa2. Let Z p(aL + ν) be the set of cosets
aK + μ ∈ gen+(aL + ν) such that

Z[1/p](aL) + ν = Z[1/p](aK ) + μ,

equivalently,

aLq + ν = aKq + μ for all q �= p and L p ∼= K p. (6.1)

In the case of lattices, the set Z p(aL) coincides with the set Z(aL, p) defined in [18].
Note that one may show from the definition that

{aM + pξ : aM + ξ ∈ Rp(aL + ν)} ⊆ Z p(aL + ν). (6.2)

In particular, we have Rp(aL + ν) ⊆ Z p(aL + ν) if p ≡ 1 (mod a).

Lemma 6.1 Let aL + ν be a ternary coset with conductor a, and let p be a prime
number such that p � 4NLa2. Then for any aM + ξ ∈ spn+(aL + ν), there exists a
coset aK + μ ∈ Z p(aL + ν) such that aK + μ ∈ cls+(aM + ξ).

Proof Let aM + ξ be a coset in spn+(aL + ν). Then there exist a σ ∈ O+(V ) and
	 = (	q) ∈ O ′

A(V ) such that

aLq + ν = σq	q(aMq + ξ) for any prime q. (6.3)

Following [15, Section 101], we choose a basis x1, . . . , xn of V = QL and for

x =
n∑

j=1

a j x j ∈ V

we define the norm ‖x‖q := max1≤ j≤n‖a j‖q for any prime q. Let J := Zx1 + · · · +
Zxn be the lattice of elementswith ‖x‖q ≤ 1 for allq and set S := {q : prime | q �= p}.
Let T be a finite set of prime numbers not containing p such that

aLq+ν = aLq , aMq+ξ = aMq , and σ−1
q (aLq) = Jq = aMq for any q /∈ T ∪ {p}.

Note that S is an indefinite set of spots since Vp is isotropic. Therefore, by the strong
approximation for rotation [15, 104:4], there exist a ρ ∈ O ′(V ) such that

{
‖ρq‖q = 1 if q /∈ T ∪ {p},
‖ρq − 	q‖q < ε if q ∈ T ,
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where ε > 0 is chosen small enough such that 	q(Mq) = ρq(Mq) and σqξ − 	qξ ∈
	q(aMq) for any q ∈ T . Now we set aK +μ = σρ(aM + ξ) ∈ cls+(aM + ξ). Then
from the constructions, noting that ρq Jq = Jq for all q /∈ T ∪ {p} by [15, 101:4], and
using (6.3),

aKq + μ =

⎧
⎪⎪⎨

⎪⎪⎩

σq ρq (aMq + ξ) = σq ρq (aMq ) = σq (ρq Jq ) = σq (Jq ) = aLq = aLq + ν if q /∈ T ∪ {p},
σq ρq (aMq + ξ) = σq (	q (aMq ) + ρq ξ) = σq (	q (aMq ) + 	q ξ) = aLq + ν if q ∈ T ,

K p ∼= L p if q = p.

Therefore, aK + μ ∈ Z p(aL + ν) by (6.1), and this proves the lemma. ��
Finally, we are ready to prove the following theorem that determines the third piece

in the splitting (1.2), the cusp form which is orthogonal to the unary theta functions.

Theorem 6.2 Let aM + ξ ∈ spn+(aL + ν). Then we have

�aL+ν(z) − �aM+ξ (z) ∈ U⊥.

Moreover, we have �aL+ν(z) − �spn+(aL+ν)(z) ∈ U⊥.

Proof The second assertion follows directly from (2.9) once we prove the first asser-
tion. The proof for the first assertion will follow an argument similar to [20, Satz
4]. Let p be a prime number such that p ≡ 1 (mod 8NLa). For a square-free pos-
itive integer t , let πt denote the projection onto Ut = ⊕χ(mod a)Ut (4NLa2, χχ4dL ).
If t � NLa2, then Corollary 5.7 implies that πt

(
�aL+ν − �aM+ξ

) = 0. Now sup-
pose that t | NLa2. Note that p̄ ≡ 1 (mod a) so that aL + p̄ν = aL + ν and
gen+(aL+ p̄ν) = gen+(aL+ν).Moreover, since the projection operatorsπt commute
with the Hecke operator T (p2) and Ut is an eigenspace under T (p2) by Proposition
2.6, we conclude from Theorem 4.1 that

∑

aK+μ∈Rp(aL+ν)

πt (�aK+μ) = πt (�aL+ν |T (p2))

= πt (�aL+ν)|T (p2) = (p + 1)πt (�aL+ν).

(6.4)

Here we used the fact that χ(p) = 1 since p ≡ 1 (mod a) and
(−tdL

p

)
= 1 by

quadratic reciprocity and p ≡ 1 (mod 8NLa) in the last equality. Since |Rp(aL +
ν)| = p + 1, we have

∑

aK+μ∈Rp(aL+ν)

πt (�aK+μ − �aL+ν) = 0. (6.5)

We claim that πt (�a J+λ − �aL+ν) = 0 for any cosets a J + λ ∈ Z p(aL + ν). For
any a J + λ ∈ Z p(aL + ν), let

πt (�a J+λ(z)) =
∞∑

m=1

r ′′
a J+λ(m)qtm2

.
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The claim is then equivalent to showing that

r ′′
a J+λ(m) = r ′′

aL+ν(m) (6.6)

for all a J +λ ∈ Z p(aL +ν) and allm. We first show (6.6) for a J +λ ∈ Rp(aL +ν) ⊆
Z p(aL + ν). Since any a J + λ ∈ Rp(aL + ν) is contained in gen+(aL + ν) and the
theta function only depends on the choice of class in the genus (of which there are
only finitely many), we may assume that aL + ν is chosen so that

Re(r ′′
aL+ν(m)) = min{Re(r ′′

a J+λ(m)) : a J + λ ∈ Rp(aL + ν)}.

We see that the real part of the m-th coefficient of each term in (6.5) is non-negative
and the coefficients sum to zero, so Re(r ′′

a J+λ(m)) = Re(r ′′
aL+ν(m)) for any a J +

λ ∈ Rp(aL + ν). Making the same argument with the imaginary part, we conclude
that r ′′

a J+λ(m)) = r ′′
aL+ν(m) for any a J + λ ∈ Rp(aL + ν), giving (6.6) for any

a J + λ ∈ Rp(aL + ν).
To show (6.6) for all a J + λ ∈ Z p(aL + ν), we claim that for any a J + λ ∈

Z p(aL + ν), there is a chain of cosets

aL + ν = aK0 + μ0, aK1 + μ1, . . . , aKn + μn = a J + λ (6.7)

such thataKi +μi ∈ Rp(aKi−1+μi−1) for any 1 ≤ i ≤ n, which immediately implies
(6.6) from the claim for Rp(aL+ν) used inductively. To see that such a chain exists, we
note from the local theory of lattices (cf. [15, 82:23]) that there exists a basis {e1, e2, e3}
of L p and n ∈ Z≥0 such that Q(e2) = Q(e3) = 0, B(e1, e2) = B(e1, e3) = 0,
B(e2, e3) = 1, and {e1, p−ne2, pne3} is a basis of Jp. For 0 ≤ i ≤ n, taking aKi +μi

to be the cosets on the space QL satisfying

a(Ki )q + μi = aLq + ν for all q �= p and (Ki )p = Zpe1 + Zp p−i e2 + Zp pi e3,

one may check that they satisfy desired properties from the definitions of Z p(aL + ν)

and aKi + μi ∈ Rp(aKi−1 + μi−1). Therefore, we conclude by induction that (6.6)
holds for any a J + λ ∈ Z p(aL + ν).

Now for any aM + ξ ∈ spn+(aL + ν), by Lemma 6.1, there is a aK + μ ∈
Z p(aL + ν) such that aK + μ ∈ cls+(aM + ξ). Since �aM+ξ (z) = �aK+μ(z), we
have

πt (�aM+ξ (z) − �aL+ν(z)) = πt (�aK+μ(z) − �aL+ν(z)) = 0

for all t | 4NLa2. Therefore, we may conclude that �aM+ξ (z) − �aL+ν(z) ∈ U⊥. ��

6.2 An algorithm for computing proper class representatives of proper (spinor)
genera

In this subsection,we are interested in constructing an algorithm that returns a complete
set of representatives of proper classes of spn+(aL +ν) (hence, that of gen+(aL +ν)).
In principle, one can iteratively find representatives in Z p(aL + ν) and then compute
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the mass Mass(spn+(aL + ν)) to determine when all proper classes have been found.
However, an independent calculation ofMass(spn+(aL+ν)) (without knowing the set
of representatives) is needed for such a construction, so we instead design an algorithm
to find the complete set of representatives without computing the mass.

Throughout this subsection, let p be a prime number with p � 4NLa2 and p ≡
1 (mod a) so that Rp(aL + ν) ⊆ Z p(aL + ν). Consider the (undirected) graph
X(aL + ν : p) whose vertices consist of the lattice cosets in the set Z p(aL + ν). Two
lattice cosets aK1 +μ1 and aK2 +μ2 are connected by an edge if and only if one is a
p-neighborhood of the other (hence vice versa because p ≡ 1 (mod a)). Then, as in
the lattice case, the graph X(aL + ν : p) is connected due to the existence of chains,
as proven in (6.7). Furthermore, it is known (see the discussion at the end of [17,
Section 1]) that for ternary lattices (i.e., the a = 1 case), it is a tree. Note that by the
definition of p-neighborhoods in Section 3.2, if aK1+μ1 and aK2+μ2 are connected
in X(aL + ν : p), then K1 and K2 are connected in X(L; p), so X(aL + ν; p) is also
a tree for a > 1 in the ternary case.

Moreover, one may show by following a similar argument in [1] that the number
g+(aL + ν : p) of proper spinor genera represented by X(aL + ν : p) is at most two,
and

g+(aL + ν : p) = 1 if and only if j(p) ∈ Q× ∏

p∈�

θ(O+(aL p + ν)),

where j(p) = ( jq)q∈� ∈ IQ is the idèle defined by jp = p and jq = 1 for any
q ∈ � \ {p}.

Assume that we have found p such that g+(aL + ν : p) = 1. We now start finding
the vertices of the graph X(aL + ν : p) to construct a complete set of representatives
of proper classes of spn+(aL + ν), going through the following algorithm:

Step 0: Start by taking the set of a vertex S = S(0)
new := {aL +ν}, and put Snew = S(0)

new.
(∗) Let i = 1, and repeat the following Step i until S(i−1)

new = ∅.
Step i :

(1) Find S(i) := ∪
aK+μ∈S(i−1)

new
Rp(aK + μ) by constructing p-neighborhoods.

(2) Find S(i)
new := {aK +μ ∈ S(i) : aK +μ /∈ cls+(aM +ξ) for all aM +ξ ∈ S}.

(3) Update S with S ∪ S(i)
new, and i with i + 1.

It is clear that this algorithm terminates since the set S consists of inequivalent lattice
cosets in spn+(aL + ν) by its construction. We claim that S form a complete set of
representatives.

Note that the algorithm returns a finite subtree of X ′(aL +ν : p) ⊆ X(aL +ν : p)

given by iteratively adding nodes of X(aL + ν : p) of depth i (with root aL + ν)
which are connected to nodes of X ′(aL +ν : p) of depth i −1 and are not in the same
proper class as any node in X ′(aL + ν : p) with depth < i . Although X(aL + ν : p)

is connected and contains a representative of every proper class in spn+(aL + ν) by
Lemma6.1, it is not immediately clear that every proper class appears in X ′(aL+ν : p)

because our trimming of the tree may have made the classes disconnected. However,
we claim that a representative of every such class appears in X ′(aL + ν : p), which
is equivalent to showing that S contains a full set of reprentatives.
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Let aLi +μi ∈ Z p(aL+ν)with i = 1, 2 be two lattice cosetswhich are isometric to
each other, say aL2+ν2 = σ(aL1+ν1) for some σ ∈ O+(V ). If {aK j +μ j }1≤ j≤p+1
are p-neighborhoods of aL1 + ν1, then one may easily observe from the definition
that {σ(aK j +μ j )}1≤ j≤p+1 are p-neighborhoods of aL2 + ν2 = σ(aL1 + ν1). If we
take a node aK + μ ∈ X(aL + ν : p) of minimal depth (say i) such that no lattice
coset in the same proper class as aK + μ is contained in X ′(aL + ν : p), then let
aK ′ + μ′ be the parent of aK + μ (with depth i − 1). Since aK ′ + μ′ has smaller
depth, by minimality of i there must be aK ′′ + μ′′ ∈ X ′(aL + ν : p) in the same
proper class as aK ′ + μ′, but then if σ(aK ′ + μ′) = aK ′′ + μ′′, then σ(aK + μ) is a
neighbor of aK ′′ + μ′′, and when the algorithm finds aK ′′ + μ′′, either σ(aK + μ) is
the parent of aK ′′+μ′′ (in which case σ(aK +μ) ∈ X ′(aL +ν : p)), or the algorithm
would check σ(aK + μ) at the following step. This contradicts the assumption that
no representative of the class of aK + μ is contained in X ′(aL + ν : p).

To extend this algorithm to obtain a complete set of representatives for gen+(aL +
ν), note that if spn+(aL + ν) � gen+(aL + ν), then one can obtain any other proper
spinor genera in gen+(aL + ν) with p-neighborhoods of aL + ν by choosing a prime
p carefully; this is possible since the “spinor linkage theorem" can analogously be
extended to lattice cosets (see [1, Theorem 2 and Remark]).

Example 6.3 Let L = Ze1 + Ze2 + Ze3 ∼= 〈1, 1, 1〉, ν = e1 + e2 + e3, a = 10, and
consider a coset aL + ν. One may verify that gen+(aL + ν) = spn+(aL + ν) by
computing the index (2.1).2 We illustrate the above algorithm to find all proper classes
in the proper genus of aL + ν:

gen+(aL + ν) = cls+(aL + ν) � cls+(aL + (7e1 + 3e2 + 5e3)).

We pick the prime p = 11, which is congruent to 1 modulo a and is coprime to
4NLa = 40. Recalling the definition of p-neighborhood of lattice cosets in Subsection
3.2, we have

aK + μ ∈ Rp(aL + ν) ⇐⇒ K ∈ Rp(L) and aKq + μ = aLq + ν for all primes
q | a.

Computing 12(= p + 1) such aK + μ ∈ Rp(aL + ν), there are two properly non-
isometric cosets. More precisely, there are three types of K :

K (1) = Z

(
6ei + 6e j + 7ek

11

)
+ Z

(
2ei − 9e j + 6ek

11

)
+ Z

(−9ei + 2e j + 6ek

11

)
,

K (2) = Z

(
2ei + 6e j + 9ek

11

)
+ Z

(−6ei − 7e j + 6ek

11

)
+ Z

(
9ei − 6e j + 2ek

11

)
,

K (3) = Z

(
6ei + 6e j − 7ek

11

)
+ Z

(−9ei + 2e j − 6ek

11

)
+ Z

(−2ei + 9e j + 6ek

11

)
,

where (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} for K (1) and K (3); and (i, j, k) runs
over all permutations of {1, 2, 3} for K (2). Writing this basis for K as { f1, f2, f3},
2 See the proof of [8, Proposition 3.4 (1)] for an example of such a calculation.
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we have K ∼= 〈1, 1, 1〉. Moreover, the p-neighborhoods aK + μ ∈ Rp(aL + ν) are
given by

aK (1)+(9 f1+9 f2+9 f3), aK (2)+(7 f1+3 f2+5 f3), aK (3)+(5 f1+7 f2+3 f3).

Note that the first three aK (1)+μ are properly isometric to aL + (e1 + e2 + e3), and
the remaining nine aK (2) + μ and aK (3) + μ are properly isometric to aL + (7e1 +
3e2 + 5e3).

Now finding all p-neighborhoods aK + μ of aL + (7e1 + 3e2 + 5e3), they are of
the following form: K = Z f1 + Z f2 + Z f3 ∼= 〈1, 1, 1〉 and μ = α f1 + β f2 + γ f3
with

(α, β, γ ) ∈
{
(1, 1, 1), (1, 1, 1), (1, 1, 9), (9, 9, 1), (9, 1, 1), (9, 9, 9),
(5, 7, 3), (3, 5, 7), (7, 3, 5), (7, 7, 5), (5, 3, 3), (3, 3, 5)

}
.

Since the first six choices of μ yield cosets aK + μ isometric to aL + (e1 + e2 + e3),
and the last six choices of μ cosets aK + μ isometric to aL + (7e1 + 3e2 + 5e3), the
algorithm terminates, and hence we have found all proper classes in gen+(aL + ν).
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