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Abstract

In this paper, we consider the decomposition of theta series for lattice cosets of ternary
lattices. We show that the natural decomposition into an Eisenstein series, a unary theta
function, and a cuspidal form which is orthogonal to unary theta functions correspond
to the theta series for the genus, the deficiency of the theta series for the spinor genus
from that of the genus, and the deficiency of the theta series for the class from that of
the spinor genus, respectively. These three pieces are hence invariants of the genus,
spinor genus, and class, respectively, extending known results for lattices and verify-
ing a conjecture of the first author and Haensch. We furthermore extend the definition
of p-neighbors to include lattice cosets and construct an algorithm to compute repre-
sentatives for the classes in the genus or spinor genus via the p-neighborhoods.

Keywords Theta series - Ternary lattice cosets - Half-integral weight modular
forms - Siegel-Weil theorems

Mathematics Subject Classification Primary 11F37 - 11F60 - 11E20 - 11HS5

1 Introduction and statement of results

In this paper, we are interested in an interplay between the algebraic and analytic
theories of quadratic lattice cosets, which are linked by their theta series, with a
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particular interest in the ternary case. Let V be a positive definite quadratic space over
Q with the associated non-degenerate symmetric bilinear form

B:VxV—Q with Q) := B(x,x)

for any x € V. For a Z-lattice L on V of rank k and a non-zero vector v € V, we
call L + v a lattice coset or shifted lattice. If v € L, then the lattice coset L + v is
nothing but the lattice L. By suitable scaling of the quadratic map Q, if necessary, we
may assume that Q(L + v) C Z. The theta series ®7 4, of L + v is defined to be the
generating function for the elements of L + v of a given norm, that is, the following
function defined on the upper-half complex plane H,

Orv(2) = Z qQ(X) = Zr(n, L +v)q",

xelL+v n>0

where r(n, L +v) := |{x € L +v : Q(x) = n}| and ¢ := ¢*™% (z € H). It is well
known that ®7 4, is a modular form of weight k/2 for some congruence subgroup
and a character (for an explicit statement, see Proposition 2.3). Hence ®; , naturally
splits into the sum of two pieces; namely,

®L+v = EL+v + CL+V9

where E1 ) is an Eisenstein series and Cy ., is a cusp form, and this splitting is unique
because it is an orthogonal splitting under the Petersson inner product. Generalizing
work of Siegel [23] and Weil [30] (who considered the v = 0 case), Shimura [22]
showed that E} 4, is equal to

1 Ok
Ogen(L+v) = Z e S (1.1)

- s
2K tuegen(v) 0K + 1) K+pegen(L+v) oK+ 1)

where o(K + ) is the number of automorphs of the lattice coset, and the sums run
over a complete set of representatives of the classes in the genus gen(L + v) of L 4 v.

On the other hand, for the ternary case (when k = 3), the cusp form Cy ., is further
decomposed into two pieces,

Criv=Urtv+ fLtv,

where Uy 4, is in the space of unary theta functions and f7 4, is a cusp form orthogonal
to unary theta functions with respect to the Petersson inner product. In the case of
lattices, Schulze-Pillot [20] showed that one may isolate the unary theta functions in
this decomposition by taking a weighted average analogous to (1.1), with the sum
instead running over classes of the spinor genus of the associated lattice.

Motivated by Schulze-Pillot’s result and examples that resolved questions related
to representations of sufficiently large integers by lattice cosets, Haensch and the first
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author [8, Conjecture 1.3] conjectured that the same decomposition holds for lattice
cosets. Namely, setting!

1 Ok +u
®spn+(L+v) = Z T —
+ —1 +
ZK+M€SPH+(L+V) o (K + 1) K+pespnt (L+v) oT (K +

where the sum runs over a complete set of representatives of the proper classes in the
proper spinor genus spnt (L + v) of L + v and o™ (K + ) is the number of proper
automorphs of the lattice coset (we refer the reader to Section 2.1 for the definition of
the proper genus gen™ (L + v), the proper spinor genus spn™ (L + v), and the proper
class clst (L + v) of L + v), they conjectured the following.

Conjecture 1.1 For a quadratic lattice L and v € QL, we have

®spn+(L+v) =Er+y + ULy,

where Uy 4, is a linear combination of unary theta functions that only depends on
spnT (L +v).

In this paper, we prove that Conjecture 1.1 is true, with Uspn+ (1 41) = UrL+v, and
obtain a dictionary between natural objects occuring in the algebraic theory of lattice
cosets and the orthogonal projections of ®y 4, into the subspaces of Eisenstein series,
unary theta functions, and cusp forms orthogonal to unary theta functions. Let L + v
be a ternary lattice coset and consider the natural splitting of its theta series

®L+v = ®gen+(L+v) + (®spn+(L+v) - ®gen+(L+u)) + (®L+v - ®spn+(L+u))
= Eryy  + ULtv + JL+v-
(1.2)

Here the theta series Ogeq+ (1 4v) and Ogpp+ (1 4 are defined as (2.8) and (2.9) (or the

above), respectively. Our main result is that the two splittings of ®1 4, in (1.2) indeed

coincide termwise.

Theorem 1.2 Conjecture 1.1 is true. Moreover, the following hold:

(1) EL+v(2) = Ogent (141 (2) is an invariant of gen (L + v) (Corollary 4.3),

(2) Uptv(2) = ®spn+(L+u) (z) — ®gen+(L+v) (2) is an invariant Ofsp”+(L +v) (The-
orem 5.6),

3) fL+v(2) = OL41(2) — Oyt (141 (2) is an invariant of clsT (L + v) (Theorem
6.2).

Remark 1.3

(1) As noted above, we scale our lattice cosets so that they are integral. Hence in
Corollary 4.3, Theorem 5.6, and Theorem 6.2, L + v is replaced with a L + v with
v € L, where this scaling is done so that we may start with an arbitrary integral
lattice L. In order to translate these theorems into the forms listed above, see the
definitions in Section 2 for the precise setting.

1 We often distinguish between the genus (resp. spinor genus) and the proper genus (resp. proper spinor
genus), adding a + to the notation when investigating the proper classes.
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(2) Note thatif v ¢ L, then gen(L +v) may not coincide with gen™ (L +v) (for exam-
ple, see [2, Example 4.5]). However, our result combined with Shimura’s result
in [22] on the Eisenstein series £y, implies that Ogen(z+1)(2) = Ogen+(L4v)
when k = 3. We expect that Ogen(z4v) = ®gen+(L+v) for k > 4, but we do not
investigate this question here and are not aware of a proof in the general case.

(3) Asnoted above, if v € L, then the splitting (1.2) of ®; 4, = @ was obtained in
previous work of Schulze-Pillot [20] for ternary lattices. In fact, for a ternary lattice
L, we know that gen(L) = gen™ (L), spn(L) = spn™* (L), and cls(L) = clst(L)
because — 1y is an automorph of L with determinant — 1. Hence the theta series of
the proper genus and the spinor genus coincide with that of the genus and spinor
genus, respectively. Schulze-Pillot determined Uy from algebraic properties of
the p-neighborhood of ternary lattices. In Section 3.2, we extend the concept of
p-neighborhoods of ternary lattices to that of ternary lattice cosets, and study
some algebraic properties and their interplay with the Hecke operators on ® 4.
We also provide a way to explicitly determine Uy ., (see Corollary 5.7).

(4) There is a natural connection between lattice cosets and quadratic forms with
congruence conditions, so Theorem 1.2 yields a natural splitting for theta func-
tions of quadratic forms with congruence conditions. Along this vein, Duke and
Schulze-Pillot [7] proved a similar statement with a modified definition of con-
gruence class (genus, spinor genus) modulo N (e N) that agrees with ours in the
case of lattices. Their definitions of congruence class and genus coincide with that
of van der Blij [29], who proved the Siegel-Weil formula for quadratic forms with
congruence conditions. We note that although the definitions for these algebraic
objects are different, their corresponding theta series should coincide because the
splitting ®; 4, = Ep 4+, + Up4y + fL+v 15 unique (see [7, Lemma 4]). Methods
for computing the congruence classes in the congruence genus (or in the congru-
ence spinor genus) have also not been studied, as far as the authors know, but in
Section 6.2 we use an object constructed to prove Theorem 1.2 (3) to design an
algorithm that returns a full set of representatives of the proper (spinor) genus in
our setting.

In order to prove Theorem 1.2, we investigate the action of the Hecke operators on
theta series of lattice cosets in Theorem 2.5 and Theorem 4.1. Defining the conductor
of L + v to be the minimal a such thatav € L, the action of the Hecke operators reveal
a connection between L + v and other lattice cosets K + p with the same conductor.
As a side-effect, we establish a definition of p-neighborhoods of shifted lattices (see
Section 3.2); in the case of lattices, these p-neighborhoods have played an important
role in explicit constructions of the genus and spinor genus (see [17]), a task which has
previously proven difficult for shifted lattices. After establishing these connections,
most of the results involving the theta series of the spinor genus can be obtained via
measure-theoretic results already in the literature, up to a few tricky technical details
that arise from the relations between shifted lattices coming from the same initial
lattice.

The splitting (1.2) of ®7 4, is also useful for determining which sufficiently-large
positive integers are represented by L + v and it gives an asymptotic formula for
r(n, L+v). The n-th Fourier coefficient of the Eisenstein series E 4, is kind of explicit
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in the sense that one may write it as a product of local representation densities, using
the Siegel-Weil formula for lattice cosets proved by Shimura [22]. Moreover, as long
as n goes to infinity with bounded divisibility by certain (finitely many) “bad” primes
and n is locally represented (i.e., there are no obstructions coming from congruence
conditions), it grows at least like n!/2~¢. The Fourier coefficients of Uy ;, also grow
as fast as that of E7 ., but these are sparse; namely, the coefficients are supported on
finitely many square classes (see Theorem 5.6). Furthermore, one may explicitly deter-
mine Uy, by computing only finitely many coefficients of Ogpn+ (1. 41) — Ogent (L+1)
(see Corollary 5.7). On the other hand, a result of Duke [6] implies that the absolute
value of the n-th Fourier coefficient of f; 1, grows at most like n3/7%¢_ and hence the
contribution from this term may generally be considered to be an error term. Therefore,
every sufficiently-large positive integer n which has bounded divisibility at the “bad”
primes, is locally represented by L + v, and does not belong to any of the finitely
many exceptional square classes is represented by L + v.

For a given shifted lattice L 4 v, one can naively obtain the splitting &, =
Er+y+ Ur+y + fL+v by constructing a basis of the corresponding space of modular
forms and applying linear algebra directly. However, the dimension of the space grows
somewhat quickly with respect to the discriminant of the lattice and the conductor
of the shifted lattice, so this is only practical for relatively small discriminants and
conductors. Our result circumvents the need to do high-dimensional linear algebra,
yielding an independent algorithm for computations. This algorithm requires only the
construction of a system of representatives of the proper classes of gen™ (L + v) and
spn™ (L + v). Using our modification of the definition of the p-neighborhood of a
lattice to that of lattice cosets, there is an algorithmic way, at least in principle, to list
out the representatives, generalizing the algorithm in [17] for finding representatives
in the case of lattices (see Section 6 for further details).

The paper is organized as follows. We first give some preliminary definitions and
known results in Section 2. Especially, the particular space of modular forms in which
the theta series ® 4, lies is described, and the Hecke operators are defined. In Section
3, we introduce some algebraic structure of lattice cosets including p-neighborhoods
of lattice cosets. In Section 4, we discuss how the action of the Hecke operators on
the theta series of lattice cosets is related to its p-neighborhood, and determine the
Eisenstein series E74,. We investigate Ur 4, in Section 5, and we finally determine
that f7, is orthogonal to unary theta functions in Section 6.

2 Preliminaries
2.1 Quadratic lattice cosets
We introduce some definitions of quadratic spaces, lattices, and lattice cosets, and
describe our setting for lattice cosets. We refer readers to [15] for more details.

As in the introduction, let V be a positive definite quadratic space over Q with the
associated non-degenerate symmetric bilinear form

B:VxV—Q with Q(x) = B(x,x)
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for any x € V and the special orthogonal group
Ot (V)={o € GL(V) : B(ox, oy) = B(x,y) forany x, y € V and det(c) = 1}.

Let6 : O (V) — Q*/(Q*)? be the spinor norm map (cf. [15, §55]) and denote its
kernel by
O'(V)={oce0t(V):0(c)=1)}.

Let OX(V) and O, (V) be the adélizations of O* (V) and O'(V), respectively.

A finitely-generated Z-module (hence free Z-module) L in V is called be a lattice
on Vif QL = V. Let Q = Qg be the set of all spots (or places) including the infinite
spot 0o. We denote the localization of a lattice L in the localization V), of V at p by
L, for any prime spot p and Lo = V.

Consider a lattice L on V. For any non-zero vector vy € V, we define the shifted
lattice in V to be the set L + vg. The conductor of a shifted lattice L + vg is defined to
be the smallest positive integer a such that avy € L. We can always realize a quadratic
Diophantine equation as being induced from a shifted lattice in some quadratic space
(see Section 1 of [27]). This is equivalent to study the set aL + v (where v = avp) in
V, which is a coset in L /aL. Hence, throughout this article, the term “lattice coset",
or simply “coset", always refers to the set aL + v, where L is a lattice on V,a is a
positive integer, and v € L whose conductor with respect to aL is equal to a. This is
to emphasize the role of the conductor of lattice cosets in our results.

We always assume that any lattice L is integral, that is, B(L, L) € 7Z so that we
have Q(aL + v) C Z. The discriminant dy, of L is the determinant of the matrix
A = (B(e;, ej)) for a basis {e;} of L, and the level N, is defined to be the smallest
positive integer N such that NA~! has coefficients in Z.

From [2, Lemma 4.2] or [27, Lemma 1.2], OX(V), 0% (V), and OA(V) all act on
aL + v. Hence we may define

gen™ (aL + v) := the orbit of aL + v under the action of OX(V)

which is called the proper genus of aL + v,
spn+ (aL + v) := the orbit of aL 4 v under the action of 0+(V)0A(V)

which is called the proper spinor genus of aL + v, and

clsT(aL + v) := the orbit of L + v under the action of O™ (V)
which is called the proper class of aL + v. Clearly,

clsT(aL +v) € spn+(aL +v) C gen+(aL + v).

Set
OV (aL+v)={oc € OT(V):0(alL+v)=al+v} and o (aL+v)=|0T(aL+v)|.
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The groups O (aL ,+v) for any prime p and OX (aL+v) may be defined analogously.

The number of (proper) classes in gen™(aL + v) is called the class number of
aL +v.Itis well-known that the class number is equal to the number of double cosets
in 0T (V)\ OX(V)/ OX (aL 4+ v) and this is finite (see [27, Corollary 2.3], see also [2,
Corollary 4.4]). The number g*(aL + v) analogously counts the number of (proper)
spinor genera contained in the (proper) genus. The next proposition recalls and extends
[31, Proposition 2.5].

Proposition 2.1 Let aL + v be a coset on a quadratic space V over Q, and let 6 be
the spinor norm map defined on OX(V). If dim(V) > 3, then the number of proper
spinor genera in gen* (aL + v) is given by

[Ig : Q* ]_[ 0(0" (L, +v))l. 2.1)

pef2

Moreover, suppose thatdim(V) = 3 andlet x € V be anon-zerovectorwith Q(x) =n
and V.= Qx L W. Then the spinor norm map induces an isomorphism

05 (V)]0 (V)OL,(V)OF (W)O (aL+v)=1o/Q* NgoUE) [ [ 0(0 (aLp+v)).
pER

where E = Q(y/—ndy), Ig and Ig are the idéle groups, and N q is the norm map.

Proof The first assertion was made in [31, Proposition 2.5], but we provide a brief
proof for completeness. Note that forau, v € OX(V), the coset v(a L + v) belongs to
spnt (u(aL +v)) if and only if v € OF (V)0 (V)uO (aL +v). This group is equal
to OJ“(V)OA(V)O:‘r (aL + v)u since O/, (V) contains the commutator subgroup of
OX (V). Hence, the number of proper spinor genera is given by

[0F(V): 0Ot (V)0 (V)OS (aL +v)].

On the other hand, by [15, 102:7], the spinor norm map 6 induces the isomorphism

05 (V)/OT (V)0 (V)OX(aL +v) =4 Ig/Q* ]_[ (0t (aL,+v)). (2.2)
peR

Furthermore, we show that the map 6 induces the following isomorphism

6: 01 (V)/0F (V)0 (V)OF(W)0F aL +v) S In/Q*NejgUp) [] 60 @Ly +v). (2.3)
pe

We first note that —ndy is not a square in Q since it is a negative number so that
9(0+(W,,)) = NEp/Qp(EPX) for any p | p. Hence, the map in (2.3) is well-defined.
The surjectivity of (2.3) follows from that of (2.2). Finally, assume thata s = (s,) €
OX(V) satisfies 0(s) = b - j - i for some b € Q*, j = (j,) € Ng/oUE), and
i = (ip) € ]_[1,EQ 9(0+(aLp + v)). Since all the 0(sx), Jjoo, and i are positive
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numbers, we should have b > 0. Thus, b = 6(o) for some ¢ € O (V) by [15,
101:8]. On the other hand, i, = 6(X,) and j, = 6(h)) for some X, € O+(aLp+v)
and h), € 0+(Wp) for any p € Q. Since 0(sp) = 0(0)0(hp)0(Z)) for any p € Q,
we may conclude that

seo-h-X-04(V)<S O0T(V)O,(V)OL(W)O L (aL +v),

where h = (h,) € Of (W) and £ = (X,,) € O (aL + v). Thus the map in (2.3) is
injective. This completes the proof of the proposition. O

2.2 Modular forms

We briefly introduce modular forms of half-integral weight below. We refer readers
to [14] for an introduction to modular forms of integral weight or for more details.
For a positive integer N, we require natural congruence subgroups of SL;(Z)
defined by
To(N) ={(25) e SLy(Z) : c=0 (mod N)},

Ti(N)={(25)eTo(N):a,d=1 (mod N)}.
Foray = (95) € I'o(4) and k € % + Z, define the slash operator on a function
f:H— Cby

Fley@=(5) e e+ fra.

wheree; =1ifd =1 (mod 4),e4 =i ifd =3 (mod 4), and (-) is the Kronecker—
Jacobi-Legendre symbol. We call f a (holomorphic) modular form of weight « on
I' € I'y(4) (I a congruence subgroup containing ( } 1)) with character x if

(1) fley = x(d)f forany y = (94) €T,
(2) f is holomorphic on H,
(3) f(z) grows at most polynomially in yasz = x +iy — QU {ioc}.

We moreover call f acusp formif f(z) — 0asz — QU {ioco}. The space of modular
forms (resp. cusp forms) of weight «, character x and congruence subgroup I', will
be denoted by M, (I", x) (resp. Sk (I', x)). The space of Eisenstein series, denoted by
E (T, x), is the orthogonal complement of S, (I", x) in M, (I", x) with respect to the
Petersson inner product (for an introduction and properties of the inner product, see
[12, Chapter IIT]). If f is a modular form for a congruence group I' containing () 1),
then f has a Fourier series expansion

f@) =) amq",
n=0

where ¢ = €™z In particular, if f is a cusp form, then a(0) = 0.

W Birkhauser
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o0

For k > 3/2,let f(z) = Y. an)q" € Sc(To(N), x) (4 | N). For a square-free

n=1
positive integer ¢, define the ¢-th Shimura lift by
o0
Fi) =) Anq",
n=1

where A;(n) is defined by
iA,(n)n_s = (i x (m) <_—1>K_5 <L) m'(_g_s> (i a(tm2)m_s> .
n=1 m=1 m m m=1

Shimura [21] proved that F;(z) € Ma,e—1(I'o(Ny), XZ) for a suitable ;. Later, Niwa
[13] showed that N, can be taken as N /2 independently of t. For k > 5/2, F; is a cusp
form, but the situation is more complicated when x = 3/2, requiring a more careful
analysis of the space

o
2
Us(N. x) = S3,2(Co(N). x) N {f(z) = a(mng™ }
n=1
spanned by unary theta functions. Specifically from the results in [4], [11], [26], the
t-th Shimura lift F; of f is a cusp form if and only if f belongs to the orthogonal

complement U,J- of Uy in 83,2(T'o(N), x) with respect to the Petersson inner product.
For a Dirichlet character ¥ modulo m.,, consider

o
2
h(z,9) =Y Y(nng" .
n=1
Note that the space U, (N, x) is spanned by
2 2 2 —4t
h(tuz, ) cu € Z, 4tmyu” | N, y =y — )¢ - 2.4)

This follows from the fact that the spaces A (tu’z, y) for different ¢ or v are orthogonal
to each other with respect to Petersson inner product and the modularity given in [21,
Proposition 2.2].

2.3 Elementary theta functions

Let k be a positive integer, A a positive definite k X k symmetric matrix, # an element
in Z*, and N a positive integer satisfying the following conditions:

Both A and NA™! have coefficients in Z;, Ah € NZK. 2.5)

) Birkhauser
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In [21], Shimura defined the theta function

9(zh AN, P) = 3 P(x) - g /2N, 2.6)
xeZk, x=h (mod N)

where P (x) is a spherical function of order v € Z>( with respect to A. In this article,
we only concern the case when P (x) = 1 wherev = 0, or P(x) = x withk = 1 where
v = 1. Indeed, the function % (z, ¥) defined in (2.4) is given by a linear combination
of the theta functions corresponding to the latter case (see [21, Proposition 2.2]).
Moreover, Shimura [21] proved the following transformation formula of the theta
functions.

Proposition 2.2 [Proposition 2.1 of [21]] Let ¥ (z; h, A, N, P) be defined by (2.6)
under the assumption (2.5), and let y = (?Z) € SL»(Z) with b = 0 (mod 2) and
¢ =0 (mod 2N). Then

det(A 2c\F
Dy () h, A, N, P) = e(ab-h’Ah/2N2)< e; )> (f) e7%(cz + d)F 2z ah, AN, P),

where e(z) 1= ¢*™i%.

2.4 Masses of genera and spinor genera
For h = spnt(aL + v) or gent (aL + v), define the mass of b by

1

Mass(b) = Z m,

aK+peh

2.7)

where the sum runs over a system of proper classes in . Using Lemma 5.3 and [27,
Corollary 2.5], one may relate the masses of the proper spinor genus and the proper
genus of a shifted lattice via

Mass(spn+ (aL +v)) = Mass(gen+(aL +v))

gt(aL +v)
]_[p<oo[0+(aL,,) : 0T (aL, +v)]

- +
= Mass(gen* (aL)) gt (aL +v)

3

where g™ (aL + v) is the number of proper spinor genera in gen™ (aL + v). Generally
speaking, each of the factors on the right-hand side of the above equation may be
explicitly computed; Mass(gen™ (aL)) may be deterimined via the Minkowski—Siegel
formula and for almost all prime p we have [0+(aL,,) : 0+(aL,, +v)] = 1, while
these indices can be computed in general. Based on work of Xu [31, Proposition 2.5],
a formula for g¥ (aL + v) is given in Proposition 2.1 and in practice one can evaluate
the quantities there, although a general formula is not known.

W Birkhauser
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In Section 6, we develop an algorithm for computing the representatives of the
proper (spinor) genus of a shifted lattice, which could in principle be used to directly
compute (2.7) via the definition, after an appropriate calculation of 0™ (aK + ).

2.5 Theta series for cosets

Let aL + v be a coset on a quadratic space V of rank k. Note that Q(aL +v) C Z
since we are assuming B(L, L) C Z. For a positive integer n, we define

R(n,aL +v):={xe€alL+v:Qkx)=n} and r(n,al +v) :=|Rn,al + v)|,

and the theta series ®,71,(z) of the coset aL + v is defined as

o0
Ouriv(@) = Y ¢%% =) r(n,al +v)q".
xealL+v n=0

Note that any coset in gent(aL + v) has conductor a. We define the theta series
Ogent (aL+v)(2) of gent (aL + v) and r(n, gen™ (aL + v)) by

o0
Ogent(aL+v)(2) = Y _ r(n, gent (aL +v)) - ¢"
n=0
. 1 Z Ogx+(2)
" + o (aK + )
Mass(gen™ (aL + v)) oK caont @L+v) ot (aK + )
2.8)
and the theta series O+ (a14v)(2) of spn*(aL 4 v) and r(n, spn* (aL + v)) by
o0
Ogpnt (aL4)(2) = Y _r(n,spnt(aL +v)) - q"
n=0
- 1 Z Ogk+(2)
" + o (aK + )
Mass(spnt(aL + v)) K+ peapnt @Liv) ot(aK + )

(2.9)
The summation runs over a system of representatives of proper classes in the proper
genus or in the proper spinor genus of aL + v.
For any non-zero integer d, let x; denote the character y,(-) = (4) obtained from
the Kronecker symbol. The following proposition shows that the theta series of cosets
of rank k are modular forms of weight k/2.

Proposition 2.3 Let aL + v be a coset on a quadratic space V of rank k. Let Ny, be
the level of L and dy, the discriminant of L. Then

My 2(To(4NLa®) NTi(a), x44,) ifk is odd,

® L+ (2) € . .
ay {Mk/z(Fo(4NLa2) NT1@). X(_1yk24aq,) ik is even.
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Proof Let L = Zey + - - -+ Zey, A the Gram matrix of L with respect to the basis {e;},
and letv = (vq, ..., vr)" where v = viej + - - - vie for some v; € Z. We abbreviate
N := N, for ease of notation. Note that both aA and (Na)~!(aA) = N~'A have
coefficients in Z, and (aA)(Nv) € (aN)Z*. Moreover,

ﬁ(zaz; NU,aA, Na, 1) — Z q2a~x’((1A)X/2(Na)2
x€Zk, x=Nv (mod Na)

= > 7N = OuL ().

x€Zk, x=v (mod a)

For any y = (1;';) € I'o(4Na?), the matrix y' = (r/’;a 2‘;‘1) € I'p(2Na), and note

that 2a(yz) = ¥'(2az). By Proposition 2.2, we have

Our+v(yz) = ¥(2a(yz); Nv,aA, Na, 1) = ¥(y'(2az); Nv,aA, Na, 1)

_, <p(2aq)N2aQ(u)) (ak det(A)) (2(r/2a)>k k
2(Na)? s s §

(rz + $)*?9(2az; pNv,aA, Na, 1)
d r\k _
= (—L> (5) ez 49" Ouripm(@.

s
Hence we have obtained for any y = (’,’ ’g) € I'o(4Na?) that

(®aL+v|k/2V)(Z) = X(s)®aL+pu(Z) = X(V)@)aLerv(Z)a (2.10)

where x = xaq, if k is odd, and x = x(_jjk/244, if k is even. Furthermore, if p = 1
(mod a), then we have ® 11y, (z) = O41+(2), and hence this proves the proposition.
O

The next proposition allows us to decompose the space Mk/z(Fo(4NLa2) N
T'1(a), x44,) into the spaces My2(To(4Na?), X X4d;)-

Proposition 2.4 Let k, M, and N be positive integers such that M | N, and let \ be
a Dirichlet character modulo N. Then

Mij2(Co(N) N1 (M), ¥) = @D Mija(To(N), x ).
X

where y runs over all Dirichlet characters modulo M such that x (—1) = ¥ (—1) ifk
is odd, and y (—1) = (—=1)*/2y:(—1) if k is even.

Proof The proposition for the case when k is even was proved in [3, Theorem 2.5].
The case when k is odd may also be proved in the same manner. O
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Now let k be an odd positive integer, M and N positive integers such that M | N,
and i a Dirichlet character modulo N. For a prime number p, we define the Hecke
operator T(pz) on the space My 2(I'o(N) NT'1(M), ) by

T(p?) =P T4y P,
X

where x runs over all Dirichlet characters modulo M, and T'|, k2.5 ( p?) is the Hecke
operator on the space My 2 (I'o(N), x ) definedin [21]. The followmg theorem shows
the relation between Hecke operators and Fourier coefficients of theta series @, 4+, (2)
of cosets.

Theorem 2.5 Let k > 3 be an odd integer, aL + v a coset of rank k, Ny, the level of
L, dy, the discriminant of L, and let p be a prime number. Put

(OuLto|T(PP)() =D _ bn)g".

n>0

If p | ANpa?, then b(n) = r(p*n,aL +v). If p 1 4Nya?, then

4d
b(n) = r(p*n,al +v) + ( ) ( Ln) P~ Vr(n,al + pv)
p p
4d _
* (,,—zL> P rn/p?al + pPv),

where A = (k — 1)/2, and p is an integer which is an inverse of p modulo a.

Proof Noting that

Our1v(2) € My2(To(4NLa*) NT1(a), xaa,) = @ My a(To(ANLa?), X x4d, ),
x (mod a)

let us write ©,414,(2) = > fy(z) for some fy(z) = Y ay(n)q" €
x (mod a) n>0

My /2(To(4N1a?), x xaa,)- By the definition of T(p?) and by [21, Theorem 1.7],
we have b(n) = Zx by (n) with

4dp N\ [ —1\* 4dy
by (n) = ay (p n>+< L) (—) (—) re lx(p)ax(n)+< )p"*zx(p%axm/pz).
p p p P @211

Note that if p | 4Npa?, then (4dL) x(p) =0,and hence b(n) = Y ay (p*n) =
x(mod a)

r(p’n,aL + v). Now we assume that p { 4Nya”. Let m be an integer such that
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(m,4Npa®) = 1. Then there is a matrix y,, = (%) € T'o(4Npa?). Note that by
(2.10),

X4dy (m)®aL+rhv(Z) = (®aL+v|§Vm)(Z) = (2{; )(fx|§ym)(z)
x (mod a

= Xaa, (m) Y x(m)fy(2),

x (mod a)

where m is an integer which is an inverse of m modulo a. By comparing the Fourier
coefficients of both sides, we have

rinal+mv) =Y x(m)ay(n). (2.12)
x (mod a)

for any integer n > 0 and (m,4Nya”) = 1. Plugging in the equalities (2.12) with
m = p and m = p? into (2.11), we have the formula in the statement of the theorem.
O

Now we define some notations for the ternary case, the case when & = 3. We put

U= @ U, and U-= P Uy,

x(mod a) x (mod a)

where

Uy = @ Ui(4NLa®, x xad,) S S32(To(4NLa®), X Xady)-

t:square-free

and U XL denotes the space orthogonal to Uy, in S3,2(I'o (4N La?), X X44,)- We note that
each subspace occuring in the decomposition of U, is an eigenspace for the Hecke
operators T (p?), as follows.

Proposition 2.6 [Hilfssatz 2 of [20]] Let p be a prime number such that p ¢t
4Npa®. Then U,(To(4Npa?), X Xd,) 1s an eigenspace for T (p?) with eigenvalue

x(p) (Z4) (o + 1.

3 Some algebraic structure of lattice cosets

In this section, we introduce several lemmas regarding algebraic structures of lattice
cosets, which will be used in the following sections.

3.1 Genera of lattice cosets with the same conductor

The following lemma shows some properties shared by the cosets of conductor a in
(aL +Zv)/(aL).
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Lemma 3.1 Let s be an integer coprime to the conductor a of aL + v. We have the
following:

(1) Of(aL+v) = Ot (aL+sv)and OF(aL,+v) = Ot (aL,+sv) for any prime

p-

(2) If genT(aL + v) = I_Ilgifhgencls"'(aLi + v;), then genT(aL + sv) =
u15i5hgencls+(aLi + sv;).

(3) If spnT(alL + v) = Uj<j<p,,clsT(aL; + v;), then spnt(al + sv) =

spn

UlsishspnClS+(aLi + sv;).

Proof (1)Leto € O (aL +v). Then o(aL) = aL and o (v) — v € aL. Multiplying
by s, we have o (sv) —sv € saL C aL,hence o € O™ (aL + sv). Likewise, we have
OF(aL+5""1v) € Ot (aL+s*v) forany k € N. Note thataL +v = aL + sy,
where ord, (s) > 1 is the order of s modulo « in the multiplicative group (Z/aZ)*.
Therefore, we have

OF(aL +v) € Ot (aL +sv) € 0T (aL + s”%®y) = 0T (aL + v),

which proves the first statement. The equalities for local cosets follow in the same
manner.

(2) Noting that any coset in gen™(aL + sv) has conductor a, let ak + u €
gen™ (aL + sv) be any coset in the proper genus of aL + sv. Then for any prime
p, there exists o, € O1(V,) such that 6,(aK) = aL and 6,() — sv € aL,. Let s
be an integer which is an inverse of s modulo a. Then o, (su) — ssv € saL, C aL,.
Since ssv — v € aLp, we have

op(Sp) —v =0p(Sp) — 55V + 55V —v €al.

Hence 0, (aK +51) = aL ), + v for any prime p, thatis,aK +5u € gen™ (aL +v).
Therefore, 6 (aK + 5u) = aL; 4+ v; forsome o € OY(V)and 1 <i < hgen. One
may easily show that this c € O (V) satisfies o (aK + ) = aL; + sv;. This proves
the second statement.

(3) The third statement may also be proved similarly as the proof of the second
Statement. O

3.2 p-neighborhood of lattice cosets

Let p be a prime number such that p { 4Ny a?. Let j be an integer which is an inverse
of p modulo a. Define R, (aL + v) to be the set of cosets aK + u with conductor a
satisfying the following:

(1) aKy + u =al, + pv for any prime g # p.
2) (Lp:L,NKy)=(K,:L,NKp)=pand Q(K,)Z, = Zp.

From the second condition, K, is also a Z,-maximal lattice, hence K is isometric
to L, by an element in O (V,,), due to the uniqueness of a Z,-maximal lattice up to
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isometry. Furthermore, by the local theory of lattices (cf. [15, 82:23]), there exists a
basis {e1, 2, e3} of L such that

QO(e1) = —dr, O(ez) = O(e3) =0, B(ey, e2) = B(ey, e3) =0, B(ez, e3) =1,
and {ey, pilez, pes}isabasisof K,. (3.1)

Noting thataK, + = Kp+u = Kp,aLp+pv =Ly +v =Ly, and pK, C L),
we have
aK 4+ e gen+(aL+15v) and p@aK +p) CalL+v

for any aK + € Rp(aL + v) (for further details, see (4.3) below). Hence for
n € N, one may note that r(pzn,aL +v) > 0if r(n,aK + ) > 0 for some
aK +u € Ry(aLl +v).

Forann e Nandan x € R(pzn, alL + v), we define

wp(x,al +v) = [{aK +u € Ry(al +v) : x € pKp}l.

These numbers for special types of lattices were considered in [16], and were computed
by means of quaternion orders. The following lemma provide some properties about
what we have just defined.

Lemma 3.2 Let aL + v be a ternary coset with conductor a, p a prime number such
that p 1 ANpa? x € R(pzn, aL+v)anddj, the discriminant of L. Under the notations
given above, we have the following.

(1) Foranyk € Z>o,aK+u € Ry(aL+v) ifandonlyifaK—i—ﬁku € Rp(aL—I—ﬁkv).
2) |IRp(aL +v)|=p+1.

1 ifx € Ly\ pLy,
@) 7wy al +v) = 11+ (%) ifx € pLy\ p*L,.
p+1 if x eszp.

Proof (1) Let k € Zx. For any prime g # p, note that aK, + Pu= aLg + AR
if and only if
K, = Ly and ﬁk,u — ﬁkHv €al,

If (a,q) = 1, then aK, + p*pu = K4 + p*u = K4 = Ly = aLy + p*ho.
Otherwise, we have g | a so that (p,q) = 1. Hence u — pv € al, if and only
if pfu — prtlv e aL,. Therefore, from the definition of the set R,(aL + ),
aK +p € Ry(aL +v)ifand only if aK + p*u € R,(aL + pFHlv).

(2) Note that two cosets are equal if and only if they are locally equal at all prime
spots. Hence by the definition of the set R, (aL + v), we need only to investigate how
many distinct Z,-lattices K, satisfy (L, : L, N K,) = (K, : L, N K;) = p and
QO(Kp)Zy = Zp. Putting M = pK, and recalling (3.1), this is equivalent to finding
all sublattices M of L, with elementary divisors (also called invariant factors) 1, p, P>
such that Q(M)Z,, = p*Z,.
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To find possible sublattices M of L, we fix a basis {e1, e, e3} of L, such that
QO(er) = —dr, Q(e2) = Q(e3) =0, B(er, e2) = B(ey, e3) =0, and B(ez, e3) =1,

which is known to exist by the local theory of lattices.
We then choose three Z ,-linearly-independent elements

a; = ajle; +aziex+azies, ay = ajpe; +axex+azes, a3 = ajze; +axzey +asze;
of L, that generate sublattices with the desired properties. Note that if we correspond
any sublattice Zya| + Zpaz + Zpaz of L to the matrix A = (a;;) € M3(Z,) with

det(A) # 0, then the sublattices of L, with invariant factors 1, p, p2 correspond to
the left cosets of the double cosets

GL3(Zy) - diag(1, p, p*) - GL3(Zy)/GL3(Zy).
Moreover, every left coset from the above contains exactly one element in the set

C={C=(cij) e M3(Z) :c; = pk’ for some k; € Z>g, c11¢22033 = p3,
cij=0ifi < j, and0 < ¢;; < ¢;; if j < i}
of lower-triangular matrices of determinant p3. Therefore, if we search for the matrices
in C whose corresponding sublattice has norm p2Z p» and check whether these indeed

have invariant factors 1, p, p2 in L, one may conclude that our pK, is one of the
following:

My = Zp(er + ues + ves) + Zy(pes + pwes) + Zy(pes),

(3.2)
My =Zppey + Zpes + prze3, and M3 =Zp,pe + pr262 + Zpes,
where 0 < u, w < p and 0 < v < p? are integers satisfying
—dp +2uv =0 (mod pz) and v4+uw =0 (mod p). (3.3)

Note that u, v, w are not divisible by p, and that if 0 < u < p is determined, there is
only one choice for0 < v < p?, and hence 0 < w < p is also determined. Therefore,
there are p — 1 +2 = p + 1 cosets aK + u in R,(aL + v), namely, the cosets
aK + € Ry(aL +v) such that pK, is one of the Z, sublattices M, , M2, or M3
of L.

(3) From the definition of 77, (x, aL +v), it suffices to count the number of sublattices
of L, in (3.2) containing a given x € R(p*n,aL + v). Since any sublattice in (3.2)
contains p2Lp, wehave r,(x,al +v) = p+1ifx € p2L[,. On the other hand, note
that fora o, € O(L ), we have

(Lp:LyNop(Kp)) = (op(Ly):op(Ly)Nop(Kp))=(Ly:LyNKp),
(0p(Kp): LpyNop(Kp)) = (0p(Kp):op(Lp)Noy(Kp)) =(Kp: L, NKp).

) Birkhauser



5 Page180f39 B. Kane et al.

Hence, if there is a vector x” € L, with Q(x) = Q(x') anda o, € O(L)) (not
necessarily a rotation) such that x’ = opx, then

wp(x,al +v) = [{aK +pu € Ry(aL +v) : x € pK,}|
=[{aK +un € Rp(aL +v) :0px € p-op(Kp)}
=l{aK'+ ' € Rp(aL +v) : x" € pK},

where a K’ + 1" is the coset in R, (aL + v) such thataK;, +u = K;] =0,(Kp) and
aK, + ' = akKy + p for any prime g # p.
2

If x € L,\ pLp, then x" := ey + 5"e3 € L, \ pL,, satisfies Q(x) = Q(x').
Henceby [9, Theorem 5.4.1], there existsao), € O(L))suchthato,x = x’. Moreover,
among the sublattices of L in (3.2), only M; contains x’. Hence, Tp(x,al +v) =1

Now we consider the case whenx € pL \ szP. First, assume that (%) =1.
Then n = —&2d;, for some ¢ € Z,, . Hence x’ = peey satisfies Q(x') = —p?e2d; =
p*n=Qx)andx/p,x'/p € L, \ pL,. Again by [9, Theorem 5.4.1], there exists a

op € O(Lp) such that o, (x/p) = x’/p, hence 0,x = x'. Itis clear that both M5 and
M3 contain x’. Assume that a sublattice M, , contains x" = pee;. Then

peel = pe(er + uey + ves3) + b(pes + pwes) + c(p*es)

forsome b, ¢ € Zp,sothath = —eu and (v —wu) = —cp. Hencev = uw (mod p).
However, by (3.3), we have 2v = v + uw = 0 (mod p), which is a contradiction.
Hence

—d
JTp(x,aL+v):2=1+< Ln).
p
In the case when (%) = —1 or 0, one may argue in the same way to show that

p(x,al +v) =0 or 1, respectively, by taking x' = pey + ”2—"e3; the details are left
to the interested reader. This completes the proof of the lemma. O

4 Hecke Operators on the theta series
In this section, we discuss how the action of the Hecke operators on the theta series

of cosets is related to its p-neighborhood (p t 4Nz a?). For two cosets aL + v and
aM + &, we put

cpal +v,aM + &) =|{aK +pn € Ry(aL +v) :aK +p € clst(aM + &)}
Let aK + € Rp(al + v) and let {aL; + v;}1<j<n be a set of representatives of
proper classes of gen™(aL + v). Since Ry(aL +v) C gent(aL + pv), Lemma
3.1 implies that aK + p € clst(aLj + pvj) for some 1 < j < h. Moreover, if

o(aK+u) =aL;+ pvjforsomeo € O (V), theno(ak + p*u) = aL;+ pktly;
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for any k € Z>¢. Therefore, together with Lemma 3.2 (1), we have
T . —k L sk
cpal +v,al;+ pvj) =cp(al + p*v,al; + p"" vj)

for any k € Z>¢. Hence for 1 < i, j < h, the following are defined independent of
k e Zzo:

7ij(p?) = cplali + pvi,alj + p*v)) = cpali +vi,aLj + pv)).
For any k € Z=¢, put

Our+pkv (2)
0Og,(2) =
®aL/1+]3k Vi (Z)

We now describe a generalization of the Eichler’s commutation relation for cosets as
follows.

Theorem 4.1 Let aL + v be a ternary coset with conductor a, and let p be a prime
number such that p { 4Ny a*. We have

O T(PN@ = Y. Oukiu(). (4.1)
aK+upeR,(al+v)

Furthermore, for any k € Z=o, we have
OG T (p*) = (i (p*) OG-
Proof According to the discussion above, the furthermore part of the theorem follows

immediately once we prove (4.1). Hence it suffices to show (4.1), that is, by Theorem
2.5, forany n € N,

—4d;n _ _
r(pzn,aL—i—v)—l—( L )r(n,aL—l—pv)+por(n/p2,aL+p2v)
= Z r(n,akK + ). 4.2)
aK+peR,(al+v)
To show (4.2), we will count the sum > 7p(x, aL +v) in two different

xeR(p%n,aL+v)
ways. First, note that for any aK + € R,(aL + v), we have

paK + w)y = paL + pv)y =aly + ppv = alL, + v for any prime g # p,
paK +w)p =pK, CL,=(aL+v),.
4.3)
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Hence, x € R(p*n,al + v) with x € pK, if and only if x € p(aK + w) with
Q(x) = p*n. Thus,

Z Tp(x,al +v) = Z Z 1

XeR(p?n,aL+v) xeR(p2n,al+v) aK+ueR,(aL+v)
xepkKp,

) > ! “.4)

aK+ueRy(al+v) xep(aK+up)
Q()=p*n

= ), rakK+p.

aK+ueR,(al+v)

and the last term is equal to the right-hand side of (4.2).

On the other hand, by Lemma 3.2 (3), the sum > 7p(x, al+v)isequal
xeR(p?n,aL+v)
to

Z Tp(x,al +v) + Z Tp(x,al +v) + Z wp(x,al +v)

xeLp\pLp xepLy\p*L, xep’L,

= Y 1+ Y <1+<_dw>>+ Y. (+p)

xeLp\pLp xepL,\p*L, p xep?L,

—4dpn
=X () X e X,
xeR(p?n,aL+v) p xepL,\p*L, xep?L,

4.5)
where we omit the condition Q (x) = p?n in the intermediary sums for ease of notation.
Note that if p | n, then (#) = 0,and if p | n, then x/p € L, if and only if
x/p e Ly\ pL,since Q(x/p) =nand Q(L,) C Zj,. Moreover, x € aL + v with
X € pkL,, if and only if x/p* € aL + p*v for any k € Z-(. Hence the last equation
of (4.5) is equal to

—4dLn

r(pzn,aL—i—v)—l— ( )r(n,aL+]3v)+pr(n/p2,aL~|—152v),

which is equal to the left-hand side of (4.2). This completes the proof of the theorem.
(]

We next use the above theorem to investigate the first piece in the splitting (1.2), the
Eisenstein series part of the theta series of a coset a L 4 v. Specifically, we evaluate the
action of the Hecke operators T (p?) on the theta series Ogen+(aL+v)(2) for the genus.

Theorem 4.2 Let aL + v be a ternary coset with conductor a, and let p be a prime
number such that p 1 4N, 1a?. Then, we have

(®gen+(aL+v)|T(p2))(Z) =(p+ 1)®gen+(aL+ﬁv)(Z)~
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Proof Let{aL;+v;}1<i<n be asetofrepresentatives of proper classes of gen(aL+v).
h h
Note that ) m =y m by Lemma 3.1 (1). Thus, by Theorem 4.1,
i=1 e j=1 S

it suffices to show that

h h

1 _ OuL; +pv; (2)
_— cp(aLi +vi,aLi+ pvi)Our . 15v.(2 +1 —_— )
;0+(HL,' T ; p( i i jT P j) aL},+pv/() (p )Z +(aL +,UUJ)
(4.6)

Note that foraK + u € Ry(aL; +v;),ifaK +u € cls+(aLj + pv;), then there is
aoc € OY(V)suchthataK + pu = o(aL; + pv;). Hence we have

0+(aLj +pvj)eplaLli+vi,alj+pv;) = |{o € otw) to(alj+pvj) € Rp(aL; +v)}l,

and it follows from the definition of R, (aL; +v;) thato (aLj + pv;) € Ry(aL; +v;)
if and only if o~ YaL; + p*v) € Ry(aL; + pv;). Hence we have

0+(aLj + pvj)cplaLl; +vi,alj + pvj)

=l{o € 0T (V) : o7 " @Li + p*v;) € Rp(aL; + pv))}|
= o™ (aL; + p*viepaLj + pvj,aLi + p*v)

=o't (aL; +vi)cp(aLj + pvj, al; + p*vy),

where the last equality holds by Lemma 3.1 (1). Hence, the left-hand side of (4.6) is
equal to

Xh:Xh: cplaLli +vi,aLj+ pvj)

OuL 4 hv:
ot (aL; + v;) aL‘,+pv,(Z)

G)aL_/'-‘r[;Uj (Z)

. ZXh: cplalj + pvi,aLl; + [321),-)
- 0+(aLj—|—[7vj)

B i OuL -+, (2)

cplaLlj+ pvj,aLi + p~v
+(aL —i—p\}])z p( pPVvj p i)

h
OuL; jtpvj (z)
= )y I
(p+ )jX: 0+(aL +pvj)

where in the last step we note that the inner sum evaluates to |R,(aL j + pv;)|, which
is p + 1 by Lemma 3.2 (2). This proves (4.6), completing the proof of the theorem. O

In the special case that p = £1 (mod a) (and p 1 4N1), Theorem 4.2 yields that
Ogent(aL+v)(2) 1s an eigenform of the Hecke operators 7'( p?) with eigenvalue p + 1,
yielding the conclusion that the theta series for the genus is an Eisenstein series.
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Corollary 4.3 The theta series O gop+ (a4 (2) is an Eisenstein series. In particular,

®gen+ (aL+v) (2) = ®gen(aL+v) (2).

Proof Let{aL;+v;}1<i<n beasetofrepresentatives of proper classes of gen(aL+v).
According to the result of Shimura [22], ©4r; 41, (z) — Ogen(aL+v)(z) is a cusp form
for any 1 <i < h, hence

no )
1 @aLi-H)i (2) — ®gen(aL+v) (2)
®g6n+(aL+u)(Z) - ®gen(aL+v)(Z) = Zh ot (aL; + v‘)71 Z o+aL; + vi)
i=1 t i i=1

is also a cusp form. Since Shimura [22] also showed that ®gen(q+v) (2) is an Eisenstein
series, it suffices to show that ®gep+ (41 11)(2) is an Eisenstein series. By Proposition
2.4, itis enough to show that the projection 77/ (® gen+ (414 (2)) to U L and the projec-
tions 71,y (Ogen+ (ar4v)(2)) to U; (4Npa?, x X4q, ) for any positive square-free integer
t and for any even Dirichlet character x modulo a are equal to zero.

Let p be a prime such that p = 1 (mod a) and p t 4Ny a>. Since the projection 7’
commutes with the Hecke operator 7'( p¥) and p =1 (mod a), Theorem 4.2 implies
that

7' Ogent @l 40) T (P?) = 7' (Ogerrt (a1 4 1T (PP (@)
= 77/((17 + 1)®gen+(aL+u)(Z)) = (P + l)n/(®gen+(aL+u) (Z))

If 7' (Ogent (aL+4v)(2)) # 0, then its Shimura lifts would be non-zero cusp forms of
weight 2, which would be eigenfunctions of T'(p) for all p t 4Nya? such that p = 1
(mod a) with eigenvalue p + 1. This contradicts the Weil bounds proven by Deligne
[5], and hence 7" (Ogen+ (g1 4v)(2)) = 0.

By Theorem 4.2 and Proposition 2.6, and since the Hecke operator commutes with
71,y we have for any prime number p such that p { 4N ra?,

(p+ l)nt,x(®gen+(aL+ﬁv)(Z)) = ﬂt,)((®gen+(aL+u)|T(p2)(Z))
= (71,5 Ogen+ar+m))IT (PH)(2)

—tdy,
= x(p) ( D ) (p+ l)nt,x(®gen+(aL+v) (2).
“@.7

Note that if there is a prime p satisfying

—td
pt4NLa®, p=1 (mod a) and < pL> =1, (4.8)

then x (p) = 1 and hence (4.7) implies that 7,y (Ogen+ (a141)(2)) = 0.
Let s be the square-free part of tdy, so be the odd part of 5, g = (a, so), and
so = g - g'. Note that (a, g') = 1 since sq is square-free. Assume that g’ # 1. Then
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forany p =1 mod a, since p =1 (mod g), quadratic reciprocity implies that

()= () (2) ()= () (2)
p p p p p 8

By the Chinese remainder theorem, we may choose p = 1 (mod 8) so that the above

Slmpllﬁes as

By the Chinese remainder theorem and Dirichlet’s theorem on primes in arithmetic
progressions, we may choose p in any congruence class relatively prime to g’, and

hence we may choose (§ = —1, yielding a prime satisfying the conditions in (4.8),

and hence we are done.

Now we may assume that g’ = 1, or equivalently, s | 2a. We first consider the case
when ords(a) < 2 and 2 | s. We may take a prime p = 1 (mod a) such that p =5
(mod 8). Then, using quadratic reciprocity and noting that p = 1 (mod s¢) because

S0 | a, we haVe
P p p S0

Also, when ordz(a) < 1and s = 1 (mod 4), one may similarly show that any prime

p = 1 (mod a) with p = 3 (mod 4) satisfies (%) = —1. Since there exists p
satisfying the conditions in (4.8) in either case, we are done with these cases.

Now we are left with the cases when s | a and either 8 | @, ordy(a) = 2 with 2 { s,
or ordr(a) < 1 with s = 3 (mod 4). Note that in these cases, if p = —1 (mod a),
then one may check that

p p 50 p

Furthermore, for any prime p = —1 (mod a), we have by Lemma 3.1 that

®gen+(aL+ﬁv)(Z) = ®gen+(aL7u) (2) = ®gen+(aL+v)(Z)-

Therefore, withaprime p = —1 (mod a), noting that y (p) = 1 for any even character
x modulo a, (4.7) again implies that 7; y (Ogen+(ar+1)(2)) = 0. This completes the
proof of the corollary. O

5 The theta series of the spinor genera
In this section, we use measure theory to obtain Theorems 5.4, 5.6 and Corollary 5.7 on
relations of the representation numbers 7 (n, spn™ (aM + £)) for proper spinor genera

in the same proper genus. Actually, Teterin [28] already stated Theorem 5.4 and the
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first part of Theorem 5.6, and proved those by giving a brief explanation. Moreover,
he claimed a stronger statement in [28, Theorem 1 (2)] on an explicit formula for
the difference of the representation numbers for two proper spinor genera. However,
there seems to be a minor error in his proof which leads to an incorrect statement (see
Remark 5.8 for a counter-example). Although we believe that his assertion can be
modified to yield a correct statement, we propose an alternative way to obtain such an
explicit formula in Corollary 5.7. For the rest of this section, we provide some detailed
explanation for the proof of the theorems for the convenience of the reader. The idea
of using measure theory originally comes from Kneser [10] and Schulze-Pillot [19].

Let V be a quadratic space and x # 0 be a non-zero vector of V. Let O1(V, x)
denote the fixed group of x in O (V),andlet O (aL+v, x) = OT(V,x)NO*(aL+
V).

Arepresentation (x, aL+v) ofanumbern byacosetalL+visgivenbyax € aL+v
with Q(x) = n. We say that two representations (x,aL + v) and (y,aM + &) are
equivalent or belong to the same representation class if there is au € O+ (V) with
ux = yandu(aL+v) = aM + &, in which case we write (x, aL +v) = (y,aM + ).
In particular, we have

(x,aL +v) = (y,aL +v) ifux =y withu € O*(aL + v),
(x,aL +v) = (x,aM + &) ifu(aL +v) =aM + & withu € O (V, x).

The class of a representation (x, aL + v) is denoted by [(x, aL + v)]. Local represen-
tation classes are defined in the same way. We abuse notation and write = for local
equivalence as well.

Forx € Vand y € aM + & with Q(x) = Q(y), it follows from Witt’s theorem
that there is a representation (x, aM’ + £’) that is equivalent to (y, aM + &). Hence,
if we are only interested in the classes of represention of a number n, we can restrict
ourselves to representations with fixed x € V satisfying Q(x) = n.

We say (x,aL + ) and (y, aM + &) belong to the same genus if (x, al, +v) =
(y,aM, + &) for every prime spot p including oo. Note that the classes of represen-
tations of Q(x) by cosets in the genus of aL + v are in one-to-one correspondence
with the double cosets O (V, x)u O:{(aL +v)withu € O:{(V) and x € u(alL +v),
and for u € OX(V) for which x € u(aL + v), the genus of (x, u(aL + v)) is given
by the double coset OF (V, x)uO07F (aL +v).

Now we consider two Haar measures

"= oo X l_[up and X = Ay X l_[)‘l’

p<00 P <00

on 0} (V. x) = 0L (V. x)x [ Of(Vp. x)and OF (V) = 0L (V)x [] Of(V)).
p<oo p<o0
respectively. Since we are dealing with the case when V is positive definite, the mea-

sures are finite. The measure r (x, aL + v) of the representation (x, aL + v) is defined

as
Hoo (0L (V, X))

r(x,al +v) = foo (0L (V, %)/ 0T (aL + v, x)) = ot(@L +v,x)
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This value is uniquely determined once the normalization of  is determined. Since we
are only interested in comparing ratios of measures with each other, the normalization
factor always cancels and hence does not matter for our consideration (see Lemma
5.3). The only property we need is that the normalization can be carried out in such a
way that under u € O (V, x) the measure on 0;‘0(V, x) transfers into the measure
on OJO(V, ux). Hence, the measure is invariant for equivalent representations and is
also referred to as the representation measure of the representation class.

Note that the system of representatives of classes in the genus of a representation
(x,aL + v) may be obtained from O;{'(V, x) - (x,aL + v) and the classes of repre-
sentations in the genus of (x, aL + v) intersected with OX(V, x) - (x,aL 4+ v) are
in one-to-one correspondence with the double cosets O+ (V, x)u OX (aL + v, x) with
ue OV, x).

Now we provide three lemmas which translate the language of the number of
representations r(n, aL + v) of n € N into that of the measure of a representation
(x,aL +v) with Q(x) = n.

Lemma 5.1 For any element u = (up) € OZ(V, x), we have

r@x,u(aL +v)) = (0T (V. x\OT (V. x)u0f (@aL+v.x)) [] np0F@Ly+v.x)~"

p<00

Proof We roughly follow the argument of Kneser [10], modified for our case. Note
that w is right-invariant and uO:{(aL +v,x0)u = OX(u(aL +v), x). Hence

w(OT (V. X \NOT (V. x)u0} (@@L + v, x)) = (0T (V. x)\OT (V.. x)u0} (aL + v, uh

N N . (5.1)
=p(O"(V,x)\O"(V,x)0, (u(@L +v), x)).

On the other hand, since

O (V,x)\O(V,x)OF (u(aL +v), x)
= (0T (V,x)NOf (L +v),x))\O5 (@@L +v), x)
=(0L(V,x)/0F (u(aL + v), x)) x 1_[ Ot (up(aL, +v), x)

p<00

is a fundamental domain and O (u,(aL, + v),x) = up,0*(aL, + v, x)u, ", it
follows from the left and right invariance of w, that (5.1) is equal to

too (0L (V. )/ OF (u(aL +v), ) [] up(0*(@Ly +v.x)).

p<00

This completes the proof of the lemma. O
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Lemma5.2 Letal +v be a cosetonV and let x € V with Q(x) = n. Then there are
bijections

{lx,u(@L +v)]: [ul € 0T (V,x)\O;(V)/Ot(aL +v), x € u(aL + v)}
<« {[(x,aM + &) :aM + & € gen* (aL +v), x € aM + £}
<~ {[(y,aLli +v)]: Q(y) =n, y€al; +v;, 1 <i < h},

where {aL; +v;}1<i<p is afixed set of representatives of proper classes of gen™ (aL +

V).

Proof The first bijection follows from the definition of the genus of the representation
(x,aM + &). To construct the second map, let (x, aM + &) be a representation with
aM +& e gent(aL +v). Note thataM +& = u(aL; +v;) forsome u € O+ (V) and
1 <i < h. We define a map ® from the second set into the third set by @ ([(x, aM +
&)]) = [(ux, aL; +v;)]. One may check that ® is well-defined and is a bijection. This
proves the lemma. O

Lemma5.3 Letal + v be a coset on V and let x € V be such that Q(x) = n. We
have

Aoo (0L (V)

) L+ I
romak v = 0LV )

(3o r(vaL +w) 2(0L(V)/0F L + )7,

where the sum runs over a system of representatives of the classes of representations
(v, aL+v) ofn by aL+v. Moreover; taking Y to be either spn™ (aL +v) or gen™ (aL +
V), we have

hoo (0% (V))
= =" 77 M
ronb) = R ) M;Ed)r(x,a +8)
-1
x Y ho(OLWM)/OT@M 6|

clsT (aM+-&)eh/~

where the first summation runs over a system of representatives of the classes of
representations [(x,aM + &)] withaM + & € h. Furthermore, the denominator

> hoo (05 (V)] 0T (@M +8)) = hoo(0Z,(V))-Mass(spn™ (aL +v))
clst (aM+-E)espnt (aL+v)/~

has the same value for all proper spinor genera in gen™ (aL + v), where

Proof Note that the group O (aL 4 v) acts on the set R(n,aL +v) ={y e aL +v:
Q(y) = n}, and the orbit of y € R(n, aL + v) with respect to this action corresponds
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to the representation class of (y, aL + v). Therefore,

Z ot(aL +v)

r(n,al +v) = Z |{0y:c7€0+(aL+\))}|= m,
] ,

[y]:orbits [(y,aL+v)

where the last sum runs over a system of representatives of the classes of represen-

. . _ B0 (V)
tations (y, aL + v) of n by aL + v. Noting that r(y,al + v) = @) d

koo (0% (V)/ O (aL +v)) = 200D e obrain the first equality of the lemma
after noting that ,uoo(Ojo(V, y)) only depends on Q(y) = n.

The moreover part of the lemma when h = gen™ (aL + v) follows by the second
bijection in Lemma 5.2 together with the proof of the first equality of the lemma. The
proof for the case when h = spn*(aL + v) may also be done in the same manner
since the second bijection of Lemma 5.2 still holds when restricted to spn™ (aL + v)
by the same argument.

Finally, applying a similar argument as in Lemma 5.1, one may show that for any
ueofv),

> hoo(0L(V)/0OF (aM + £))
clst(@M+-E)espnt (u(aL+v))/~

= MOT(VN\OT(V)O,(V)uOa@L +v)) ] 2,(0F @@L, +v)™"

p<00

= 10T (V)\OT (V)0 (V)Oa(aL +v)) ]"[ Ap(0OF(aL, +v)~!

p<oo

The last equality holds because O (V)0 (V)u 0/—{ (aL +v) = 0T (V)0 (V) OX
(aL + v)u since O’ (V) contains the commutator group of OX(V), and A is invariant
under right multiplication (see also [27, Theorem 2.4]). This proves the furthermore
part of the lemma. O

Now we are ready to prove Theorem 5.4, which relates the representation numbers
for different spinor genera in the genus of a shifted lattice a L + v for a ternary lattice
L

Theorem 5.4 Let t be a square-free positive integer, aL + v be a ternary lattice coset,
and set E = Q(\/—tdpr). Then we have

(1) If6(0t(aL, +v) € NEp/Qp(pr)foraprime p (p | p), then
r(tmz, spn+(aL +v)) = r(tmz, spn+(aM +&))
forallm € Nand aM + & € gen™(aL + v).
(2) If6(0O"(aL,+v)) € NEg,/qQ, (E;)for all primes p (p | p), then the genus splits
into two half-genera and

r(tmz, spn+(aL +v)) = r(tmz, spn+(aM +£))
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forallm € N and aM + & in the same half-genus of aL + v with respect to t.

Proof Let V be the ternary quadratic space containing a L + v and for n = tm? we let
x € aL + v be a vector with Q(x) = n. We furthermore let W denote the subspace
orthogonal to x in V, thatis, V = Qx L W. Recall that the proper spinor genera from
the gen (aL + v) correspond to the double cosets O (V) O/, (V)u O} (aL +v) with
u e OX(V), and note that by Lemmas 5.1 and 5.3, the contribution of the genus of
(x,aL + v) to r(n, spnt(u(@aL + v))) is oo (0L (V, x))~'Mass(spn* (aL + v))~!
times

w(OT(V, N0 (V,x)NOT (V)0 (V)uO} (aL+v)) ]_[ (0T @Ly+v,x)) "
[7<OO
(5.2)
Since O/ (V) contains the commutator group of OX(V), u can be extracted to the
right. Ifu € OX(V, x), then by the right invariance of i, (5.2) is independent of . On
the other hand, note that 0" (V) 0/, (V)u O} (aL+v) = O (V)0 (V)vO; (aL+v)
for some v € Oj\'(V, x) if and only if

ue 0t (V)0 (V)OS (V,x)0F (aL +v), (5.3)

and by Proposition 2.1, noting that O:{(V, x) = O:{(W), it is equivalent to

0(u) € Q*NejoUp) [ 0(0F @@Ly +v)).
pe

We naturally split the index giving the number of proper spinor genera in gen™* (a L +v)
from Proposition 2.1 into

Ip:Q* [0 (0" (aL, +v)) |=|Ig: Q*NesoUe) [ | 6(0 (aL,+v))
PER peQ

x | Q*NgjoUe) [T0OT@L, +v) : Q* [0 (0" (aL, +v))|. (54
PES J2539)

We claim that the first factor in (5.4) is always either 1 or 2, and these precisely
correspond to the cases (1) and (2) of the theorem, respectively. To show this, we first
evaluate the first factor in (5.4). Note that [Ig : Q*Ng/o(Ig)] < 2by [15,65:21] and
this index is equal to 2 if and only if —nd; ¢ (Q*)?.Inparticular, the first factorin (5.4)

is at most 2. Furthermore, we have [Ig : Q* Ng,oUEg) [] 9(0+(aLp +v)]=2if
pER
and only if

[Jo0t@L,+v) CQ*NejgUp) and —ndy ¢ (@)
pe2
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& []60" @@Ly +v) S NpjgUp) and  —ndy ¢ (Q%)? (5.5)
peER

Only the assertion for the last = need some explanation. For fixed p € @, letx(p) €

0(0OT(aLp+v)),and consideri = (iy) € [[ 6(OF(aLy +v)) such thati, = x(p)
qef

and i; = 1 for any g # p. Then there exist b € Q* such that b -i € Ng/o(E).
Since b is a local norm at every spot g # p, the Hilbert symbol (%) =1 for

dr

any g # p. By the Hilbert reciprocity law, we have (%) = 1, hence b is a local

norm at p. Since b - i, is a local norm at p, x(p) = i, is also a local norm at p, hence
proving the assertion.

The condition in (5.5) precisely splits into the two cases (1) and (2) given in the
theorem. If (5.5) holds, then we are in case (2) and the first factor on the right-hand
side of (5.4), which is precisely the index of the group on the right-hand side of (5.3) in
Oj\' (V) by Proposition 2.1, is 2. Hence gen™ (a L + v) is divided into two half-genera,
both containing the same number of proper spinor genera given by the second factor
in (5.4), which can be rewritten as

[0T(V)OL(V)OL(V,x)OF (aL 4+ v) : 0T (V)0 (V)OS (aL + v)],

in such a way that the genus of the representation (x, aL + v) makes the same con-
tribution to r(n, spn™ (aM + £)) for any coset aM + & in the same half-genus of
alL +v.

Otherwise, if (5.5) does not hold, then we are in case (1) and the genus of (x, aL+v)
makes the same contribution to r(n, spn™ (u(aL + v))) for any u € OX(V).

Note that the conditions in (5.5) do not depend on aL + v and x, but only on
gent(aL + v), d; and n. Hence, as we run through all genera of representations
(x,u(aL 4+ v)) withu € OX(V), the determination of whether gen™(aL + v) splits
into two halves remains the same. Therefore, by Lemmas 5.2 and 5.3, we conclude
the theorem. O

Remark 5.5 If the rank of L is greater than 3, then the orthogonal complement W of
a vector x in V is of rank at least 3. Hence there is a v € O:{(W) = O:{(V, x) such
that u € OA(V)U. Thus the value (5.2) is independent of u € OX(V) so that we have
r(n, spnT(aM + £)) are the same for any aM + £ € gen™ (aL + v). This provides a
proof for Teterin’s statement [28, Theorem 1 (1)].

From the above theorem, we may show the difference of two theta series
Ogpn+(aL+v)(2) and Ogen+ (141 (2) 1s in the space U, which determines the second
piece in the splitting (1.2).

Theorem 5.6 The Fourier coefficients of © gu+(a1+v)(2) — Ogent(ar+1v)(2) are sup-

ported on
U 2z

tel]’gen+ (aL+v)

where
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Toent(aL+v) = {1 € N1t is square-free, l_[ 0 (0+(aLp +v)) € No(y=iap)/Q <IQ(«/W))
PER

is a finite set. Furthermore, we have © g+ (a1 44)(2) — Ogent(ar+v)(2) € U.

Proof Note that for any prime p such that p { 4Nya? (hence p { dr), we have
60" (aL,+v)) =6(0"(L))) = Z, (Q;)z,

which contains non-square units, and hence p 1 ¢ for any t € Tgen+(qr+4v)- There-
fore, the set Tgen+ (a4 is @ finite set, and it follows from the independence of the
spinor masses in Lemma 5.3 and the equality in Theorem 5.4 (1) that the Fourier
coefficients of Ogpnt(u14v)(2) — Ogent(ar41)(2) are supported on square classes in
U, S t77, yielding the first claim.

It remains to show that f(z) := Ogpn+(a141)(2) — Ogen+(aL+v)(2) € U. Recall that

f@) € $3p(Po(@dNLa®) NT1(@), xaa) = €D S32(To(ANLa®), X Xady),
x (mod a)

and write f(z) = kaod 2 fx (z) for some f,(z) € S3/2(Fo(4NLa2), X Xady)-

We claim that the Fourier coefficients of f (z) are also supported on the square
classes in Zgen+(q14v) for each Dirichlet character x modulo a. If we show the claim,
then we have

e D UTo@NLa), xx4a,).

t€7:gen+(nL+v)

which implies the theorem. Let f(z) = Y a(n)q” and f,(z) = ) a,(n)q". Note
n=1 n>1

that for any s € (Z/aZ)*, there exists an integer so with so = s (mod a) such that
* %

Yo = (* SO) € I'o(4Na?). Using the modularity of fy» we have

Flnpve@ =D fulyave@ = xaa,(0) - Y, x)fy Q). (5.6)

x (mod a) x (mod @)

On the other hand, by (2.8), (2.9), (2.10), and Lemma 3.1, we have

f|3/2yso () = Xadp (so) - (®spn+(aL+%v) () — ®gen+(aL+Ev) (2)), 5.7

where 5 is an integer which is an inverse of 5o modulo a. Note that 7 = Zgen+ (4 4v) =
Toent(aL+5gv) Since Ot (aL, +v) = O* (aL , +5ov) for any prime p by Lemma 3.1
(1). Comparing Fourier coefficients of the right-hand sides of (5.6) and (5.7), we may
conclude that for any positive integer n outside any of the square classes in |, 172,

Y x(9)ay(n) =0.

x (mod a)
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Since the above equality holds for any s € (Z/aZ)*, it follows from the orthogonality
of the Dirichlet characters modulo a that a, (n) = 0 for any x modulo a. This proves
the claim, hence completing the proof of the theorem. O

One may observe from the proof of the above theorem that foraM +& € gen™t (a L+
v), the differences Ogpn+ (ar451)(2) — Ogpnt (m+se)(2) for any integer s coprime to
the conductor a of aL + v share some property. The following corollary describes
some relation on their Fourier coefficients.

Corollary 5.7 Let t be a square-free positive integer and let s be an integer coprime
to the conductor a of a coset aL + v. Let aM + £ be a coset in gen™ (aL + v), and
define as(n) by

r(tn2, spn+(aL + sv)) — r(mz, spn+(aM + s&)) = as(n) - n.

If ag(n) is not identically zero, then 4t | ANpa>. IfANpa?* = 4t -t'-b* with square-free
t', then ag(n) is defined modulo b and satisfying

(1) as(um) = agi (n) (=4) if (m, 4N a?) = 1,

(2) as(n) =01ifb|n,

where m is an integer which is an inverse of m modulo a.

Proof Note that if 7; denotes the projection onto U; = @ gmod o)Us (4N a2, X Xady )
then

2
fs(@2) = Zas(”l)nqm = Tty (®spn+(aL+sv)(Z) - ®spn+(aM+sE) (2)).

n>1

Write fi(2) = Y. fo @) with fi (@) = Y as. (W)ng™" € U;(4NLa>, x Xady)-
fmod a) n>1

Since the space U; (4NLa2, X X4d; ) 1s spanned by (2.4) with N 4NLa2 and x —
X X4d,» wWe have 4t | 4Npa? and as, (n) is defined modulo b, hence so is as(n).
Furthermore, we have

—4tdp,
as,x(nm) = as,x(”)X(m) < m )

for any integer m with (m, 4N, ra%) = 1. On the other hand, following the same
argument used in the proof of Theorem 5.6 to obtain (5.6) and (5.7), we have for any
integer m with (m, 4Npa?) =1 that (noting that (m, 4d;) = 1, hence xaq4, (m) # 0)

D xm) fe @ = fun(@). hence Y x(m)as.y (n) = g (n) forany n € N.
x(mod a) x (mod a)

Therefore, for any integer m with (m, 4N, Laz) =1, we have

—Atd —4td
ag(nm) = Z ag,y (nm) = Z as,x(n)x(m)( ;L):asna(n)< niL>

x (mod a) x (mod a)
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This proves (1). To prove (2), we note that as in the proof of Corollary 4.3, there is

p
Lemma 3.1, we have a,(n) = a,;(n) for any p = £1 (mod a). If b | n, then since

ag(n) is defined modulo b, we have

a prime p such that p ¢t 4NLa2, p = £1 (mod a), and (M) = —1. Also, by

—4tdy,
as(n) = as(np) = as[)(”) ( » ) = —as(n),

and hence a5 (n) = 0. This completes the proof of the corollary. O

Remark 5.8 We remark a failure of the statement of Teterin [28, Theorem 1 (2)] by
giving a counter-example. Let L = Ze| + Ze; + Zes be a ternary lattice with a basis
{e;} whose corresponding Gram matrix is a diagonal matrix diag(1, 1, 1). Puta = 12
andv = 5(e; +e3+e3) € L. According to [28, Theorem 1 (2)], in order for a positive
integer m € 172 with a square-free ¢ to satisfy

r(m,spnt(aL + v)) — r(m, gent (aL + v)) # 0,

one should necessarily have 7| Ny . Since N = 1, the only candidate is t = 1.
However, this turns out to be wrong since Haensch and the first author verified in
[8] that

I >
Oupnt (aL+1) (D) = Ogent(arsn)@ — 5 D 74’

rez
r=1 (mod 4)

by explicitly constructing representatives of proper classes in spn™(aL -+ v) and
genT(aL + v), respectively, and by checking that the first finitely many (up to a
certain number coming from the so-called “valence-formula") Fourier coefficients of
the both sides are equal. We refer readers to [8, Lemma 5.1 and (5.2)] for details on
this example. The error in [28] occurs because Teterin uses a slightly incorrect basis
for the space of unary theta functions in the second-to-last line in step 2 of his proof
at the bottom of [28, page 2707], assuming that the basis elements all have the shape

Y g

rez
r=s (mod a)

However, one can have r = s (mod d) for some d | a, in which case t may have a
common divisor with a. This precisely occurs in the example above, where d = 4 and
t =3, witha = 12.
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6 Comparison of the theta series of ternary lattice cosets in the same
spinor genus

6.1 Deficiency between theta functions of proper classes and proper spinor
genera

Let p be a prime number such that p ¢t ANpa®. Let Z,(aL + v) be the set of cosets
aK + u € gen™(aL + v) such that

ZI1/plal) +v = Z[1/pl(aK) + u,
equivalently,
aly+v=aK,;+pforallg #p and L, =K. 6.1)

In the case of lattices, the set Z,(aL) coincides with the set Z(aL, p) defined in [18].
Note that one may show from the definition that

{aM + p& :aM + £ € Ry(aL +v)} C Z,(aL + v). 6.2)

In particular, we have R,(aL +v) € Z,(aL +v)if p =1 (mod a).

Lemma 6.1 Let aL + v be a ternary coset with conductor a, and let p be a prime
number such that p t 4Npa?®. Then for any aM + & € spnt(aL + v), there exists a
cosetaK + € Z,(aL +v) such that aK + 1 € clst(aM + &).

Proof Let aM + £ be a coset in spn™ (aL + v). Then there exista 0 € O (V) and
Y = (%y) € 0, (V) such that

alLy, +v =o0,%,(aM,; + &) forany prime g. (6.3)

Following [15, Section 101], we choose a basis x, ..., x, of V = QL and for

n
X = Zajxj eV
j=1

we define the norm ||x ||, := maxi<j<ulla;lly for any prime g. Let J := Zx; +--- +
Zxy, be the lattice of elements with || x||, < 1forallg andset S := {g : prime | g # p}.
Let T be a finite set of prime numbers not containing p such that

alLs+v =aly, aMy+§ = aM,, and Uq_l(an) =Jy;=aM,; foranyq ¢ T U{p}.

Note that § is an indefinite set of spots since V), is isotropic. Therefore, by the strong
approximation for rotation [15, 104:4], there exist a p € O’(V) such that

loglly =1 ifg ¢ T U{p},
log —24lly <€ ifqgeT,
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where ¢ > 0 is chosen small enough such that X, (M,) = p,(My) and 0,6 — £,& €
Yy(aMy) forany g € T.Now wesetaK +u =op(aM +§) € clst(aM +£). Then
from the constructions, noting that p, J, = J, forall g ¢ T U {p} by [15, 101:4], and
using (6.3),

oqpqaMg +§) =oqpg(aMy) = 0q(pgJlq) = 0q(Jg) =alg =alqg +v ifg ¢ T U{p},
aKg +p = ogpgaMy +&) = 0q(Zq(@Myg) + pg&) = 0qg(Zg(aMy) + Zg6) =alg +v ifqeT,
Kp=Lp ifg =p.
Therefore, aK + u € Z,(aL + v) by (6.1), and this proves the lemma. O

Finally, we are ready to prove the following theorem that determines the third piece
in the splitting (1.2), the cusp form which is orthogonal to the unary theta functions.

Theorem 6.2 Let aM + £ € spn™(aL + v). Then we have
Our+v(2) — ®aM+§ (z) € UJ'.

Moreover, we have ©gp+y(2) — Ogppt (L) (2) € Ut

Proof The second assertion follows directly from (2.9) once we prove the first asser-
tion. The proof for the first assertion will follow an argument similar to [20, Satz
4]. Let p be a prime number such that p = 1 (mod 8Ny a). For a square-free pos-
itive integer ¢, let 7; denote the projection onto U; = @ (mod a)Ur (4N, a2, X X4dy)-
If t { Npa?, then Corollary 5.7 implies that 7; (Qg+v — Oapr+e) = 0. Now sup-
pose that ¢ | Npa?. Note that p = 1 (mod a) so that aL + pv = aL + v and
gent (aL+pv) = gen™ (aL+v). Moreover, since the projection operators 77; commute
with the Hecke operator T'(p?) and U, is an eigenspace under T (p?) by Proposition
2.6, we conclude from Theorem 4.1 that

Y m(Ouk i) =7(Our | T(p?)
aK+ueR,(al+v) 6.4)

= 1 (Our )T (p?) = (p + D1 (Our4v)-

Here we used the fact that x(p) = 1 since p = 1 (mod a) and (%‘h) = 1by
quadratic reciprocity and p = 1 (mod 8Npa) in the last equality. Since |R,(aL +
v)| = p + 1, we have

> m(Ouakip — Oaryy) = 0. (6.5)
aK+ueR,(al+v)

We claim that 77, (®gy 15 — Our+v) = 0 for any cosets aJ + A € Z,(aL + v). For
anyaJ + 1 € Z,(aL +v), let

o
2
T (Oar2.(2)) = Y iy, m)g"™.

m=1
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The claim is then equivalent to showing that

rz;/J+A(m) = ";/L.H, (m) (6.6)

forallaJ +X € Z,(aL+v) and all m. We first show (6.6) foraJ +A € R,(aL+v) C
Zp(aL +v). Since any aJ + A € Rp(aL + v) is contained in gent(aL + v) and the
theta function only depends on the choice of class in the genus (of which there are
only finitely many), we may assume that aL + v is chosen so that

Re(raL+v(m)) = mm{Re(raJH(m)) caJ +Xx e Ry(al +v)}.

We see that the real part of the m-th coefficient of each term in (6.5) is non-negative
and the coefficients sum to zero, so Re(raJH(m)) = Re(r(/l’LJrv (m)) for any aJ +
A € Rp(aL + v). Making the same argument with the imaginary part, we conclude
that r”JH(m)) aL+v(m) for any aJ + A € R,(aL + v), giving (6.6) for any
aJ +i e Ry(aLl +v).

To show (6.6) forall aJ + A € Zy(aL + v), we claim that for any aJ + A €
Z,(aL + v), there is a chain of cosets

alL+v=akKy+ no, ak1+u1,...,akK, +pu, =aJ +x 6.7)

suchthataK;+u; € Ry(aK; 1+up;—1)forany 1 <i < n,whichimmediately implies
(6.6) from the claim for R, (a L+v) used inductively. To see that such a chain exists, we
note from the local theory of lattices (cf. [15, 82:23]) that there exists a basis {ey, ez, €3}
of L, and n € Zx¢ such that Q(e2) = Q(e3z) = 0, B(e1,e2) = B(ey,e3) = 0,
B(ez, e3) = 1,and {ey, p~ ey, p"e3}isabasisof J,. For0 < i < n,taking aK; + u;
to be the cosets on the space QL satisfying

a(Kj)g+pni =alLy +vforallg #p and (K;), = Zpey + pr*"ez + prie3,

one may check that they satisfy desired properties from the definitions of Z,(aL +v)
and aK; + u; € Ry(aK; 1 + p;—1). Therefore, we conclude by induction that (6.6)
holds forany aJ + A € Z,(aL + v).

Now for any aM + & € spnt(al + v), by Lemma 6.1, there is a aK + p €
Z,(aL + v) such that aK + p € clst (@M + §). Since Ogpr1£(z) = Ouk4u(2), We
have

T (Oam+£(2) — Our+0v(2) = 1 (Ouk +1(2) — Our4v(2)) =0

forall 7 | 4AN; a?. Therefore, we may conclude that Ogp4£(2) — O 40(2) € Ut.o

6.2 An algorithm for computing proper class representatives of proper (spinor)
genera

In this subsection, we are interested in constructing an algorithm that returns a complete
set of representatives of proper classes of spn™ (a L +v) (hence, that of gen™ (a L +v)).

In principle, one can iteratively find representatives in Z, (aL + v) and then compute
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the mass Mass(spn™ (aL + v)) to determine when all proper classes have been found.
However, an independent calculation of Mass(spn™ (a L 4-v)) (without knowing the set
of representatives) is needed for such a construction, so we instead design an algorithm
to find the complete set of representatives without computing the mass.

Throughout this subsection, let p be a prime number with p t 4N ra®and p =
1 (mod a) so that R,(aL + v) € Z,(aL + v). Consider the (undirected) graph
X(aL +v : p) whose vertices consist of the lattice cosets in the set Z, (aL + v). Two
lattice cosets aK1 + w1 and a K> + u; are connected by an edge if and only if one is a
p-neighborhood of the other (hence vice versa because p = 1 (mod a)). Then, as in
the lattice case, the graph X(aL + v : p) is connected due to the existence of chains,
as proven in (6.7). Furthermore, it is known (see the discussion at the end of [17,
Section 1]) that for ternary lattices (i.e., the a = 1 case), it is a tree. Note that by the
definition of p-neighborhoods in Section 3.2, if a K1 + 1 and a K, + 7 are connected
in X(aL 4 v : p), then Ky and K> are connected in X (L; p), so X(aL + v; p) is also
atree for @ > 1 in the ternary case.

Moreover, one may show by following a similar argument in [1] that the number
gt (aL +v : p) of proper spinor genera represented by X (aL + v : p) is at most two,
and

g (@L +v:p)=1 ifandonlyif j(p) e Q> l—[ 9(0+(aLp +v)),
peR

where j(p) = (jg)geq € Ig is the idele defined by j, = p and j, = 1 for any
g€\ {p)

Assume that we have found p such that g¥(aL 4+ v : p) = 1. We now start finding
the vertices of the graph X (aL 4 v : p) to construct a complete set of representatives
of proper classes of spn™(aL + v), going through the following algorithm:

Step 0: Start by taking the set of a vertex S = SﬁS&v = {aL+v}, and put Spew = SﬁS&v.

(%) Leti = 1, and repeat the following Step 7 until S&;l) =0.
Step i:
i @) .— .
(1) Find S := UaK+ueS,§'e\‘v

(2) Find S\ = {aK +p € SO 1 aK +p ¢ cls*(aM +§) forall aM + € S).
(3) Update S with S U Sy, and i with i + 1.

It is clear that this algorithm terminates since the set S consists of inequivalent lattice
cosets in spn* (aL + v) by its construction. We claim that S form a complete set of
representatives.

Note that the algorithm returns a finite subtree of X’(aL +v : p) € X(aL+v : p)
given by iteratively adding nodes of X(aL + v : p) of depth i (with root aL + v)
which are connected to nodes of X’(aL + v : p) of depthi — 1 and are not in the same
proper class as any node in X’'(aL + v : p) with depth < i. Although X(aL + v : p)
is connected and contains a representative of every proper class in spn*(aL + v) by
Lemma 6.1, itis notimmediately clear that every proper class appears in X' (aL+v : p)
because our trimming of the tree may have made the classes disconnected. However,
we claim that a representative of every such class appears in X’(aL + v : p), which
is equivalent to showing that S contains a full set of reprentatives.

nRp(aK + w) by constructing p-neighborhoods.
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LetaL;+u; € Z,(aL+v)withi = 1, 2 be two lattice cosets which are isometric to
each other, say aLy +v, = o (aL;+v;) forsomeo € O+ (V). If{aKj+piti<j<psi
are p-neighborhoods of aL + v, then one may easily observe from the definition
that {o(aK; + j)}1<j<p+1 are p-neighborhoods of aLs + vy = o (aLy +vy). If we
take anode aK + u € X(aL + v : p) of minimal depth (say i) such that no lattice
coset in the same proper class as aK + p is contained in X'(aL + v : p), then let
aK’ + 1’ be the parent of aK + p (with depth i — 1). Since aK’ + 1/ has smaller
depth, by minimality of i there must be aK” + ” € X'(aL + v : p) in the same
proper class as aK’ + i/, but then if o (a K’ + /) = aK” + ", then o (aK + ) is a
neighbor of aK” + w”, and when the algorithm finds a K" + ", either o (a K + ) is
the parent of a K" + 1 (in which case o (a K +p) € X'(aL+v : p)), or the algorithm
would check o (aK + ) at the following step. This contradicts the assumption that
no representative of the class of K + w is contained in X'(aL + v : p).

To extend this algorithm to obtain a complete set of representatives for gen™t (a L +
v), note that if spn™ (aL + v) C gen™ (aL + v), then one can obtain any other proper
spinor genera in gen™ (a L + v) with p-neighborhoods of a L + v by choosing a prime
p carefully; this is possible since the “spinor linkage theorem" can analogously be
extended to lattice cosets (see [1, Theorem 2 and Remark]).

Example 6.3 Let L = Zey + Zey + Zes = (1,1, 1), v = e; + ex + €3, a = 10, and
consider a coset aL + v. One may verify that gen™ (aL + v) = spn*(aL + v) by
computing the index (2.1).2 We illustrate the above algorithm to find all proper classes
in the proper genus of aL + v:

gent(aL +v) =clst(aL +v) UclsT (aL + (Te; + 3ez + Se3)).

We pick the prime p = 11, which is congruent to 1 modulo a and is coprime to
4N a = 40. Recalling the definition of p-neighborhood of lattice cosets in Subsection
3.2, we have

aK +upn € Ry(aL +v) <= K € Ry(L) and aK, + p = aL, + v for all primes
qla.

Computing 12(= p + 1) such aK + u € Rp(aL + v), there are two properly non-
isometric cosets. More precisely, there are three types of K:

k() =7 6e; + 6e; + Tey 7 2e; — 9ej + bey, ) —9¢; +2e; + bey
11 11 11
2e; + 6¢e; + 9e —6e; — Te; + 6¢, 9¢; — 6e; + 2e
KQ) =7 i Jj k + i j k 7 i j k 7
11 11 11
6e; +6e; —Te —9¢; + 2e; — 6e, —2¢; +9e¢; + 6¢
m&=z<—i—#——i)+2(—i—ﬁL—i>+Z(—L—WL—i>,

where (i, j, k) € {(1,2,3),(2,3,1),(3,1,2)} for K(1) and K(3); and (i, j, k) runs
over all permutations of {1, 2, 3} for K(2). Writing this basis for K as { f1, f2, f3},

2 See the proof of [8, Proposition 3.4 (1)] for an example of such a calculation.
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we have K = (1, 1, 1). Moreover, the p-neighborhoods aK + 1 € R,(aL + v) are
given by

aK(M+Of1+9/24+9f3), aKQ)+Tfi+3/2+5f3), aK@)+Gfi+72+43/3).

Note that the first three a K (1) 4 p are properly isometric to aL + (e] + €3 + e3), and
the remaining nine a K (2) + n and a K (3) + u are properly isometric to aL + (7e; +
3es + 5e3).

Now finding all p-neighborhoods aK + p of aL + (7e1 + 3e> + Se3), they are of
the following form: K = Zfi + ZHLr +Zfs = (1,1, )andu =afi+ B2+ v f3
with

(1,1,1), (1,1, D, (1,1,9), 9,9, 1), (9, 1, 1), (9,9, 9),
(@ p.7) € {(5,7, 3),(3,5.7).(7.3.5).(7,7.5). (5.3.3), (3.3.5) }

Since the first six choices of p yield cosets aK + p isometric to aL + (e] + €3 + €3),
and the last six choices of w cosets a K + p isometric to aL + (7e1 + 3e3 + 5e3), the
algorithm terminates, and hence we have found all proper classes in gen™ (aL + v).
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