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Abstract
By analyzing an optimization problem over orthogonal matrices, we prove a gener-
alization of the Hardy-Littlewood-Pólya rearrangement inequality to positive definite
matrices. The inequality is then extended to rectangular matrices. Using our main
results, we derive new inequalities for several distance-like functions encountered in
various signal processing or machine learning applications.

Keywords Matrix rearrangement inequality · Matrix perturbation · Commutation
principle · Spectral functions

1 Introduction

Thewell-knownHardy-Littlewood-Pólya rearrangement inequality [11] states that for
any vectors u, v ∈ R

n ,

n∑

i=1

u↓
i v

↑
i ≤

n∑

i=1

uivi ≤
n∑

i=1

u↓
i v

↓
i , (1)

where u↓ and v↓ (u↑ and v↑) are the vectorswith entries of u and v sorted in descending
(ascending) order, respectively. For positive vectors, a generalization of the rearrange-
ment inequality (1) is obtained in [16], see also [28, Example 3].

Theorem 1 (London [16, Theorem 2]) Let u ∈ R
n++, v ∈ R

n+ and f : R+ → R be
any convex function such that f (s) ≥ f (0) for any s ≥ 0. Then,
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n∑

i=1

f (u↓
i v

↑
i ) ≤

n∑

i=1

f (uivi ) ≤
n∑

i=1

f (u↓
i v

↓
i ).

There are also various generalizations of inequality (1) to the matrix setting, where
the entries of vectors are replaced by the eigenvalues or singular values ofmatrices.One
such example is the following result. To state it, we denote the i-th largest eigenvalue
by λi (·).
Theorem 2 (Carlen and Lieb [6, Theorems 3.1-3.2]) 1 Let A, B ∈ R

n×n be positive
semidefinite matrices and q ≥ 1. Then, it holds that

n∑

i=1

λ
q
i (A)λ

q
n−i+1(B) ≤

n∑

i=1

λ
q
i (B

1
2 AB

1
2 ).

If q ≥ 1 is an integer, it also holds that

n∑

i=1

λ
q
i (B

1
2 AB

1
2 ) ≤

n∑

i=1

λ
q
i (A)λ

q
i (B).

The Hardy-Littlewood-Pólya rearrangement inequality (1) and its generalizations
are useful tools in mathematical analysis and have found many applications in both
pure and applied mathematics. They have been utilized in the studies of the geometry
of Banach spaces [6, 26], quantum entanglement [2], covariance matrix estimation
[29] and wireless communication [8, 14], to name a few.

Our main contribution is the following matrix rearrangement inequality that gen-
eralizes both Theorem 1 (up to differentiability requirement) and Theorem 2.

Theorem 3 Let f : R++ → R be a differentiable function such that s �→ s f ′(s) is
monotonically increasing on R++. Then, for any positive definite matrices A, B ∈
R
n×n,

n∑

i=1

f (λi (A)λn−i+1(B)) ≤
n∑

i=1

f
(
λi (B

1
2 AB

1
2 )

) ≤
n∑

i=1

f (λi (A)λi (B)) .

If f is additionally defined and right-continuous at 0, then the inequality holds for
any positive semidefinite matrices A, B ∈ R

n×n.

1 In [6, Theorems 3.1-3.2], the more general inequalities

n∑

i=1

λ
q
i (A)λ

p+q
n−i+1(B) ≤

n∑

i=1

λi
(
B p(B

1
2 AB

1
2 )q

)
and

n∑

i=1

λi
(
B p(B

1
2 AB

1
2 )q

) ≤
n∑

i=1

λ
q
i (A)λ

p+q
i (B)

are obtained for p ≥ 0 and under the same conditions on A, B, and q. However, as shown in the proof in
[6], the first inequality can be reduced to the case of p = 0.
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The proof of Theorem 3 is based on the analysis of a certain optimization problem
over orthogonal matrices and reveals that the matrices A and B commute at optimality.
Specifically, note that the function f induces a spectral function on the space of positive
definite matrices, which defines f (X) = U Diag( f (λ1(X)), . . . , f (λn(X)))V
 for
any positive definite matrix X ∈ R

n×n , where U Diag(λ1(X), . . . , λn(X))V
 is an
eigenvalue decomposition of X and Diag(λ1(X), . . . , λn(X)) is the diagonal matrix
containing the eigenvalues of X on its diagonal sorted in descending order. Therefore,
the middle sum can be written as Tr( f (B

1
2 AB

1
2 )), and Theorem 3 can be seen as a

commutation principle for the function X �→ Tr( f (X)) in the sense of [12, Lemma 4],
see also [21, Theorem 7] for the generalization of [12, Lemma 4] to continuously
differentiablematrix functions.Nevertheless, [21,Theorem7] is not directly applicable
to our situation as the function X �→ Tr( f (X)) is not continuously differentiable in
general. Moreover, our proof is different from that of [21, Theorem 7] and highlights
the importance of the monotonicity of s �→ s f ′(s) and positive definiteness of A and
B.

Theorem 3 does not only generalize Theorem 1 from vector case to matrix case but
also relaxes the condition on the function f (up to differentiability requirement). To
see this, consider a function f satisfying the assumption of Theorem 1, which implies
in particular that f is defined and right-continuous at 0. Suppose in addition that f is
differentiable on R++. Then, we have that for any s > 0,

f (s) ≥ f (0) ≥ f (s) − s f ′(s),

where the two inequalities follow from the assumption of Theorem 1. Therefore,
f ′(s) ≥ 0 for any s > 0. Hence, for any s2 > s1 > 0,

s2 f
′(s2) − s1 f

′(s1) = (s2 − s1) f
′(s2) + s1( f

′(s2) − f ′(s1)) ≥ 0, (2)

where we used the fact that f ′(s2) ≥ f ′(s1), due to the convexity of f . This shows
that the function s �→ s f ′(s) is monotonically increasing on R++. Furthermore, by
taking f (s) = sq for q > 0, one readily sees that Theorem 3 recovers Theorem 2.
Note also that the requirement on q is less stringent than Theorem 2.

The rest of the paper is organized as follows. Section 2 prepares some auxiliary
results. The main result Theorem 3 and its extension to rectangular matrices will be
proved in Section 3. In Section 4, we will present several applications of our matrix
rearrangement inequalities. These applications are related toSchatten quasi-norms (see
Section 4.1), affine-invariant distance of positive definite matrices (see Section 4.2)
and Alpha-Beta log-determinant divergences (see Section 4.3).

1.1 Notation

The sets of non-negative and positive real numbers are denoted by R+ and R++,
respectively. For any vector u ∈ R

n , the n × n diagonal matrix with the i-th diagonal
entry given by ui is denoted byDiag(u). Also, we denote by u↓ and u↑ the vectors with
entries of u sorted in descending and ascending orders, respectively. The sets of n× n
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symmetric matrices, positive definite matrices and orthogonal matrices are denoted
by Sn , Pn and On , respectively. For any matrix X ∈ R

m×n , we denote by σ(X) =
(σ1(X), . . . , σmin{m,n}(X))
 the vector of singular values sorted in descending order.
Also, for any X ∈ Sn , we denote by λ(X) = (λ1(X), . . . , λn(X))
 the vector of
eigenvalues sorted in descending order. Finally, the n × n identity matrix is denoted
by In .

2 Auxiliary Results

From now on, for any function f : J → R with domain J ⊆ R+ and matrix
X ∈ R

m×n with singular values in J , we define

S f (X) =
min{m,n}∑

i=1

f (σi (X)) .

When X ∈ R
n×n is a positive semidefinite matrix with eigenvalues in J , we have

S f (X) =
n∑

i=1

f (λi (X)) .

We present a useful fact about the differentiability of the function S f .

Proposition 1 (Lewis and Sendov [15, Theorem 7.1 and Corollary 7.4]) Assume m ≤
n. Let f : R++ → R be a differentiable function and X ∈ R

m×n be a full-rank matrix
(i.e., Rank(X) = m) with singular value decomposition U Diag(σ (X) 0)V
. Then,
S f is differentiable at X with the derivative given by U

(
Diag

(
f ′ (σ (X))

)
0
)
V
.

Note that the derivative is independent of the choice of singular value decomposition
of X . Moreover, it is a symmetric matrix if X ∈ Pn .

Theproof ofTheorem3also relies on the following three elementary lemmas,whose
proofs are included for self-containedness. The first one is a vector rearrangement
inequality.

Lemma 1 Let f : R++ → R be a differentiable function such that s �→ s f ′(s) is
monotonically increasing on R++. Then, for any positive vectors u, v ∈ R

n,

n∑

i=1

f (u↑
i v

↓
i ) ≤

n∑

i=1

f (uivi ) ≤
n∑

i=1

f (u↓
i v

↓
i ).

Proof We prove only the second inequality as the first one can be proved using exactly
the same argument. By re-indexing the components of v, we can assume without
loss of generality that v1 ≥ · · · ≥ vn , i.e., v↓ = v. Suppose that there exist indices
i, j ∈ {1, . . . , n} with i < j such that ui ≤ u j . We claim that

f (uiv
↓
i ) + f (u jv

↓
j ) ≤ f (uiv

↓
j ) + f (u jv

↓
i ).
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In other words, if there are two components ui and u j that are not sorted in descending
order, then swapping them in the corresponding summands will not decrease the value
of the sum. Therefore, it suffices to prove that

f (ac) + f (bd) − f (ad) − f (bc) ≥ 0 ∀a ≥ b > 0, c ≥ d > 0.

Towards that end, we define the function g(t) = f (tc) − f (td) for t > 0. By the
assumption on f ,

g′(t) = c f ′(tc) − d f ′(td) = 1

t

(
tc f ′(tc) − td f ′(td)

) ≥ 0 ∀t > 0.

Therefore, for any c ≥ d > 0, g is monotonically increasing and hence g(a) ≥ g(b),
which is equivalent to the inequality f (ac) + f (bd) − f (ad) − f (bc) ≥ 0. This
completes the proof. 
�

The next one reveals the structure of matrices commuting with a diagonal matrix.

Lemma 2 Let t1, . . . , t� ∈ R be distinct real numbers, n1, . . . , n� be positive integers
and X ∈ Sn with n = n1 + · · · + n�. Suppose that

X

⎛

⎜⎝
t1 In1

. . .

t� In�

⎞

⎟⎠ =
⎛

⎜⎝
t1 In1

. . .

t� In�

⎞

⎟⎠ X .

Then, there exist symmetric matrices X̃1 ∈ Sn1 , . . . , X̃� ∈ Sn�
such that

X =
⎛

⎜⎝
X̃1

. . .

X̃�

⎞

⎟⎠ .

Proof To prove the lemma, for any matrix Y ∈ R
n×n , we partition its entries into

blocks so that for any i, j = 1, . . . , �, the i j-th block, denoted by [Y ]i j , is ni × n j .
Let D ∈ R

n×n be the diagonal matrix such that [D]i i = ti Ini . Then, for any i, j =
1, . . . , �, we have

[XD]i j =
�∑

k=1

[X ]ik[D]k j = t j [X ]i j and [DX ]i j =
�∑

k=1

[D]ik[X ]k j = ti [X ]i j .

The supposition implies ti [X ]i j = t j [X ]i j . Since t1, . . . , t� are distinct, we conclude
that [X ]i j is a zero matrix for any i �= j . This completes the proof. 
�

The last one concerns diagonal matrices in the same orthogonal conjugacy class.

Lemma 3 Let D, D̂ ∈ R
n×n be two diagonal matrices and Q ∈ On. Suppose that the

diagonal entries of D are distinct and D̂ = QDQ
. Then, Q is a permutation matrix.
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Proof By supposition, we have that D̂Q = QD. Next, for any i, j = 1, . . . , n,

(D̂Q)i j =
n∑

k=1

D̂ik Qkj = D̂ii Qi j and (QD)i j =
n∑

k=1

Qik Dkj = Dj j Qi j ,

which implies that (D̂ii − Dj j )Qi j = 0. Since eigenvalues are preserved by con-
jugation, we know that the set of numbers on the diagonal of D̂ must be the same
as that of D. In other words, there exists a permutation π on {1, . . . , n} such that
D̂ii = Dπ(i)π(i). Therefore,we have (Dπ(i)π(i)−Dj j )Qi j = 0 for any i, j = 1, . . . , n.
Since D11, . . . , Dnn are distinct, Qi j = 0 unless π(i) = j , in which case Qi j = 1
due to the orthogonality. This completes the proof. 
�

3 Main Results

We are now ready to prove Theorem 3.

Proof of Theorem 3 Let A, B ∈ Pn . Since eigenvalues λi (·) are continuous on R
n×n

(see, e.g., [3, Corollary VI.1.6]) and f is continuous on R++, we can also assume
without loss of generality that the eigenvalues of A, B are all distinct. Furthermore,
suppose that the inequality holds for any function f such that s �→ s f ′(s) is strictly
increasing on R++. Then, for any f̃ such that s �→ s f̃ ′(s) is only monotonically
increasing on R++, we consider the perturbed function f̃ε(s):= f̃ (s) + εs. For s2 >

s1 > 0 and ε > 0,

s2 f̃
′
ε(s2) − s1 f̃

′
ε(s1) = s2 f̃

′(s2) − s1 f̃
′(s1) + ε(s2 − s1) > 0.

Therefore, s �→ s f̃ ′
ε(s) is strictly increasing on R++. By supposition, the inequality

holds for f = f̃ε . Taking limit ε ↘ 0, the rearrangement inequality then holds for f̃
as well. Hence, it suffices to prove the inequality for functions f such that s �→ s f ′(s)
is strictly increasing on R++.

Since B
1
2 AB

1
2 ∈ Pn , by the definition of S f , we have

S f (B
1
2 AB

1
2 ) =

n∑

i=1

f (λi (B
1
2 AB

1
2 )).

We start with the lower bound. LetUAΣAU

A andUBΣBU


B be the eigenvalue decom-
positions of A and B, respectively. Consider the minimization problem

inf
U∈On

S f
(
Σ

1
2

BUΣAU

Σ

1
2

B

)
. (3)

By the continuity of f and eigenvalues λi (·), the functionU �→ S f (Σ
1
2

BUΣAU
Σ
1
2

B)

is continuous onOn . SinceOn is compact, a minimizer Q ∈ On to problem (3) exists.
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We thus have

S f (B
1
2 AB

1
2 ) ≥ min

U∈On
S f

(
Σ

1
2

BUΣAU

Σ

1
2

B

) = S f
(
Σ

1
2

BQΣAQ

Σ

1
2

B

)
.

Let

Â = QΣAQ

 and C = Σ

1
2

B ÂΣ
1
2

B .

Since A, B ∈ Pn , we have that C ∈ Pn and hence that λ(C) = σ(C). Fix any eigen-
value decomposition C = UC Diag(λ(C))U


C and let Δ = UC Diag
(
f ′(λ(C))

)
U

C .

By Proposition 1, Δ is the derivative of S f at C . Consider the skew-symmetric matrix

K = ÂΣ
1
2

BΔΣ
1
2

B − Σ
1
2

BΔΣ
1
2

B Â.

By the skew-symmetry of K , Exp(εK ) ∈ On for any ε ∈ R, where Exp(·) denotes
the matrix exponential; see [5, Section 1] for example. Recalling that Exp(X) =
In + X + 1

2 X
2 + · · · for any matrix X ∈ R

n×n , we have

S f
(
Σ

1
2

BExp(εK ) ÂExp(εK )
Σ
1
2

B

)

=S f
(
Σ

1
2

B(I + εK ) Â(I − εK )Σ
1
2

B

) + o(ε)

=S f
(
Σ

1
2

B ÂΣ
1
2

B + εΣ
1
2

B(K Â − ÂK )Σ
1
2

B

) + o(ε)

=S f

(
Σ

1
2

B ÂΣ
1
2

B

)
+ ε

〈
Σ

1
2

BK ÂΣ
1
2

B − Σ
1
2

B ÂKΣ
1
2

B, Δ
〉
+ o(ε)

=S f

(
Σ

1
2

B ÂΣ
1
2

B

)
+ ε

〈
K , Σ

1
2

BΔΣ
1
2

B Â − ÂΣ
1
2

BΔΣ
1
2

B

〉
+ o(ε)

=S f

(
Σ

1
2

B ÂΣ
1
2

B

)
− ε ‖K‖2F + o(ε),

where ‖ · ‖F denotes the Frobenius norm, the first and second equalities follow from
the continuity of f and eigenvalues λi (·), the third from Proposition 1, the fourth by

the symmetry of Σ
1
2

B and Â, and the fifth by the definition of K . Therefore, K = 0
because otherwise the last display would violate the minimality of Q by taking a
sufficiently small ε > 0. Hence, we have that

ÂΣ
1
2

BΔΣ
1
2

B = Σ
1
2

BΔΣ
1
2

B Â,

which, upon multiplying both sides by Σ
1
2

B , yields

CΔΣB = ΣBΔC . (4)

Letting

Ĉ = UC Diag
(
λ(C) ◦ f ′(λ(C))

)
U

C , (5)
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it then follows from the definition of Δ that

CΔ = UC Diag
(
λ(C) ◦ f ′(λ(C))

)
U

C = Ĉ = UC Diag

(
f ′(λ(C) ◦ λ(C))

)
U

C

= ΔC .

Thus, equality (4) is equivalent to

ĈΣB = ΣBĈ . (6)

In other words, ΣB commutes with Ĉ . We claim that ΣB also commutes with C . To
prove the claim, note that we can write

Diag(λ(C)) =
⎛

⎜⎝
c1 In1

. . .

c� In�

⎞

⎟⎠ , (7)

for some positive integers �, n1, . . . , n� with n1 + · · · + n� = n and real numbers
c1 > · · · > c� > 0. Since the function s �→ s f ′(s) is strictly increasing on R++, the
diagonal matrix Diag

(
λ(C) ◦ f ′(λ(C))

)
takes the same form as (7), i.e., for some real

numbers t1 > · · · > t� > 0,

Diag
(
λ(C) ◦ f ′(λ(C))

) =
⎛

⎜⎝
t1 In1

. . .

t� In�

⎞

⎟⎠ . (8)

From (5), (6) and (8), we have that

U

C ΣBUC

⎛

⎜⎝
t1 In1

. . .

t� In�

⎞

⎟⎠ =
⎛

⎜⎝
t1 In1

. . .

t� In�

⎞

⎟⎠U

C ΣBUC ,

which, upon invoking Lemma 2, implies the existence of symmetric matrices B̃1 ∈
R
n1×n1, . . . , B̃� ∈ R

n�×n� such that

U

C ΣBUC =

⎛

⎜⎝
B̃1

. . .

B̃�

⎞

⎟⎠ .

Observing that

⎛

⎜⎝
B̃1

. . .

B̃�

⎞

⎟⎠

⎛

⎜⎝
c1 In1

. . .

c� In�

⎞

⎟⎠ =
⎛

⎜⎝
c1 In1

. . .

c� In�

⎞

⎟⎠

⎛

⎜⎝
B̃1

. . .

B̃�

⎞

⎟⎠ ,
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we arrive at

U

C ΣBUC Diag(λ(C)) = Diag(λ(C))U


C ΣBUC .

Multiplying the last display by UC from the left and U

C from the right, we get

ΣBC = CΣB, (9)

which proves the claim. Then, it follows from equality (9) and the definition of C
that ΣB Â = ÂΣB . Since ΣB is a diagonal matrix with distinct diagonal entries, the
matrix Â = QΣAQ
 is also diagonal by Lemma 2. Next, using Lemma 3 and thatΣA

is a diagonal matrix with distinct diagonal entries, the minimizer Q is a permutation
matrix. Hence, there exists a permutation π on {1, . . . , n} such that

S f
(
Σ

1
2

BQΣAQ

Σ

1
2

B

) =
n∑

i=1

f
(
λi (A)λπ(i)(B)

)
. (10)

Using (10), Lemma 1 and the fact that A, B ∈ Pn , we get

S f (B
1
2 AB

1
2 ) ≥ S f

(
Σ

1
2

BQΣAQ

Σ

1
2

B

) ≥
n∑

i=1

f (λi (A)λn−i+1(B)),

which yields the lower bound. The upper boundof S f (B
1
2 AB

1
2 ) can be proved similarly

by considering the maximization problem

sup
U∈On

S f
(
Σ

1
2

BUΣAU

Σ

1
2

B

)
,

instead of the minimization problem (3). Finally, the extension to positive semidefinite
matrices follows from the right continuity of f at 0, the continuity of eigenvalues λi (·)
and taking limits. This completes the proof. 
�

We next prove a matrix rearrangement inequality for singular values of rectangular
matrices.

Theorem 4 Let f : R++ → R be a differentiable function such that s �→ s f ′(s) is
monotonically increasing on R++. Then, for any full-rank matrices X ,Y ∈ R

m×n,

min{m,n}∑

i=1

f (σi (X)σn−i+1(Y )) ≤
min{m,n}∑

i=1

f
(
σi (X


Y )
) ≤

min{m,n}∑

i=1

f (σi (X)σi (Y )) .

If f is additionally defined and right-continuous at 0, then the inequality holds for
any matrices X ,Y ∈ R

m×n.

123



   64 Page 10 of 18 Journal of Optimization Theory and Applications           (2026) 208:64 

Proof Let X ,Y ∈ R
m×n . Since σi (X
Y ) = σi (XY
) for i = 1, . . . ,min{m, n}, we

can assume without loss of generality thatm ≤ n. By the definition of singular values,
we have that for any i = 1, . . . ,m,

σi (X

Y ) = λ

1
2

i (X

YY
X) = λ

1
2

i (XX
YY
).

Similarly, we have that for any i = 1, . . . ,m,

σi (X) = λ
1
2

i (XX
) and σi (Y ) = λ
1
2

i (YY

).

Also, XX
 and YY
 are positive definite if and only if X and Y have full rank.
Next, let g : R++ → R be the function defined by g(t) = f (

√
t). Then, g is

differentiable onR++ and tg′(t) = 1
2

√
t f ′(

√
t), whosemonotonicity inherits from the

map s �→ s f ′(s). Moreover, if f is defined and right-continuous at 0, so is g. Noting
that λi (B

1
2 AB

1
2 ) = λi (AB) for any positive semidefinite matrices A, B ∈ R

m×m ,
applying Theorem 3 with A = XX
 and B = YY
 yields the desired conclusion. 
�

4 Applications

4.1 Schatten Quasi-Norms

For q > 0 and X ∈ R
m×n , we denote

‖X‖q =
⎛

⎝
min{m,n}∑

i=1

σ
q
i (X)

⎞

⎠

1
q

.

If q ≥ 1, ‖X‖q is the so-called Schatten-q norm of X . The Banach space associated
with the Schatten-q norm is a classical subject in operator theory and has attracted
much research since the forties, see [10, 23, 26]. On the other hand, if q ∈ (0, 1),
‖X‖q is no longer a norm but only a quasi-norm. Motivated by its proximity to the
rank function, the Schatten-q quasi-normwith q ∈ (0, 1] has been applied to low-rank
matrix recovery [22, 30].

As an application of our Theorem 4, we obtain the following inequality on ‖·‖q
for general q ∈ R, which could potentially find applications in the analysis of the
statistical properties of and numerical algorithms for low-rank matrix recovery based
on the Schatten-q quasi-norm.

Corollary 1 Let X ,Y ∈ R
m×n and q > 0. Then, it holds that

min{m,n}∑

i=1

σ
q
i (X)σ

q
n−i+1(Y ) ≤ ∥∥X
Y

∥∥q
q ≤

min{m,n}∑

i=1

σ
q
i (X)σ

q
i (Y ).
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Proof Let f (s) = sq for s ∈ R+. Then, the function s �→ s f ′(s) = qsq is mono-
tonically increasing on R++. The desired inequality then follows from Theorem 4.


�

4.2 Affine-Invariant Geometry on Pn

It is well-known that the cone Pn of n × n positive definite matrices is a differentiable
manifold of dimension n(n + 1)/2, see, e.g., [4, Chapter 6]. For any A ∈ Pn , the
tangent space TAPn at A can be identified with the set of n × n symmetric matrices
Sn . We can equip the cone Pn with a Riemannian metric called the affine-invariant
metric: for any X ,Y ∈ TAPn ∼= Sn ,

〈X ,Y 〉A:=Tr
(
X A−1Y A−1).

Indeed, one can easily check that, given any A ∈ Pn , the map 〈·, ·〉A defines a sym-
metric positive definite bilinear form on Sn . For any A, B ∈ Pn , The corresponding
Riemannian distance is given by

dPn (A, B) = ∥∥Log
(
B− 1

2 AB− 1
2
)∥∥

F,

where Log( · ) denotes the matrix logarithm. This distance enjoys many interesting
properties [4, Chapter 6] and finds applications in diverse areas such as machine
learning [19, 25], image and video processing [9, 27] and elasticity theory [17, 18].

More generally, for any q ≥ 1 and A, B ∈ Pn , we define

dq(A, B) = ∥∥Log
(
B− 1

2 AB− 1
2
)∥∥

q .

It has been proved in [4, Section 6] that dq is a distance on Pn for any q ≥ 1.

Corollary 2 Let A, B ∈ Pn and q ≥ 1. Then, it holds that

n∑

i=1

|log λi (A) − log λi (B)|q ≤ dqq (A, B) ≤
n∑

i=1

|log λi (A) − log λn−i+1(B)|q .

Proof We first assume that q > 1. Next, we note that

dqq (A, B) =
∥∥∥Log

(
B− 1

2 AB− 1
2
)∥∥∥

q

q
=

n∑

i=1

f
(
λi

(
B− 1

2 AB− 1
2
))

,

where f (s) = | log s|q for s ∈ R++. It can be readily verified that f is differentiable
on R++ and

f ′(s) =
{

q
s (log s)

q−1, if s ≥ 1,

− q
s (log

1
s )

q−1, if 0 < s < 1.
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Hence,

s f ′(s) = sgn(log s) · q| log s|q−1, (11)

where sgn(·) denotes the sign of a real number. To show that s �→ s f ′(s) is
monotonically increasing, we let s2 > s1 > 0 and consider four different cases:
s2 ≥ 1 > s1 > 0, s2 > 1 ≥ s1 > 0, s2 > s1 ≥ 1 and 1 ≥ s2 > s1 > 0. For the
first two cases, by (11), we have that s2 f ′(s2) ≥ 0 ≥ s1 f ′(s1). For the third case of
s2 > s1 ≥ 1, (11) shows that the function s �→ s f ′(s) is continuous on [1,∞) and
differentiable on (1,∞). Also, for any s > 1,

(s f ′(s))′ =
(
q(log s)q−1

)′ = q(q − 1)(log s)q−2

s
≥ 0,

which implies that the function s �→ s f ′(s) is monotonically increasing on [1,∞).
We therefore have s2 f ′(s2) ≥ s1 f ′(s1). Similarly, for the fourth case of s1 < s2 ≤ 1,
(11) shows that the function s �→ s f ′(s) is continuous on (0, 1] and differentiable on
(0, 1). Also, for any s ∈ (0, 1),

(s f ′(s))′ =
(
−q

(
log 1

s

)q−1
)′ = q(q − 1)

(
log 1

s

)q−2

s
≥ 0,

which implies that the function s �→ s f ′(s) is monotonically increasing on (0, 1]. We
therefore have s2 f ′(s2) ≥ s1 f ′(s1). Hence, by Theorem 3, we obtain

n∑

i=1

f
(
λi (A)λi (B

−1)
) ≥

n∑

i=1

f
(
λi

(
B− 1

2 AB− 1
2
)) ≥

n∑

i=1

f
(
λi (A)λn−i+1(B

−1)
)
,

which is equivalent to

n∑

i=1

|log λi (A) − log λi (B)|q ≤ dqq (A, B) ≤
n∑

i=1

|log λi (A) − log λn−i+1(B)|q .

The case of q = 1 follows from limiting arguments. This completes the proof. 
�

For any A, B ∈ Pn , Corollary 2 with q = 2 immediately implies that the Rieman-
nian distance dPn with respect to the affine-invariant metric satisfies the inequality

n∑

i=1

(log λi (A) − log λi (B))2 ≤ d2
Pn

(A, B) ≤
n∑

i=1

(log λi (A) − log λn−i+1(B))2 .
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4.3 Alpha-Beta Log-Determinant Divergences

Divergences, which are measures of dissimilarity between two positive definite matri-
ces, play an important role in information geometry and find applications across many
areas, see [1, 7, 20] and the references therein. As a unification and generalization of
many existing divergences in the literature, the family of Alpha-Beta log-determinant
divergences (or AB log-det divergences for short) is introduced and studied in [7].
Given any α, β ∈ R such that αβ �= 0 and α +β �= 0, the AB log-det divergence with
parameter α and β between A, B ∈ Pn is defined as

Dα,β(A‖B) = 1

αβ
log det

(
α(AB−1)β + β(AB−1)−α

α + β

)

The definition of the AB log-det divergence can be extended to the cases of αβ = 0
and/or α + β = 0 by taking limits. In particular, we have

Dα,β(A‖B) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

α2

(
Tr

((
BA−1)α − I

) − α log det
(
BA−1)) , if α �= 0, β = 0,

1

β2

(
Tr

((
AB−1)β − I

) − β log det
(
AB−1)) , if β �= 0, α = 0,

1

α2 log

(
det

(
AB−1

)α

det
(
I + log

(
AB−1

)α)
)

, if α = −β �= 0.

For α = β = 0, D0,0(A‖B) = 1
2d

2
Pn

(A, B). We thus omit the discussion on
this case and refer the readers to Section 4.2. Besides the squared affine-invariant
Riemannian metric, many other well-known divergences are special cases of AB log-
det divergences, including the S-divergence [24]whereα = β = 1

2 and the Stein’s loss
[13] (also called the Burg divergence) where α = 0 and β = 1. For more examples of
AB log-det divergences, we refer the readers to [7, Section 3].

Note that AB−1 is diagonalizable for any A, B ∈ Pn . Therefore, as pointed out in
[7],AB log-det divergences Dα,β(A‖B) can be expressed via the (positive) eigenvalues
of the matrix AB−1, which coincide with those of the matrix B− 1

2 AB− 1
2 :

Dα,β(A‖B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

αβ

n∑

i=1

log

(
αλ

β
i (B− 1

2 AB− 1
2 ) + βλ−α

i (B− 1
2 AB− 1

2 )

α + β

)
, if αβ, α + β �= 0,

1

α2

n∑

i=1

(
λ−α
i (B− 1

2 AB− 1
2 ) − log λ−α

i (B− 1
2 AB− 1

2 ) − 1
)

, if α �= 0, β = 0,

1

β2

n∑

i=1

(
λ

β
i (B− 1

2 AB− 1
2 ) − log λ

β
i (B− 1

2 AB− 1
2 ) − 1

)
, if β �= 0, α = 0,

1

α2

n∑

i=1

log

⎛

⎝
λα
i

(
B− 1

2 AB− 1
2

)

1 + log λα
i

(
B− 1

2 AB− 1
2

)

⎞

⎠ , if α = −β �= 0.

The following upper and lower bounds for AB log-det divergences are generaliza-
tions of the [24, Corollary 3.8].
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Corollary 3 Let A, B ∈ Pn and α, β ∈ R. Then,

Dα,β (A‖B) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

αβ

n∑

i=1

log

⎛

⎝αλ
β
i (A)λ

−β
n−i+1(B) + βλ−α

i (A)λα
n−i+1(B)

α + β

⎞

⎠ , if αβ > 0, α + β �= 0,

1

αβ

n∑

i=1

log

(
αλ

β
i (A)λ

−β
i (B) + βλ−α

i (A)λα
i (B)

α + β

)
, if αβ < 0, α + β �= 0,

1

α2

n∑

i=1

(
λα
n−i+1(B)

λα
i (A)

− log

(
λα
n−i+1(B)

λα
i (A)

)
− 1

)
, if α �= 0, β = 0,

1

β2

n∑

i=1

⎛

⎝ λ
β
i (A)

λ
β
n−i+1(B)

− log

⎛

⎝ λ
β
i (A)

λ
β
n−i+1(B)

⎞

⎠ − 1

⎞

⎠ , if β �= 0, α = 0,

1

α2

n∑

i=1

log

⎛

⎝ λα
i (A)λ−α

n−i+1(B)

1 + log
(
λα
i (A)λ−α

n−i+1(B)
)

⎞

⎠ , if α = −β �= 0;

and

Dα,β (A‖B) ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

αβ

n∑

i=1

log

(
αλ

β
i (A)λ

−β
i (B) + βλ−α

i (A)λα
i (B)

α + β

)
, if αβ > 0, α + β �= 0,

1

αβ

n∑

i=1

log

⎛

⎝αλ
β
i (A)λ

−β
n−i+1(B) + βλ−α

i (A)λα
n−i+1(B)

α + β

⎞

⎠ , if αβ < 0, α + β �= 0,

1

α2

n∑

i=1

(
λα
i (B)

λα
i (A)

− log

(
λα
i (B)

λα
i (A)

)
− 1

)
, if α �= 0, β = 0,

1

β2

n∑

i=1

(
λ
β
i (A)

λ
β
i (B)

− log

(
λ
β
i (A)

λ
β
i (B)

)
− 1

)
, if β �= 0, α = 0,

1

α2

n∑

i=1

log

⎛

⎝ λα
i (A)λ−α

i (B)

1 + log
(
λα
i (A)λ−α

i (B)
)

⎞

⎠ , if α = −β �= 0.

Proof We start with the case of αβ, α + β �= 0. Consider the function f : R++ → R

defined by

f (s) = log

(
αsβ + βs−α

α + β

)
.

We have that for any s > 0,

s f ′(s) = αβ(sβ − s−α)

αsβ + βs−α
.

Then, for any s > 0,

(
s f ′(s)

)′ = αβ(α + β)2sα+β−1

(αsα+β + β)2
=

{
> 0, if αβ > 0,

< 0, if αβ < 0.
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By Theorem 3, if αβ > 0, then

1

αβ

n∑

i=1

log

(
αλ

β
i (A)λ

−β
i (B) + βλ−α

i (A)λα
i (B)

α + β

)

≤ Dα,β(A‖B) ≤ 1

αβ

n∑

i=1

log

(
αλ

β
i (A)λ

−β
n−i+1(B) + βλ−α

i (A)λα
n−i+1(B)

α + β

)
;

and if αβ < 0, then

1

αβ

n∑

i=1

log

(
αλ

β
i (A)λ

−β
i (B) + βλ−α

i (A)λα
i (B)

α + β

)

≥ Dα,β(A‖B) ≥ 1

αβ

n∑

i=1

log

(
αλ

β
i (A)λ

−β
n−i+1(B) + βλ−α

i (A)λα
n−i+1(B)

α + β

)
.

For the case of α �= 0 and β = 0, we consider the function f : R++ → R defined by

f (s) = s−α + α log s − 1.

We have that for any s > 0,

s f ′(s) = α(1 − s−α),

which is monotonically increasing regardless of the sign of α. By Theorem 3,

1

α2

n∑

i=1

(
λα
i (B)

λα
i (A)

− log

(
λα
i (B)

λα
i (A)

)
− 1

)

≤ Dα,β(A‖B) ≤ 1

α2

n∑

i=1

(
λα
n−i+1(B)

λα
i (A)

− log

(
λα
n−i+1(B)

λα
i (A)

)
− 1

)
.

For the case of β �= 0 and α = 0, by using exactly the same argument as that for the
case of α �= 0 and β = 0, we can prove that

1

β2

n∑

i=1

(
λ

β
i (A)

λ
β
i (B)

− log

(
λ

β
i (A)

λ
β
i (B)

)
− 1

)

≤ Dα,β(A‖B) ≤ 1

β2

n∑

i=1

(
λ

β
i (A)

λ
β
n−i+1(B)

− log

(
λ

β
i (A)

λ
β
n−i+1(B)

)
− 1

)
.

For the case of α = −β �= 0, we consider the function f : R++ → R defined by

f (s) = log

(
sα

1 + α log s

)
.
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We have that for any s > 0,

s f ′(s) = α2 log s

1 + α log s
.

Then, for any s > 0,

(
s f ′(s)

)′ = α2

s(1 + α log s)2
> 0.

By Theorem 3,

1

α2

n∑

i=1

log

(
λα
i (A)λ−α

i (B)

1 + log
(
λα
i (A)λ−α

i (B)
)
)

≤ Dα,β(A‖B) ≤ 1

α2

n∑

i=1

log

(
λα
i (A)λ−α

n−i+1(B)

1 + log
(
λα
i (A)λ−α

n−i+1(B)
)
)

.

This completes the proof. 
�

5 Conclusion

This paper generalizes the classical Hardy-Littlewood-Pólya rearrangement inequality
to thematrix setting and presents several applications of the resultingmatrix rearrange-
ment inequalities. Rearrangement inequalities have long served as fundamental tools in
mathematics, economics, statistics, and signal processing. The present work broadens
this scope by establishing new inequalities involving the trace of spectral functions of
the product ofmatrices. A natural direction for future research is to investigate whether
Theorem 3 admits an extension to the setting of Euclidean Jordan algebras, which is
a natural generalization of symmetric matrices endowed with spectral structure.
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