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Abstract

Artificial intelligence (Al) is revolutionizing regenerative medicine, particularly in ad-
vancing mesenchymal stem cell (MSC) therapies and smart biomaterials. This review
highlights Al’s role in two core areas: First, at the biological level, Al can be used to predict
MSC differentiation, immunomodulatory function, and therapeutic potential by analyzing
multi-omics and imaging data, deciphering heterogeneity and improving precision. For
instance, deep learning models based on MSCs” morphology can successfully predict the
differentiation propensity and uncover the regulatory networks underlying the intrinsic
heterogeneity. Second, in engineering, Al shifts material design from trial-and-error to
data-driven approaches. Machine learning models correlate material parameters with bio-
logical properties, enabling optimized screening. Furthermore, generative Al can be used to
tailor novel materials through inverse design to achieve targeted properties like accelerated
wound healing. However, the current development in this field remains constrained by
several severe challenges, including the fragmented nature of existing research evidence,
the insufficient reproducibility of model predictions in independent cohorts, and the sig-
nificant translational gap from computational predictions to in vivo validation. Future
research must not only demonstrate potential but also urgently address these fundamental
and translational bottlenecks.

Keywords: mesenchymal stem cells (MSCs); artificial intelligence (Al); regenerative
medicine; clinical translation; biomaterials

1. Introduction

The primary goal of regenerative medicine is to employ biological and engineering
strategies to repair, replace, or regenerate tissues and organs that have been impaired
due to aging, disease, or injury, with the ultimate aim of fully restoring their normal
physiological functions [1]. Mesenchymal stem cells (MSCs) hold significant promise in
this field owing to their multilineage differentiation potential, powerful immunomodu-
latory capabilities, and abundant paracrine signaling activities [2]. MSCs can migrate to
sites of damage, differentiate into specific cell lineages, and secrete a variety of bioactive
factors via paracrine mechanisms, thus facilitating tissue repair and modulating immune-
inflammatory processes. These attributes render MSCs attractive therapeutic agents for
a range of pathological conditions, including degenerative diseases such as Parkinson’s
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disease [3] and osteoarthritis [4], tissue injuries such as myocardial infarction [5], spinal
cord injury [6], and pulp necrosis [7,8], as well as immune-mediated disorders such as
rheumatoid arthritis [9] and graft-versus-host disease [10].

However, the clinical translation of MSCs faces several substantial challenges. Firstly,
considerable functional heterogeneity exists among MSC populations due to variations in
tissue sources such as umbilical cord, adipose tissue, and bone marrow, as well as differ-
ences in donor age and culture conditions, which directly compromises the reproducibility
of therapeutic outcomes [11,12]. Secondly, the therapeutic effects of MSCs remain incon-
sistent across studies, and the underlying mechanisms have not been fully elucidated. A
particularly critical limitation is the low post-transplantation survival rate; as the vast ma-
jority of administered cells undergo rapid apoptosis due to localized ischemic and hypoxic
conditions, combined with host immune clearance, thereby hindering the attainment of
sustained therapeutic efficacy [13,14]. Furthermore, the functionality of MSCs is highly
dependent on their microenvironment [15], so biomaterials serve critical roles in stem
cell-based therapies.

Functioning as artificial extracellular matrices, biomaterials not only provide essen-
tial three-dimensional scaffolding and mechanical support to promote cell survival and
integration, but also actively regulate MSCs’ fate and function through microenvironmen-
tal cues [16]. As our understanding of MSCs—microenvironment interactions deepens,
biomaterial design has progressed from providing passive structural support to enabling
active biological guidance. In particular, intelligent biomaterials have emerged as a new
paradigm, not only serving as cellular carriers but also acting as precise modulators of the
cellular milieu [17]. These advanced materials function as responsive agents capable of
sensing specific internal or external stimuli to activate therapeutic functions or enhance
tissue regeneration [18,19].

Intelligent biomaterials are distinct from conventional biomaterials in several key
aspects. First, they are stimulus-responsive and can react to triggers from both external and
internal environments [19,20]. Second, they are functionally active, capable of releasing
drugs, generating thermal effects, regulating cellular behaviors, and other therapeutic
actions [21]. Moreover, they exhibit high design flexibility and tunability [22]. Through
biomimetic engineering, these materials can mimic the mechanical and biochemical proper-
ties of the extracellular matrix. They can be engineered to respond to specific physiological
or external signals such as pH, temperature, or light, and dynamically deliver cargo such as
growth factors, cytokines, or nucleic acids. This dynamic regulatory capacity enables pre-
cise control over MSC homing, survival, proliferation, differentiation, and paracrine activity,
thereby significantly improving the controllability and efficacy of regenerative therapies.

While significant progress in biomaterial research has improved the regenerative
potential of MSCs in regenerative medicine, a comprehensive understanding of how surface
chemistry, topological structure, and mechanical properties collectively influence MSC fate
remains lacking. Key aspects such as the distribution of functional groups, pore architecture
and surface roughness, as well as elastic modulus and matrix stiffness, are all believed
to play interconnected yet not fully integrated roles [23]. These knowledge gaps not only
impede the clinical translation of MSCs-based therapies but also motivate ongoing research
to develop innovative strategies that address these limitations, with the ultimate goal of
delivering tangible clinical benefits from stem cell advances.

The challenges faced by MSC therapies and smart materials, including cellular het-
erogeneity, unstable efficacy, and complex manufacturing processes, are fundamentally
multidimensional and nonlinear system optimization problems that traditional methods
struggle to effectively address. Al technology is emerging as a key solution, demonstrating
unique advantages in processing high-dimensional omics data such as transcriptomics and
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proteomics, microscopic imaging data, including cell morphology and material structure,
as well as complex dynamic processes [24,25]. Al can uncover deep patterns from massive
datasets and establish predictive models that link donor cell fate, material parameters,
and final therapeutic outcomes, thereby guiding optimal cell source selection and mate-
rial design [26-28]. More importantly, Al enables reverse-engineered design of optimal
formulations and structures for directive biomaterials while optimizing manufacturing
processes to ensure batch consistency [29]. In summary, the advent of Al is poised to
significantly accelerate the development and clinical translation of mesenchymal stem
cell-smart biomaterial product systems.

This review provides an overview of innovative Al applications in MSCs research,
spanning key areas such as multi-omics analysis, cell fate prediction, process optimization,
and therapeutic efficacy assessment. It highlights how Al facilitates the rational design of
intelligent biomaterials and discusses future directions and challenges in developing next-
generation regenerative therapies that are both personalized and functionalized through
deeper integration of Al and biological science.

2. Search Strategy and Outcome

The review followed the PRISMA guidelines. The primary search for article screening
used in this review was conducted using Web of science (n = 557), PubMed (n = 542),
Scopus (n = 711) and manual search (n = 154). Take PubMed as an example, we present
our search strategy: (“Artificial Intelligence” [Mesh] OR “Machine Learning” [Mesh] OR
“Deep Learning” [Mesh] OR “Neural Networks, Computer” [Mesh] OR “AI” OR “con-
volutional neural network*” OR CNN OR “generative adversarial network*” OR GAN
OR “random forest” OR “support vector machine*” OR SVM OR “Bayesian optimization”
OR “natural language processing” OR NLP) AND (“Mesenchymal Stem Cells” [Mesh] OR
“Mesenchymal Stromal Cells” [Mesh] OR “Stromal Cells” [Mesh] OR MSC OR MSCs) OR
(“Biocompatible Materials” [Mesh] OR “Biomimetic Materials” [Mesh] OR biomaterial* OR
scaffold* OR hydrogel* OR “tissue engineering” [Mesh] OR “extracellular matrix mimics”)
AND (“Regenerative Medicine” [Mesh] OR “regenerative medicin*” OR “tissue regener-
ation” [Mesh] OR “bone regeneration” [Mesh] OR “cartilage regeneration” OR “wound
healing” [Mesh]). The detailed search strategy is provided in the Supplementary Materials.

The literature screening was conducted collaboratively by two researchers. Following
a rigorous selection process, 271 articles were selected for references in this study. The
PRISMA flowchart (Figure 1) illustrates the identification and screening process of articles.

Based on the final results of this literature search, it can be observed that Al is increas-
ingly being integrated with research on MSCs and biomaterials, catalyzing a shift from
traditional, intuition-driven experimental approaches to a data-driven paradigm, thereby
accelerating the rapid development of the field of regenerative medicine.

Al models are successfully decoding the complexity of MSCs by leveraging high-
dimensional data from transcriptomics, proteomics, and live-cell imaging [30]. These
models predict differentiation fate, resolve heterogeneity, and identify high-potency cell
subpopulations [12], tasks that are difficult to accomplish efficiently with traditional an-
alytical methods. Furthermore, Al is revolutionizing biomaterial design by establishing
correlations between complex material parameters and biological performance [31], thereby
transcending conventional trial-and-error approaches [32]. Al models are now being em-
ployed to inversely design novel smart biomaterials [25], which can be customized to elicit
specific cellular responses such as enhanced osteogenesis or angiogenesis.
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Figure 1. Search strategy. The flowchart outlines the search and screening process for the study. The
search was first performed in Web of Science, PubMed, Scopus and manual search, then duplicate
articles and articles that did not meet the research criteria were removed, and finally relevant articles

were selected for references.

However, despite the growing demonstration of Al’s application potential in the field
of regenerative medicine, the clinical translation of its achievements still has a long way
to go. A significant gap persists between Al predictions and in vivo validation, with the
vast majority of studies remaining confined to proof-of-concept demonstrations under
controlled laboratory conditions. The field also grapples with the “black box” problem [33],
where models offer high predictive accuracy but limited mechanistic interpretation, thereby
restricting their utility for fundamental biological discovery. Furthermore, challenges such
as data standardization, the reproducibility of models across different MSC donors and
material batches, and the ultimate clinical translatability of these computational outcomes
remain largely unresolved. The subsequent sections of this article will delve into the specific
applications underpinning this promising yet precarious landscape, critically examining
how Al is reshaping our understanding of MSCs and biomaterials, while emphasizing the
considerable obstacles that must be overcome to realize its full transformative potential.

3. Main AI Algorithms for MSCs and Biomaterial Research

The application of Al in MSCs and biomaterial research relies on a solid foundation
of diverse machine learning algorithms. A clear understanding of these computational
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tools is essential to appreciate how they convert complex data into biologically meaningful
insights. This process usually starts with data acquisition and preprocessing, which is
particularly crucial given the complex and multi-type nature of biological data. Data types
range from structured experimental parameters and high-dimensional omics data, such as
transcriptomics and proteomics, to unstructured image data, including microscopic images
and material micro-CT scans. The quality and standardization of the data directly influence
model performance.

This section will introduce key machine learning algorithms that are advancing Al
applications in MSCs and biomaterial research via Table 1 and Figure 2. We provide a con-
cise overview of fundamental ML paradigms, with emphasis on core algorithm categories
including supervised learning, unsupervised learning, deep learning, and generative Al
The discussion covers their basic principles and representative applications in the field,
thereby establishing a necessary computational foundation for later chapters that delve
into specific implementations.

Multi-modal Raw Data
(MSCs, Biomaterial Data)

!

Data Preprocessing&
Feature Engineering

!

[

Suprev.ised Unsupre.vised Deepllearning Generative Al Optim?zation
Learning Learning Algorithms
Prediction & Exploration & Perception & Generation & Optim{za}ion
Classification Discovery Parsing Design & Decision-

making
Pr.e‘cnse. NewPotes Image / Seq.uence New M.aterlal Experimental
classification Analysis Design Protocols

\ /

Al-driven innovation in MSCs
and biomaterials

Figure 2. This figure illustrates the pivotal role of various categories of Al algorithms in translating
heterogeneous raw data into scientific insights and practical applications. The process begins with
the collection of multi-modal data. After essential data preprocessing and feature engineering, the
data is processed by a core ensemble of Al algorithms, each suited to different tasks. The outputs
of these algorithms facilitate data-driven decision making and discovery, ultimately guiding future
experiments and clinical translation.
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Table 1. Summary of the common AI algorithm in MSCs and biomaterials research.
P . . . o . Examples of Specific
Classification Typical Algorithms Algorithm Description Role in Research L. .
Application Scenarios
Leveraging the strength of
decision tree ensembles, these
robust algorithms are - . -
particularly adept at handling To build predictive models that 1. Predicting the d1fferent1at19n
. . . fate of MSCs based on material
structured data and evaluating  decipher the complex, nonlinear
feature importance. This relationships between parameters, such as hardness
Random Forest/XGBoost ’ and chemical composition.

capability allows it to integrate
heterogeneous experimental
data and identify the most
critical material properties or
biological signatures that dictate
cell fate and function.

biomaterial parameters and
MSC behavior, thereby
accelerating rational design.

2. Predicting clinical efficacy of
MSC treatment and discovering
key biomarkers.

Supervised learning

Support Vector Machine (SVM)

This algorithm is designed to
identify the optimal
classification boundary in
high-dimensional spaces,
demonstrating strong capability
in handling such complex data.
This makes it particularly suited
for classifying cell subtypes or
material types based on complex
omics or spectral data.

To perform precise classification
tasks, such as distinguishing
MSC donor sources or potency
based on their molecular
profiles, or categorizing
biomaterial formulations.

This algorithm enables the
precise classification of MSCs
into osteogenic-prone or
adipogenic-prone lineages based
on their omics signatures,
thereby prescreening them for
specific therapies.

Unsupervised learning PCA/t+-SNE/UMAP

This algorithm generates
low-dimensional visualizations
of high-dimensional data,
enabling researchers to
intuitively discover inherent
clustering patterns within the
data, such as unlabeled cell
subpopulations or groups of
biomaterials with similar
properties.

This algorithm uncovers the
hidden structure within complex
datasets. It creates a visual map
that makes it easy to see natural
clusters, for example, to find
new cell subtypes or group
similar biomaterials together.

1. Analyze scRNA-seq data,
visualize and discover unknown
functional subgroups of MSCs.
2. Perform dimensionality
reduction on diverse material
formulations to observe the
natural clustering patterns and
identify groups of formulations
with similar properties.
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Table 1. Cont.

Classification Typical Algorithms

Algorithm Description

Role in Research

Examples of Specific
Application Scenarios

Unsupervised learning K-means clustering

An algorithm that automatically
groups data points into distinct
clusters, ensuring that points
within the same cluster are as
similar as possible. This
algorithm performs unbiased
clustering, automatically
revealing hidden groups within
your data. It can identify distinct
cell subpopulations or
categorize material types purely
from the data itself, without any
prior labeling.

It discovers new categories by
performing automated,
unlabeled sorting of cell
populations or materials, which
directly enables data-driven
phenotyping of heterogeneous
MSC cultures and the
categorization of biomaterial
datasets.

1. Mixtures of cells can be
automatically clustered
according to the expression
profile of surface markers.

2. A large number of polymer
materials can be clustered to
quickly screen out the material
categories with similar
characteristics.

Convolutional Neural Network
(CNN)

As a network architecture
specifically designed for image
processing, it excels at
automatically extracting spatial
hierarchical features. This
capability makes it ideal for
analyzing cell morphology and
material microstructure in
microscopy or SEM images.

To analyze the morphology of
cells and the microstructure of
materials, and to make
image-based predictions and
classifications.

1. The apoptosis status or
differentiation tendency of
MSCs can be predicted
non-invasively according to the
morphology of MSCs in
micrographs.

2. Analyze the SEM image of
biological material and predict
its porosity or mechanical
strength.

Deep learning

Recurrent Neural Network
(RNN/LSTM)

A network architecture
specifically designed for
sequential data, capable of
capturing temporal
dependencies through its
built-in memory mechanism,
perfect for analyzing dynamic
biological processes that evolve
over time.

Its core function is to model and
forecast time-series data,
capturing the dynamic processes
that evolve over time. This
allows for the prediction of
future states in MSC culture,
such as growth dynamics, or
biomaterial performance, such
as long-term degradation
profiles.

1. Analyze the dynamic change
in cell growth or differentiation
to predict its future state.

2. To predict the degradation
kinetics of biomaterials in vivo.
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Table 1. Cont.

Classification Typical Algorithms Algorithm Description

Role in Research

Examples of Specific
Application Scenarios

A generative model that learns
the underlying distribution of
complex data to generate novel,
realistic samples, such as
synthetic cell images or new
molecular structures with
desired properties.

Generative Adversarial Network
(GAN)/Variational Autoencoder
(VAE)

Generative Al

1. Data enhancement: To
overcome data scarcity for rare
cell states or material types by
generating synthetic data to
expand the dataset.

2. Reverse design: to create new
materials or molecular
structures with desired
properties.

1. Generate realistic virtual cell
microscopy images to increase
the amount of training data.

2. Inversely designed a novel
peptide hydrogel molecular
structure that can promote
angiogenesis to the greatest
extent.

A sequence optimization
strategy based on Bayes’
theorem is proposed to find the
optimal solution of complex
functions with a minimum
number of trials. As a
sample-efficient strategy, it
addresses the challenge of
optimizing
expensive-to-evaluate
experiments. By intelligently
selecting the most promising
trials based on Bayes’ theorem, it
rapidly converges on the best
parameters for complex tasks
like media or process
optimization with minimal
experimental cost.

Optimization algorithm Bayesian Optimization

To optimize the experimental
formula and complex process
parameters to greatly reduce the
number of “trial and error”
experiments.

1. Optimize the best
concentration combination of
various growth factors in MSC
serum-free culture medium.

2. Optimize the 3D printing
process parameters (e.g.,
printing speed and temperature)
of biological materials to obtain
the best molding accuracy.
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Table 1. Cont.

Classification

Typical Algorithms

Algorithm Description

Role in Research

Examples of Specific
Application Scenarios

Optimization algorithm

Reinforcement Learning (RL)

An agent learns optimal
decision-making strategies
through interaction with a
dynamic environment, ideal for
controlling multi-step, adaptive
biological processes. This
technique empowers
bioprocesses to master complex,
long-term operations through
autonomous decision-making. It
intelligently adjusts system
parameters in real-time,
enabling hands-off, adaptive
control essential for
sophisticated MSC
manufacturing and tissue
engineering.

To provide the decision-making
framework for autonomous
bioprocess control, allowing
systems like bioreactors or
differentiation protocols to
self-optimize based on real-time
feedback.

1. Control the dynamic
environment of the bioreactor
(pH, dissolved oxygen,
perfusion rate) to maximize cell
yield.

2. Develop a dynamic strategy
for adding factors to MSCs
during differentiation.
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4. Understanding MSCs Biology with AI: From Big Data to Mechanisms

MSCs demonstrate considerable therapeutic potential owing to their capacity for
multi-lineage differentiation, immunomodulatory effects, and potent paracrine signal-
ing. However, substantial donor-dependent heterogeneity, phenotypic instability during
in vitro expansion, and functional variability pose major challenges to reproducible clinical
outcomes and reliability. Al, especially machine learning and deep learning, is advancing
the understanding of MSCs biology through multidimensional big data analysis with
unprecedented precision and depth. This progress offers pivotal insights necessary for
standardizing MSCs-based therapies and facilitating their precise clinical application.

4.1. Predicting Cell Fate and Therapeutic Potential

Conventionally, evaluating the differentiation potential or immunosuppressive func-
tions of MSCs requires time-consuming in vitro induction experiments that often take
several weeks or involve complex molecular biology assays. In contrast, Al technology can
utilize easily accessible early-stage data to achieve rapid and non-destructive prediction
of cellular fate [27]. Computer vision-based Al methods have become powerful tools for
predicting the developmental trajectories of MSCs. Convolutional neural network (CNN)
is a deep learning architecture specifically designed to process grid-structured data such as
images, which automatically extracts spatial features through convolutional layers and is
widely applied in tasks including image recognition, classification, and object detection [34].
CNN can extract subtle morphological features from standard bright-field or fluorescence
microscopy images, such as texture, shape, size, and intensity distribution, that are imper-
ceptible to the human eye, and correlate these features with specific cell states [35,36]. After
training, CNN models can accurately predict the subsequent osteogenic, adipogenic, or
chondrogenic differentiation tendencies of MSCs by analyzing cell images taken just 24 h
after seeding, achieving an accuracy of up to 90% (Figure 3A) [37].

For example, Kim et al. [30] employed a CNN to analyze live-cell microscopy images
for predicting the functional status of MSCs. By training a CNN-based model, the study
successfully classified MSC images into high or low multipotency stress-tolerant categories,
enabling efficient cell screening (Figure 3B), achieving an accuracy of up to 92.2%. This
non-invasive, image-based approach allows real-time and continuous monitoring of cell
quality and fate prediction during culture, providing a transformative tool for selecting
high-quality cells or early assessment of differentiation efficiency.

In addition, Al-driven methods based on omics data also offer reliable predictions of
early MSC differentiation fate. Zhou et al. [27] developed a machine learning model named
MeD-P, which integrated a large volume of publicly available RNA-seq data to construct a
gene expression reference framework for tri-lineage differentiation in MSCs (Figure 3C).
With the k-nearest neighbor algorithm, the model achieved high-accuracy prediction of
differentiation lineages. Compared to conventional marker gene-based methods, MeD-P
demonstrated superior accuracy, reaching 90.63% versus 80.21% on the test set, and could
determine the differentiation tendency as early as the first week of hMSC culture. Similarly,
Klontzas et al. [38] introduced an approach combining metabolomics and machine learning
to predict the osteogenic differentiation potential of umbilical cord blood-derived MSCs in
both two-dimensional and three-dimensional culture systems. XGBoost is a highly efficient
gradient-boosting decision tree algorithm. It delivers outstanding performance in classi-
fication and regression tasks on high-dimensional and complex biomedical datasets [39],
such as omics data, by iteratively training multiple weak learners and combining their
predictions. By analyzing metabolic profiles and training an XGBoost model to distinguish
between differentiated and undifferentiated states, the model achieved perfect accuracy in
2D conditions and maintained high performance in 3D cultures. These methods provide ef-
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Figure 3. (A) Schematic illustration of the deep learning framework and deep neural network
training process used to identify MSCs differentiation based on morphology. Reproduced with
permission [37]. Copyright 2023, Frontiers Media S.A. (B) Schematic of the deep learning framework
used to screen for functional MSC lines. MSC cultures were obtained from different donors for image
data acquisition. To compare the classification performances of various CNN models, threefold
cross-validation was conducted by splitting the dataset into non-overlapping subsets. Reproduced
with permission [30]. Copyright 2022, Springer. (C) Overview of the workflow of the omics-based
MSCs trilineage differentiation prediction model. First, collect the RNA-seq datasets related to
tri-lineage differentiation of hMSCs from public databases and assign them into training and testing
datasets. Then bioinformatic analysis was performed on training datasets comprising quality control,
batch effect adjustment and feature selection to obtain the regenerative gene expression reference
for hMSCs. Based on this, the assessment model was implemented to predict hMSC lineage fate
based on machine learning. Then the performance of the assessment model was evaluated on testing
datasets. Reproduced with permission [27]. Copyright 2023, Wiley.
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The clinical significance of the aforementioned Al-based, rapid, and non-destructive
prediction models lies in the potential to serve as revolutionary tools for precise quality
control and personalized medication in MSC therapy. Current clinical practice relies
heavily on time-consuming in vitro induction assays, which require several weeks, to
evaluate critical quality attributes such as the differentiation potential of cell products.
These conventional methods are incompatible with the immediate infusion of fresh cells
and cannot predict patient-specific therapeutic responses. In contrast, Al models could
enable transformative clinical scenarios in the future. For instance, by rapidly acquiring
and analyzing bright-field cell images prior to product release or administration, AI model
could predict the osteogenic or chondrogenic potency of a cell batch within mere hours.
This capability would facilitate the real-time selection of the most suitable cell products for
conditions like osteoarthritis or bone defects, thereby minimizing ineffective treatments.
Furthermore, by analyzing baseline transcriptomic or metabolomic data from donor MSCs,
Al could predict the adaptability and therapeutic potential of different donor-derived cells
in specific disease microenvironments. Looking ahead, clinicians might be able to match the
most suitable MSC donor to a specific injury type or pathological state, a process analogous
to blood type matching, thereby significantly improving treatment efficacy.

4.2. Revealing the Regulatory Network of Cell Fate Determination

Beyond making predictions, the ultimate objective of Al in this field is to decipher the
complex regulatory logic that governs MSCs’ fate determination. Gene regulatory networks
(GRN’s), which represent the intricate interactions between transcription factors and their
target genes, are central to the control of cellular fate [40]. Conventional methods for infer-
ring GRNs are often computationally intensive and fail to fully capture nonlinear regulatory
relationships [41]. In contrast, Al-based approaches can reconstruct GRNs from time-series
transcriptomic data with greater efficacy (Figure 4) [42,43]. These models help identify key
transcription factors critical to differentiation or activation processes and simulate how
such regulators cooperate to direct cells toward specific functional states [41,44,45]. For
example, Kim et al. [46] developed a deep learning tool named DeepTFactor that predicts
whether a protein acts as a transcription factor. By using convolutional neural networks to
extract features from protein sequences, this tool can detect DNA-binding domains and
other relevant characteristics, enabling high-accuracy transcription factor identification.
Such data-driven reverse engineering strategies provide a dynamic and systems-level
perspective for uncovering molecular switches and pathway interactions that guide MSC
fate decisions, thereby establishing a theoretical foundation for designing precise cellular
intervention strategies.

The Al-derived regulatory network governing MSC fate decisions holds profound
clinical implications, as it provides a clear roadmap for developing precise “cellular repro-
gramming” and “targeted enhancement” therapies. While conventional MSC therapies
involve transplanting whole cells with uncertain in vivo effects, the insights from this
network are primarily speculative at this stage. Looking forward, Al-driven interpretation
of the network may help identify key drug targets and facilitate the development of novel
therapeutics. In next-generation genetically engineered MSC therapies, the network could
serve as a blueprint for gene editing or transgenic modifications. With technologies such as
CRISPR to precisely modulate key genes within the network may enable the creation of
functionally enhanced MSCs for treating refractory tissue defects or autoimmune diseases.
Furthermore, understanding this network could support the rational design of combined
“material + cell + factor” strategies to maximize therapeutic outcomes.
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Figure 4. Workflow for the inference of single-cell GRNs by scGeneRAI. Reproduced with permis-
sion [47]. Copyright 2023, Oxford Academic. A neural network is trained on scRNA-seq data to
predict each gene’s expression based on arbitrary sets of other genes. Following training, a single-
cell GRN is predicted in three steps: (1) A target gene is predicted based on a set of other genes.
(2) Logistic Regression Projection (LRP) is used to infer the relevance of every gene for this prediction.
(3) The LRP scores subsequently serve as a measure of interaction strength between the target gene
and all predicting genes. This procedure is repeated for 100 masks and for all genes as the target gene.

4.3. Quantify and Analyze Cellular Heterogeneity

The emergence of single-cell RNA sequencing (scRNA-seq) and related technologies
has revealed the remarkable transcriptional heterogeneity within MSC populations. The
cellular heterogeneity challenge faced by MSCs refers to significant differences in gene
expression, differentiation potential, immunomodulatory capacity, and secretory character-
istics among MSCs [11]. This heterogeneity not only hinders precise functional analysis
of MSCs in basic research but also severely constrains standardization and therapeutic
stability in clinical applications.

The cellular heterogeneity challenge presents two core difficulties. First, the complexity
of molecular mechanisms. This manifests as differences in epigenetic regulation and
dynamic changes in metabolic states. For instance, a high-throughput single-cell DNA
methylation and chromatin accessibility co-analysis study revealed that variations in DNA
methylation and chromatin accessibility among cells within the same MSC population
can lead to fluctuations in key gene expression [48]. Single-cell metabolomics research
found that even within the same cell line, individual cells” metabolic states may differ
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due to genetic, epigenetic, or environmental factors. This metabolic heterogeneity affects
cellular functions and fate [49]. During stem cell differentiation, different subpopulations
exhibit variations in metabolic activity, and changes in specific metabolites may determine
cellular functions and fates [50-52]. Second, the diversity in microenvironment responses.
Many transcription factor concentrations vary significantly between cells due to differences
in synthesis, degradation, cell size, and shape, leading to distinct cellular responses [53].
Different subpopulations of mesenchymal stem cells may develop distinct functions and
differentiation directions within the same microenvironment [54].

The heterogeneity of MSCs poses significant challenges while also underpinning their
diverse functional capabilities. Al provides novel approaches to quantify, interpret, and
harness this heterogeneity. t-SNE is a dimensionality reduction algorithm employed for
the visualization of high-dimensional data, which uncovers clustering patterns by main-
taining local pairwise similarities. Whereas UMAP represents a contemporary approach
that effectively preserves local structure, captures global topological characteristics more
accurately, and generally outperforms t-SNE in computational efficiency. The ability of both
techniques to represent the intrinsic population architecture of high-dimensional single-cell
data in a low-dimensional space renders them exceptionally useful for the identification of
cellular subgroups possessing specific differentiation potentials or functional attributes [55].
By revealing hidden heterogeneities within MSC populations, these approaches enable opti-
mized culture conditions tailored to specific subpopulations, improve expansion efficiency
through targeted subpopulation selection, and enhance quality control by monitoring
composition changes and functional consistency during manufacturing.

On the supervised side, machine learning models can construct predictive classifiers
with transcriptomic data. These models not only precisely discriminate stem cells derived
from different donors or tissue sources [56] but also forecast their responsiveness to specific
induction factors [57]. This approach offers a promising strategy to address the issue of
heterogeneity in cellular products.

For example, Liu et al. [58] developed an Al model combining hyperspectral imaging
with a separable convolutional neural network (H-SCNN) to assess the functional status of
human bone marrow-derived MSCs in a high-throughput manner. This model significantly
surpassed manual visual inspection in performance metrics such as classification accuracy,
AUC, F1 score, sensitivity, and specificity, while also reducing processing time from 60 min
to 20 min. Weber et al. [59] proposed a deep learning-based image translation model
that predicts fluorescence patterns of MSC senescence markers, such as SABG, p16, p21,
and p38, directly from phase-contrast microscopy images. This non-invasive approach
allows real-time senescence monitoring at single-cell resolution across multiple senescence
induction methods, effectively capturing cell-to-cell heterogeneity.

These studies illustrate the emergence of Al as an efficient and scalable platform for
quality control of MSCs, with promising applications in automating phenotypic analyses
within cell therapy and regenerative medicine production pipelines. Collectively, these
advances underscore the role of Al in enhancing the reproducibility of MSC-based therapies
and streamlining biomanufacturing quality assurance.

Furthermore, generative adversarial networks (GANSs) can produce synthetic single-
cell data that are statistically consistent with real cellular datasets [60]. GANs learn through
an adversarial game between a generator and a discriminator, which ultimately enables
the generator to produce highly realistic data. This capability makes them particularly
suitable for single-cell data analysis, as they can generate synthetic data to augment small,
precious datasets, facilitate simulation studies, and protect patient privacy when sharing
data. For example, Xu et al. [61] developed a method named scIGANs, which uses GANs
to interpolate scRNA-seq data and mitigate dropout effects caused by technical artifacts.
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This method converts single-cell gene expression profiles into image-like representations,
which GANs then process to generate biologically plausible expression values, effectively
reconstructing missing gene measurements. Beyond augmenting valuable datasets for
training more robust models, GANs also facilitate the creation of “virtual cells” that can
be used to simulate perturbation experiments. These models allow researchers to compu-
tationally explore how specific genetic or environmental alterations influence overall cell
states, thereby substantially reducing experimental costs and accelerating the discovery of
underlying mechanisms (Figure 5) [62,63].

The core clinical significance of Al’s ability to predict MSC differentiation fate and
decipher the heterogeneity lies in establishing a foundation for patient-specific person-
alized cell therapy products. This capability suggests a future in which MSC batches
with high osteogenic potential can be selectively administered to patients requiring bone
regeneration, or cell subpopulations exhibiting potent immunomodulatory activity can be
chosen for immunoregulatory therapies such as graft-versus-host disease. Consequently,
the predictability and success rate of treatments would be significantly enhanced, while the
risk of ineffective interventions would be substantially reduced.
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Figure 5. Artificial intelligence and omics enable the ambitious prospect of Al Virtual Cell (AIVC), a
multi-scale multimodal neural network that models molecular, cellular and tissue behavior across
states. Reproduced with permission [62]. Copyright 2024, Elsevier. (A) AIVC provides a universal
representation of cell states, obtainable across species and conditions, and generated from diverse
data modalities spanning multiple scales (molecular, cellular, and multicellular). (B) AIVC possesses
the ability to represent and predict cellular biology. (C) The utility of AIVC depends on its interaction
with humans across different levels.

While image- or omics-based Al prediction models are promising, most remain at
the proof-of-concept stage, with questionable generalizability. Their performance depends
heavily on specific laboratory protocols, imaging equipment, and data preprocessing
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methods, posing significant reproducibility challenges across centers and donors. Moreover,
these models are typically trained on “ideal” in vitro data and their accuracy in the complex
in vivo microenvironment, characterized by inflammatory and hypoxic stresses, remains
uncertain. Future work should prioritize prospective validation in large, multi-center
cohorts and incorporate in vivo data to enhance model robustness and clinical applicability.

In conclusion, by integrating multimodal data, including imaging and omics, Al is
transforming MSCs from an empirically applied cell therapy into an increasingly transpar-
ent and predictable system with well-defined biological mechanisms, quantifiable states,
and controllable functions. This shift from predictive modeling to causal interpretation
marks a crucial advancement toward precision medicine in MSC-based therapies, offering
essential biological insights for refining stem cell manufacturing and guiding the design
of intelligent biomaterials. However, key challenges such as limited generalizability, re-
producibility, and the in vitro—-in vivo gap hinder this potential. Despite these challenges,
Al integration is fundamentally advancing MSC therapy toward a more predictable and
mechanistic future.

5. AI-Driven Design of Intelligent Biomaterials

The development of traditional biomaterials has long relied on researchers” expertise
and iterative experimental approaches, often described as trial and error. This process tends
to be time-consuming, costly, and limited in its ability to systematically optimize complex
parameters. A particular obstacle is the lack of comprehensive analysis of material-cell
interactions, which significantly restricts progress in biomaterial research [64,65]. For in-
stance, in the case of bone-repair hydrogels, the number of theoretically possible parameter
combinations, such as choices of raw materials, degree of cross-linking, pore size, and
degradation rate, is exceedingly large [66]. Conventional experimental methods can only
explore a small subset of these combinations, requiring considerable investment of time
and resources.

Moreover, the relationship between micro-scale characteristics, such as polymer chain
entanglement, and macro-scale properties, like elastic modulus, remains poorly quantified,
often leading to repetitive and inefficient experimental cycles. Literature analyses indicate
that, between 2002 and 2021, the majority of bone repair material studies focused on
incremental improvements within conventional material systems, rather than pioneering
novel tissue engineering strategies. This highlights the innovation constraints inherent in
traditional methodologies [67]. The incorporation of Al is now reshaping this paradigm,
shifting biomaterial design from an experience-dependent practice to a data-driven and
rational process (Figure 6A). By deciphering complex structure—property relationships
and biological responses, Al facilitates the development of a new generation of intelligent
biomaterials capable of actively directing cellular behavior, responding to environmental
cues, and ultimately improving tissue regeneration outcomes.
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Figure 6. (A) Workflow of Al-assisted smart biomaterial design, synthesis, and analysis. Reproduced
with permission [25]. Copyright 2025, Wiley. (B) Schematic to illustrate the role of system biology
and Al-based modeling approaches to establish high-throughput stem cell phenotypical switching to
different lineages (bone/neural/cardiac/muscle) or antimicrobial resistance, based on biomaterial
and biophysical stimulation parameters. Reproduced with permission [68]. Copyright 2022, Elsevier.

5.1. Rational Design of Material Properties

The key characteristics of biomaterials, such as chemical composition, microstructure,
stiffness, surface topography, charge, and hydrophobicity, collectively shape the microen-
vironment that governs cellular behaviors including adhesion, spreading, proliferation,
and differentiation [69]. However, the interactions between these parameters and cell
fate occur in a highly complex and nonlinear manner that exceeds the capacity of human
intuitive reasoning.

Machine learning models, especially supervised learning algorithms, are well suited
to address this challenge. Researchers can compile databases containing a wide range of
material formulations along with their corresponding in vitro and in vivo experimental
outcomes. Using algorithms such as random forests, support vector machines, and neu-
ral networks, they can train models to quantify structure-activity relationships between
material parameters, structures, and functional properties [70]. For example, computa-
tional approaches including molecular dynamics simulations, finite element analysis, and
machine learning enable prediction of hydrogel properties, such as mechanical strength, bio-
compatibility, and stimulus responsiveness, across molecular and macroscopic scales [71].
A well-trained model can accurately predict the capacity of a biomaterial to support MSCs
differentiation based on its physicochemical characteristics, elucidate how various factors
affect differentiation outcomes, and suggest optimized formulations (Figure 6B) [72,73].
This capability allows the virtual screening of thousands of candidate material compositions
prior to synthesis, substantially reducing experimental workload and rapidly narrowing
down the most promising candidates for further validation [74]. Robust and generaliz-
able models ensure that predictions remain valid under varying experimental conditions
and for unseen data, increasing confidence in pre-screening outcomes. As a result, the
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integration of machine learning technology streamlines biomaterial development for stem
cell applications and supports faster clinical translation in regenerative medicine and
cell therapy.

The Al-driven rational design of biomaterials holds clinical potential by enabling
customized solutions for specific tissue defects and patient groups in the future. For
example, with medical imaging data, Al could generate personalized scaffold designs
that match the mechanical and geometric properties of the defect, improving implant
stability and biocompatibility. Al may also optimize materials for specific clinical needs. In
osteoporotic patients, it could develop materials with lower modulus and higher porosity to
promote cell ingrowth and vascularization, thus reducing stress shielding and accelerating
healing. For cartilage repair, Al might adjust hydrogel water content and lubrication to
help restore joint function. As these clinical scenarios become reality in the future, Al is
poised to transform the therapeutic effectiveness of biomaterials.

5.2. Reverse Design and Discovery of New Materials

Generative Al is paving the way for a new paradigm of “reverse design” in biomateri-
als, going beyond the analysis of existing datasets. Generative Al is a branch of artificial
intelligence whose core function is to learn the intrinsic distribution patterns of existing
data and, based on this, generate novel data samples that are similar to but not identical to
the original data. Its ability to enable “inverse design” stems from its capacity to learn from
complex “property-structure-process” relationships, using desired material properties as
input conditions. After training on massive datasets, the model can directly and inversely
deduce novel molecular structures or material compositions that fulfill these specified
property requirements [75].

For instance, Jiang et al. [76] developed an Al platform for designing antimicrobial
peptide hydrogels aimed at treating drug-resistant bacterial infections such as MRSA and
Escherichia coli. Through generative design and multi-objective optimization, the platform
proposed novel thiol-containing antimicrobial peptides. These were integrated with hydro-
gels and copper-modified barium titanate to form composite materials that demonstrated
strong antibacterial efficacy and promoted wound healing. Experimental results confirmed
that the Al-designed hydrogel significantly enhanced antimicrobial performance and accel-
erated wound closure in both in vitro and animal models, underscoring the potential of Al
in guiding functional biomaterial development.

Despite the fact that the inverse design capability of Al has accelerated the discovery of
new materials at an unprecedented pace, it has concurrently introduced a critical validation
gap. The numerous virtual material candidates generated by Al ultimately require synthesis
and functional validation through time-consuming and labor-intensive wet laboratory
experiments. Currently, cases successfully completing the full research chain from virtual
design to experimental synthesis and in vivo functional confirmation remain exceedingly
scarce. Most studies are still confined to computational simulations or preliminary in vitro
testing, with a severe lack of systematically evaluated data on efficacy and safety in disease
animal models. This translational void between in silico predictions and in vivo outcomes
represents one of the most fundamental challenges in Al-driven materials science.

Although current applications of Al-driven reverse design in recycled biomaterials
remain relatively limited, successful examples in drug discovery and other biomaterial
domains highlight its broad applicability [77]. We anticipate that AI will continue to
transform the design of recycled biomaterials, enabling the on-demand customization
of materials tailored to specific clinical needs. This advancement is expected to provide
innovative momentum for the future of regenerative medicine.
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5.3. Intelligent Feedback Assisted Design of Dynamic and Responsive Materials

Conventional biomaterials generally exhibit fixed mechanical properties, in contrast
to the highly dynamic nature of the extracellular matrix (ECM). Static materials often fail to
adequately mimic the continuous remodeling processes inherent to biological tissues [64].
For example, the mechanical behavior of many biomaterials does not fully match the
requirements of the native tissue. Commonly used bone regeneration materials such as
polycaprolactone (PCL) degrade slowly; some PCL scaffolds require three to four years to
fully dissolve, which misaligns with the rate of replacement and resorption during new
bone formation [78]. Furthermore, traditional bone regeneration scaffolds often possess a
stiffness greater than that of natural bone, which can lead to insufficient mechanical stimu-
lation and result in bone resorption due to stress shielding effects, ultimately compromising
regenerative outcomes [79].

Biological tissues often display hierarchically porous architectures. Different tissue
types and developmental stages demand distinct pore sizes, a degree of structural sophisti-
cation that remains difficult to replicate with synthetic materials. In the context of bone
regeneration, natural cancellous bone contains complex and interconnected pores, whereas
traditional repair materials such as hydroxyapatite ceramics often show limited porosity
and poor interconnectivity, potentially hindering cell migration and nutrient transport [80].

Another critical shortcoming of conventional biomaterials is their limited ability to
monitor and respond to microenvironmental changes in real time. For instance, natural
bone tissue can self-repair through the coordinated activities of osteoclasts and osteoblasts,
whereas calcium phosphate ceramic implants lack such autonomous repair capabilities [81].
Similarly, traditional drug delivery systems such as PLGA microspheres release therapeutic
agents mainly through passive diffusion or polymer degradation [82]. They lack the ability
to dynamically adapt to changes in the local microenvironment, such as variations in pH
or enzymatic activity. In contrast, the ECM demonstrates an innate capacity to respond to
these dynamic conditions.

Therefore, novel biomaterials need to evolve into dynamic systems with tunable
properties that can adjust biophysical signals over time, which is essentially a “fourth-
generation” of materials capable of sensing and adaptively responding to changes in
the physiological microenvironment [23,68]. Al plays an indispensable role in designing
and optimizing such complex systems. For example, Wang et al. [83] proposed a hybrid
model that integrates physical simulation and Al to predict drug release behavior in
biomaterials. Unlike traditional methods that rely on fixed parameters and static diffusion
models, particularly models such as NODE and SHAP can dynamically learn nonlinear
relationships in the drug release process and adjust prediction results in real time based
on spatial location and material properties. This approach not only improves predictive
accuracy but also enhances the controllability and personalization of drug release, offering
a more flexible and efficient solution for the design of intelligent drug delivery systems.

By analyzing existing biomaterial datasets, Al can predict the properties of new
biomaterials and even create entirely new compositions and structures tailored to specific
functional requirements. For instance, Al can generate innovative biomaterial constructs,
such as hydrogels or 3D scaffolds, with defined mechanical properties and degradation rates
suited to the target application. Furthermore, Al facilitates the design of smart materials
that respond to microenvironmental cues such as pH or mechanical stress, laying the
groundwork for precision medicine [25]. Al also holds promise for integrating multi-scale
data spanning molecular, cellular, and material levels to construct virtual models of cell-
material interactions. This capability will help shift mechanistic studies from reductionist
approaches toward a more systemic perspective [62,63].
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In summary, Al serves not merely as an accelerator but as a fundamental driver
of innovation in biomaterials research in the future. By deciphering complex datasets,
constructing predictive models, and generating novel design solutions, Al enables the
development of increasingly sophisticated generations of intelligent biomaterials. These
materials function beyond passive cell carriers; they act as active partners that interact
with implanted MSCs. By working in concert to sense, respond to, and remodel damaged
microenvironments, MSCs and biomaterials collectively enhance the therapeutic efficacy of
regenerative medicine. This progress will open new avenues for building complex tissue-
engineered constructs and advancing the next generation of personalized implantable
medical devices.

6. Challenges and Perspectives

Although Al has demonstrated considerable promise in advancing research on MSCs
and intelligent biomaterials, its comprehensive integration into the biomedical field contin-
ues to encounter numerous significant translational challenges and ethical concerns that
must be thoroughly addressed.

6.1. Data Quality and Standardization Issues

The development of Al models critically depends on high-quality, standardized,
and well-annotated datasets. However, a fundamental limitation in the intersection of
medicine and Al is the pronounced lack of large-scale, standardized, multi-center biomed-
ical datasets [84]. Most current studies, including many cited in this review, are built
upon data generated from single laboratories, specific donor sources, or controlled in vitro
conditions. This singular data origin leads to significant data fragmentation, resulting
in widespread issues such as high noise, pronounced batch effects, and source hetero-
geneity [85]. Consequently, models are highly susceptible to learning these non-biological
technical variations, leading to overfitting and weak generalizability. A predictive model
demonstrating exceptional performance in one study often fails to generalize for data from
different sources, raising major concerns regarding the reproducibility and robustness of Al
applications. Therefore, the transition from proof-of-concept research to clinically reliable
tools necessitates validation in independent and heterogeneous cohorts. Establishing Al
systems with strong generalizability must be founded upon large-scale, standardized,
multi-center datasets, which remains a critical and unmet need in the field.

6.2. Model Interpretability and Mechanistic Insight Lackage

A further major limitation concerns the lack of algorithmic interpretability. Many
deep learning models function as “black boxes,” with decision-making processes that
lack transparency [33]. In biomedical applications, merely obtaining accurate predictions
is insufficient; it is equally crucial to reveal the biological mechanisms underlying these
predictions to establish scientific trust and drive new discoveries. Explainable Artificial
Intelligence (XAI) presents a promising pathway to address this challenge [86]. Within MSC
and intelligent biomaterials research, XAl methods, such as LIME and SHAP, can be applied
to trained black-box models. These techniques utilize local approximation or perturbation
analysis to identify the input features most critical to specific predictions, like instance key
genes, material parameters, or culture conditions. This capability directly addresses the
fundamental question of which factors the model relies on for its decision-making.

A representative example can be found in the study by Chung et al. [87], who devel-
oped a machine learning workflow to predict cell viability on conductive MXene bioint-
erfaces. After training an artificial neural network model, the researchers applied SHAP
analysis to quantify the direction and magnitude of influence of four key input parameters,
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including pc-MXene loading, peptide loading, applied voltage, and stimulation frequency,
on the model-predicted cell viability. The SHAP interpretation revealed a strong negative
impact of high voltage on cell survival, which was confirmed by fluorescence microscopy
observations showing substantial cell detachment from the biointerface when the voltage
was increased to 3.0 V. Furthermore, SHAP indicated that the negative effect of pc-MXene
loading was attenuated under higher voltage conditions, prompting further investigation.
This led to the discovery that the phenomenon might be associated with the aggregation of
pc-MXene at specific concentrations, which altered interfacial conductivity and peptide
adhesion stability. Thus, in this study, XAI successfully transformed a complex ANN
black-box model into an interpretable tool that not only generated predictions but also
elucidated the intricate nonlinear interactions between parameters and cellular activity,
directly guiding subsequent mechanistic experiments and advancing the transition from
data-driven prediction to biological mechanism discovery.

While this review identifies XAl as a promising future direction to address this issue,
current applications of XAl in the field still remain superficial. Simply providing feature
importance rankings and directional influences falls short of delivering a causal, mechanis-
tic understanding of the underlying biology or material—cell interactions. There is a risk
that Al may identify spurious correlations without revealing genuine regulatory principles,
thereby limiting its utility for generating novel, testable biological hypotheses.

6.3. The Clinical Translation Bottleneck

Currently, most Al-driven MSC research and biomaterial design relies predominantly
on data generated under idealized experimental conditions, such as two-dimensional cell
cultures and homogeneous materials. Models trained on such data fail to adequately
capture key physiological factors present in real in vivo environments, including immune
responses, vascularization, and dynamic changes in the tissue microenvironment. This
dependence on idealized data severely constrains the predictive power of Al models in real
clinical settings and may lead to overly optimistic assessments of technological maturity.

Moreover, even when models demonstrate excellent predictive performance in vitro,
most research outcomes remain confined to the in vitro experimental stage and lack sys-
tematic validation in animal models or human studies [85]. Particularly in the context of
reverse design, the materials or cellular strategies generated by Al require functional and
safety assessments through complex, time-consuming, and costly in vivo experiments. This
validation gap consequently leaves numerous Al-driven regenerative medicine solutions
largely theoretical, hindering their translation into practical clinical applications.

Furthermore, current models predominantly rely on statistical correlations and lack
clearly defined decision thresholds that are directly linked to clinical outcomes. For instance,
a model’s prediction of “high osteogenic potential” must be quantitatively correlated with
actual patient bone healing rates to possess meaningful clinical utility. Such studies remain
largely absent, forming a critical bottleneck that impedes the transition of Al from an
academic tool to a clinically approved medical product.

6.4. Ethical and Regulatory Challenges

The application of Al in biomedicine raises a series of ethical and social concerns.
Data privacy and security constitute a paramount concern [88], particularly when handling
patient genomic and clinical information. Furthermore, the risk of algorithmic bias is
significant. If training data fails to adequately represent diverse populations, models may
exacerbate healthcare disparities [89,90].

For instance, research by Gao et al. [91] highlights that while biomedical data forms
the foundation for developing medical AI models, over 80% of Genome-Wide Association
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Studies data originates from European populations, who represent less than 20% of the
global population (Figure 7). This predominant reliance on data from European ancestries
results in models with reduced accuracy and poorer performance for non-European popu-
lations in areas such as disease prediction and treatment recommendation. The mismatch
between training data distribution and target populations also severely compromises model
generalizability. Through comprehensive data analysis, Gao et al. demonstrate that while
Al holds potential to accelerate precision medicine, it may simultaneously amplify health
risks stemming from data inequality.

From a regulatory perspective, authorities in various countries have begun establishing
approval frameworks for Al-based medical software [92]. A landmark example of real-
world translation is the IDx-DR system [93]. Focused on the automated screening of
diabetic retinopathy, it received marketing authorization through the U.S. Food and Drug
Administration’s (FDA) De Novo pathway in January 2018. This approval marked IDx-DR
as the first autonomous Al system cleared by the FDA capable of providing definitive
clinical diagnostic decisions, such that it could output results without requiring secondary
interpretation of the images by a clinician. A pivotal factor in its authorization was a
rigorous prospective, multicenter clinical validation study conducted within real-world
primary care settings, which successfully demonstrated the algorithm’s high sensitivity
and specificity in identifying referable diabetic retinopathy. This case clearly illustrates
a successful transition from proof-of-concept to a clinically reliable tool: it addresses
the critical healthcare need of mitigating specialist shortages and improving screening
accessibility, while also having passed stringent regulatory scrutiny, thereby paving the
way for the development and approval of subsequent autonomous Al diagnostic systems.
It serves as an invaluable paradigm for clinical translation in the field of Al for regenerative
medicine. However, despite this considerable potential, challenges such as the frequent
updates of AI models, the opaque decision-making processes, and difficulties in controlling
data biases complicate safety verification and the establishment of clinical trust, making
this an evolving and complex landscape. Consequently, the path toward the widespread
clinical integration of AI models remains a considerable journey ahead.
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Figure 7. Addressing data inequality challenges in Al-driven precision medicine [91]. Copyright
2023, Annual Reviews.
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6.5. Perspectives

Addressing these challenges will require sustained interdisciplinary collaboration
among biologists, clinicians, computational scientists, ethicists, and regulatory agencies.
Only through the collective establishment of robust, equitable, transparent, and trustworthy
Al systems can we fully realize their potential and safely usher regenerative medicine into
an intelligent new era. Future efforts should prioritize the development of a collaborative,
reliable, and efficient intelligent research ecosystem. Key to this endeavor is the formation
of cross-institutional multimodal data alliances that leverage privacy-preserving technolo-
gies such as federated learning to overcome data fragmentation and heterogeneity, thereby
providing a solid foundation for model training [94]. At the same time, explainable Al
must be deeply embedded within research frameworks to convert high-accuracy predictive
models into interpretable insights concerning biological mechanisms, facilitating a transi-
tion from opaque black-box systems to transparent and verifiable approaches [95]. In terms
of methodology, increased emphasis should be placed on hybrid models that integrate
generative Al with established physical principles, enabling not only data enhancement
but also the generation of novel and testable hypotheses for biomaterial design and cellular
reprogramming [96,97].

To ensure a smooth translation from laboratory research to clinical applications, it
is essential to work closely with regulators to develop adaptive review frameworks and
standardized good machine learning practices tailored to the dynamic nature of Al tech-
nologies [98]. Ultimately, these advancements are expected to converge into automated and
self-directed laboratories that combine Al-driven decision making, robotic automation, and
high-throughput characterization within a closed-loop system. Such an integrated platform
will effectively bridge intelligent design with physical realization, significantly enhanc-
ing research and development efficiency while systematically accelerating the intelligent
transformation of regenerative medicine.

7. Conclusions

This review systematically examines the current applications and impact of Al in MSC
research and the development of intelligent biomaterials. At the fundamental research level,
Al has demonstrated powerful data processing capabilities, enabling the establishment of
predictive models for MSC differentiation fate and functional potential through the analysis
of microscopic images and omics data. At the engineering application level, Al-driven
rational design models have preliminarily achieved a quantitative mapping from material
parameters to biological performance, while generative Al has validated, on a small scale,
the feasibility of its “inverse design” concept for novel materials, such as the peptide-based
hydrogels tailored for specific properties like antibacterial and pro-healing functions.

However, it must be emphasized that most of these encouraging achievements remain
largely confined to the early-stage research phase. The research evidence reviewed in this
article also clearly highlights major challenges in the field: the reproducibility and gen-
eralizability of Al models are constrained by highly heterogeneous and fragmented data;
the black-box nature significantly impedes the discovery of interpretable biological mech-
anisms; and most critically, a substantial translational gap exists between computational
predictions and in vivo efficacy validation.

Therefore, future progress requires addressing these fundamental bottlenecks beyond
algorithmic advances. This requires establishing interdisciplinary, standardized data plat-
forms to enhance data quality and comparability; advancing explainable Al to transform
high-accuracy predictions into verifiable biological insights; and ultimately conducting
rigorous, systematic in vivo experiments to bridge the critical evidence gap between in
silico designs and in vivo therapeutic outcomes. Only through such foundational work can
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Al evolve from a powerful tool into a reliable engine driving precision and intelligence in
regenerative medicine.
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