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EFFICIENT FINITE ELEMENT METHODS FOR SEMICLASSICAL NONLINEAR
SCHRODINGER EQUATIONS WITH RANDOM POTENTIALS

PANCHI L1I'® AND ZHIWEN ZHANG2*

Abstract. In this paper, we propose two time-splitting finite element methods to solve the semiclas-
sical nonlinear Schrodinger equation (NLSE) with random potentials. We then introduce a multiscale
method to reduce the degrees of freedom in the physical space. We construct multiscale basis functions
by solving optimization problems and rigorously analyze the corresponding time-splitting multiscale
reduced methods for the semiclassical NLSE with random potentials. We provide the L? error estimate
of the proposed methods and show that they achieve second-order accuracy in both spatial and tempo-
ral spaces and an almost first-order convergence rate in the random space. Additionally, we introduce
the proper orthogonal decomposition method to reduce the computational cost of constructing basis
functions for solving random NLSEs. Finally, we carry out several 1D and 2D numerical examples to
validate the convergence of our methods and investigate wave propagation behaviors in the NLSE with
random potentials.
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1. INTRODUCTION

The nonlinear Schrdodinger equation (NLSE) is a prototypical dispersive nonlinear equation that has been
extensively used to study the Bose-Einstein condensation, laser beam propagation in nonlinear optics, par-
ticle physics, semi-conductors, superfluids, etc. To accurately and transparently interpret the observations in
many experimental situations, a semiclassical treatment is extensively introduced for the underlying quantum
mechanical dynamics [45]. For the NLSE, this treatment results a small semiclassical parameter €, and propa-
gations of e-dependent oscillations in both space and time. With a further consideration of random potentials,
the interaction of nonlinearity and random effect also poses challenges to understanding complex phenomena,
such as localization and delocalization [19,24,46,54] and the soliton propagation [23,35,51]. Due to the inher-
ent challenges in studying the underlying model analytically, people devote to developing reliable and efficient
numerical approaches to simulate the quantum mechanical dynamics.

In the past decades, many numerical methods have been proposed to solve the NLSEs with deterministic
potentials, and recent comparisons can be found in [3,5,28]. For the time-dependent NLSE, the implicit Crank—
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Nicolson (CN) schemes were extensively used. The CN scheme conserves the mass and energy of the system
simultaneously, but it is known for a lower efficiency in handling nonlinearity with the requirement of iteration
methods, in which particular time step conditions must be ensured for the stability of the iteration [1,41,52]. To
enhance computational efficiency, several promising approaches, including linearized implicit methods [57,62],
relaxation methods [9,11] and time-splitting methods [8,10,56], have been proposed. Among these, time-splitting
methods exhibit outstanding performance in terms of efficiency since linear equations with constant coefficients
are solved at each time step. To reach optimal convergence, time-splitting schemes require enough smoothness on
both the potential and the initial condition. For instance, Strang splitting methods require the initial condition to
possess H* regularity [10]. The low-regularity time-integrator methods [37,47,61] are proposed to alleviate such
a constraint. Nevertheless, the available low-regularity time-integrator methods rely on the Fourier discretization
in space with a periodical setup, and their integration with finite difference methods (FDM) and finite element
methods (FEM) has not been established.

Although the Fourier discretization allows for the approximation error to reach exponential accuracy in space,
in the case of non-smooth potentials, the FDM or FEM is recommended, as spectral methods may lose their
optimal convergence rate. In this paper, we invest to develop efficient numerical methods based on the FEM. Over
the past several decades, to develop efficient FEM methods for partial differential equations, intense research
efforts in dimensionality reduction methods by constructing the multiscale reduced basis functions, known as
the multiscale finite method (MsFEM), have been invested (see, e.g., [2,15,20-22, 26, 31,49]). Incorporating
the local microstructures of the differential operator into the basis functions, MSFEMs capture the large-scale
components of the multiscale solution on a coarse mesh without the need to resolve all the small-scale features
on a fine mesh.

Recently, the localized orthogonal decomposition (LOD) method [2,44] has been proposed to approximate
the minimizes of the energy [27,29,30] and simulate the time-dependent dynamics [18] for the NLSE with
deterministic potential, which achieves a superconvergence rate in space. With the random potential further
being considered, the time-splitting spectral discretization with the Monte Carlo (MC) sampling [61] and quasi-
Monte Carlo (¢MC) sampling [60] have been employed for the 1D NLSE. Considering the limitation of the
spectral methods, and developing efficient numerical methods in the framework of the FEM, here we combine
the time-splitting temporal discretization and a multiscale method to solve the NLSE with random potentials.

In our approaches, the multiscale basis functions are approximated using the finite element basis on a fine
mesh, where the coefficients are determined by solving a set of equality-constrained quadratic programs. This
idea was motivated by the multiscale method for elliptic problems with random coefficients [32-34], the linear
Schrodinger equation with multiscale and random potentials [14], and the Helmholtz equation in random media
[42]. We use the multiscale basis functions to discretize the deterministic NLSE that reduces the degrees of
freedom (dofs) required for FEM. Meanwhile, for the time-marching, we present two Strang splitting methods.
One solves the linear Schrédinger equation using the eigendecomposition method [14] and handles the cubic
ordinary differential equation at each time step. This splitting method obviates the requirement of regularity
for the potential function. The other is the time-splitting CN method. Meanwhile, the random potential is
parameterized using the Karhunen—Loeve (KL) expansion method. We employ the gMC method to generate
random samples. It is demonstrated that the proposed approaches reach the second-order convergence rate in
both time and space, and achieve almost a first-order convergence rate with respect to the sampling number in
the random space.

Theoretically, we provide a convergence analysis of the time-splitting FEM (TS-FEM) for the deterministic
NLES in Lemma 4.3. Furthermore, we extend this analysis to estimate the time-splitting multiscale method for
the NLSEs with random potentials as Theorem 4.3. We remark that the referred multiscale method should be
an LOD method, although we use a different approach to construct the multiscale basis. On the other hand,
this optimal approach allows us to apply the proper orthogonal decomposition (POD) method, which essentially
reduces the computational costs for the construction of the optimal multiscale basis for new qMC samples in
a low-dimensional POD basis space. The corresponding method is detailed in Appendix A. Numerically, we
verify several theoretical aspects. Using the proposed numerical methods, we investigate wave propagation in
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the NLSE with parameterized random potentials in both 1D and 2D physical spaces. We observe the localized
phenomena of mass density for the linear cases, whereas the NLSE with strong nonlinearity exhibits significant
delocalization.

The rest of the paper is organized as follows. In Section 2, we describe fundamental model problems. In
Section 3, we present the spatial discretization methods with time-splitting methods for the deterministic NLSEs.
Then, the analysis results are presented in Section 4. Numerical experiments, including 1D and 2D examples,
are conducted in Section 5. Finally, conclusions are drawn in Section 6.

2. THE SEMICLASSICAL NLSE WITH RANDOM POTENTIALS

We consider the following model problem

2
€0 )" = —S AP +u(@ W) + MY Y, @eD, weQ, te(0.7),

we |t:0 = win (w)7

where 0 < € < 1 is an effective Planck constant, D = T%(d = 1,2,3) denotes the torus, w €  is the
random sample with €2 being the random space, T is the terminal time, ¥, () denotes the initial state, v(x,w)
is a given random potential, and A (> 0) is the nonlinearity coefficient. Physically, |¢¢|*> denotes the mass
density and the system’s total mass mp = fD |{in]? d is conserved by (2.1). Note that the wave function
%€ [0,T] x D x Q — C, and the function space H5(D) = H5(D, C), in which the functions are periodic over
domain D. The inner product is defined as (v, w) = fD vw de with w denoting the complex-conjugate of w, and

(2.1)

the spatial L norm is ||w||* = |||w]||* = (w,w). Furthermore, let D7 = 95! - -- 93¢ denote the spatial derivative
with |o| = 51 + -+ -+ sq4. Then, the H* norm is denoted by || - || g+ with || - ||, = || [|* + 21<ol<k 1D - |2. In
particular, the spatial L> norm is defined by || - ||« = esssupgep | - |-

We denote the Hamiltonian operator H of the NLSE

2
€

H()=—5A0) +o() + Al (). (2.2)
Since the Hamiltonian operator is not explicitly dependent on time and the commutator [H, H] = 0, the energy

of the system,
€ € 62 € € >\ €
B(1) = (%) = SIVUAIP + (o), [9P2) + 5 1l (2.3
remains unchanged as time evolves. We assume E(t) = Ey < oo for all ¢ > 0.

Assumption 2.1. We assume that the potential v(x,w) is bounded in L (Q; H®) with 0 < s < 2. More
precisely, for every w € Q, the bound of ||v(x,w)|« satisfies

€2

H? <

S @’ 24

where < means bounded by a constant and H, which will be defined later, is the coarse mesh size of the MsFEM.

We first consider the deterministic potential, i.e., v(x,w) = v(x). Assume that there exists a finite time T
such that ¢ € L*°([0,T); H*) N L' ([0, T]; H?) and by Sobolev embedding theorem, we have ||1¢||oc < C|t¢| 2
for all t € [0,T] and d < 3. Hence, the bonded assumption of ||9||» implies that ¢ is bounded in the L*>®
sense in both time and space. Apart from this, unless specially stated, the norms should be with respect to the
space. Besides, here we directly assume that the solution of (2.1) exists and is unique in a finite time. We refer
to a detailed discussion on the existence and uniqueness of the solution in [29] and the references therein. In
the sequel, we will use a uniform constant C' to denote all the controllable constants that are independent of e
for simplicity of notation.
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Lemma 2.1. Assume v(xz,w) = v(x) in (2.1) and let ¢ be the solution of the counterpart system. Assume
Y e L>([0,T); HY) N LY([0,T]; H?). If Opc(t) € H® with s = 0,1,2 for all t € [0,T), there exists a constant
C\,e such that

10| s < O, (2.5)

where Cy . mainly depends on € and X. In particular, for d =3 and s = 1,2, we have a compact formulate

Voo + CA|[ V51 CAT(|| V20 || + ] |12,

€ €

10: Vo] < (

where

€l|2
o] < S exp( 2T ). (2:6)

€

The proof is detailed in Appendix B, in which the constant Cj . can be calculated. Note that for A = 0, the
above result can degenerate to the estimate of the linear Schrodinger equation as in [6, 59].

Next, we assume that v(x,w) is a second-order random field, i.e., E[jv(z,w)|?] < oo, with a mean value
E[v(z,w)] = v(x) and a covariance kernel denoted by C(x,y). In this study, we adopt the covariance kernel

Jwi =y
O(CC, y) = 0'2 exp ( Z 1212‘7> s (27)
i=1 ?

where o is a constant and [; denotes the correlation lengths in each dimension. Moreover, we assume that the
random potential is almost surely bounded. Using the KL expansion method [36,40], random potentials take
the form

a,w) = 5(@) + 30 VA ) (@), 28)

where §;(w) represents mean-zero and uncorrelated random variables, and {\;, v;(x)} are the eigenpairs of the
covariance kernel C(x,y). The eigenvalues are sorted in descending order and the decay rate depends on the
regularity of the covariance kernel [53]. Hence the random potential can be parameterized by the truncated form

vn@,0) = 5(@) + 3 /A6 () (@) 29)

Once the parameterized form of the random potential is defined, the corresponding wave function ¢, satisfies

2
ied)s, = _%mpfn U (, )OS, + AUS 205, @ e D,weQ,t e (0,T],

wfn(t = 0) = 1/Jin~

The error |v,(x,w) — v(x,w)| depends on the regularity of eigenfunctions and the decay rate of eigenvalues.
We make the following assumption for the parameterized random potentials, which ensures that the random
problem is well-posed, and allows us carry out a rigorous analysis for the truncation error. In particular, here
we assume that the random potential is almost surely bounded over the domain D, and the KL modes satisfy:

(2.10)

Assumption 2.2. (1) In the KL expansion (2.9), assume that there exist constants C > 0 and © > 1 such that
Aj < Cj=® forallj > 1.

(2) The eigenfunctions v;(x) are continuous and there exist constants C > 0 and 0 < n < 921 such that

26
Villgz < CXJ" for all j > 1.
J J
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(3) Assume that the parameterized potential v, satisfies

oo

o= vl <Cm™ 37 (VXsllusllaz)” < oo,

j=1
for some positive constants C' and x, and p € (0,1].

In [60], the authors provide the L>°([0,T], H') error between wave functions to (2.1) and (2.10) for the 1D
case. Here we get a similar result for the L? error between the wave functions for d < 3.

Lemma 2.2. For every w € Q, the error between wave functions to (2.1) and (2.10) satisfies

Cllvm — v]lso aTX . .
I = 0 < L0220 (22 g ) (2.11)

where C' is independent of e.

Proof. Define §vp = ¢f, — ¢° and it satisfies

e = 5 A+ -+ (i — 0+ A (105, P — 0P (212
with the initial condition 6¢(t = 0) = 0. For the nonlinear term, we have
"5 = [P0 = (V5200 + 0 4500+ 5y
Taking the inner product of (2.12) with &% yields
ie(Dh50,09) = (V50 F04) + (1, 00) + (1 — 00, 00
Al P00, 8) + A (6°465,80, 69) + A (Ju P60, 00 ),
which infers
= A6 = ((em — )%, 50) = ((om — 005, 55) + M40, 95,00) — (590, 65,55)).
We further get

4|V — V||so . 4\ € €
aylso)2 < Aom = llee / <169 da + 2 / eS|, 0] da
€ D € Jp

v — vl

IN

4\
Mol + — 19 lloc 7 oo 99117

€

Owing to the L>([0,T] x ©; H®) bound of both ¥ and 1¢,, an application of Gronwall inequality yields

AT)|Vm — V|| oo aTh | . .
o < T =Pl o (2 e o ).

Owing to the assumption ||v,, — v|lec < Cm™X, this lemma implies that ¢, — ¥ as m — oc.
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3. NUMERICAL METHODS

Consider the regular mesh 7, of D. The standard P; finite element space on the mesh 7 is given by
Pi(Ty) = {v € L3(D)| for all K € Ty, v|x is a polynomial of total degree < 1}. Let 7y denote the coarse
mesh with mesh size H, and then the H}p(D)-conforming finite element spaces are V;, = P;(7,) N Hp(D) and
Vi = Pi(Tg) N H5(D). Denote Vi, = span{¢h,--- ,(;S?Vh} and Vi = span{¢t’,--- , ¢} }, where Nj, and Ny are
the number of vertices of the fine mesh and the coarse mesh, respectively. The wave function is approximated
by 5 (t, ) = Z;}Vh Up(t)pl () on the fine mesh, where Up(t) € C,p=1,--- , N, and t € [0, T].

3.1. TS-FEM for the NLSE
We adopt Strang splitting methods for time-stepping. The NLSE is rewritten to

€0 p® = (£1 + £2)’(/J€, (3.1)

and its exact solution has the form ¥(t) = Sy, where S* = exp(—i(L1 + L2)t/e€). To efficiently handle the
nonlinear term, we present two approaches as follows, both of which require solving linear equations:

(1) Option 1,
2

L) = =FAC) +u(), La() = AP (3.2)
(2) Option 2,
62
L1() = =5AC), £2() = () + Al (), (3.3)

Computing the commutator [£1,Ls] = L£1Ls — L2L; shows that the regularity of potential v € C?(D) is
required for Option 2, whereas Option 1 does not need this condition.
From t,, to t,41, the Strang splitting yields

YAV, YAV At
PO = L™ = exp —Z—Ez(-) o exp —Z—/jl exp —Z—Cg(-) o™, (3.4)
2e € 2¢
This formulation can be written as
i AL
vt —exp( =S+ Lol o 4 Y. (35)
By the Taylor expansion, we have |R}|| = (At ). Furthermore, we define the n-fold composition
YO = Ly = L(AL, ) 0+ 0 L(AL, ) Yin. (3.6)
n times

And for the finite element discretization, define

iE(atl/J€7 ¢) = a(¢€7 ¢)’ v¢ € H}’(D)7

where a(¢°, ¢) is determined by the option of £;. For example, setting £; = —%A + v, we have a(¢*, ¢) =
%(Vd)e, Vo) + (vip¢, ¢) and the Galerkin equations
i€ > dUp(t)(0h Z Up(t)(Vey, Vi) + Z Up(t) (0o, 6h) (3.7)
P
with ¢ = 1,--- , Np,. Its matrix form is

ieM" d,U(t) = (6225'1 + Vh> U(t), (3.8)
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where U (t) is a vector with U(t) = (Uy(t),--- ,Un, (t))T, M" = [M}.] is the mass matrix with M} = (¢}, ¢}),
h _ [gh: ; e ho_ h h h _ Ry : P ho_
S = [hSpq] is the stiff matrix with S, = (V¢y,Vey), and V" = [V1] is the potential matrix with V,, =
(U¢p7 ¢q ) °
We now present the formal TS-FEM methods for the deterministic NLSE. The first one is the discretized
counterpart of Option 1:

IAAL

Uvn —exp< |Un|2>Un

U™ = Pexp <—ZAA> (P~tU™), (3.9)
UTL+1 —_ exp( Z)‘QAt ‘Un+l‘ )Un—&-l’
€

where (Mh)*l(éSh + V") = PAP~! with exp(—iAtA/e) being a diagonal matrix, and U™ = U(t,,). We call it
SI in the remainder of this paper. Owing to the application of the eigendecomposition method [14], the error
in time is mainly contributed by the time-splitting manner. Meanwhile, this scheme does not require time step
size At = o(e), although the full linear semiclassical Schrodinger equation must be solved.

Option 2 has been extensively used in previous works, such as [7,8]. In the FEM framework, it solves the
NLES in the following procedures:

Un = exp(—m(v—F/\U"Z))U",

2¢
gt g\ e (01 O
. h|~ — h|f >~ T+
At P\ -
U = exp (_126 (v + )\‘U"“’ >)U”+1. (3.10)

This method requires the mesh size h = O(e) and time step size At = O(e) [8], and we call it SII in the
remaining part of this paper.

Remark 3.1. In the discrete level, owing to ¢f(x,) = 0pq, we have | (p)|? = [Up|?. This implies that at all

spatial nodes, the finite element solution can be obtain using the algebraic forms exp( Z)‘At( )) Nevertheless,

we must note that an approximation error in space is introduced in the first and third steps of both (3.9) and
(3.10).

Denote L the dlscretlzed counterpart of £, and similarly, L; and Lo their respective discretized versions.

Denote 9" = Z L Up ol and for simplicity we employ a formal notation for the n-fold composition

1/)2,71 = an}g :L(Ata')o"'oL(Ata') 1/12, (311)

n times

where 1/)2 = R, with R;, being the Ritz projection operator.
3.2. The spatial discretization for the deterministic NLSE

Instead of the FEM, we construct the multiscale basis functions to reduce dofs in computations. The P;
FEM basis functions on both the coarse mesh 7y and fine mesh 7, are required simultaneously. To describe
the localized property of multiscale basis functions, we define a series of nodal patches {D;} associated with
x, € Ny as

Dy(x,) :=supp{¢p} = U{K € Ty | x, € K},
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Dg::U{KGTH|KﬂD[717A®}7 £:1;27""

The multiscale basis function at x,, is the solution of the following optimization problem

i ,0), 3.12

arg ¢€rgir(lp)a(¢ ®) (3.12)

s.t. / pot dw = N(H)0pq, q=1,--+,Ng, (3.13)
D

where a(¢, ¢) = %(Vcﬁ, Vo) + (vo, d), and A(H) = 1 in the previous work [12-14,34,38]. Note that the localized
constraint is not considered in the optimal problems, thus we obtain the global basis functions.

Remark 3.2. The referred dofs of the global multiscale basis depend on the fine mesh, which implies that
for high-dimensional problems, it suffers from both time and memory consumption. Therefore, the localized
multiscale basis is commonly employed in various practices. The localization shall introduce a localization error,
such as the LOD method [44]. In Appendix A, we present a reduction method that combines the POD method
with the multiscale method, and then the dofs referred to in the construction of basis functions only rely on
the dimensions of the POD basis and are independent of the fine mesh. Therefore, the localization error may
be ignored to a certain extent in our methods, even though we can still employ the proper localization for
high-dimensional problems.

In this work, we set A(H) = (1, qﬁf ), and it can be computed explicitly. To explain this setup, we introduce
the weighted Clément-type quasi-interpolation operator [26]

- ) n
Iy :H5(D) — Vi, f—Ix(f): 2(1 ¢H)¢p. (3.14)

p

The high-resolution finite element space V, = Vg & W), where W}, is the kernel space of Ig. And for all
f € H-N H?, it holds [43]
If = T ()l < H?||f |- (3.15)

In the multiscale basis space, the wave function ¢ is approximated as

N A
V() =Y Uy, (3.16)

p

T

Il
-

It can be projected onto the coarse mesh through

Y (So Uuvwrdf!) |, Xaa@D,
[H(w ) = Z (1,¢5ZI){> ¢p :p; (17¢5) (bp .

p=1

If 1€ is continuous at x,, the above formula indicates that

AH)U,
(1, ¢5")

Let A(H) = 1, and we can see that it holds ¢*(x,,) ~ U, /(1, ¢1). Define by = (1, ¢f )¢y, where ¢, is independent
of the mesh size H. Then, (3.16) can be rewritten to

P (xp) ~

Ny Npg
V() = Y v (@) (1, 0f ) op = Y U ()b (3.17)
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Note that ¢Ap is still the multiscale basis function at x,. We consider the following two equations

NH NH

i€ (6ps bg) AT, = > (Hepy, 0q)Up (3.18)

p=1 p=1

and

z‘e%(({sp,q@q) 4,0, = %(Hép,éq) 0,. (3.19)
1

If A =0, the two equations have the same solution with a given initial condition, while for A # 0, the factor
(1, gzﬁf ) in the basis functions cannot be eliminated in both sides of (3.19), and the two equations give different
solutions. This issue is addressed by the setup A\(H) = (1, ¢} ).

Solving the optimal problems (3.13), we get

Np,
:ZC;¢Q7 p:]_77NH
s=1

Define Vs = span{¢1, -+ ,dny }, and it holds true that V,,s C Vj. Hence, the solution of optimal problems
defines a mapping C : Vj, — V5. On the other hand, the solution on the fine mesh can be reconstructed
utilizing this linear mapping, which is essential in the formulation of the cubic nonlinear matrix. Note that the
factor A(H) is a rescaling factor, and it does not change the basis function space. Thus we have the following
propositions.

Proposition 3.1 ([59], Lem. 3.2). For all ¢ € Vs and w € Wy, a(¢,w) =0 and Vi, = Viys & Wh,.

Proof. As the same procedures in [59], we directly obtain a(f,w) = 0,Vf € V,,s,w € W},. For any f € V},, define

N
* B (f’¢Z7H)
f ,,; (1%{)%-

Then f* € V,,s and (f — f*,qﬁf) =0forp=1,---,Nyg. Thus f — f* € Wj and we get the decomposition
Vi = Vs ® W, |

Due to V, = Vs @ W, W), is also the kernel space of the mapping C. Furthermore, combining an iterative
Caccioppoli-type argument [32, 38,48, 50] and some refined assumption for the potential, and the multiscale
finite element basis functions have the following exponential decaying property.

Proposition 3.2 ([59], Thm. 3.2). Under Assumption 2.1 with a resolution constant as in [59], there exists a
constant B € (0,1) independent of H and €, such that

IVépllL2o\ny) < BNV, (3.20)
forallp=1,--- Npg.

Once the multiscale basis space being prepared, the weak form of the full NLSE is discretized as

(%%dtchbs,ch(é) (%%UCV(bS,ZClV(b)

p=1s=1 p=1s=1
N Np R 2 Ny N
DD Ul D Use ¢S,ch ¢ (3.21)
p=1s=1 p=1s=1
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for all [ = 1,---, Ng. The stiff matrix and mass matrix constructed by the multiscale basis functions satisfy
M™ = CTM"C and §™* = CTS"C. For the nonlinear term, the solution on the fine mesh is reconstructed by
cU , and we then get the similar form N™* = CT N"C. The construction of N" suffers from heavy computation,
especially for high-dimensional problems. The application of time-splitting methods can avoid this issue. Thus,
we only need to solve linear equations at each time step, achieving high efficiency.

According to (3.16) and (3.17), the numerical solution on the coarse mesh can be denoted by {U,(t)}\*

p=1
while on the fine mesh, it is denoted by {ZNH U, (t) p}N’L For the sake of clarity, in the sequel, we denote
the 95 the classical FEM solution, and 9% and ¥4y, the numerical solution constructed by the multiscale basis

functions on the coarse mesh and fine mesh, respectively.

4. CONVERGENCE ANALYSIS

4.1. Convergence analysis of the TS-FEM

In this part, the ST is mainly considered, and the L? error will be estimated. We start the convergence analysis
from the temporal error estimate at the initial time step.

Lemma 4.1. If ¢y, € H*, the error at the initial time step is bounded in the L? norm by

A 3
e(a6) = 621 = |52 — £(A8]| < Cllinlls =5,

where C' is a constant independent of both € and H.

Proof. According to (3.5), we have

A - A A
Yol = eXp(—ZQtﬁz(i/J) - uﬁl - uﬁz( )) fa

= (-2 (catviy + 0 B5) ) - e - Rty i,
— exp (—mcl —~ @@(w )) exp<—A§r(2,c1 + 52)2> -
where I depends on the form of £5. Use the expansion
exp (—Ajr(ml + 52)2> —1- A—t?’r(ml + L9240 (Af)
and the dominant reminder has the form
Ry = —A—tgmﬁl + L2)*5,.
Since the exact solution at ¢ = At is given by

58 = 530, = oxp = 2L + £atvi) ) v

There exists a constant such that 5
At
e (at) = v° | < Clltalln =5
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’th) being unitary, for any fi,

In turn, we prove the stability of the Strang splitting operator. Due to exp(—

fa € H?, we have
i L1t Lt i L1t
oo (=452 )52 ) = (-5 0 -

Define F(v) = —iL2(1)1, the splitting solution for L5 is solved by the equation edyp — F(¢)) = 0. The nonlinear
flow solved from this equation has the form

=|lf1 = £l

t
Vi =4+ 2 / F(Y®)ds, (4.1)
€Jo
where the flow Y? is defined as
-
00t = Y'0(0.) = w0 ) exp( =1 [ La(w)as).
0

Assume that F is Lipschitz with a Lipschitz constant M, and repeat the proof in [10]. For all fi, fo € L2,
there exists a constant that depends on F' such that for all 0 <7 <1

V7= YRl < = fll+ ¢ [ PO R) = PO ) s

M T
<Ih=pall+ 2 [ Yo f=Yosal ds.
0

An application of the Gronwall lemma leads to

Y h - Yff2||<exp< )|f1 Al (1.2)

In particular, for F() = A|¢|*y) we get

VL) o — L) fall < exp(M AT) 11— fall. (4.3)

Besides, for the nonlinear flow (4.1), we have the following lemma.

Lemma 4.2. Let ¢ € H?; if F(¢) = \¢|*), there exists a constant C' such that for all 0 < 7 <1

A 2
e (1.4

If F() = Mtp|?9 + vi, there exists a constant C such that for v € H? and for all 0 < 7 <1

>+ N\ 2
1Y o Sexp<7(””’f - ”1”““)>||¢||Hz. (4.5)

€

Proof. Consider F (1) = A||?1 + vip. For the nonlinear flow (4.1), we have

- 1 /(7 s Voo FAYIZ [T s
V0l < Il + 3 [ IFO0lds < oo+ DA ey as

Then the application of Gronwall inequality yields

MR
|YT¢||OOS6XP<T(|UH LA )>||w||oo.
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Similarly, for the H? norm, we directly have

. lvllzz + Ml [7 s
1Y "%l gpe < [Yllaz + ————2 | VY| g2 ds,
€ 0

which also leads to

2+ A c2>o
HyerHQSexp(T(HUH - ||¢|| )>”¢HHZ

Let v =0 and we get (4.4). This completes the proof. O
For the semi-discretized time-splitting methods, we have the following convergence theorem.

Theorem 4.1. Let 15, € H*, T > 0 and At € (0,¢). For nAt < T, there exists a constant C' such that

T\ At?
H‘anin - SnAtwinH < CTH'(/}inHHAL (1 + 6) ET

Proof. Similar to the proof in [10,16]. Using the triangle inequality yields

n—1
||£n¢in _ SnAtwinH < Z‘ En*ijAtQ#m _ [’n*jfls(jJrl)AtwinH.
=0

Due to S* being the Lie formula for all ¢ < T and i, € H*, S*4);, belongs to H* and is uniformly bounded
in this space, thus for all j such that jAt < T, we have

3
H‘C‘S’jAtwin - S(j+1)AtwinH = H(‘C - SAt)SjAtwinH < CHwinHH‘L%.

Combine with (4.3) and we get

n—1 n—j—1
17 — "0 < 3 (exp( Mﬁ“)) (2 - 534) 573035,

=0

Since 0 < At < ¢, for all j > 0, we have

Consequently, we arrive at

e MAAE\\" At
H‘anin - SnAtwinH < Z (exp( c )) C”winHH‘IGT

§=0
A3 AL T\ At?
< Cllinll s —5- (1 +C(n—j— 1)€> < CT||thin | 114 (1 + 6) =
§=0
It concludes the proof of this theorem. O

Next, we give the convergence of the full TS-FEM method. Consider the problem

€0 = Lot
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with the initial condition ;, and the periodical boundary condition. The solution has the form
. it
¢ (il),t) = €xp <_2€£2> @[Jin(w)o (47)

If Lo consists of potential and nonlinear term, the regularity of ¢¢(¢, ) depends on the regularity of both the
potential v and t;,, otherwise it only depends on ;.
Assume that the numerical solution 1§ solves (3.11) and ¥¢(t, ) = S™A%4y, is the solution of (2.1). We write

}el,n _ we(tn) — an}(i _ SnAtwin _ (ang _ Enwin) + ([’nwin _ SnAtwin)~ (48)

The first term denotes the error attributable to the space discretization and the second term is the time-splitting
€error.
We now estimate the spatial error accommodation from ¢ = 0 to t = At,

. . At At
oyt =080 = o G ) o La(an a5 ) 008 - Lty
Let 1/30 = EQ(%, -) 0 thin, and consider the problem
&2
1€0:° = —5Aw5 + vh© (4.9)

with the initial condition ¥¢(t = 0) = 1&0 and the periodical boundary condition. The corresponding weak form
is

[~}

€

i€(9(° = ¥5),8") = 5 (V(F —v5), Vo) + (v(u = vf).6"), V6" € V. (4.10)

Let ¢ — 5, = (¢ — Rptp®) + 0, where 0 = Rp® — 5 and Rp1° denotes the Ritz projection. According to
(4.10), we get

2

i€(Oul(v" = Bi) + 01, 6") = (90, 96") + (v(v" = Rny), ") + (10, 0"). (4.11)

Take ¢ = 0 in the above equation,

2
i€(0:0,0) = —ie(0 (Y — Rpy*),0) + 65HV9H2 + (v(¥° = Rpy)©), 0) + (v0,0),
and we have
1€ dtHG”Q = ie(0,0,0) + ie(&té, é) = 26eR(0 (¢ — Rptb©), 0) + 2iS(v(¢* — Rptp©), ),

which induces 9
dellOll < 20106 (¥ = Ba)| + —llvllocll® — Rav©l. (4.12)

Integrating from 0 to ¢ yields
¢ 9 ¢
oo < 100001 +2 | outw — vl e+ 2l [ o = Ruws (4.13)
Assume [|0(0)]| = lthin — Rpthin|| = |in — Rutbin|| = 0. Since ||Rp0pb¢ — 0pb¢|| < Ch2||0;)¢|| g2, we have

Ch? [* Cth?
6 < Ot oo + <2 [ e ds < Coth + S5 < €O 1, (114)
0
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where ¢t < At, and C, . is the leading order term with respect to e 1.
Let 15,1 be the numerical solution of (4.9) with t = At, and we obtain

TP T e ) P (e (D
< |lexp —WLZW n1 — exp —W Wy
< ce( 5ot

in which we use the Lipschitz linearity of the nonlinear flow and v¢; = exp(—%)exp(—%)wm. This
indicates the spatial error accumulation in a one-time step. We next estimate the error accumulation in both
time and space from ¢t =0 to T.

Theorem 4.2. Assume that ;" = L")y, and ¢(nAt) = S" 4y, are the numerical solution and ezact
solution of the NLSE. Moreover, assume 0ypp¢ € H? for all t € [0,T] and v, € H*. Then for a given T > 0,
there exists a constant hg such that h < hg and for all At < e with nAt < T, and the L? error estimate satisfies

At?

— (4.15)

€,n € T
o7 = wenan)] < o+ or(14 1)
where the constant C' is independent of € and T'.
Proof. The error can be split into

Ui = 0 (nAL) = L' — Sy = (L)) — L") + (L7 — S ).

The first term on the right-hand side satisfies

127 = £l < ||S° L7 (LR — RRL)LT | + (R — 1)Ll

=1

Due to £ conserving the H? norm of the solution and Lemma 4.2, we have £™);, € H? and ||(Ry —I) L™ || <
Ch2|| L™ sn || r2- Meanwhile,

1Lyl < (Lo = LAY | + [IL(AY | < CCx Ath? + 47|
Similar to Theorem 3.1 in [4], we denote the bound of the numerical solution by

1gg§nHLmRh£n—mweH <ar.

Recall (4.13) and (4.14), owing to At < ¢, then there exists a constant C' independent of € such that

n

> L"I(LRy — RuL) L7 | < nexp(CTaz) max [[(LRy — RiL)L ™ |

<j<n
J=1 SVAS
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AMAL AM AL

< nexp(CTa%) exp( )C’C’,\’EAth2 < exp (CTa%) exp( >CC,\7€Th2.

Thus, we arrive at

”Ln’l/)in - anln” S CC}\,Ehz,

where C is independent of € but depends on T' and A. Note that the order of ||1)¢|| 2 with respect to ¢! is
lower than C) ., and it is ignored in this result.
Furthermore, combine with Theorem 4.1, and we get the desired estimate

9" = ¥ (A < L i — L7%in]| + | £7%in — S i

T\ A2
< OO\ b2+ CT<1 + > 2
€ €

This declares the (4.15). O

Remark 4.1. Take a further simplification

We temporarily use 93" to denote the FEM solution on the coarse mesh with mesh size H, the counterpart
result of Theorem 4.2 on the coarse space is

CT?
— A% (4.16)

l05" — ¢ (nAt)|| < CCxH +

We have obtained the L? error estimate of the TS-FEM applied to the deterministic NLSE. Next, we will

further assess the convergence analysis of the multiscale method, in conjunction with the gqMC method. Note

that the convergence analysis for the TS-FEM combined with the qMC method follows a similar pattern.
Therefore, we will not discuss the convergence analysis of the TS-FEM in random space in this section.

4.2. Convergence analysis of the time-splitting multiscale method for NLSE with random
potentials

4.2.1. The time-splitting multiscale method for the deterministic NLSE

For SI, we solve the linear Schrédinger equation by the multiscale method and the corresponding convergence
analysis has been given in [59]. We therefore have the following estimate.

Lemma 4.3. Let 15" = L7 iy be the numerical solution solved in Vs by SI, and ¢°(t,) = SnAt be the
exact solution of the NLSE. Let At € (0,¢), and assume Oy € L? for all t € (0,T], and 1, € H*. We have

the estimate ) )
en € CTH cT
657 — 9l < S + AP, (4.17)

where the constant C is independent of e.

Proof. For the linear Schrodinger equation, the spatial error of multiscale solution and exact solution has the
bound [59]

€2 €

CH2 CH2 INE wg 2
[ = vl < =5 lledwll < atwinuexp('e”‘” |



3264 P. LI AND Z. ZHANG

At the second step of SI, we have

. ... _CH? AAL||e 12, CH?
gy — ol < S e [ 2220V )  CHT,
€ € €

When the eigendecomposition method is applied, the solution can be solved exactly in time for linear problems.
The accumulation of the spatial error at each time step satisfies

HLmsw;}n _ £1/1677L|| S ||Lmswzn _ EIH,LZJCJLH + ||£IHwE,7L _ ﬁwE,nH
AMAt\ CH? AM At en em AMAt\ CH?
< exp + exp [Hgy©™ — =" < exp . .

2¢ €2 €2

Meanwhile, by the Strang splitting method, repeat the procedures in Theorem 4.1, and we get the estimate as
(4.17). O

Remark 4.2. In comparison to Remark 4.1, the multiscale method exhibits superior performance with respect
to €, as it requires only the bound ||9;%¢||. In contrast, the application of the classical FEM requires the bound
of ||0¢b¢|| gz, which implies a stronger dependence on e. Consequently, the weaker dependence of multiscale
method on e demonstrates its superiority in effectively handling multiscale problems.

4.2.2. The multiscale method for the NLSE with random potentials

To carry out the convergence analysis for the qMC method, the regularity of the wave function with respect
to random variables is required. The random potential is truncated by the m-order KL expansion, and we denote
€w) = (&G(w), - ,&m(Ww))T. Let v = (11, ,14,) be the multi-index with v; being the nonnegative integer,
where |v| = Z;n:1 v;. Then 0%y, denotes the mixed derivative of 15, with respect to all random variables
specified by the multi-index v.

Lemma 4.4. For any w € Q and multi-index |v| < oo, and for all t € (0,T], there exists a constant
C(T, M\ ¢, |v|) depends on T, A €, |v| such that the partial derivative of V¢, (t,x,w) satisfies a priori estimate

10"l < T o) TT (VA ) (4.18)
J

The proof of this lemma is given in the appendix.

We are interested in the expectation of linear functionals of the numerical solution in applications of uncer-
tainty quantification. We will estimate the expected value E[G (¥, (-, w))] of the random variable G(¢5, (-, w)).
Let G(-) be a continuous linear functional on L?(D), then there exists a constant Cg such that

|G(u)] < Cglull
for all u € L?(D). Consider the integral

Jmm=/ F()de, (4.19)
gcio, 1™

where F(&) = G(¢¢,(+, €)). To approximate this integral, both the MC and qMC can be used. In our methods,
it is approximated over the unit cube by randomly shifted lattice rules

Qmn(A;F) NZF(frac( +A>)

where z € IN™ is the generating vector, A € [0,1]™ and “frac” is the fractional part function applying compo-
nentwise. Here IV denotes the number of random samples.
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Lemma 4.5. For the integral (4.19), given m, N € N with N < 10%°, weights v = (Yu)ucn, a randomly shifted
lattice rule with N points in m dimensional random space could be constructed by a component-by-component
such that for all o € (3,1]

VEA(F) = Quu v (5 F)| < 9C°C, ()N 12,

where
1/2a , 1/2
o (C(v))
Cym(@) = > wlle@ > | R
P#uC{l:m}  jEu uC{1:m} T cu
Proof. The proof of the lemma is the same as in [14]. Here C'(v) = C(t, A€, [v]) is calculated in Lemma 4.4.
And N
V2 1

ole) = 2<ﬂ-22n(1n)n ¢ <a * 2)7 (4.20)
where 7, = 29=1 ((x) is the Riemann zeta function and C* = ||G||. The details of these estimates can be found
in [17,25). O

Employing the qMC method, the estimate between the wave functions of (2.1) and the truncated NLSE (2.10)
satisfies the following lemma.

Lemma 4.6. Under the Assumption 2.2, there exists a constant C' such that

BA[EI60)] - Qul6wsIF] < 0™ 4+ € ), (121

where 0 < x < (% -n)O — %, r=1-6§ for0<d< % Note that the constant C is independent of m and n but
depends on T.

Proof. Since G is a linear functional, we have

[E[G()] = Qumn[G(¥7)]| < [E[G()]
= [B[G(¢°)]

In () + Hm () = @m N [G(¢7,)]]
EIG @5l + Hm (¢°) = Qu.n[G(45)]]-

The first term satisfies

-X

IB[G(4)] — BIG(5,)]| < B[G(1°) — Gu,)]] < C

€

where C' depends on the time 7. Let v = 1/(2 — 26) for 0 < § < 1, according to Lemma 4.5, we then get

B [[EIG(6)] — Qv [G(05,)]”
<EAEIGW)] — In ()] + B [T () = Qv [G(05,)]17]

m™2X

<C
S 2

2 2—26
+COC2,, N>,

O

Employ the gMC method in the random space, for the numerical solution %™ solved by the multiscale
method, and we have the following error estimate.
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Theorem 4.3. Let ¢y, € HY(D), v¢ € L>([0,T]; H*(D)) N L'([0,T]; H*(D)), and parameterized potentials
satisfy the Assumption 2.2. Consider E[G((t,))] is approzimated by QWN(-;g(w;fm)). Apply the random
shifted lattice rule Qum n to G(¢(ty)). Then for any fized T > 0, there exists a constant Hy such that H < Hy
and for all At < e with nAt < T, we have the root-mean-square error as

\/JEA UE[Q(M(%))] ~ Qu |9 (vi)] ﬂ < c(H LA

— + C%mN’“>, (4.22)

where 0 < x < (% —n)O — %, andr=1—0 for0<d < % Here C is independent of m and N but depends on

Aand T, and Cy 4 depends on T, X and e.

Proof. We split the error (4.22) into

EIG(" (tn)] = Qun [(¥575, )] | < [BIGW (40))] — Qu,1G(05, (80))]
+ @ G ()]~ Qo [G (057 ) ]|
The second term can be estimated by

oy

G5 (tn) = G (0571 )| < Col|ws(t) = wifh | < €C (3 oA

where the constant C depends on A and T, and is independent of m and N. Combine with Lemma 4.6, we get
the (4.22). This completes the proof. O

Remark 4.3. Theorem 4.3 gives the L? estimate of time-splitting multiscale method for the NLSE with random
potentials. For the employment of the TS-FEM, repeat the above procedures and we can get a similar result.

5. NUMERICAL EXPERIMENTS

In this part, we will present numerical experiments in both 1D and 2D physical space. The convergence
rates of TS-FEM and TS-MM (time-splitting multiscale method) are first verified. For the NLSE with the
random potential, we compare the convergence rate in the random space. In addition, the delocalization of mass
distribution due to disordered potentials and the cubic nonlinearity is investigated.

5.1. Numerical accuracy of TS-FEMs

Set in(z) = (107)%-25 exp(—2022) for the 1D case, and i, (21, x2) = (10/7)%25 exp(—5(z1 — 0.5)% — 5(z2 —
0.5)2) for the 2D case. To begin with, we choose the harmonic potential v(x) = 0.522, and verify the second-
order accuracy of the TS-FEM with respect to the temporal step size At and spatial mesh size h. Here we fix
the terminal time T' = 1.0, € = 1—16 and nonlinear parameter A = 0.1. The reference solution ¢ is computed
on the fine mesh with h = 2%—28 and At = 1.0e—06. The L? absolute error and H' absolute error are recorded
in Table 1.

For the 2D case, we employ the multiscale potential

$1$2)
e )’

v(z1,T2) = cos(mlxg + al + (5.1)
€

over D = [0,1]? with 64 x 64 spatial nodes. Here we set A\ = 1.0 and multiscale coefficient € = . We compare the

numerical solution with the different At for SI and SII. By the means of the numerical tests shown in Figure 1,

ST allows a bigger time step size than SII.
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TABLE 1. Numerical convergence of TS-FEMs in space and time.

27 27 27 27
h 128 256 512 1024 Order

L? error  1.96e—02 5.22e—03 1.26e—03 2.54e—04 2.09

SI H' error 1.19e—01 3.36e—02 8.31e—03 1.68e—03 2.04
SIT L% error  3.04e—02 8.07e—03 1.95e—03 3.92e—04 2.09
H' error 3.52e—01 9.95e—02 2.44e—02 4.92e—03 2.05
At 4.0e—02 2.0e—02 1.0e—02 5.0e—03 Order
SI L% error  4.53e—04 1.13e—04 2.81e—05 7.03e—06 2.00
H' error 2.09e—03 5.20e—04 1.30e—04 3.24e—05 2.00
SIT L% error 7.16e—03 1.87e—03 4.71e—04 1.18¢e—04 1.98

H' error  1.12e—01 2.91e—02 7.26e—03 1.81e—03 1.99

FIGURE 1. Numerical solution computed by the two TS-FEMs with different At. (a) SI, At =
1.0e—2. (b) SI, At = 1.0e—3. (c) SII, At = 1.0e—3.

5.2. Numerical experiments of TS-MMs

In this study, we consider two forms of the multiscale solution: 1% on the coarse mesh and %%, , on the
fine mesh. We begin by employing the harmonic potential and varying the values of H. We then record the
error between the numerical solution and the reference solution in Table 2. The simulation parameters used are:
A=01¢e= %, T = 1.0, At =1.0e—03, and a fine mesh size of h = 4(2)%. Our results show that SI achieves a
second-order convergence rate in both the coarse and fine spaces. Additionally, superconvergence is exhibited
in the coarse space for SII.

Meanwhile, to demonstrate the advantages of Option 1, we examine the example of a discontinuous potential,
as shown in Figure 2. We observe that SI maintains its second-order spatial convergence rate, whereas the
convergence rate of SII deteriorates.

Furthermore, we consider the small semiclassical constant ¢ = ﬁ and the discontinuous potential as in
Figure 2a. As shown in Figure 3, better approximations are provided by the multiscale method in the physical

space.
For the 2D case, we consider the discontinuous checkboard potential

(cos(%%) n 1) (cos(27r‘f—§) n 1), [0,0.5] U [0.5, 1]2,

Vg =
(cos (271'%11) + 1) (cos (ZW%) + 1), otherwise,
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TABLE 2. Numerical convergence rate of the TS-MMs for the NLSE with harmonic potential

in space.
H ”"/);Ih _wﬁefH Hw;Ih _"/)reef”Hl ||1/’§{ —1/erf|| ||¢f*{ —wfefHHl
S 4.95e—05 4.69e—04 3.47e—05 3.3le—04
2 1.68e—04 1.60e—03 1.18e—04 1.13e—03
SI
2z 6.44e—04 6.11e—03 4.52e—04 4.32e—03
2 2.56e—03 2.43e—02 1.80e—03 1.72e—02
Order 1.90 1.90 1.90 1.90
2% 1.79e—05 1.73e—04 5.43e—12 1.88e—10
2. 6.10e—05 5.86e—04 7.85e—11 1.63e—09
SII
2 2.33e—04 2.24e—03 5.68e—09 1.02e—07
2 9.24e—04 8.89e—03 4.49e—07 8.24e—06
Order 1.90 1.90 5.52 5.22
1
2 =0
=1 8_2 <
= -
E:B -
33 o6
0 4
2 0 2 2.5
€ logyo(H)
(a) ()

FIGURE 2. Numerical convergence rate of ST and SII for the discontinuous potential. In the
plots, the L? error and H! error on the coarse mesh are depicted. (a) v(z). (b) SL. (c) SIL

o) : : 2
//*\* i
Tl — T =z !
S0 2 -
B e 3 =20
N o) = 1
= . = -
= -2 —a—FEM(L?) = O(H) P
§0 FEM(H') E;O 2 Eﬁﬁﬁﬁp))
—— Mult}scale(L 1) —a—Multiscale(L?)
4 —+—Multiscale(H') | 3 —»— Multiscale(H')]
-2.5 -2 -1.5 -2.5 -2 -1.5
log,o(H) log,o(H)
(A) (B)

F1GURE 3. The convergence rates of the FEM and the multiscale method for the NLSE with

the discontinuous potential and semiclassical constant € = 3z. (a) SL (b) SIL
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FIGURE 4. Reference solution (FEM) and the spatial error distribution computed by SI, in
which the multiscale method is used with H = 8h and H = 4h.

where v = vy + vy with v1 = |21 — 0.5]% + |29 — 0.5/, ¢ = % and ey = %. In the simulations, we set h = ﬁls,

e =1 X=1.0, At =1.0e—04 and T" = 1.0. We employ SI (Fig. 4) and SII (Fig. 5) for time evolution. We
vary the coarse mesh size with H = 4h and H = 8h of the multiscale method and present the corresponding
spatial error distribution. Here, the reference solution is obtained using the FEM with a mesh size of k. In both
Figures 4 and 5, we observe a significant error when the multiscale method is used with a mesh size ratio of
H = 8h. With the mesh being refined, the smaller error distribution in space can be obtained for SI. Hence this
simulation demonstrates the superior performance of SI when dealing with discontinuous potentials.

5.3. Numerical simulations of NLSE with random potentials

For the 1D case, we consider the random potential
- 1
v(z,w) = aZsin(jx)j—ﬁfj(w), (5.2)
j=1

where o controls the strength of randomness, and {;(w)’s are mean-zero and i.i.d random variables uniformly
distributed in [—v/3,v/3]. It is extended to 2D as

v(x1, T2, w) = UZSin(j:z:l)sin(j:z:g)jiﬁfj(w). (5.3)

j=1

For comparison, we employ the MC method and qMC method to generate the samples &;(w) in the simulations.
And we measure the states of the system by the expectation of mass density

E(jonal”) = 5 Slusatnl’
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FIGURE 5. Reference solution (FEM) and the spatial error distribution computed by SII, in
which the multiscale method is used with H = 8h and H = 4h.

where N denotes the number of MC or qMC samples. To observe the evolution in the mass distribution of the
system, we introduce the definition

A = ( [ 2Pl a) (5.4)

which is extensively used to indicate the Anderson localization of the Schrédinger equation with random poten-
tials.

5.8.1. Convergence of MC sampling and ¢gMC sampling

The MC method and ¢qMC method exhibit different convergence rates. To eliminate the perturbation of a
small sample size, we adopt the random potential

v(z,w)=1.0+0 Z sin(jx)jiﬁgj(w), (5.5)
j=1

in which the parameters are: ¢ = 1.0, 8 = 2.0, m = 5. The other simulation settings are: A = 0.1, ¢ = %,
D=[-mn],h= 62%, H = 6h, T = 1.0 and At =1.0e—03. In this experiment, we use 50 000 samples to compute
the reference solution and record the L? error of the density [|[E(|¢¢um|?) — E(|¢5¢|?)|| as the sampling number

varies with N = 100, 200, 400, 800, 1600 and 3200 for both MC method and qMC method. The result is shown
in Figure 6.

5.3.2. Investigation of wave propagation

To observe the wave propagation phenomena, we vary the nonlinear coefficient A and record the evolution of
A(t). In addition, we depict E(|1f ,|*) at the final time. In these simulations, we generate 500 qMC samples
to approximate the random potential. The parameters of simulations are: D = [—27, 27|, o0 = 1.0, 8 = 0.0, and

m = 5. For the multiscale method, we fix h = 6‘5% and H = 10h. To observe the long-time behavior, we set the
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FIGURE 6. Numerical convergence rates of the MC and qMC methods.
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FIGURE 7. The evolution of A(t) and density of expectation at T' = 20, as the nonlinear
coefficient A varies. Results computed by the SI and the multiscale method.

terminal time to T' = 20. We vary A as 0, 1, 10, and 20, and the corresponding results are shown in Figure 7.
One can see that A(t) increases as time evolves for the nonlinear cases, while for the linear case, it remains
within the range of (0.51,0.57) during the time interval from ¢ = 10 to ¢ = 20.

In the 2D case, we use the following settings in our numerical simulations: h = 6%1, €= %, H = 4h, 3 =0,
m =5, and o = 5. Our results, depicted in Figures 8 and 9, show that while the localization of mass distribution
is observed for the linear case, the nonlinear case exhibits delocalization.

6. CONCLUSION

In this paper, we have introduced two time-splitting finite element methods (TS-FEMs) for the cubic nonlinear
Schrodinger equation (NLSE), incorporating a multiscale method to reduce spatial degrees of freedom. We have
refined the optimization problems to eliminate the mesh dependence of multiscale basis functions introduced by
local orthogonal normalization constraints. For the temporal evolution, we employed two Strang time-splitting
techniques in which one maintains the convergence rate of the NLSE with discontinuous potentials. Meanwhile,
we utilized the quasi-Monte Carlo sampling method to generate random potentials. Hence the proposed methods
have second-order accuracy in both time and space and nearly first-order convergence in the random space.
Furthermore, we provided a convergence analysis for the L? error estimate, which was verified through numerical
experiments. Additionally, we presented a multiscale reduced basis method to alleviate the computational burden
of constructing multiscale basis functions for random potentials. Using these methods, we investigated the long-
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F1GURE 8. The evolution of A(t) for 2D linear case and nonlinear case with A = 20. Results
are computed by SI and the multiscale method.

E(|9g )

FI1GURE 9. The localization and delocalization of mass distribution of the 2D linear Schrodinger
equation and NLSE with random potentials, respectively.

term wave propagation of the NLSE with parameterized random potentials in 1D and 2D physical spaces,
observing localization in the linear case and delocalization in the nonlinear case.
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APPENDIX A. A MULTISCALE REDUCED BASIS METHOD

As a supplement, we present an approach to reduce the computational effort required for construction basis functions
for random potentials. This approach is motivated by the method proposed in [14, 39, 58], which consists of offline and
online stages. In the offline stage, let {v(m,wq)}c?zl be the samples of potential with @ representing the number of

samples. At the node x,, the sample mean of multiscale basis functions is given by ¢) = é 9 ¢p(x,w,), and the

q=1
fluctuation is defined as ¢,(x,wq) = ¢p(x,wq) — ¢J. We employ the POD method on {qbp(w,wq)}qul to build a set of
reduced basis functions {¢}(x), -+, ¥ (x)} with m, < Q. In the online stage, the multiscale basis function at z;, has
the following form
Mp
(@, w) = Y ()G (@), (A1)
1=0
where {c,},"" are unknowns. Due to the wave function being represented by
Ny mp l .
1/)%(:13,15,&)) = Cp(tfw)Cp(m)v (A2)
p=11=0

the dofs in the Galerkin formulation is E;\’:Hl (mp + 1). To reduce the dofs of the Galerkin formulation, we compute
{cL}22 in (A.1) by solving the following reduced optimal problems

min a(¢p, ¢p), (A.3)
s.t. / bppr dx = AN(H)dpq, V1< q< Ny. (A.4)
D

We remark that the above optimal problems need to be solved for all realizations of random potentials in the online
stage. Since the value of m, is small [14], the computation cost of constructing the multiscale basis functions can be
reduced, while the dofs in the Galerkin formulation remain at Ny in the online stage. In addition, we adopt parallel
implementations with 12 cores in the following tests.

To demonstrate the improvement offered by the reduced multiscale basis method, we carry out two numerical tests.
We fix mp, =3 forp=1,---, Ng, and generate 1000 samples using the qMC method, with 200 samples allocated for the
offline stage and the remaining 800 samples used in the online stage. The SI method is employed for time evolution.
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FIGURE A.1. Numerical comparison of the FEM, the multiscale method (MM), and the MM-
POD method.

TABLE A.1. Comparison of time costs (second) for the FEM, MM, and MM-POD methods.

Sample number FEM MM MM-POD (offline)

1000 2116 152 107 (35)
2000 4205 308 243 (35)
4000 8376 620 501 (34)
8000 16633 1239 1020 (40)
16 000 33469 2466 2137 (43)

/N

<Y
2 L
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FIGURE A.2. Numerical comparison of the direct multiscale method (MM) and the MM-POD
method for the 1D NLSE with A = 20.

We compare the numerical solution computed by the FEM, the multiscale method, and the multiscale POD (MM-

POD) reduction method as in Figure A.1.

Furthermore, we vary the qMC samples and record the corresponding time costs in Table A.1. Note that the time costs
of MM-POD method are attributed to both the offline and online stages of the computations. As illustrated in Table A.1,
a considerable enhancement in simulation efficiency is achieved through the application of the multiscale method, with

additional improvements attained in the integration of the POD reduction method.

We further carry out an experiment of NLSE with A = 20. The corresponding numerical results are shown in Figure A.2.
The MM-POD method takes approximately 14978 s (4.16 h), with 1064 s spent on the offline stage. In contrast, the direct

multiscale method takes 20061s (5.57h).
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ApPENDIX B. THE PROOF OF LEMMA 2.1
Proof. We first study the regularity of 1 in space. Since the energy is a constant

€ o e ) A e
E(t) = SIVe 1P + (v [0) + Sl = Eo < o0

with A > 0, we directly get

2

€ €12 €12 A €4

— = — —_ = <

IV = Bo — (v, 0) — Sl < Bo + ol

which means

. C
ol < ¢
Meanwhile, we also have
€ EO + ||V o
g < 22 le, 1)
Owing to the Hamiltonian H is not explicitly dependent on time, and [H2, H] = 0, the following average value of
mechanics quantity is independent of time, i.e.,
(szﬁﬂwé) = F; (B2)
with d;F:1 = 0. Explicitly, we have
2 € € 64 2 e € 2 € € 2 €4 e €
(R0 0°) = (A% u) + (070, 0) + 2 (jo v, v°)
— @ (ou,) + 2 (vl P ) = A (Al Py, v).
We then get
64 €2 €2 2 €6 2 € € €12 € € 2 €12 € €
SIAEIP + 0w I + N[N0 < B+ € (At 5°) = 22 (v Py, 47 ) + A (AP, 4°)
< B — €(Voy©, Vi) + 2A[[vlloo |9 [ 74 + 3A 9|2, IV4°)1*
< Bx + Cllolleo + el Volloo + 270l ool 44 + 3ACI6<2,.
Hence, there exists a constant C' that depends on ||v||cs, ||Vv||o, Eo, E1, and |||/ such that
€ c €6 c
IVl < o0 Ielis < 5 (B.3)
Furthermore, if ¢ € H*, we also have [H*, H] = 0 for s < 4. Repeat the above procedures and we can get
S € C
IVl < = (B.4)
Next, we study the bound of ||0;¢¢| s with 0 < s < 2. Taking the time derivative for (2.1) yields
2
e —%Aatwf + 00" + 2N 20 + M) 20", (B.5)
Take inner product of this equation with 09 and we get
. € €\ __ € 7¢) 2 Te 1 €\2 Ax € 7¢) Cx [
Zédt(aﬂl) ,8,511) ) = )\ (8;’1/) ’lpe) — (8,51/1 w ) da: = 42)\ §R(8ﬂ/} 1/)6)\s(8t1/) QZ)G) dm (B6)
D D

Thus we have

e de[| 0 )|* < 2D e ||* < 2012 1017,
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which indicates

. 2T |2
0] < 0l p<'¢”°o) B.7)
For the initial condition, we have
€ 1 A C
Hatwin” S EHV'l,bm” + g(v'l/)inywin) + z||7,[11n”i4 S :
We therefore get
o C Y12 T
9l < 6exp<'”’€”°°>- (B.3)
Take inner product of the equation (B.5) with 9:A¢¢, and we have
edy|| VO = %{2(%@;&6, VOu©) + AN (VSO Vi<, V)
+ AN 0V, V) + AN 0 Ve, Vo) + 22 (), (Vor)?) }.
By the inequalities
¥ 0V VO 1 < 9N Lo 06t Nl Lo IV Y| 6 V07|
€ d € d € 2 e %+% €
< Ol llps ( 10V + (1= 3 [0 ) [ V24|20 (Vo
< Cll9° |6 (18 V< | + 106D V29[ VDe“|
and
@ (Vo] | <l V)P,
we get
ede[|0: VY || < 2]Vl 10| + CA|| V298| (10:V 95| + 190 ) + 2X[[9° | | V||
Then we arrive at
. 2|| Vo C|| V2 . CAT||V2ye||  2xT|lv°|?
€ € € €
CA CA\T
S aerl—s )
Let d = 3, and the above result can be replaced with
o 2|V . CAT||V2<||  2AT)|¢|)?
jorvw < A7 5, ”exp< [P, 27l ), (B.9)

By the similar procedures, we have

ede[|0: vy |)” < [V 1001109707 | + 2 Vol 07w |0,V
3 € 2"!‘@ end enl—4 2 e
+ CA|[VP e 372 0V S llow ) |0 v Ryl
_6 __6
+ O[T [ 6 ™ 19V | 10 1~ % [0 02|
+ CA}|V2W||%+% ||atv2w€||%+% 10012~ 8 (|0, V20 | + CAllwe 1% ||0: V20 )
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in which we use the inequalities
(V200 0up 0 V2| o < 19°11 1o || V20 || L6 1000 | o || 0 V20|
3,/€ 248 en e enl—2 2 €

< C|| Ve300 VeI 5 lawet || ][0 Ve,

[V e 0: V20| 1 < IV 76 1060 6 [|0: V20|
_6 __6

< C||\ V| T e o T 3| F (18] R |3 R,

[0 V0V 0V < e V% |6 186V 9° | o]0 V2|

< CHVQweH%"’%Hatv2weué+%HatweH%—%Hatv2weH’
and
[ @ )|, < ol oo
Then we get
3, .e|€ e 2 e1—2 2, )€ €12
o) « AT 107w oS exp<CATHV wlr ot ||oo>, 510
where £ = max{Z + £, ;% }. Let d = 3 and we get the compact form
CA||V3* CAT || V29| + CAT[|v°] |2
0w < “E”’”wtwnexp( [72o°l) +oxTi '°°)~ (B.11)

Due to € < 1, the order of ||0:1)°||gs with respect to e directly depends on the estimate ||0;V°1°||. Thus, there exists a
constant Cj e that depends on A and e such that ||0:¢¢||gs < Cx . This completes the proof. O

APPENDIX C. THE PROOF OF LEMMA 4.4

Proof. Let |v| =1, and we take the derivative with respect to &;(w) of (2.10). Denote 9j9m = O¢; 1y, and Ojvm = O¢, vy,

and we get
2

€D (016m) = =5 AOjthm) + (y0m )i + 050 (Og0m) + A28 200m + (52)*0s0m )
We have

€ de|0;9m |l < 21100m oo + 2A950 1% 105%m
€de[[VO;tom |l < 2[Vjvmll g + 21050m | o IV | + 2 Vom | oo [|055m |

+ 1695 lloo 10580 [l o V45 | 4 + 2M 195026 V050,
€ de[|V?05m |l < 2(V?0s0mllo0 + 4]V Os0mlloo | Vebrall + 201050mll oo [ V2405 |
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Then for |v| > 2, by the Leibniz rule we have
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in which we use the inequality generalized from Proposition 3.6 in [55] as
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Thus we get
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An application of the Gronwall inequality yields
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Use the induction argument and we get
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