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EFFICIENT FINITE ELEMENT METHODS FOR SEMICLASSICAL NONLINEAR
SCHRÖDINGER EQUATIONS WITH RANDOM POTENTIALS

Panchi Li1 and Zhiwen Zhang1,2,*

Abstract. In this paper, we propose two time-splitting finite element methods to solve the semiclas-
sical nonlinear Schrödinger equation (NLSE) with random potentials. We then introduce a multiscale
method to reduce the degrees of freedom in the physical space. We construct multiscale basis functions
by solving optimization problems and rigorously analyze the corresponding time-splitting multiscale
reduced methods for the semiclassical NLSE with random potentials. We provide the 𝐿2 error estimate
of the proposed methods and show that they achieve second-order accuracy in both spatial and tempo-
ral spaces and an almost first-order convergence rate in the random space. Additionally, we introduce
the proper orthogonal decomposition method to reduce the computational cost of constructing basis
functions for solving random NLSEs. Finally, we carry out several 1D and 2D numerical examples to
validate the convergence of our methods and investigate wave propagation behaviors in the NLSE with
random potentials.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) is a prototypical dispersive nonlinear equation that has been
extensively used to study the Bose–Einstein condensation, laser beam propagation in nonlinear optics, par-
ticle physics, semi-conductors, superfluids, etc. To accurately and transparently interpret the observations in
many experimental situations, a semiclassical treatment is extensively introduced for the underlying quantum
mechanical dynamics [45]. For the NLSE, this treatment results a small semiclassical parameter 𝜖, and propa-
gations of 𝜖-dependent oscillations in both space and time. With a further consideration of random potentials,
the interaction of nonlinearity and random effect also poses challenges to understanding complex phenomena,
such as localization and delocalization [19, 24, 46, 54] and the soliton propagation [23, 35, 51]. Due to the inher-
ent challenges in studying the underlying model analytically, people devote to developing reliable and efficient
numerical approaches to simulate the quantum mechanical dynamics.

In the past decades, many numerical methods have been proposed to solve the NLSEs with deterministic
potentials, and recent comparisons can be found in [3,5,28]. For the time-dependent NLSE, the implicit Crank–
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Nicolson (CN) schemes were extensively used. The CN scheme conserves the mass and energy of the system
simultaneously, but it is known for a lower efficiency in handling nonlinearity with the requirement of iteration
methods, in which particular time step conditions must be ensured for the stability of the iteration [1,41,52]. To
enhance computational efficiency, several promising approaches, including linearized implicit methods [57, 62],
relaxation methods [9,11] and time-splitting methods [8,10,56], have been proposed. Among these, time-splitting
methods exhibit outstanding performance in terms of efficiency since linear equations with constant coefficients
are solved at each time step. To reach optimal convergence, time-splitting schemes require enough smoothness on
both the potential and the initial condition. For instance, Strang splitting methods require the initial condition to
possess 𝐻4 regularity [10]. The low-regularity time-integrator methods [37,47,61] are proposed to alleviate such
a constraint. Nevertheless, the available low-regularity time-integrator methods rely on the Fourier discretization
in space with a periodical setup, and their integration with finite difference methods (FDM) and finite element
methods (FEM) has not been established.

Although the Fourier discretization allows for the approximation error to reach exponential accuracy in space,
in the case of non-smooth potentials, the FDM or FEM is recommended, as spectral methods may lose their
optimal convergence rate. In this paper, we invest to develop efficient numerical methods based on the FEM. Over
the past several decades, to develop efficient FEM methods for partial differential equations, intense research
efforts in dimensionality reduction methods by constructing the multiscale reduced basis functions, known as
the multiscale finite method (MsFEM), have been invested (see, e.g., [2, 15, 20–22, 26, 31, 49]). Incorporating
the local microstructures of the differential operator into the basis functions, MsFEMs capture the large-scale
components of the multiscale solution on a coarse mesh without the need to resolve all the small-scale features
on a fine mesh.

Recently, the localized orthogonal decomposition (LOD) method [2, 44] has been proposed to approximate
the minimizes of the energy [27, 29, 30] and simulate the time-dependent dynamics [18] for the NLSE with
deterministic potential, which achieves a superconvergence rate in space. With the random potential further
being considered, the time-splitting spectral discretization with the Monte Carlo (MC) sampling [61] and quasi-
Monte Carlo (qMC) sampling [60] have been employed for the 1D NLSE. Considering the limitation of the
spectral methods, and developing efficient numerical methods in the framework of the FEM, here we combine
the time-splitting temporal discretization and a multiscale method to solve the NLSE with random potentials.

In our approaches, the multiscale basis functions are approximated using the finite element basis on a fine
mesh, where the coefficients are determined by solving a set of equality-constrained quadratic programs. This
idea was motivated by the multiscale method for elliptic problems with random coefficients [32–34], the linear
Schrödinger equation with multiscale and random potentials [14], and the Helmholtz equation in random media
[42]. We use the multiscale basis functions to discretize the deterministic NLSE that reduces the degrees of
freedom (dofs) required for FEM. Meanwhile, for the time-marching, we present two Strang splitting methods.
One solves the linear Schrödinger equation using the eigendecomposition method [14] and handles the cubic
ordinary differential equation at each time step. This splitting method obviates the requirement of regularity
for the potential function. The other is the time-splitting CN method. Meanwhile, the random potential is
parameterized using the Karhunen–Loève (KL) expansion method. We employ the qMC method to generate
random samples. It is demonstrated that the proposed approaches reach the second-order convergence rate in
both time and space, and achieve almost a first-order convergence rate with respect to the sampling number in
the random space.

Theoretically, we provide a convergence analysis of the time-splitting FEM (TS-FEM) for the deterministic
NLES in Lemma 4.3. Furthermore, we extend this analysis to estimate the time-splitting multiscale method for
the NLSEs with random potentials as Theorem 4.3. We remark that the referred multiscale method should be
an LOD method, although we use a different approach to construct the multiscale basis. On the other hand,
this optimal approach allows us to apply the proper orthogonal decomposition (POD) method, which essentially
reduces the computational costs for the construction of the optimal multiscale basis for new qMC samples in
a low-dimensional POD basis space. The corresponding method is detailed in Appendix A. Numerically, we
verify several theoretical aspects. Using the proposed numerical methods, we investigate wave propagation in
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the NLSE with parameterized random potentials in both 1D and 2D physical spaces. We observe the localized
phenomena of mass density for the linear cases, whereas the NLSE with strong nonlinearity exhibits significant
delocalization.

The rest of the paper is organized as follows. In Section 2, we describe fundamental model problems. In
Section 3, we present the spatial discretization methods with time-splitting methods for the deterministic NLSEs.
Then, the analysis results are presented in Section 4. Numerical experiments, including 1D and 2D examples,
are conducted in Section 5. Finally, conclusions are drawn in Section 6.

2. The semiclassical NLSE with random potentials

We consider the following model problem⎧⎨⎩ 𝑖𝜖𝜕𝑡𝜓
𝜖 = −𝜖

2

2
∆𝜓𝜖 + 𝑣(𝑥, 𝜔)𝜓𝜖 + 𝜆|𝜓𝜖|2𝜓𝜖, 𝑥 ∈ 𝒟, 𝜔 ∈ Ω, 𝑡 ∈ (0, 𝑇 ],

𝜓𝜖|𝑡=0 = 𝜓in(𝑥),
(2.1)

where 0 < 𝜖 ≪ 1 is an effective Planck constant, 𝒟 = T𝑑(𝑑 = 1, 2, 3) denotes the torus, 𝜔 ∈ Ω is the
random sample with Ω being the random space, 𝑇 is the terminal time, 𝜓in(𝑥) denotes the initial state, 𝑣(𝑥, 𝜔)
is a given random potential, and 𝜆 (≥ 0) is the nonlinearity coefficient. Physically, |𝜓𝜖|2 denotes the mass
density and the system’s total mass 𝑚𝑇 =

∫︀
𝒟 |𝜓in|2 d𝑥 is conserved by (2.1). Note that the wave function

𝜓𝜖 : [0, 𝑇 ] × 𝒟 × Ω → C, and the function space 𝐻1
𝑃 (𝒟) = 𝐻1

𝑃 (𝒟,C), in which the functions are periodic over
domain 𝒟. The inner product is defined as (𝑣, 𝑤) =

∫︀
𝒟 𝑣𝑤 d𝑥 with 𝑤 denoting the complex-conjugate of 𝑤, and

the spatial 𝐿2 norm is ‖𝑤‖2 = ‖|𝑤|‖2 = (𝑤,𝑤). Furthermore, let 𝐷𝜎 = 𝜕𝑠1
𝑥1
· · · 𝜕𝑠𝑑

𝑥𝑑
denote the spatial derivative

with |𝜎| = 𝑠1 + · · ·+ 𝑠𝑑. Then, the 𝐻𝑘 norm is denoted by ‖ · ‖𝐻𝑘 with ‖ · ‖2𝐻𝑘 = ‖ · ‖2 +
∑︀

1≤|𝜎|≤𝑘 ‖𝐷𝜎 · ‖2. In
particular, the spatial 𝐿∞ norm is defined by ‖ · ‖∞ = ess sup𝑥∈𝒟 | · |.

We denote the Hamiltonian operator ℋ of the NLSE

ℋ(·) = −𝜖
2

2
∆(·) + 𝑣(·) + 𝜆| · |2(·). (2.2)

Since the Hamiltonian operator is not explicitly dependent on time and the commutator [ℋ,ℋ] = 0, the energy
of the system,

𝐸(𝑡) = (ℋ𝜓𝜖, 𝜓𝜖) =
𝜖2

2
‖∇𝜓𝜖‖2 + (𝑣(𝑥, 𝜔), |𝜓𝜖|2) +

𝜆

2
‖𝜓𝜖‖4𝐿4 , (2.3)

remains unchanged as time evolves. We assume 𝐸(𝑡) = 𝐸0 <∞ for all 𝑡 > 0.

Assumption 2.1. We assume that the potential 𝑣(𝑥, 𝜔) is bounded in 𝐿∞(Ω;𝐻𝑠) with 0 ≤ 𝑠 ≤ 2. More
precisely, for every 𝜔 ∈ Ω, the bound of ‖𝑣(𝑥, 𝜔)‖∞ satisfies

𝐻2 .
𝜖2

‖𝑣(𝑥, 𝜔)‖∞
, (2.4)

where . means bounded by a constant and 𝐻, which will be defined later, is the coarse mesh size of the MsFEM.

We first consider the deterministic potential, i.e., 𝑣(𝑥, 𝜔) = 𝑣(𝑥). Assume that there exists a finite time 𝑇
such that 𝜓𝜖 ∈ 𝐿∞([0, 𝑇 ];𝐻4)∩𝐿1([0, 𝑇 ];𝐻2) and by Sobolev embedding theorem, we have ‖𝜓𝜖‖∞ ≤ 𝐶‖𝜓𝜖‖𝐻2

for all 𝑡 ∈ [0, 𝑇 ] and 𝑑 ≤ 3. Hence, the bonded assumption of ‖𝜓𝜖‖∞ implies that 𝜓𝜖 is bounded in the 𝐿∞

sense in both time and space. Apart from this, unless specially stated, the norms should be with respect to the
space. Besides, here we directly assume that the solution of (2.1) exists and is unique in a finite time. We refer
to a detailed discussion on the existence and uniqueness of the solution in [29] and the references therein. In
the sequel, we will use a uniform constant 𝐶 to denote all the controllable constants that are independent of 𝜖
for simplicity of notation.
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Lemma 2.1. Assume 𝑣(𝑥, 𝜔) = 𝑣(𝑥) in (2.1) and let 𝜓𝜖 be the solution of the counterpart system. Assume
𝜓𝜖 ∈ 𝐿∞([0, 𝑇 ];𝐻4) ∩ 𝐿1([0, 𝑇 ];𝐻2). If 𝜕𝑡𝜓

𝜖(𝑡) ∈ 𝐻𝑠 with 𝑠 = 0, 1, 2 for all 𝑡 ∈ [0, 𝑇 ], there exists a constant
𝐶𝜆,𝜖 such that

‖𝜕𝑡𝜓
𝜖‖𝐻𝑠 ≤ 𝐶𝜆,𝜖, (2.5)

where 𝐶𝜆,𝜖 mainly depends on 𝜖 and 𝜆. In particular, for 𝑑 = 3 and 𝑠 = 1, 2, we have a compact formulate

‖𝜕𝑡∇𝑠𝜓𝜖‖ ≤

(︃
‖∇𝑣‖∞ + 𝐶𝜆

⃦⃦
∇𝑠+1𝜓𝜖

⃦⃦
𝜖

)︃⃦⃦
𝜕𝑡∇𝑠−1𝜓𝜖

⃦⃦
exp

(︃
𝐶𝜆𝑇

(︀⃦⃦
∇2𝜓𝜖

⃦⃦
+ ‖𝜓𝜖‖2∞

)︀
𝜖

)︃
,

where

‖𝜕𝑡𝜓
𝜖‖ ≤ 𝐶

𝜖
exp
(︂

2𝜆𝑇‖𝜓𝜖‖2∞
𝜖

)︂
· (2.6)

The proof is detailed in Appendix B, in which the constant 𝐶𝜆,𝜖 can be calculated. Note that for 𝜆 = 0, the
above result can degenerate to the estimate of the linear Schrödinger equation as in [6, 59].

Next, we assume that 𝑣(𝑥, 𝜔) is a second-order random field, i.e., E[|𝑣(𝑥, 𝜔)|2] < ∞, with a mean value
E[𝑣(𝑥, 𝜔)] = 𝑣(𝑥) and a covariance kernel denoted by 𝐶(𝑥,𝑦). In this study, we adopt the covariance kernel

𝐶(𝑥,𝑦) = 𝜎2 exp

(︃
−

𝑑∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑗 |2

2𝑙2𝑖

)︃
, (2.7)

where 𝜎 is a constant and 𝑙𝑖 denotes the correlation lengths in each dimension. Moreover, we assume that the
random potential is almost surely bounded. Using the KL expansion method [36, 40], random potentials take
the form

𝑣(𝑥, 𝜔) = 𝑣(𝑥) +
∞∑︁

𝑗=1

√︀
𝜆𝑗𝜉𝑗(𝜔)𝑣𝑗(𝑥), (2.8)

where 𝜉𝑖(𝜔) represents mean-zero and uncorrelated random variables, and {𝜆𝑖, 𝑣𝑖(𝑥)} are the eigenpairs of the
covariance kernel 𝐶(𝑥,𝑦). The eigenvalues are sorted in descending order and the decay rate depends on the
regularity of the covariance kernel [53]. Hence the random potential can be parameterized by the truncated form

𝑣𝑚(𝑥, 𝜔) = 𝑣(𝑥) +
𝑚∑︁

𝑗=1

√︀
𝜆𝑗𝜉𝑗(𝜔)𝑣𝑗(𝑥). (2.9)

Once the parameterized form of the random potential is defined, the corresponding wave function 𝜓𝜖
𝑚 satisfies⎧⎨⎩ 𝑖𝜖𝜕𝑡𝜓

𝜖
𝑚 = −𝜖

2

2
∆𝜓𝜖

𝑚 + 𝑣𝑚(𝑥, 𝜔)𝜓𝜖
𝑚 + 𝜆|𝜓𝜖

𝑚|2𝜓𝜖
𝑚, 𝑥 ∈ 𝒟, 𝜔 ∈ Ω, 𝑡 ∈ (0, 𝑇 ],

𝜓𝜖
𝑚(𝑡 = 0) = 𝜓in.

(2.10)

The error |𝑣𝑚(𝑥, 𝜔) − 𝑣(𝑥, 𝜔)| depends on the regularity of eigenfunctions and the decay rate of eigenvalues.
We make the following assumption for the parameterized random potentials, which ensures that the random
problem is well-posed, and allows us carry out a rigorous analysis for the truncation error. In particular, here
we assume that the random potential is almost surely bounded over the domain 𝒟, and the KL modes satisfy:

Assumption 2.2. (1) In the KL expansion (2.9), assume that there exist constants 𝐶 > 0 and Θ > 1 such that
𝜆𝑗 ≤ 𝐶𝑗−Θ for all 𝑗 ≥ 1.

(2) The eigenfunctions 𝑣𝑗(𝑥) are continuous and there exist constants 𝐶 > 0 and 0 ≤ 𝜂 ≤ Θ−1
2Θ such that

‖𝑣𝑗‖𝐻2 ≤ 𝐶𝜆−𝜂
𝑗 for all 𝑗 ≥ 1.
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(3) Assume that the parameterized potential 𝑣𝑚 satisfies

‖𝑣 − 𝑣𝑚‖∞ ≤ 𝐶𝑚−𝜒,

∞∑︁
𝑗=1

(︁√︀
𝜆𝑗‖𝑣𝑗‖𝐻2

)︁𝑝

<∞,

for some positive constants 𝐶 and 𝜒, and 𝑝 ∈ (0, 1].

In [60], the authors provide the 𝐿∞([0, 𝑇 ], 𝐻1) error between wave functions to (2.1) and (2.10) for the 1D
case. Here we get a similar result for the 𝐿2 error between the wave functions for 𝑑 ≤ 3.

Lemma 2.2. For every 𝜔 ∈ Ω, the error between wave functions to (2.1) and (2.10) satisfies

‖𝜓𝜖
𝑚 − 𝜓𝜖‖ ≤ 𝐶‖𝑣𝑚 − 𝑣‖∞

𝜖
exp
(︂

4𝑇𝜆
𝜖
‖𝜓𝜖‖∞‖𝜓𝜖

𝑚‖∞
)︂
, (2.11)

where 𝐶 is independent of 𝜖.

Proof. Define 𝛿𝜓 = 𝜓𝜖
𝑚 − 𝜓𝜖 and it satisfies

𝑖𝜖𝜕𝑡𝛿𝜓 = −𝜖
2

2
∆𝛿𝜓 + 𝑣𝑚𝛿𝜓 + (𝑣𝑚 − 𝑣)𝜓𝜖 + 𝜆

(︁
|𝜓𝜖

𝑚|
2
𝜓𝜖

𝑚 − |𝜓𝜖|2𝜓𝜖
)︁

(2.12)

with the initial condition 𝛿𝜓(𝑡 = 0) = 0. For the nonlinear term, we have

|𝜓𝜖
𝑚|

2
𝜓𝜖

𝑚 − |𝜓𝜖|2𝜓𝜖 =
⃒⃒
𝜓𝜖

𝑚|2𝛿𝜓 + 𝜓𝜖𝜓𝜖
𝑚𝛿𝜓+

⃒⃒
𝜓𝜖|2𝛿𝜓.

Taking the inner product of (2.12) with 𝛿𝜓 yields

𝑖𝜖(𝜕𝑡𝛿𝜓, 𝛿𝜓) =
𝜖2

2
(∇𝛿𝜓,∇𝛿𝜓) + (𝑣𝑚𝛿𝜓, 𝛿𝜓) + ((𝑣𝑚 − 𝑣)𝜓𝜖, 𝛿𝜓)

+ 𝜆
(︁
|𝜓𝜖

𝑚|
2
𝛿𝜓, 𝛿𝜓

)︁
+ 𝜆

(︀
𝜓𝜖𝜓𝜖

𝑚𝛿𝜓, 𝛿𝜓
)︀

+ 𝜆
(︁
|𝜓𝜖|2𝛿𝜓, 𝛿𝜓

)︁
,

which infers

𝑖𝜖

2
d𝑡‖𝛿𝜓‖2 = ((𝑣𝑚 − 𝑣)𝜓𝜖, 𝛿𝜓)−

(︀
(𝑣𝑚 − 𝑣)𝜓𝜖, 𝛿𝜓

)︀
+ 𝜆

(︀(︀
𝜓𝜖𝛿𝜓, 𝜓𝜖

𝑚𝛿𝜓
)︀
−
(︀
𝜓𝜖𝛿𝜓, 𝜓𝜖

𝑚𝛿𝜓
)︀)︀
.

We further get

d𝑡‖𝛿𝜓‖2 ≤
4‖𝑣𝑚 − 𝑣‖∞

𝜖

∫︁
𝒟
|𝜓𝜖||𝛿𝜓|d𝑥 +

4𝜆
𝜖

∫︁
𝒟
|𝜓𝜖𝛿𝜓||𝜓𝜖

𝑚𝛿𝜓|d𝑥

≤ 4‖𝑣𝑚 − 𝑣‖∞
𝜖

‖𝜓𝜖‖‖𝛿𝜓‖+
4𝜆
𝜖
‖𝜓𝜖‖∞‖𝜓𝜖

𝑚‖∞‖𝛿𝜓‖2.

Owing to the 𝐿∞([0, 𝑇 ]× Ω;𝐻𝑠) bound of both 𝜓𝜖 and 𝜓𝜖
𝑚, an application of Gronwall inequality yields

‖𝛿𝜓‖ ≤ 4𝑇‖𝑣𝑚 − 𝑣‖∞
𝜖

exp
(︂

4𝑇𝜆
𝜖
‖𝜓𝜖‖∞‖𝜓𝜖

𝑚‖∞
)︂
.

�

Owing to the assumption ‖𝑣𝑚 − 𝑣‖∞ ≤ 𝐶𝑚−𝜒, this lemma implies that 𝜓𝜖
𝑚 → 𝜓𝜖 as 𝑚→∞.
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3. Numerical methods

Consider the regular mesh 𝒯ℎ of 𝒟. The standard 𝑃1 finite element space on the mesh 𝒯ℎ is given by
𝑃1(𝒯ℎ) = {𝑣 ∈ 𝐿2(𝒟̄)| for all 𝐾 ∈ 𝒯ℎ, 𝑣|𝐾 is a polynomial of total degree ≤ 1}. Let 𝒯𝐻 denote the coarse
mesh with mesh size 𝐻, and then the 𝐻1

𝑃 (𝒟)-conforming finite element spaces are 𝑉ℎ = 𝑃1(𝒯ℎ) ∩𝐻1
𝑃 (𝒟) and

𝑉𝐻 = 𝑃1(𝒯𝐻)∩𝐻1
𝑃 (𝒟). Denote 𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜑ℎ

1 , · · · , 𝜑ℎ
𝑁ℎ
} and 𝑉𝐻 = 𝑠𝑝𝑎𝑛{𝜑𝐻

1 , · · · , 𝜑𝐻
𝑁𝐻
}, where 𝑁ℎ and 𝑁𝐻 are

the number of vertices of the fine mesh and the coarse mesh, respectively. The wave function is approximated
by 𝜓𝜖

ℎ(𝑡,𝑥) =
∑︀𝑁ℎ

𝑝 𝑈𝑝(𝑡)𝜑ℎ
𝑝(𝑥) on the fine mesh, where 𝑈𝑝(𝑡) ∈ C, 𝑝 = 1, · · · , 𝑁ℎ and 𝑡 ∈ [0, 𝑇 ].

3.1. TS-FEM for the NLSE

We adopt Strang splitting methods for time-stepping. The NLSE is rewritten to

𝑖𝜖𝜕𝑡𝜓
𝜖 = (ℒ1 + ℒ2)𝜓𝜖, (3.1)

and its exact solution has the form 𝜓𝜖(𝑡) = 𝑆𝑡𝜓in, where 𝑆𝑡 = exp(−𝑖(ℒ1 + ℒ2)𝑡/𝜖). To efficiently handle the
nonlinear term, we present two approaches as follows, both of which require solving linear equations:

(1) Option 1,

ℒ1(·) = −𝜖
2

2
∆(·) + 𝑣(·), ℒ2(·) = 𝜆| · |2(·). (3.2)

(2) Option 2,

ℒ1(·) = −𝜖
2

2
∆(·), ℒ2(·) = 𝑣(·) + 𝜆| · |2(·). (3.3)

Computing the commutator [ℒ1,ℒ2] = ℒ1ℒ2 − ℒ2ℒ1 shows that the regularity of potential 𝑣 ∈ 𝐶2(𝒟) is
required for Option 2, whereas Option 1 does not need this condition.

From 𝑡𝑛 to 𝑡𝑛+1, the Strang splitting yields

𝜓𝜖,𝑛+1 := ℒ𝜓𝜖,𝑛 = exp
(︂
− 𝑖∆𝑡

2𝜖
ℒ2(·)

)︂
∘ exp

(︂
− 𝑖∆𝑡

𝜖
ℒ1

)︂
exp
(︂
− 𝑖∆𝑡

2𝜖
ℒ2(·)

)︂
∘ 𝜓𝜖,𝑛. (3.4)

This formulation can be written as

𝜓𝜖,𝑛+1 = exp
(︂
− 𝑖∆𝑡

𝜖
(ℒ1 + ℒ2(𝜓𝜖,𝑛))

)︂
𝜓𝜖,𝑛 +ℛ𝑛

1 . (3.5)

By the Taylor expansion, we have ‖ℛ𝑛
1‖ = 𝒪(Δ𝑡3

𝜖3 ). Furthermore, we define the 𝑛-fold composition

𝜓𝜖,𝑛 = ℒ𝑛𝜓in = ℒ(∆𝑡, ·) ∘ · · · ∘ ℒ(∆𝑡, ·)⏟  ⏞  
𝑛 times

𝜓in. (3.6)

And for the finite element discretization, define

𝑖𝜖(𝜕𝑡𝜓
𝜖, 𝜑) = 𝑎(𝜓𝜖, 𝜑), ∀𝜑 ∈ 𝐻1

𝑃 (𝒟),

where 𝑎(𝜓𝜖, 𝜑) is determined by the option of ℒ1. For example, setting ℒ1 = − 𝜖2

2 ∆ + 𝑣, we have 𝑎(𝜓𝜖, 𝜑) =
𝜖2

2 (∇𝜓𝜖,∇𝜑) + (𝑣𝜓𝜖, 𝜑) and the Galerkin equations

𝑖𝜖
∑︁

𝑝

d𝑡𝑈𝑝(𝑡)
(︀
𝜑ℎ

𝑝 , 𝜑
ℎ
𝑞

)︀
=
𝜖2

2

∑︁
𝑝

𝑈𝑝(𝑡)
(︀
∇𝜑ℎ

𝑝 ,∇𝜑ℎ
𝑞

)︀
+
∑︁

𝑝

𝑈𝑝(𝑡)
(︀
𝑣𝜑ℎ

𝑝 , 𝜑
ℎ
𝑞

)︀
(3.7)

with 𝑞 = 1, · · · , 𝑁ℎ. Its matrix form is

𝑖𝜖𝑀ℎ d𝑡𝑈(𝑡) =
(︂
𝜖2

2
𝑆ℎ + 𝑉 ℎ

)︂
𝑈(𝑡), (3.8)
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where 𝑈(𝑡) is a vector with 𝑈(𝑡) = (𝑈1(𝑡), · · · , 𝑈𝑁ℎ
(𝑡))𝑇 , 𝑀ℎ = [𝑀ℎ

𝑝𝑞] is the mass matrix with 𝑀ℎ
𝑝𝑞 = (𝜑ℎ

𝑝 , 𝜑
ℎ
𝑞 ),

𝑆ℎ = [𝑆ℎ
𝑝𝑞] is the stiff matrix with 𝑆ℎ

𝑝𝑞 = (∇𝜑ℎ
𝑝 ,∇𝜑ℎ

𝑞 ), and 𝑉 ℎ = [𝑉 ℎ
𝑝𝑞] is the potential matrix with 𝑉 ℎ

𝑝𝑞 =
(𝑣𝜑ℎ

𝑝 , 𝜑
ℎ
𝑞 ).

We now present the formal TS-FEM methods for the deterministic NLSE. The first one is the discretized
counterpart of Option 1:

𝑈̃𝑛 = exp
(︂
− 𝑖𝜆∆𝑡

2𝜖
|𝑈𝑛|2

)︂
𝑈𝑛,

𝑈̃𝑛+1 = 𝑃 exp
(︂
− 𝑖∆𝑡

𝜖
Λ
)︂

(𝑃−1𝑈̃𝑛), (3.9)

𝑈𝑛+1 = exp
(︂
− 𝑖𝜆∆𝑡

2𝜖

⃒⃒⃒
𝑈̃𝑛+1

⃒⃒⃒2)︂
𝑈̃𝑛+1,

where (𝑀ℎ)−1( 𝜖2

2 𝑆
ℎ + 𝑉 ℎ) = 𝑃Λ𝑃−1 with exp(−𝑖∆𝑡Λ/𝜖) being a diagonal matrix, and 𝑈𝑛 = 𝑈(𝑡𝑛). We call it

SI in the remainder of this paper. Owing to the application of the eigendecomposition method [14], the error
in time is mainly contributed by the time-splitting manner. Meanwhile, this scheme does not require time step
size ∆𝑡 = 𝑜(𝜖), although the full linear semiclassical Schrödinger equation must be solved.

Option 2 has been extensively used in previous works, such as [7, 8]. In the FEM framework, it solves the
NLES in the following procedures:

𝑈̃𝑛 = exp
(︂
− 𝑖∆𝑡

2𝜖
(︀
𝑣 + 𝜆|𝑈𝑛|2

)︀)︂
𝑈𝑛,

𝑖𝑀ℎ

(︃
𝑈̃𝑛+1 − 𝑈̃𝑛

∆𝑡

)︃
=
𝜖

2
𝑆ℎ

(︃
𝑈̃𝑛+1 + 𝑈̃𝑛

2

)︃
,

𝑈𝑛+1 = exp
(︂
− 𝑖∆𝑡

2𝜖

(︂
𝑣 + 𝜆

⃒⃒⃒
𝑈̃𝑛+1

⃒⃒⃒2)︂)︂
𝑈̃𝑛+1. (3.10)

This method requires the mesh size ℎ = 𝒪(𝜖) and time step size ∆𝑡 = 𝒪(𝜖) [8], and we call it SII in the
remaining part of this paper.

Remark 3.1. In the discrete level, owing to 𝜑ℎ
𝑝(x𝑞) = 𝛿𝑝𝑞, we have |𝜓ℎ(𝑥𝑝)|2 = |𝑈𝑝|2. This implies that at all

spatial nodes, the finite element solution can be obtain using the algebraic forms exp
(︀
− 𝑖𝜆Δ𝑡

2𝜖 (·)
)︀
. Nevertheless,

we must note that an approximation error in space is introduced in the first and third steps of both (3.9) and
(3.10).

Denote 𝐿 the discretized counterpart of ℒ, and similarly, 𝐿1 and 𝐿2 their respective discretized versions.
Denote 𝜓𝜖,𝑛

ℎ =
∑︀𝑁ℎ

𝑝=1 𝑈
𝑛
𝑝 𝜑

ℎ
𝑝 , and for simplicity we employ a formal notation for the 𝑛-fold composition

𝜓𝜖,𝑛
ℎ = 𝐿𝑛𝜓0

ℎ = 𝐿(∆𝑡, ·) ∘ · · · ∘ 𝐿(∆𝑡, ·)⏟  ⏞  
𝑛 times

𝜓0
ℎ, (3.11)

where 𝜓0
ℎ = 𝑅ℎ𝜓in with 𝑅ℎ being the Ritz projection operator.

3.2. The spatial discretization for the deterministic NLSE

Instead of the FEM, we construct the multiscale basis functions to reduce dofs in computations. The 𝑃1

FEM basis functions on both the coarse mesh 𝒯𝐻 and fine mesh 𝒯ℎ are required simultaneously. To describe
the localized property of multiscale basis functions, we define a series of nodal patches {𝐷ℓ} associated with
𝑥𝑝 ∈ 𝒩𝐻 as

𝐷0(𝑥𝑝) := supp{𝜑𝑝} = ∪{𝐾 ∈ 𝒯𝐻 | 𝑥𝑝 ∈ 𝐾},
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𝐷ℓ := ∪
{︀
𝐾 ∈ 𝒯𝐻 | 𝐾 ∩𝐷ℓ−1 ̸= ∅

}︀
, ℓ = 1, 2, · · · .

The multiscale basis function at 𝑥𝑝 is the solution of the following optimization problem

arg min
𝜑∈𝐻1

𝑃 (𝒟)
𝑎(𝜑, 𝜑), (3.12)

s.t.
∫︁
𝒟
𝜑𝜑𝐻

𝑞 d𝑥 = 𝜆(𝐻)𝛿𝑝𝑞, 𝑞 = 1, · · · , 𝑁𝐻 , (3.13)

where 𝑎(𝜑, 𝜑) = 𝜖2

2 (∇𝜑,∇𝜑)+(𝑣𝜑, 𝜑), and 𝜆(𝐻) = 1 in the previous work [12–14,34,38]. Note that the localized
constraint is not considered in the optimal problems, thus we obtain the global basis functions.

Remark 3.2. The referred dofs of the global multiscale basis depend on the fine mesh, which implies that
for high-dimensional problems, it suffers from both time and memory consumption. Therefore, the localized
multiscale basis is commonly employed in various practices. The localization shall introduce a localization error,
such as the LOD method [44]. In Appendix A, we present a reduction method that combines the POD method
with the multiscale method, and then the dofs referred to in the construction of basis functions only rely on
the dimensions of the POD basis and are independent of the fine mesh. Therefore, the localization error may
be ignored to a certain extent in our methods, even though we can still employ the proper localization for
high-dimensional problems.

In this work, we set 𝜆(𝐻) = (1, 𝜑𝐻
𝑞 ), and it can be computed explicitly. To explain this setup, we introduce

the weighted Clément-type quasi-interpolation operator [26]

𝐼𝐻 : 𝐻1
𝑃 (𝒟) → 𝑉𝐻 , 𝑓 ↦→ 𝐼𝐻(𝑓) :=

∑︁
𝑝

(︀
𝑓, 𝜑𝐻

𝑝

)︀(︀
1, 𝜑𝐻

𝑝

)︀𝜑𝐻
𝑝 . (3.14)

The high-resolution finite element space 𝑉ℎ = 𝑉𝐻 ⊕ 𝑊ℎ, where 𝑊ℎ is the kernel space of 𝐼𝐻 . And for all
𝑓 ∈ 𝐻1

𝑃 ∩𝐻2, it holds [43]
‖𝑓 − 𝐼𝐻(𝑓)‖ ≤ 𝐻2‖𝑓‖𝐻2 . (3.15)

In the multiscale basis space, the wave function 𝜓𝜖 is approximated as

𝜓𝜖(𝑥) ≈
𝑁𝐻∑︁
𝑝=1

𝑈̂𝑝𝜑𝑝. (3.16)

It can be projected onto the coarse mesh through

𝐼𝐻(𝜓𝜖) =
𝑁𝐻∑︁
𝑝=1

(︁∑︀𝑁𝐻

𝑞=1 𝑈̂𝑞𝜑𝑞, 𝜑
𝐻
𝑝

)︁
(︀
1, 𝜑𝐻

𝑝

)︀ 𝜑𝐻
𝑝 =

𝑁𝐻∑︁
𝑝=1

𝜆(𝐻)𝑈̂𝑝(︀
1, 𝜑𝐻

𝑝

)︀ 𝜑𝐻
𝑝 .

If 𝜓𝜖 is continuous at 𝑥𝑝, the above formula indicates that

𝜓𝜖(𝑥𝑝) ≈ 𝜆(𝐻)𝑈̂𝑝(︀
1, 𝜑𝐻

𝑝

)︀ ·
Let 𝜆(𝐻) = 1, and we can see that it holds 𝜓𝜖(𝑥𝑝) ≈ 𝑈̂𝑝/(1, 𝜑𝐻

𝑝 ). Define 𝜑𝑝 = (1, 𝜑𝐻
𝑝 )𝜑𝑝, where 𝜑𝑝 is independent

of the mesh size 𝐻. Then, (3.16) can be rewritten to

𝜓𝜖(𝑥) ≈
𝑁𝐻∑︁
𝑝=1

𝜓𝜖(𝑥𝑝)
(︀
1, 𝜑𝐻

𝑝

)︀
𝜑𝑝 =

𝑁𝐻∑︁
𝑝=1

𝜓𝜖(𝑥𝑝)𝜑𝑝. (3.17)
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Note that 𝜑𝑝 is still the multiscale basis function at 𝑥𝑝. We consider the following two equations

𝑖𝜖

𝑁𝐻∑︁
𝑝=1

(𝜑𝑝, 𝜑𝑞) d𝑡𝑈̂𝑝 =
𝑁𝐻∑︁
𝑝=1

(ℋ𝜑𝑝, 𝜑𝑞)𝑈̂𝑝 (3.18)

and

𝑖𝜖

𝑁𝐻∑︁
𝑝=1

(︁
𝜑𝑝, 𝜑𝑞

)︁
d𝑡𝑈̂𝑝 =

𝑁𝐻∑︁
𝑝=1

(︁
ℋ𝜑𝑝, 𝜑𝑞

)︁
𝑈̂𝑝. (3.19)

If 𝜆 = 0, the two equations have the same solution with a given initial condition, while for 𝜆 ̸= 0, the factor
(1, 𝜑𝐻

𝑝 ) in the basis functions cannot be eliminated in both sides of (3.19), and the two equations give different
solutions. This issue is addressed by the setup 𝜆(𝐻) = (1, 𝜑𝐻

𝑝 ).
Solving the optimal problems (3.13), we get

𝜑𝑝 =
𝑁ℎ∑︁
𝑠=1

𝑐𝑠𝑝𝜑
ℎ
𝑠 , 𝑝 = 1, · · · , 𝑁𝐻 .

Define 𝑉𝑚𝑠 = 𝑠𝑝𝑎𝑛{𝜑1, · · · , 𝜑𝑁𝐻
}, and it holds true that 𝑉𝑚𝑠 ⊂ 𝑉ℎ. Hence, the solution of optimal problems

defines a mapping 𝒞 : 𝑉ℎ ↦→ 𝑉𝑚𝑠. On the other hand, the solution on the fine mesh can be reconstructed
utilizing this linear mapping, which is essential in the formulation of the cubic nonlinear matrix. Note that the
factor 𝜆(𝐻) is a rescaling factor, and it does not change the basis function space. Thus we have the following
propositions.

Proposition 3.1 ([59], Lem. 3.2). For all 𝜑 ∈ 𝑉𝑚𝑠 and 𝑤 ∈𝑊ℎ, 𝑎(𝜑,𝑤) = 0 and 𝑉ℎ = 𝑉𝑚𝑠 ⊕𝑊ℎ.

Proof. As the same procedures in [59], we directly obtain 𝑎(𝑓, 𝑤) = 0,∀𝑓 ∈ 𝑉𝑚𝑠, 𝑤 ∈𝑊ℎ. For any 𝑓 ∈ 𝑉ℎ, define

𝑓* =
𝑁𝐻∑︁
𝑝=1

(︀
𝑓, 𝜑𝐻

𝑝

)︀(︀
1, 𝜑𝐻

𝑝

)︀𝜑𝑝.

Then 𝑓* ∈ 𝑉𝑚𝑠 and (𝑓 − 𝑓*, 𝜑𝐻
𝑝 ) = 0 for 𝑝 = 1, · · · , 𝑁𝐻 . Thus 𝑓 − 𝑓* ∈ 𝑊ℎ and we get the decomposition

𝑉ℎ = 𝑉𝑚𝑠 ⊕𝑊ℎ. �

Due to 𝑉ℎ = 𝑉𝑚𝑠 ⊕𝑊ℎ, 𝑊ℎ is also the kernel space of the mapping 𝒞. Furthermore, combining an iterative
Caccioppoli-type argument [32, 38, 48, 50] and some refined assumption for the potential, and the multiscale
finite element basis functions have the following exponential decaying property.

Proposition 3.2 ([59], Thm. 3.2). Under Assumption 2.1 with a resolution constant as in [59], there exists a
constant 𝛽 ∈ (0, 1) independent of 𝐻 and 𝜖, such that

‖∇𝜑𝑝‖𝐿2(𝒟∖𝐷ℓ) ≤ 𝛽ℓ‖∇𝜑𝑝‖, (3.20)

for all 𝑝 = 1, · · · , 𝑁𝐻 .

Once the multiscale basis space being prepared, the weak form of the full NLSE is discretized as

𝑖𝜖

(︃
𝑁𝐻∑︁
𝑝=1

𝑁ℎ∑︁
𝑠=1

d𝑡𝑈̂𝑝𝑐
𝑠
𝑝𝜑

ℎ
𝑠 ,

𝑁ℎ∑︁
𝑠=1

𝑐𝑠𝑙𝜑
ℎ
𝑠

)︃
=
𝜖2

2

(︃
𝑁𝐻∑︁
𝑝=1

𝑁ℎ∑︁
𝑠=1

𝑈̂𝑝𝑐
𝑠
𝑝∇𝜑ℎ

𝑠 ,

𝑁ℎ∑︁
𝑠=1

𝑐𝑠𝑙∇𝜑ℎ
𝑠

)︃

+ 𝜆

⎛⎝⃒⃒⃒⃒⃒
𝑁𝐻∑︁
𝑝=1

𝑁ℎ∑︁
𝑠=1

𝑈̂𝑝𝑐
𝑠
𝑝𝜑

ℎ
𝑠

⃒⃒⃒⃒
⃒
2 𝑁𝐻∑︁

𝑝=1

𝑁ℎ∑︁
𝑠=1

𝑈̂𝑝𝑐
𝑠
𝑝𝜑

ℎ
𝑠 ,

𝑁ℎ∑︁
𝑠=1

𝑐𝑠𝑙𝜑
ℎ
𝑠

⎞⎠ (3.21)
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for all 𝑙 = 1, · · · , 𝑁𝐻 . The stiff matrix and mass matrix constructed by the multiscale basis functions satisfy
𝑀𝑚𝑠 = 𝒞𝑇𝑀ℎ𝒞 and 𝑆𝑚𝑠 = 𝒞𝑇𝑆ℎ𝒞. For the nonlinear term, the solution on the fine mesh is reconstructed by
𝒞𝑈̂ , and we then get the similar form 𝑁𝑚𝑠 = 𝒞𝑇𝑁ℎ𝒞. The construction of 𝑁ℎ suffers from heavy computation,
especially for high-dimensional problems. The application of time-splitting methods can avoid this issue. Thus,
we only need to solve linear equations at each time step, achieving high efficiency.

According to (3.16) and (3.17), the numerical solution on the coarse mesh can be denoted by {𝑈̂𝑝(𝑡)}𝑁𝐻
𝑝=1,

while on the fine mesh, it is denoted by {
∑︀𝑁𝐻

𝑝=1 𝑈̂𝑝(𝑡)𝑐𝑠𝑝}
𝑁ℎ
𝑠=1. For the sake of clarity, in the sequel, we denote

the 𝜓𝜖
ℎ the classical FEM solution, and 𝜓𝜖

𝐻 and 𝜓𝜖
𝐻,ℎ the numerical solution constructed by the multiscale basis

functions on the coarse mesh and fine mesh, respectively.

4. Convergence analysis

4.1. Convergence analysis of the TS-FEM

In this part, the SI is mainly considered, and the 𝐿2 error will be estimated. We start the convergence analysis
from the temporal error estimate at the initial time step.

Lemma 4.1. If 𝜓in ∈ 𝐻4, the error at the initial time step is bounded in the 𝐿2 norm by

⃦⃦
𝜓𝜖(∆𝑡)− 𝜓𝜖,1

⃦⃦
=
⃦⃦
𝑆Δ𝑡𝜓in − ℒ(∆𝑡)𝜓in

⃦⃦
≤ 𝐶‖𝜓in‖𝐻4

∆𝑡3

𝜖3
,

where 𝐶 is a constant independent of both 𝜖 and 𝐻.

Proof. According to (3.5), we have

𝜓𝜖,1 = exp
(︂
− 𝑖∆𝑡

2𝜖
ℒ2(𝜓)− 𝑖∆𝑡

𝜖
ℒ1 −

𝑖∆𝑡
2𝜖
ℒ2(𝜓𝜖

in)
)︂
𝜓𝜖

in

= exp
(︂
− 𝑖∆𝑡

2𝜖

(︂
ℒ2(𝜓𝜖

in) +𝒪
(︂

∆𝑡2

𝜖2

)︂)︂
− 𝑖∆𝑡

𝜖
ℒ1 −

𝑖∆𝑡
2𝜖
ℒ2(𝜓𝜖

in)
)︂
𝜓𝜖

in

= exp
(︂
− 𝑖∆𝑡

𝜖
ℒ1 −

𝑖∆𝑡
𝜖
ℒ2(𝜓𝜖

in)
)︂

exp
(︂
−∆𝑡3

𝜖3
Γ(2ℒ1 + ℒ2)2

)︂
𝜓𝜖

in,

where Γ depends on the form of ℒ2. Use the expansion

exp
(︂
−∆𝑡3

𝜖3
Γ(2ℒ1 + ℒ2)2

)︂
= 𝐼 − ∆𝑡3

𝜖3
Γ(2ℒ1 + ℒ2)2 +𝒪

(︂
∆𝑡6

𝜖6

)︂
and the dominant reminder has the form

ℛ0
1 = −∆𝑡3

𝜖3
Γ(2ℒ1 + ℒ2)2𝜓𝜖

in.

Since the exact solution at 𝑡 = ∆𝑡 is given by

𝜓𝜖(∆𝑡) = 𝑆Δ𝑡𝜓𝜖
in = exp

(︂
− 𝑖∆𝑡

𝜖
(ℒ1 + ℒ2(𝜓𝜖

in))
)︂
𝜓𝜖

in.

There exists a constant such that ⃦⃦
𝜓𝜖(∆𝑡)− 𝜓𝜖,1

⃦⃦
≤ 𝐶‖𝜓𝜖

in‖𝐻4

∆𝑡3

𝜖3
·

�
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In turn, we prove the stability of the Strang splitting operator. Due to exp(− 𝑖ℒ1𝑡
𝜖 ) being unitary, for any 𝑓1,

𝑓2 ∈ 𝐻2, we have⃦⃦⃦⃦
exp
(︂
− 𝑖ℒ1𝑡

𝜖

)︂
𝑓1 − exp

(︂
− 𝑖ℒ1𝑡

𝜖

)︂
𝑓2

⃦⃦⃦⃦
=
⃦⃦⃦⃦

exp
(︂
− 𝑖ℒ1𝑡

𝜖

)︂
(𝑓1 − 𝑓2)

⃦⃦⃦⃦
= ‖𝑓1 − 𝑓2‖.

Define 𝐹 (𝜓) = −𝑖ℒ2(𝜓)𝜓, the splitting solution for ℒ2 is solved by the equation 𝜖𝜕𝑡𝜓−𝐹 (𝜓) = 0. The nonlinear
flow solved from this equation has the form

𝑌 𝑡𝜓 = 𝜓 +
1
𝜖

∫︁ 𝑡

0

𝐹 (𝑌 𝑠𝜓) d𝑠, (4.1)

where the flow 𝑌 𝑡 is defined as

𝜓(𝑡, ·) = 𝑌 𝑡𝜓(0, ·) = 𝜓(0, ·) exp
(︂
− 𝑖
𝜖

∫︁ 𝑡

0

ℒ2(𝜓) d𝑠
)︂
.

Assume that 𝐹 is Lipschitz with a Lipschitz constant 𝑀 , and repeat the proof in [10]. For all 𝑓1, 𝑓2 ∈ 𝐿2,
there exists a constant that depends on 𝐹 such that for all 0 ≤ 𝜏 ≤ 1

‖𝑌 𝜏𝑓1 − 𝑌 𝜏𝑓2‖ ≤ ‖𝑓1 − 𝑓2‖+
1
𝜖

∫︁ 𝜏

0

‖𝐹 (𝑌 𝑠𝑓1)− 𝐹 (𝑌 𝑠𝑓2)‖ d𝑠

≤ ‖𝑓1 − 𝑓2‖+
𝑀

𝜖

∫︁ 𝜏

0

‖𝑌 𝑠𝑓1 − 𝑌 𝑠𝑓2‖ d𝑠.

An application of the Gronwall lemma leads to

‖𝑌 𝜏𝑓1 − 𝑌 𝜏𝑓2‖ ≤ exp
(︂
𝑀𝜏

𝜖

)︂
‖𝑓1 − 𝑓2‖. (4.2)

In particular, for 𝐹 (𝜓) = 𝜆|𝜓|2𝜓 we get

‖ℒ(𝜏)𝑓1 − ℒ(𝜏)𝑓2‖ ≤ exp
(︂
𝑀𝜆𝜏

𝜖

)︂
‖𝑓1 − 𝑓2‖. (4.3)

Besides, for the nonlinear flow (4.1), we have the following lemma.

Lemma 4.2. Let 𝜓 ∈ 𝐻2; if 𝐹 (𝜓) = 𝜆|𝜓|2𝜓, there exists a constant 𝐶 such that for all 0 ≤ 𝜏 ≤ 1

‖𝑌 𝜏𝜓‖𝐻2 ≤ exp
(︂
𝜆𝜏‖𝜓‖2∞

𝜖

)︂
‖𝜓‖𝐻2 . (4.4)

If 𝐹 (𝜓) = 𝜆|𝜓|2𝜓 + 𝑣𝜓, there exists a constant 𝐶 such that for 𝑣 ∈ 𝐻2 and for all 0 ≤ 𝜏 ≤ 1

‖𝑌 𝜏𝜓‖𝐻2 ≤ exp

(︃
𝜏
(︀
‖𝑣‖𝐻2 + 𝜆‖𝜓‖2∞

)︀
𝜖

)︃
‖𝜓‖𝐻2 . (4.5)

Proof. Consider 𝐹 (𝜓) = 𝜆|𝜓|2𝜓 + 𝑣𝜓. For the nonlinear flow (4.1), we have

‖𝑌 𝜏𝜓‖∞ ≤ ‖𝜓‖∞ +
1
𝜖

∫︁ 𝜏

0

‖𝐹 (𝑌 𝑠𝜓)‖∞ d𝑠 ≤ ‖𝜓‖∞ +
‖𝑣‖∞ + 𝜆‖𝜓‖2∞

𝜖

∫︁ 𝜏

0

‖𝑌 𝑠𝜓‖∞ d𝑠.

Then the application of Gronwall inequality yields

‖𝑌 𝜏𝜓‖∞ ≤ exp

(︃
𝜏
(︀
‖𝑣‖∞ + 𝜆‖𝜓‖2∞

)︀
𝜖

)︃
‖𝜓‖∞.
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Similarly, for the 𝐻2 norm, we directly have

‖𝑌 𝜏𝜓‖𝐻2 ≤ ‖𝜓‖𝐻2 +
‖𝑣‖𝐻2 + 𝜆‖𝜓‖2∞

𝜖

∫︁ 𝜏

0

‖𝑌 𝑠𝜓‖𝐻2 d𝑠,

which also leads to

‖𝑌 𝜏𝜓‖𝐻2 ≤ exp

(︃
𝜏
(︀
‖𝑣‖𝐻2 + 𝜆‖𝜓‖2∞

)︀
𝜖

)︃
‖𝜓‖𝐻2 .

Let 𝑣 = 0 and we get (4.4). This completes the proof. �

For the semi-discretized time-splitting methods, we have the following convergence theorem.

Theorem 4.1. Let 𝜓in ∈ 𝐻4, 𝑇 > 0 and ∆𝑡 ∈ (0, 𝜖). For 𝑛∆𝑡 ≤ 𝑇 , there exists a constant 𝐶 such that

⃦⃦
ℒ𝑛𝜓in − 𝑆𝑛Δ𝑡𝜓in

⃦⃦
≤ 𝐶𝑇‖𝜓in‖𝐻4

(︂
1 +

𝑇

𝜖

)︂
∆𝑡2

𝜖3
· (4.6)

Proof. Similar to the proof in [10,16]. Using the triangle inequality yields

⃦⃦
ℒ𝑛𝜓in − 𝑆𝑛Δ𝑡𝜓in

⃦⃦
≤

𝑛−1∑︁
𝑗=0

⃦⃦⃦
ℒ𝑛−𝑗𝑆𝑗Δ𝑡𝜓in − ℒ𝑛−𝑗−1𝑆(𝑗+1)Δ𝑡𝜓in

⃦⃦⃦
.

Due to 𝑆𝑡 being the Lie formula for all 𝑡 ≤ 𝑇 and 𝜓in ∈ 𝐻4, 𝑆𝑡𝜓in belongs to 𝐻4 and is uniformly bounded
in this space, thus for all 𝑗 such that 𝑗∆𝑡 ≤ 𝑇 , we have⃦⃦⃦

ℒ𝑆𝑗Δ𝑡𝜓in − 𝑆(𝑗+1)Δ𝑡𝜓in

⃦⃦⃦
=
⃦⃦(︀
ℒ − 𝑆Δ𝑡

)︀
𝑆𝑗Δ𝑡𝜓in

⃦⃦
≤ 𝐶‖𝜓in‖𝐻4

∆𝑡3

𝜖3
·

Combine with (4.3) and we get

⃦⃦
ℒ𝑛𝜓in − 𝑆𝑛Δ𝑡𝜓in

⃦⃦
≤

𝑛−1∑︁
𝑗=0

(︂
exp
(︂
𝑀𝜆∆𝑡
𝜖

)︂)︂𝑛−𝑗−1⃦⃦(︀
ℒ − 𝑆Δ𝑡

)︀
𝑆𝑗Δ𝑡𝜓in

⃦⃦
.

Since 0 < ∆𝑡 < 𝜖, for all 𝑗 ≥ 0, we have(︂
exp
(︂
𝑀𝜆∆𝑡
𝜖

)︂)︂𝑗

≤
(︂

1 + 𝐶0
∆𝑡
𝜖

)︂𝑗

≤ 1 + 𝐶𝑗
∆𝑡
𝜖
·

Consequently, we arrive at

⃦⃦
ℒ𝑛𝜓in − 𝑆𝑛Δ𝑡𝜓in

⃦⃦
≤

𝑛−1∑︁
𝑗=0

(︂
exp
(︂
𝑀𝜆∆𝑡
𝜖

)︂)︂𝑛−𝑗−1

𝐶‖𝜓in‖𝐻4

∆𝑡3

𝜖3

≤ 𝐶‖𝜓in‖𝐻4

∆𝑡3

𝜖3

𝑛−1∑︁
𝑗=0

(︂
1 + 𝐶(𝑛− 𝑗 − 1)

∆𝑡
𝜖

)︂
≤ 𝐶𝑇‖𝜓in‖𝐻4

(︂
1 +

𝑇

𝜖

)︂
∆𝑡2

𝜖3
·

It concludes the proof of this theorem. �

Next, we give the convergence of the full TS-FEM method. Consider the problem

𝑖𝜖𝜕𝑡𝜓
𝜖 = ℒ2𝜓

𝜖
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with the initial condition 𝜓in and the periodical boundary condition. The solution has the form

𝜓𝜖(𝑥, 𝑡) = exp
(︂
− 𝑖𝑡

2𝜖
ℒ2

)︂
𝜓in(𝑥). (4.7)

If ℒ2 consists of potential and nonlinear term, the regularity of 𝜓𝜖(𝑡,𝑥) depends on the regularity of both the
potential 𝑣 and 𝜓in, otherwise it only depends on 𝜓in.

Assume that the numerical solution 𝜓𝜖
ℎ solves (3.11) and 𝜓𝜖(𝑡𝑛) = 𝑆𝑛Δ𝑡𝜓in is the solution of (2.1). We write

𝜓𝜖,𝑛
ℎ − 𝜓𝜖(𝑡𝑛) = 𝐿𝑛𝜓0

ℎ − 𝑆𝑛Δ𝑡𝜓in =
(︀
𝐿𝑛𝜓0

ℎ − ℒ𝑛𝜓in

)︀
+
(︀
ℒ𝑛𝜓in − 𝑆𝑛Δ𝑡𝜓in

)︀
. (4.8)

The first term denotes the error attributable to the space discretization and the second term is the time-splitting
error.

We now estimate the spatial error accommodation from 𝑡 = 0 to 𝑡 = ∆𝑡,

𝜓𝜖,1
ℎ − 𝜓𝜖(∆𝑡) = 𝐿2

(︂
∆𝑡
2
, ·
)︂
∘ 𝐿1(∆𝑡)𝐿2

(︂
∆𝑡
2
, ·
)︂
∘ 𝜓0

ℎ − ℒ(∆𝑡)𝜓in.

Let 𝜓0 = ℒ2(Δ𝑡
2 , ·) ∘ 𝜓in, and consider the problem

𝑖𝜖𝜕𝑡𝜓
𝜖 = −𝜖

2

2
∆𝜓𝜖 + 𝑣𝜓𝜖 (4.9)

with the initial condition 𝜓𝜖(𝑡 = 0) = 𝜓0 and the periodical boundary condition. The corresponding weak form
is

𝑖𝜖
(︀
𝜕𝑡(𝜓𝜖 − 𝜓𝜖

ℎ), 𝜑ℎ
)︀

=
𝜖2

2
(︀
∇(𝜓𝜖 − 𝜓𝜖

ℎ),∇𝜑ℎ
)︀

+
(︀
𝑣(𝜓𝜖 − 𝜓𝜖

ℎ), 𝜑ℎ
)︀
, ∀𝜑ℎ ∈ 𝑉ℎ. (4.10)

Let 𝜓𝜖 − 𝜓𝜖
ℎ = (𝜓𝜖 − 𝑅ℎ𝜓

𝜖) + 𝜃, where 𝜃 = 𝑅ℎ𝜓
𝜖 − 𝜓𝜖

ℎ and 𝑅ℎ𝜓
𝜖 denotes the Ritz projection. According to

(4.10), we get

𝑖𝜖
(︀
𝜕𝑡[(𝜓𝜖 −𝑅ℎ𝜓

𝜖) + 𝜃], 𝜑ℎ
)︀

=
𝜖2

2
(︀
∇𝜃,∇𝜑ℎ

)︀
+
(︀
𝑣(𝜓𝜖 −𝑅ℎ𝜓

𝜖), 𝜑ℎ
)︀

+
(︀
𝑣𝜃, 𝜑ℎ

)︀
. (4.11)

Take 𝜑ℎ = 𝜃 in the above equation,

𝑖𝜖(𝜕𝑡𝜃, 𝜃) = −𝑖𝜖(𝜕𝑡(𝜓𝜖 −𝑅ℎ𝜓
𝜖), 𝜃) +

𝜖2

2
‖∇𝜃‖2 + (𝑣(𝜓𝜖 −𝑅ℎ𝜓

𝜖), 𝜃) + (𝑣𝜃, 𝜃),

and we have

𝑖𝜖d𝑡‖𝜃‖2 = 𝑖𝜖(𝜕𝑡𝜃, 𝜃) + 𝑖𝜖
(︀
𝜕𝑡𝜃, 𝜃

)︀
= 2𝑖𝜖ℜ(𝜕𝑡(𝜓𝜖 −𝑅ℎ𝜓

𝜖), 𝜃) + 2𝑖ℑ(𝑣(𝜓𝜖 −𝑅ℎ𝜓
𝜖), 𝜃),

which induces
d𝑡‖𝜃‖ ≤ 2‖𝜕𝑡(𝜓𝜖 −𝑅ℎ𝜓

𝜖)‖+
2
𝜖
‖𝑣‖∞‖𝜓𝜖 −𝑅ℎ𝜓

𝜖‖. (4.12)

Integrating from 0 to 𝑡 yields

‖𝜃(𝑡)‖ ≤ ‖𝜃(0)‖+ 2
∫︁ 𝑡

0

‖𝜕𝑡(𝜓𝜖 −𝑅ℎ𝜓
𝜖)‖ d𝑡+

2
𝜖
‖𝑣‖∞

∫︁ 𝑡

0

‖𝜓𝜖 −𝑅ℎ𝜓
𝜖‖ d𝑡. (4.13)

Assume ‖𝜃(0)‖ = ‖𝜓in −𝑅ℎ𝜓in‖ = ‖𝜓in −𝑅ℎ𝜓in‖ = 0. Since ‖𝑅ℎ𝜕𝑡𝜓
𝜖 − 𝜕𝑡𝜓

𝜖‖ ≤ 𝐶ℎ2‖𝜕𝑡𝜓
𝜖‖𝐻2 , we have

‖𝜃(𝑡)‖ ≤ 𝐶𝑡ℎ2‖𝜕𝑡𝜓
𝜖‖𝐻2 +

𝐶ℎ2

𝜖

∫︁ 𝑡

0

‖𝜓𝜖‖𝐻2 d𝑠 ≤ 𝐶𝜆,𝜖𝑡ℎ
2 +

𝐶𝑡ℎ2

𝜖3
≤ 𝐶𝐶𝜆,𝜖𝑡ℎ

2, (4.14)
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where 𝑡 ≤ ∆𝑡, and 𝐶𝜆,𝜖 is the leading order term with respect to 𝜖−1.
Let 𝜓ℎ,1 be the numerical solution of (4.9) with 𝑡 = ∆𝑡, and we obtain

⃦⃦⃦
𝜓𝜖,1

ℎ − 𝜓𝜖(∆𝑡)
⃦⃦⃦

=

⃦⃦⃦⃦
⃦⃦exp

⎛⎝− 𝑖∆𝑡𝐿2

(︁
𝜓ℎ,1

)︁
2𝜖

⎞⎠𝜓ℎ,1 − exp

⎛⎝− 𝑖∆𝑡ℒ2

(︁
𝜓1

)︁
2𝜖

⎞⎠𝜓1

⃦⃦⃦⃦
⃦⃦

≤

⃦⃦⃦⃦
⃦⃦exp

⎛⎝− 𝑖∆𝑡𝐿2

(︁
𝜓ℎ,1

)︁
2𝜖

⎞⎠𝜓ℎ,1 − exp

⎛⎝− 𝑖∆𝑡𝐿2

(︁
𝜓1

)︁
2𝜖

⎞⎠𝜓1

⃦⃦⃦⃦
⃦⃦

+

⃦⃦⃦⃦
⃦⃦exp

⎛⎝− 𝑖∆𝑡𝐿2

(︁
𝜓ℎ,1

)︁
2𝜖

⎞⎠𝜓1 − exp

⎛⎝− 𝑖∆𝑡ℒ2

(︁
𝜓1

)︁
2𝜖

⎞⎠𝜓1

⃦⃦⃦⃦
⃦⃦

≤ 𝐶 exp
(︂
𝑀𝜆∆𝑡

2𝜖

)︂
‖𝜃(𝑡)‖,

in which we use the Lipschitz linearity of the nonlinear flow and 𝜓1 = exp(− 𝑖𝜖Δ𝑡ℒ1
𝜖 ) exp(− 𝑖𝜖Δ𝑡ℒ2

2𝜖 )𝜓in. This
indicates the spatial error accumulation in a one-time step. We next estimate the error accumulation in both
time and space from 𝑡 = 0 to 𝑇 .

Theorem 4.2. Assume that 𝜓𝜖,𝑛
ℎ = 𝐿𝑛𝜓in and 𝜓𝜖(𝑛∆𝑡) = 𝑆𝑛Δ𝑡𝜓in are the numerical solution and exact

solution of the NLSE. Moreover, assume 𝜕𝑡𝜓
𝜖 ∈ 𝐻2 for all 𝑡 ∈ [0, 𝑇 ] and 𝜓in ∈ 𝐻4. Then for a given 𝑇 > 0,

there exists a constant ℎ0 such that ℎ ≤ ℎ0 and for all ∆𝑡 < 𝜖 with 𝑛∆𝑡 ≤ 𝑇 , and the 𝐿2 error estimate satisfies

‖𝜓𝜖,𝑛
ℎ − 𝜓𝜖(𝑛∆𝑡)‖ ≤ 𝐶𝐶𝜆,𝜖ℎ

2 + 𝐶𝑇

(︂
1 +

𝑇

𝜖

)︂
∆𝑡2

𝜖3
, (4.15)

where the constant 𝐶 is independent of 𝜖 and 𝑇 .

Proof. The error can be split into

𝜓𝜖,𝑛
ℎ − 𝜓𝜖(𝑛∆𝑡) = 𝐿𝑛𝜓0

ℎ − 𝑆𝑛Δ𝑡𝜓in =
(︀
𝐿𝑛𝜓0

ℎ − ℒ𝑛𝜓in

)︀
+
(︀
ℒ𝑛𝜓in − 𝑆𝑛Δ𝑡𝜓in

)︀
.

The first term on the right-hand side satisfies

⃦⃦
𝐿𝑛𝜓0

ℎ − ℒ𝑛𝜓in

⃦⃦
≤

⃦⃦⃦⃦
⃦⃦ 𝑛∑︁

𝑗=1

𝐿𝑛−𝑗(𝐿𝑅ℎ −𝑅ℎℒ)ℒ𝑗−1𝜓in

⃦⃦⃦⃦
⃦⃦+ ‖(𝑅ℎ − 𝐼)ℒ𝑛𝜓in‖.

Due to ℒ1 conserving the 𝐻2 norm of the solution and Lemma 4.2, we have ℒ𝑛𝜓in ∈ 𝐻2 and ‖(𝑅ℎ−𝐼)ℒ𝑛𝜓in‖ ≤
𝐶ℎ2‖ℒ𝑛𝜓in‖𝐻2 . Meanwhile,

‖𝐿𝜓𝜖‖ ≤ ‖𝐿𝜓𝜖 − ℒ(∆𝑡)𝜓𝜖‖+ ‖ℒ(∆𝑡)𝜓𝜖‖ ≤ 𝐶𝐶𝜆,𝜖∆𝑡ℎ2 + ‖𝜓𝜖‖.

Similar to Theorem 3.1 in [4], we denote the bound of the numerical solution by

max
1≤𝑚≤𝑛

⃦⃦
𝐿𝑚𝑅ℎℒ𝑛−𝑚𝜓𝜖

⃦⃦
≤ 𝑎𝐿.

Recall (4.13) and (4.14), owing to ∆𝑡 < 𝜖, then there exists a constant 𝐶 independent of 𝜖 such that⃦⃦⃦⃦
⃦⃦ 𝑛∑︁

𝑗=1

𝐿𝑛−𝑗(𝐿𝑅ℎ −𝑅ℎℒ)ℒ𝑗−1𝜓in

⃦⃦⃦⃦
⃦⃦ ≤ 𝑛 exp

(︀
𝐶𝑇𝑎2

𝐿

)︀
max

1≤𝑗≤𝑛

⃦⃦
(𝐿𝑅ℎ −𝑅ℎℒ)ℒ𝑗−1𝜓in

⃦⃦
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≤ 𝑛 exp
(︀
𝐶𝑇𝑎2

𝐿

)︀
exp
(︂
𝜆𝑀∆𝑡
𝜖

)︂
𝐶𝐶𝜆,𝜖∆𝑡ℎ2 ≤ exp

(︀
𝐶𝑇𝑎2

𝐿

)︀
exp
(︂
𝜆𝑀∆𝑡
𝜖

)︂
𝐶𝐶𝜆,𝜖𝑇ℎ

2.

Thus, we arrive at
‖𝐿𝑛𝜓in − ℒ𝑛𝜓in‖ ≤ 𝐶𝐶𝜆,𝜖ℎ

2,

where 𝐶 is independent of 𝜖 but depends on 𝑇 and 𝜆. Note that the order of ‖𝜓𝜖‖𝐻2 with respect to 𝜖−1 is
lower than 𝐶𝜆,𝜖, and it is ignored in this result.

Furthermore, combine with Theorem 4.1, and we get the desired estimate

‖𝜓𝜖,𝑛
ℎ − 𝜓𝜖(𝑛∆𝑡)‖ ≤ ‖𝐿𝑛𝜓in − ℒ𝑛𝜓in‖+

⃦⃦
ℒ𝑛𝜓in − 𝑆𝑛Δ𝑡𝜓in

⃦⃦
≤ 𝐶𝐶𝜆,𝜖ℎ

2 + 𝐶𝑇

(︂
1 +

𝑇

𝜖

)︂
∆𝑡2

𝜖3
·

This declares the (4.15). �

Remark 4.1. Take a further simplification

𝐶

𝜖3

(︂
1 +

𝑇

𝜖

)︂
≤ 𝐶𝑇

𝜖4
·

We temporarily use 𝜓𝜖,𝑛
𝐻 to denote the FEM solution on the coarse mesh with mesh size 𝐻, the counterpart

result of Theorem 4.2 on the coarse space is

‖𝜓𝜖,𝑛
𝐻 − 𝜓𝜖(𝑛∆𝑡)‖ ≤ 𝐶𝐶𝜆,𝜖𝐻

2 +
𝐶𝑇 2

𝜖4
∆𝑡2. (4.16)

We have obtained the 𝐿2 error estimate of the TS-FEM applied to the deterministic NLSE. Next, we will
further assess the convergence analysis of the multiscale method, in conjunction with the qMC method. Note
that the convergence analysis for the TS-FEM combined with the qMC method follows a similar pattern.
Therefore, we will not discuss the convergence analysis of the TS-FEM in random space in this section.

4.2. Convergence analysis of the time-splitting multiscale method for NLSE with random
potentials

4.2.1. The time-splitting multiscale method for the deterministic NLSE

For SI, we solve the linear Schrödinger equation by the multiscale method and the corresponding convergence
analysis has been given in [59]. We therefore have the following estimate.

Lemma 4.3. Let 𝜓𝜖,𝑛
𝐻 = 𝐿𝑛

𝑚𝑠𝜓in be the numerical solution solved in 𝑉𝑚𝑠 by SI, and 𝜓𝜖(𝑡𝑛) = 𝑆𝑛Δ𝑡𝜓in be the
exact solution of the NLSE. Let ∆𝑡 ∈ (0, 𝜖), and assume 𝜕𝑡𝜓

𝜖 ∈ 𝐿2 for all 𝑡 ∈ (0, 𝑇 ], and 𝜓in ∈ 𝐻4. We have
the estimate

‖𝜓𝜖,𝑛
𝐻 − 𝜓𝜖(𝑡𝑛)‖ ≤ 𝐶𝑇𝐻2

𝜖3
+
𝐶𝑇 2

𝜖4
∆𝑡2, (4.17)

where the constant 𝐶 is independent of 𝜖.

Proof. For the linear Schrödinger equation, the spatial error of multiscale solution and exact solution has the
bound [59]

‖𝜓𝜖
𝐻 − 𝜓𝜖‖ ≤ 𝐶𝐻2

𝜖2
‖𝜖𝜕𝑡𝜓

𝜖‖ ≤ 𝐶𝐻2

𝜖
‖𝜕𝑡𝜓in‖ exp

(︃
2𝜆𝑡‖𝜓𝜖‖2∞

𝜖

)︃
·



3264 P. LI AND Z. ZHANG

At the second step of SI, we have

‖𝜓𝜖
𝐻 − 𝜓𝜖‖ ≤ 𝐶𝐻2

𝜖2
exp

(︃
2𝜆∆𝑡‖𝜓𝜖‖2∞

𝜖

)︃
≤ 𝐶𝐻2

𝜖2
·

When the eigendecomposition method is applied, the solution can be solved exactly in time for linear problems.
The accumulation of the spatial error at each time step satisfies

‖𝐿𝑚𝑠𝜓
𝜖,𝑛
𝐻 − ℒ𝜓𝜖,𝑛‖ ≤ ‖𝐿𝑚𝑠𝜓

𝜖,𝑛
𝐻 − ℒ𝐼𝐻𝜓𝜖,𝑛‖+ ‖ℒ𝐼𝐻𝜓𝜖,𝑛 − ℒ𝜓𝜖,𝑛‖

≤ exp
(︂
𝜆𝑀∆𝑡

2𝜖

)︂
𝐶𝐻2

𝜖2
+ exp

(︂
𝜆𝑀∆𝑡
𝜖

)︂
‖𝐼𝐻𝜓𝜖,𝑛 − 𝜓𝜖,𝑛‖ ≤ exp

(︂
𝜆𝑀∆𝑡
𝜖

)︂
𝐶𝐻2

𝜖2
·

Meanwhile, by the Strang splitting method, repeat the procedures in Theorem 4.1, and we get the estimate as
(4.17). �

Remark 4.2. In comparison to Remark 4.1, the multiscale method exhibits superior performance with respect
to 𝜖, as it requires only the bound ‖𝜕𝑡𝜓

𝜖‖. In contrast, the application of the classical FEM requires the bound
of ‖𝜕𝑡𝜓

𝜖‖𝐻2 , which implies a stronger dependence on 𝜖. Consequently, the weaker dependence of multiscale
method on 𝜖 demonstrates its superiority in effectively handling multiscale problems.

4.2.2. The multiscale method for the NLSE with random potentials

To carry out the convergence analysis for the qMC method, the regularity of the wave function with respect
to random variables is required. The random potential is truncated by the 𝑚-order KL expansion, and we denote
𝜉(𝜔) = (𝜉1(𝜔), · · · , 𝜉𝑚(𝜔))𝑇 . Let 𝜈 = (𝜈1, · · · , 𝜈𝑚) be the multi-index with 𝜈𝑗 being the nonnegative integer,
where |𝜈| =

∑︀𝑚
𝑗=1 𝜈𝑗 . Then 𝜕𝜈𝜓𝜖

𝑚 denotes the mixed derivative of 𝜓𝜖
𝑚 with respect to all random variables

specified by the multi-index 𝜈.

Lemma 4.4. For any 𝜔 ∈ Ω and multi-index |𝜈| < ∞, and for all 𝑡 ∈ (0, 𝑇 ], there exists a constant
𝐶(𝑇, 𝜆, 𝜖, |𝜈|) depends on 𝑇, 𝜆, 𝜖, |𝜈| such that the partial derivative of 𝜓𝜖

𝑚(𝑡,𝑥, 𝜔) satisfies a priori estimate

‖𝜕𝜈𝜓𝑚‖𝐻2 ≤ 𝐶(𝑇, 𝜆, 𝜖, |𝜈|)
∏︁
𝑗

(︁√︀
𝜆𝑗‖𝑣𝑗‖𝐻2

)︁𝜈𝑗

. (4.18)

The proof of this lemma is given in the appendix.
We are interested in the expectation of linear functionals of the numerical solution in applications of uncer-

tainty quantification. We will estimate the expected value E[𝒢(𝜓𝜖
𝑚(·, 𝜔))] of the random variable 𝒢(𝜓𝜖

𝑚(·, 𝜔)).
Let 𝒢(·) be a continuous linear functional on 𝐿2(𝒟), then there exists a constant 𝐶𝒢 such that

|𝒢(𝑢)| ≤ 𝐶𝒢‖𝑢‖

for all 𝑢 ∈ 𝐿2(𝒟). Consider the integral

𝐼𝑚(𝐹 ) =
∫︁

𝜉∈[0,1]𝑚
𝐹 (𝜉) d𝜉, (4.19)

where 𝐹 (𝜉) = 𝒢(𝜓𝜖
𝑚(·, 𝜉)). To approximate this integral, both the MC and qMC can be used. In our methods,

it is approximated over the unit cube by randomly shifted lattice rules

𝑄𝑚,𝑛(Δ;𝐹 ) =
1
𝑁

𝑁∑︁
𝑖=1

𝐹

(︂
frac

(︂
𝑖𝑧

𝑁
+ Δ

)︂)︂
,

where 𝑧 ∈ N𝑚 is the generating vector, Δ ∈ [0, 1]𝑚 and “frac” is the fractional part function applying compo-
nentwise. Here 𝑁 denotes the number of random samples.
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Lemma 4.5. For the integral (4.19), given 𝑚,𝑁 ∈ N with 𝑁 ≤ 1030, weights 𝛾 = (𝛾u)u⊂N, a randomly shifted
lattice rule with 𝑁 points in 𝑚 dimensional random space could be constructed by a component-by-component
such that for all 𝛼 ∈ ( 1

2 , 1] √︁
EΔ|𝐼𝑚(𝐹 )−𝑄𝑚,𝑁 (·;𝐹 )| ≤ 9𝐶*𝐶𝛾,𝑚(𝛼)𝑁−1/2𝛼,

where

𝐶𝛾,𝑚(𝛼) =

⎛⎝ ∑︁
∅̸=u⊆{1:𝑚}

𝛾𝛼
u

∏︁
𝑗∈u

𝜚(𝛼)

⎞⎠1/2𝛼⎛⎝ ∑︁
u⊆{1:𝑚}

(𝐶(𝜈))2

𝛾u

∏︁
𝑗∈u

𝜆𝑗‖𝑣𝑗‖2𝐻2

⎞⎠1/2

.

Proof. The proof of the lemma is the same as in [14]. Here 𝐶(𝜈) = 𝐶(𝑡, 𝜆, 𝜖, |𝜈|) is calculated in Lemma 4.4.
And

𝜚(𝛼) = 2

(︃ √
2𝜋

𝜋2−2𝜂*(1−𝜂*)𝜂*

)︃𝛼

𝜁

(︂
𝛼+

1
2

)︂
, (4.20)

where 𝜂* = 2𝛼−1
4𝛼 , 𝜁(𝑥) is the Riemann zeta function and 𝐶* = ‖𝒢‖. The details of these estimates can be found

in [17,25]. �

Employing the qMC method, the estimate between the wave functions of (2.1) and the truncated NLSE (2.10)
satisfies the following lemma.

Lemma 4.6. Under the Assumption 2.2, there exists a constant 𝐶 such that√︂
EΔ
[︁
|E[𝒢(𝜓𝜖)]−𝑄𝑚,𝑁 [𝒢(𝜓𝜖

𝑚)]|2
]︁
≤ 𝐶

(︂
𝑚−𝜒

𝜖
+ 𝐶𝛾,𝑚𝑁

−𝑟

)︂
, (4.21)

where 0 ≤ 𝜒 ≤ ( 1
2 − 𝜂)Θ− 1

2 , 𝑟 = 1− 𝛿 for 0 < 𝛿 < 1
2 . Note that the constant 𝐶 is independent of 𝑚 and 𝑛 but

depends on 𝑇 .

Proof. Since 𝒢 is a linear functional, we have

|E[𝒢(𝜓𝜖)]−𝑄𝑚,𝑁 [𝒢(𝜓𝜖
𝑚)]| ≤ |E[𝒢(𝜓𝜖)]− 𝐼𝑚(𝜓𝜖)|+ |𝐼𝑚(𝜓𝜖)−𝑄𝑚,𝑁 [𝒢(𝜓𝜖

𝑚)]|
= |E[𝒢(𝜓𝜖)]− E[𝒢(𝜓𝜖

𝑚)]|+ |𝐼𝑚(𝜓𝜖)−𝑄𝑚,𝑁 [𝒢(𝜓𝜖
𝑚)]|.

The first term satisfies

|E[𝒢(𝜓𝜖)]− E[𝒢(𝜓𝜖
𝑚)]| ≤ E[|𝒢(𝜓𝜖)− 𝒢(𝜓𝜖

𝑚)|] ≤ 𝐶
𝑚−𝜒

𝜖
,

where 𝐶 depends on the time 𝑇 . Let 𝛼 = 1/(2− 2𝛿) for 0 < 𝛿 < 1
2 , according to Lemma 4.5, we then get

EΔ
[︁
|E[𝒢(𝜓𝜖)]−𝑄𝑚,𝑁 [𝒢(𝜓𝜖

𝑚)]|2
]︁

≤EΔ[|E[𝒢(𝜓𝜖)]− 𝐼𝑚(𝜓𝜖)|2] + EΔ[|𝐼𝑚(𝜓𝜖)−𝑄𝑚,𝑁 [𝒢(𝜓𝜖
𝑚)]|2]

≤𝐶𝑚
−2𝜒

𝜖2
+ 𝐶𝐶2

𝛾,𝑚𝑁
2−2𝛿.

�

Employ the qMC method in the random space, for the numerical solution 𝜓𝜖,𝑚
𝐻 solved by the multiscale

method, and we have the following error estimate.
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Theorem 4.3. Let 𝜓in ∈ 𝐻4(𝒟), 𝜓𝜖 ∈ 𝐿∞([0, 𝑇 ];𝐻4(𝒟)) ∩ 𝐿1([0, 𝑇 ];𝐻2(𝒟)), and parameterized potentials
satisfy the Assumption 2.2. Consider E[𝒢(𝜓𝜖(𝑡𝑛))] is approximated by 𝑄𝑚,𝑁 (·;𝒢(𝜓𝜖,𝑛

𝐻,𝑚)). Apply the random
shifted lattice rule 𝑄𝑚,𝑁 to 𝒢(𝜓𝜖(𝑡𝑛)). Then for any fixed 𝑇 > 0, there exists a constant 𝐻0 such that 𝐻 ≤ 𝐻0

and for all ∆𝑡 < 𝜖 with 𝑛∆𝑡 ≤ 𝑇 , we have the root-mean-square error as√︃
EΔ

[︂⃒⃒⃒
E[𝒢(𝜓𝜖(𝑡𝑛))]−𝑄𝑚,𝑁

[︁
𝒢
(︁
𝜓𝜖,𝑛

𝐻,𝑚

)︁]︁⃒⃒⃒2]︂
≤ 𝐶

(︂
𝐻2

𝜖3
+

∆𝑡2

𝜖4
+
𝑚−𝜒

𝜖
+ 𝐶𝛾,𝑚𝑁

−𝑟

)︂
, (4.22)

where 0 ≤ 𝜒 ≤ ( 1
2 − 𝜂)Θ− 1

2 , and 𝑟 = 1− 𝛿 for 0 < 𝛿 < 1
2 . Here 𝐶 is independent of 𝑚 and 𝑁 but depends on

𝜆 and 𝑇 , and 𝐶𝛾,𝑚 depends on 𝑇 , 𝜆 and 𝜖.

Proof. We split the error (4.22) into⃒⃒⃒
E[𝒢(𝜓𝜖(𝑡𝑛))]−𝑄𝑚,𝑁

[︁
𝒢
(︁
𝜓𝜖,𝑛

𝐻,𝑚

)︁]︁⃒⃒⃒
≤ |E[𝒢(𝜓𝜖(𝑡𝑛))]−𝑄𝑚,𝑁 [𝒢(𝜓𝜖

𝑚(𝑡𝑛))]|

+
⃒⃒⃒
𝑄𝑚,𝑁 [𝒢(𝜓𝜖

𝑚(𝑡𝑛))]−𝑄𝑚,𝑁

[︁
𝒢
(︁
𝜓𝜖,𝑛

𝐻,𝑚

)︁]︁⃒⃒⃒
.

The second term can be estimated by⃒⃒⃒
𝒢(𝜓𝜖

𝑚(𝑡𝑛))− 𝒢
(︁
𝜓𝜖,𝑛

𝐻,𝑚

)︁⃒⃒⃒
≤ 𝐶𝒢

⃦⃦⃦
𝜓𝜖

𝑚(𝑡𝑛)− 𝜓𝜖,𝑛
𝐻,𝑚

⃦⃦⃦
≤ 𝐶𝐶𝒢

(︂
𝐻2

𝜖3
+

∆𝑡2

𝜖4

)︂
,

where the constant 𝐶 depends on 𝜆 and 𝑇 , and is independent of 𝑚 and 𝑁 . Combine with Lemma 4.6, we get
the (4.22). This completes the proof. �

Remark 4.3. Theorem 4.3 gives the 𝐿2 estimate of time-splitting multiscale method for the NLSE with random
potentials. For the employment of the TS-FEM, repeat the above procedures and we can get a similar result.

5. Numerical experiments

In this part, we will present numerical experiments in both 1D and 2D physical space. The convergence
rates of TS-FEM and TS-MM (time-splitting multiscale method) are first verified. For the NLSE with the
random potential, we compare the convergence rate in the random space. In addition, the delocalization of mass
distribution due to disordered potentials and the cubic nonlinearity is investigated.

5.1. Numerical accuracy of TS-FEMs

Set 𝜓in(𝑥) = (10𝜋)0.25 exp(−20𝑥2) for the 1D case, and 𝜓in(𝑥1, 𝑥2) = (10/𝜋)0.25 exp(−5(𝑥1 − 0.5)2 − 5(𝑥2 −
0.5)2) for the 2D case. To begin with, we choose the harmonic potential 𝑣(𝑥) = 0.5𝑥2, and verify the second-
order accuracy of the TS-FEM with respect to the temporal step size ∆𝑡 and spatial mesh size ℎ. Here we fix
the terminal time 𝑇 = 1.0, 𝜖 = 1

16 and nonlinear parameter 𝜆 = 0.1. The reference solution 𝜓𝜖
ref is computed

on the fine mesh with ℎ = 2𝜋
2048 and ∆𝑡 = 1.0e−06. The 𝐿2 absolute error and 𝐻1 absolute error are recorded

in Table 1.
For the 2D case, we employ the multiscale potential

𝑣(𝑥1, 𝑥2) = cos
(︁
𝑥1𝑥2 +

𝑥1

𝜖
+
𝑥1𝑥2

𝜖2

)︁
, (5.1)

over 𝒟 = [0, 1]2 with 64×64 spatial nodes. Here we set 𝜆 = 1.0 and multiscale coefficient 𝜖 = 1
8 . We compare the

numerical solution with the different ∆𝑡 for SI and SII. By the means of the numerical tests shown in Figure 1,
SI allows a bigger time step size than SII.
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Table 1. Numerical convergence of TS-FEMs in space and time.

ℎ 2𝜋
128

2𝜋
256

2𝜋
512

2𝜋
1024

Order

SI
𝐿2 error 1.96e−02 5.22e−03 1.26e−03 2.54e−04 2.09
𝐻1 error 1.19e−01 3.36e−02 8.31e−03 1.68e−03 2.04

SII
𝐿2 error 3.04e−02 8.07e−03 1.95e−03 3.92e−04 2.09
𝐻1 error 3.52e−01 9.95e−02 2.44e−02 4.92e−03 2.05

Δ𝑡 4.0e−02 2.0e−02 1.0e−02 5.0e−03 Order

SI
𝐿2 error 4.53e−04 1.13e−04 2.81e−05 7.03e−06 2.00
𝐻1 error 2.09e−03 5.20e−04 1.30e−04 3.24e−05 2.00

SII
𝐿2 error 7.16e−03 1.87e−03 4.71e−04 1.18e−04 1.98
𝐻1 error 1.12e−01 2.91e−02 7.26e−03 1.81e−03 1.99

Figure 1. Numerical solution computed by the two TS-FEMs with different ∆𝑡. (a) SI, ∆𝑡 =
1.0e−2. (b) SI, ∆𝑡 = 1.0e−3. (c) SII, ∆𝑡 = 1.0e−3.

5.2. Numerical experiments of TS-MMs

In this study, we consider two forms of the multiscale solution: 𝜓𝜖
𝐻 on the coarse mesh and 𝜓𝜖

𝐻,ℎ on the
fine mesh. We begin by employing the harmonic potential and varying the values of 𝐻. We then record the
error between the numerical solution and the reference solution in Table 2. The simulation parameters used are:
𝜆 = 0.1, 𝜖 = 1

16 , 𝑇 = 1.0, ∆𝑡 =1.0e−03, and a fine mesh size of ℎ = 2𝜋
4096 . Our results show that SI achieves a

second-order convergence rate in both the coarse and fine spaces. Additionally, superconvergence is exhibited
in the coarse space for SII.

Meanwhile, to demonstrate the advantages of Option 1, we examine the example of a discontinuous potential,
as shown in Figure 2. We observe that SI maintains its second-order spatial convergence rate, whereas the
convergence rate of SII deteriorates.

Furthermore, we consider the small semiclassical constant 𝜖 = 1
128 and the discontinuous potential as in

Figure 2a. As shown in Figure 3, better approximations are provided by the multiscale method in the physical
space.

For the 2D case, we consider the discontinuous checkboard potential

𝑣2 =

⎧⎨⎩
(︁

cos
(︁

2𝜋 𝑥1
𝜖2

)︁
+ 1
)︁(︁

cos
(︁

2𝜋 𝑥2
𝜖2

)︁
+ 1
)︁
, [0, 0.5]2 ∪ [0.5, 1]2,(︁

cos
(︁

2𝜋 𝑥1
𝜖1

)︁
+ 1
)︁(︁

cos
(︁

2𝜋 𝑥2
𝜖1

)︁
+ 1
)︁
, otherwise,
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Table 2. Numerical convergence rate of the TS-MMs for the NLSE with harmonic potential
in space.

𝐻 ‖𝜓𝜖
𝐻,ℎ − 𝜓𝜖

ref‖ ‖𝜓𝜖
𝐻,ℎ − 𝜓𝜖

ref‖𝐻1 ‖𝜓𝜖
𝐻 − 𝜓𝜖

ref‖ ‖𝜓𝜖
𝐻 − 𝜓𝜖

ref‖𝐻1

SI

2𝜋
2048

4.95e−05 4.69e−04 3.47e−05 3.31e−04
2𝜋

1024
1.68e−04 1.60e−03 1.18e−04 1.13e−03

2𝜋
512

6.44e−04 6.11e−03 4.52e−04 4.32e−03
2𝜋
256

2.56e−03 2.43e−02 1.80e−03 1.72e−02

Order 1.90 1.90 1.90 1.90

SII

2𝜋
2048

1.79e−05 1.73e−04 5.43e−12 1.88e−10
2𝜋

1024
6.10e−05 5.86e−04 7.85e−11 1.63e−09

2𝜋
512

2.33e−04 2.24e−03 5.68e−09 1.02e−07
2𝜋
256

9.24e−04 8.89e−03 4.49e−07 8.24e−06

Order 1.90 1.90 5.52 5.22

Figure 2. Numerical convergence rate of SI and SII for the discontinuous potential. In the
plots, the 𝐿2 error and 𝐻1 error on the coarse mesh are depicted. (a) 𝑣(𝑥). (b) SI. (c) SII.

Figure 3. The convergence rates of the FEM and the multiscale method for the NLSE with
the discontinuous potential and semiclassical constant 𝜖 = 1

128 . (a) SI. (b) SII.
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Figure 4. Reference solution (FEM) and the spatial error distribution computed by SI, in
which the multiscale method is used with 𝐻 = 8ℎ and 𝐻 = 4ℎ.

where 𝑣 = 𝑣1 + 𝑣2 with 𝑣1 = |𝑥1 − 0.5|2 + |𝑥2 − 0.5|2, 𝜖1 = 1
8 and 𝜖2 = 1

6 . In the simulations, we set ℎ = 1
128 ,

𝜖 = 1
4 , 𝜆 = 1.0, ∆𝑡 =1.0e−04 and 𝑇 = 1.0. We employ SI (Fig. 4) and SII (Fig. 5) for time evolution. We

vary the coarse mesh size with 𝐻 = 4ℎ and 𝐻 = 8ℎ of the multiscale method and present the corresponding
spatial error distribution. Here, the reference solution is obtained using the FEM with a mesh size of ℎ. In both
Figures 4 and 5, we observe a significant error when the multiscale method is used with a mesh size ratio of
𝐻 = 8ℎ. With the mesh being refined, the smaller error distribution in space can be obtained for SI. Hence this
simulation demonstrates the superior performance of SI when dealing with discontinuous potentials.

5.3. Numerical simulations of NLSE with random potentials

For the 1D case, we consider the random potential

𝑣(𝑥, 𝜔) = 𝜎

𝑚∑︁
𝑗=1

sin(𝑗𝑥)
1
𝑗𝛽
𝜉𝑗(𝜔), (5.2)

where 𝜎 controls the strength of randomness, and 𝜉𝑗(𝜔)’s are mean-zero and i.i.d random variables uniformly
distributed in [−

√
3,
√

3]. It is extended to 2D as

𝑣(𝑥1, 𝑥2, 𝜔) = 𝜎

𝑚∑︁
𝑗=1

sin(𝑗𝑥1) sin(𝑗𝑥2)
1
𝑗𝛽
𝜉𝑗(𝜔). (5.3)

For comparison, we employ the MC method and qMC method to generate the samples 𝜉𝑗(𝜔) in the simulations.
And we measure the states of the system by the expectation of mass density

E
(︁⃒⃒
𝜓𝜖

𝐻,ℎ

⃒⃒2)︁ =
1
𝑁

∑︁
𝑖

⃒⃒
𝜓𝜖

𝐻,ℎ(𝜔𝑖)
⃒⃒2
,
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Figure 5. Reference solution (FEM) and the spatial error distribution computed by SII, in
which the multiscale method is used with 𝐻 = 8ℎ and 𝐻 = 4ℎ.

where 𝑁 denotes the number of MC or qMC samples. To observe the evolution in the mass distribution of the
system, we introduce the definition

𝐴(𝑡) = E

(︂∫︁
𝒟
|𝑥|2|𝜓𝜖|2 d𝑥

)︂
, (5.4)

which is extensively used to indicate the Anderson localization of the Schrödinger equation with random poten-
tials.

5.3.1. Convergence of MC sampling and qMC sampling

The MC method and qMC method exhibit different convergence rates. To eliminate the perturbation of a
small sample size, we adopt the random potential

𝑣(𝑥, 𝜔) = 1.0 + 𝜎

𝑚∑︁
𝑗=1

sin(𝑗𝑥)
1
𝑗𝛽
𝜉𝑗(𝜔), (5.5)

in which the parameters are: 𝜎 = 1.0, 𝛽 = 2.0, 𝑚 = 5. The other simulation settings are: 𝜆 = 0.1, 𝜖 = 1
8 ,

𝒟 = [−𝜋, 𝜋], ℎ = 2𝜋
600 , 𝐻 = 6ℎ, 𝑇 = 1.0 and ∆𝑡 =1.0e−03. In this experiment, we use 50 000 samples to compute

the reference solution and record the 𝐿2 error of the density ‖E(|𝜓𝜖
num|2)−E(|𝜓𝜖

ref |2)‖ as the sampling number
varies with 𝑁 = 100, 200, 400, 800, 1600 and 3200 for both MC method and qMC method. The result is shown
in Figure 6.

5.3.2. Investigation of wave propagation

To observe the wave propagation phenomena, we vary the nonlinear coefficient 𝜆 and record the evolution of
𝐴(𝑡). In addition, we depict E(|𝜓𝜖

𝐻,ℎ|2) at the final time. In these simulations, we generate 500 qMC samples
to approximate the random potential. The parameters of simulations are: 𝒟 = [−2𝜋, 2𝜋], 𝜎 = 1.0, 𝛽 = 0.0, and
𝑚 = 5. For the multiscale method, we fix ℎ = 4𝜋

6000 and 𝐻 = 10ℎ. To observe the long-time behavior, we set the
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Figure 6. Numerical convergence rates of the MC and qMC methods.

Figure 7. The evolution of 𝐴(𝑡) and density of expectation at 𝑇 = 20, as the nonlinear
coefficient 𝜆 varies. Results computed by the SI and the multiscale method.

terminal time to 𝑇 = 20. We vary 𝜆 as 0, 1, 10, and 20, and the corresponding results are shown in Figure 7.
One can see that 𝐴(𝑡) increases as time evolves for the nonlinear cases, while for the linear case, it remains
within the range of (0.51, 0.57) during the time interval from 𝑡 = 10 to 𝑡 = 20.

In the 2D case, we use the following settings in our numerical simulations: ℎ = 1
64 , 𝜖 = 1

4 , 𝐻 = 4ℎ, 𝛽 = 0,
𝑚 = 5, and 𝜎 = 5. Our results, depicted in Figures 8 and 9, show that while the localization of mass distribution
is observed for the linear case, the nonlinear case exhibits delocalization.

6. Conclusion

In this paper, we have introduced two time-splitting finite element methods (TS-FEMs) for the cubic nonlinear
Schrödinger equation (NLSE), incorporating a multiscale method to reduce spatial degrees of freedom. We have
refined the optimization problems to eliminate the mesh dependence of multiscale basis functions introduced by
local orthogonal normalization constraints. For the temporal evolution, we employed two Strang time-splitting
techniques in which one maintains the convergence rate of the NLSE with discontinuous potentials. Meanwhile,
we utilized the quasi-Monte Carlo sampling method to generate random potentials. Hence the proposed methods
have second-order accuracy in both time and space and nearly first-order convergence in the random space.
Furthermore, we provided a convergence analysis for the 𝐿2 error estimate, which was verified through numerical
experiments. Additionally, we presented a multiscale reduced basis method to alleviate the computational burden
of constructing multiscale basis functions for random potentials. Using these methods, we investigated the long-
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Figure 8. The evolution of 𝐴(𝑡) for 2D linear case and nonlinear case with 𝜆 = 20. Results
are computed by SI and the multiscale method.

Figure 9. The localization and delocalization of mass distribution of the 2D linear Schrödinger
equation and NLSE with random potentials, respectively.

term wave propagation of the NLSE with parameterized random potentials in 1D and 2D physical spaces,
observing localization in the linear case and delocalization in the nonlinear case.
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Appendix A. A multiscale reduced basis method

As a supplement, we present an approach to reduce the computational effort required for construction basis functions
for random potentials. This approach is motivated by the method proposed in [14, 39, 58], which consists of offline and

online stages. In the offline stage, let {𝑣(𝑥, 𝜔𝑞)}𝑄
𝑞=1 be the samples of potential with 𝑄 representing the number of

samples. At the node 𝑥𝑝, the sample mean of multiscale basis functions is given by 𝜁0
𝑝 = 1

𝑄

∑︀𝑄
𝑞=1 𝜑𝑝(𝑥, 𝜔𝑞), and the

fluctuation is defined as 𝜑𝑝(𝑥, 𝜔𝑞) = 𝜑𝑝(𝑥, 𝜔𝑞) − 𝜁0
𝑝 . We employ the POD method on {𝜑𝑝(𝑥, 𝜔𝑞)}𝑄

𝑞=1 to build a set of

reduced basis functions {𝜁1
𝑝(𝑥), · · · , 𝜁𝑚𝑝

𝑝 (𝑥)} with 𝑚𝑝 ≪ 𝑄. In the online stage, the multiscale basis function at 𝑥𝑝 has
the following form

𝜑𝑝(𝑥, 𝜔) =

𝑚𝑝∑︁

𝑙=0

𝑐𝑙𝑝(𝜔)𝜁𝑙
𝑝(𝑥), (A.1)

where {𝑐𝑙𝑝}
𝑚𝑝

𝑙=0 are unknowns. Due to the wave function being represented by

𝜓𝜖
𝐻(𝑥, 𝑡, 𝜔) =

𝑁𝐻∑︁

𝑝=1

𝑚𝑝∑︁

𝑙=0

𝑐𝑙𝑝(𝑡, 𝜔)𝜁𝑙
𝑝(𝑥), (A.2)

the dofs in the Galerkin formulation is
∑︀𝑁𝐻

𝑝=1(𝑚𝑝 + 1). To reduce the dofs of the Galerkin formulation, we compute

{𝑐𝑙𝑝}
𝑚𝑝

𝑙=0 in (A.1) by solving the following reduced optimal problems

min 𝑎(𝜑𝑝, 𝜑𝑝), (A.3)

s.t.

∫︁

𝒟
𝜑𝑝𝜑

𝐻
𝑞 dx = 𝜆(𝐻)𝛿𝑝𝑞, ∀1 ≤ 𝑞 ≤ 𝑁𝐻 . (A.4)

We remark that the above optimal problems need to be solved for all realizations of random potentials in the online
stage. Since the value of 𝑚𝑝 is small [14], the computation cost of constructing the multiscale basis functions can be
reduced, while the dofs in the Galerkin formulation remain at 𝑁𝐻 in the online stage. In addition, we adopt parallel
implementations with 12 cores in the following tests.

To demonstrate the improvement offered by the reduced multiscale basis method, we carry out two numerical tests.
We fix 𝑚𝑝 = 3 for 𝑝 = 1, · · · , 𝑁𝐻 , and generate 1000 samples using the qMC method, with 200 samples allocated for the
offline stage and the remaining 800 samples used in the online stage. The SI method is employed for time evolution.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o
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Figure A.1. Numerical comparison of the FEM, the multiscale method (MM), and the MM-
POD method.

Table A.1. Comparison of time costs (second) for the FEM, MM, and MM-POD methods.

Sample number FEM MM MM-POD (offline)

1000 2116 152 107 (35)
2000 4205 308 243 (35)
4000 8376 620 501 (34)
8000 16 633 1239 1020 (40)
16 000 33 469 2466 2137 (43)

Figure A.2. Numerical comparison of the direct multiscale method (MM) and the MM-POD
method for the 1D NLSE with 𝜆 = 20.

We compare the numerical solution computed by the FEM, the multiscale method, and the multiscale POD (MM-
POD) reduction method as in Figure A.1.

Furthermore, we vary the qMC samples and record the corresponding time costs in Table A.1. Note that the time costs
of MM-POD method are attributed to both the offline and online stages of the computations. As illustrated in Table A.1,
a considerable enhancement in simulation efficiency is achieved through the application of the multiscale method, with
additional improvements attained in the integration of the POD reduction method.

We further carry out an experiment of NLSE with 𝜆 = 20. The corresponding numerical results are shown in Figure A.2.
The MM-POD method takes approximately 14 978 s (4.16 h), with 1064 s spent on the offline stage. In contrast, the direct
multiscale method takes 20 061 s (5.57 h).
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Appendix B. The proof of Lemma 2.1

Proof. We first study the regularity of 𝜓𝜖 in space. Since the energy is a constant

𝐸(𝑡) =
𝜖2

2
‖∇𝜓𝜖‖2 +

(︁
𝑣, |𝜓𝜖|2

)︁
+
𝜆

2
‖𝜓𝜖‖4𝐿4 = 𝐸0 <∞

with 𝜆 ≥ 0, we directly get

𝜖2

2
‖∇𝜓𝜖‖2 = 𝐸0 −

(︁
𝑣, |𝜓𝜖|2

)︁
− 𝜆

2
‖𝜓𝜖‖4𝐿4 ≤ 𝐸0 + ‖𝑣‖∞,

which means

‖∇𝜓𝜖‖ ≤ 𝐶

𝜖
·

Meanwhile, we also have

‖𝜓𝜖‖4𝐿4 ≤
𝐸0 + ‖𝑣‖∞

𝜆
· (B.1)

Owing to the Hamiltonian ℋ is not explicitly dependent on time, and [ℋ2,ℋ] = 0, the following average value of
mechanics quantity is independent of time, i.e.,

(︀
ℋ2𝜓𝜖, 𝜓𝜖)︀ = 𝐸1 (B.2)

with d𝑡𝐸1 = 0. Explicitly, we have

(︀
ℋ2𝜓𝜖, 𝜓𝜖)︀ =

𝜖4

4

(︀
Δ2𝜓𝜖, 𝜓𝜖)︀+

(︀
𝑣2𝜓𝜖, 𝜓𝜖)︀+ 𝜆2

(︁
|𝜓𝜖|4𝜓𝜖, 𝜓𝜖

)︁

− 𝜖2(Δ𝑣𝜓𝜖, 𝜓𝜖) + 2𝜆
(︁
𝑣|𝜓𝜖|2𝜓𝜖, 𝜓𝜖

)︁
− 𝜆𝜖2

(︁
Δ|𝜓𝜖|2𝜓𝜖, 𝜓𝜖

)︁
.

We then get

𝜖4

4
‖Δ𝜓𝜖‖2 + ‖𝑣𝜓𝜖‖2 + 𝜆2‖𝜓𝜖‖6𝐿6 ≤ 𝐸1 + 𝜖2(Δ𝑣𝜓𝜖, 𝜓𝜖)− 2𝜆

(︁
𝑣|𝜓𝜖|2𝜓𝜖, 𝜓𝜖

)︁
+ 𝜆𝜖2

(︁
Δ|𝜓𝜖|2𝜓𝜖, 𝜓𝜖

)︁

≤ 𝐸1 − 𝜖2(∇𝑣𝜓𝜖,∇𝜓𝜖) + 2𝜆‖𝑣‖∞‖𝜓𝜖‖4𝐿4 + 3𝜆𝜖2‖𝜓𝜖‖2∞‖∇𝜓
𝜖‖2

≤ 𝐸1 + 𝐶‖𝑣‖∞ + 𝜖‖∇𝑣‖∞ + 2𝜆‖𝑣‖∞‖𝜓𝜖‖4𝐿4 + 3𝜆𝐶‖𝜓𝜖‖2∞.

Hence, there exists a constant 𝐶 that depends on ‖𝑣‖∞, ‖∇𝑣‖∞, 𝐸0, 𝐸1, and ‖𝜓𝜖‖∞ such that

⃦⃦
∇2𝜓𝜖

⃦⃦
≤ 𝐶

𝜖2
, ‖𝜓𝜖‖6𝐿6 ≤

𝐶

𝜆2
· (B.3)

Furthermore, if 𝜓𝜖 ∈ 𝐻4, we also have [ℋ𝑠,ℋ] = 0 for 𝑠 ≤ 4. Repeat the above procedures and we can get

‖∇𝑠𝜓𝜖‖ ≤ 𝐶

𝜖𝑠
· (B.4)

Next, we study the bound of ‖𝜕𝑡𝜓
𝜖‖𝐻𝑠 with 0 ≤ 𝑠 ≤ 2. Taking the time derivative for (2.1) yields

𝑖𝜖𝜕𝑡𝑡𝜓
𝜖 = − 𝜖

2

2
Δ𝜕𝑡𝜓

𝜖 + 𝑣𝜕𝑡𝜓
𝜖 + 2𝜆|𝜓𝜖|2𝜕𝑡𝜓

𝜖 + 𝜆(𝜓𝜖)2𝜕𝑡𝜓
𝜖. (B.5)

Take inner product of this equation with 𝜕𝑡𝜓
𝜖 and we get

𝑖𝜖d𝑡(𝜕𝑡𝜓
𝜖, 𝜕𝑡𝜓

𝜖) = 𝜆

∫︁

𝒟

(︀
𝜕𝑡𝜓

𝜖𝜓𝜖
)︀2 −

(︀
𝜕𝑡𝜓

𝜖𝜓𝜖)︀2 d𝑥 = 4𝑖𝜆

∫︁

𝒟
ℜ
(︀
𝜕𝑡𝜓

𝜖𝜓𝜖
)︀
ℑ
(︀
𝜕𝑡𝜓

𝜖𝜓𝜖
)︀
d𝑥. (B.6)

Thus we have

𝜖 d𝑡‖𝜕𝑡𝜓
𝜖‖2 ≤ 2𝜆‖𝜕𝑡𝜓

𝜖𝜓𝜖‖2 ≤ 2𝜆‖𝜓𝜖‖2∞‖𝜕𝑡𝜓
𝜖‖2,
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which indicates

‖𝜕𝑡𝜓
𝜖‖ ≤ ‖𝜕𝑡𝜓in‖ exp

(︃
2𝜆𝑇‖𝜓𝜖‖2∞

𝜖

)︃

· (B.7)

For the initial condition, we have

‖𝜕𝑡𝜓in‖ ≤
𝜖

2
‖∇𝜓in‖+

1

𝜖
(𝑣𝜓in, 𝜓in) +

𝜆

𝜖
‖𝜓in‖2𝐿4 ≤

𝐶

𝜖
·

We therefore get

‖𝜕𝑡𝜓
𝜖‖ ≤ 𝐶

𝜖
exp

(︃
2𝜆‖𝜓𝜖‖2∞𝑇

𝜖

)︃

· (B.8)

Take inner product of the equation (B.5) with 𝜕𝑡Δ𝜓
𝜖, and we have

𝜖 d𝑡‖∇𝜕𝑡𝜓
𝜖‖2 = ℑ

{︁
2(∇𝑣𝜕𝑡𝜓

𝜖,∇𝜕𝑡𝜓
𝜖) + 4𝜆

(︀
𝜓𝜖𝜕𝑡𝜓

𝜖∇𝜓𝜖,∇𝜕𝑡𝜓
𝜖)︀

+ 4𝜆
(︀
𝜓𝜖𝜕𝑡𝜓

𝜖∇𝜓𝜖,∇𝜕𝑡𝜓
𝜖)︀+ 4𝜆(𝜓𝜖𝜕𝑡𝜓

𝜖∇𝜓𝜖,∇𝜕𝑡𝜓
𝜖) + 2𝜆

(︁
(𝜓𝜖)2, (∇𝜕𝑡𝜓

𝜖)2
)︁}︁
.

By the inequalities

‖𝜓𝜖𝜕𝑡𝜓
𝜖∇𝜓𝜖∇𝜕𝑡𝜓

𝜖‖𝐿1 ≤ ‖𝜓𝜖‖𝐿6‖𝜕𝑡𝜓
𝜖‖𝐿6‖∇𝜓𝜖‖𝐿6‖∇𝜕𝑡𝜓

𝜖‖

≤ 𝐶‖𝜓𝜖‖𝐿6

(︂
𝑑

3
‖𝜕𝑡∇𝜓𝜖‖+

(︂
1− 𝑑

3

)︂
‖𝜕𝑡𝜓

𝜖‖
)︂⃦⃦
∇2𝜓𝜖

⃦⃦ 1
2+ 𝑑

6 ‖∇𝜕𝑡𝜓
𝜖‖

≤ 𝐶‖𝜓𝜖‖𝐿6(‖𝜕𝑡∇𝜓𝜖‖+ ‖𝜕𝑡𝜓
𝜖‖)
⃦⃦
∇2𝜓𝜖

⃦⃦
‖∇𝜕𝑡𝜓

𝜖‖

and
⃦⃦
⃦(𝜓𝜖)2(∇𝜕𝑡𝜓

𝜖)2
⃦⃦
⃦

𝐿1
≤ ‖𝜓𝜖‖2𝐿∞‖∇𝜕𝑡𝜓

𝜖‖2,

we get

𝜖d𝑡‖𝜕𝑡∇𝜓𝜖‖ ≤ 2‖∇𝑣‖∞‖𝜕𝑡𝜓
𝜖‖+ 𝐶𝜆

⃦⃦
∇2𝜓𝜖

⃦⃦
(‖𝜕𝑡∇𝜓𝜖‖+ ‖𝜕𝑡𝜓

𝜖‖) + 2𝜆‖𝜓𝜖‖2𝐿∞‖∇𝜕𝑡𝜓
𝜖‖.

Then we arrive at

‖𝜕𝑡∇𝜓𝜖‖ ≤

(︃
2‖∇𝑣‖∞

𝜖
+
𝐶𝜆
⃦⃦
∇2𝜓𝜖

⃦⃦

𝜖

)︃

‖𝜕𝑡𝜓
𝜖‖ exp

(︃
𝐶𝜆𝑇

⃦⃦
∇2𝜓𝜖

⃦⃦

𝜖
+

2𝜆𝑇‖𝜓𝜖‖2∞
𝜖

)︃

≤ 𝐶𝜆

𝜖4
exp

(︂
𝐶𝜆𝑇

𝜖3

)︂
·

Let 𝑑 = 3, and the above result can be replaced with

‖𝜕𝑡∇𝜓𝜖‖ ≤
2‖∇𝑣‖∞

𝜖
‖𝜕𝑡𝜓

𝜖‖ exp

(︃
𝐶𝜆𝑇

⃦⃦
∇2𝜓𝜖

⃦⃦

𝜖
+

2𝜆𝑇‖𝜓𝜖‖2∞
𝜖

)︃

· (B.9)

By the similar procedures, we have

𝜖d𝑡

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦2 ≤
⃦⃦
∇2𝑣

⃦⃦
∞‖𝜕𝑡𝜓

𝜖‖
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦
+ 2‖∇𝑣‖∞‖𝜕𝑡∇𝜓𝜖‖

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦

+ 𝐶𝜆
⃦⃦
∇3𝜓𝜖

⃦⃦ 2
3+ 𝑑

9 ‖𝜕𝑡∇𝜓𝜖‖
𝑑
3 ‖𝜕𝑡𝜓

𝜖‖1−
𝑑
3
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦

+ 𝐶𝜆
⃦⃦
∇3𝜓𝜖

⃦⃦ 6
9−𝑑 ‖𝜓𝜖‖

2− 6
9−𝑑

𝐿6 ‖𝜕𝑡∇𝜓𝜖‖
𝑑
3 ‖𝜕𝑡𝜓

𝜖‖1−
𝑑
3
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦

+ 𝐶𝜆
⃦⃦
∇2𝜓𝜖

⃦⃦ 1
2+ 𝑑

6
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦ 1
2+ 𝑑

6 ‖𝜕𝑡𝜓
𝜖‖

1
2−

𝑑
6
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦
+ 𝐶𝜆‖𝜓𝜖‖2∞

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦2
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in which we use the inequalities

⃦⃦
∇2𝜓𝜖𝜓𝜖𝜕𝑡𝜓

𝜖𝜕𝑡∇2𝜓𝜖
⃦⃦

𝐿1 ≤ ‖𝜓
𝜖‖𝐿6

⃦⃦
∇2𝜓𝜖

⃦⃦
𝐿6‖𝜕𝑡𝜓

𝜖‖𝐿6

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦

≤ 𝐶
⃦⃦
∇3𝜓𝜖

⃦⃦ 2
3+ 𝑑

9 ‖𝜕𝑡∇𝜓𝜖‖
𝑑
3 ‖𝜕𝑡𝜓

𝜖‖1−
𝑑
3
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦
,

⃦⃦
∇𝜓𝜖∇𝜓𝜖𝜕𝑡𝜓

𝜖𝜕𝑡∇2𝜓𝜖
⃦⃦

𝐿1 ≤ ‖∇𝜓
𝜖‖2𝐿6‖𝜕𝑡𝜓

𝜖‖𝐿6

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦

≤ 𝐶
⃦⃦
∇3𝜓𝜖

⃦⃦ 6
9−𝑑 ‖𝜓𝜖‖

2− 6
9−𝑑

𝐿6 ‖𝜕𝑡∇𝜓𝜖‖
𝑑
3 ‖𝜕𝑡𝜓

𝜖‖1−
𝑑
3
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦
,

⃦⃦
𝜓𝜖∇𝜓𝜖𝜕𝑡∇𝜓𝜖𝜕𝑡∇2𝜓𝜖

⃦⃦
𝐿1 ≤ ‖𝜓

𝜖‖𝐿6‖∇𝜓𝜖‖𝐿6‖𝜕𝑡∇𝜓𝜖‖𝐿6

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦

≤ 𝐶
⃦⃦
∇2𝜓𝜖

⃦⃦ 1
2+ 𝑑

6
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦ 1
2+ 𝑑

6 ‖𝜕𝑡𝜓
𝜖‖

1
2−

𝑑
6
⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦
,

and ⃦⃦
⃦(𝜓𝜖)2

(︀
𝜕𝑡∇2𝜓𝜖)︀⃦⃦⃦

𝐿1
≤ ‖𝜓𝜖‖2∞

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦2
.

Then we get

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦
≤
𝐶𝜆
⃦⃦
∇3𝜓𝜖

⃦⃦ℓ‖𝜕𝑡∇𝜓𝜖‖
𝑑
3 ‖𝜕𝑡𝜓

𝜖‖1−
𝑑
3

𝜖
exp

(︃
𝐶𝜆𝑇

⃦⃦
∇2𝜓𝜖

⃦⃦
+ 𝐶𝜆𝑇‖𝜓𝜖‖2∞
𝜖

)︃

, (B.10)

where ℓ = max{ 2
3

+ 𝑑
9
, 6

9−𝑑
}. Let 𝑑 = 3 and we get the compact form

⃦⃦
𝜕𝑡∇2𝜓𝜖

⃦⃦
≤
𝐶𝜆
⃦⃦
∇3𝜓𝜖

⃦⃦

𝜖
‖𝜕𝑡∇𝜓𝜖‖ exp

(︃
𝐶𝜆𝑇

⃦⃦
∇2𝜓𝜖

⃦⃦
+ 𝐶𝜆𝑇‖𝜓𝜖‖2∞
𝜖

)︃

· (B.11)

Due to 𝜖≪ 1, the order of ‖𝜕𝑡𝜓
𝜖‖𝐻𝑠 with respect to 𝜖 directly depends on the estimate ‖𝜕𝑡∇𝑠𝜓𝜖‖. Thus, there exists a

constant 𝐶𝜆,𝜖 that depends on 𝜆 and 𝜖 such that ‖𝜕𝑡𝜓
𝜖‖𝐻𝑠 ≤ 𝐶𝜆,𝜖. This completes the proof. �

Appendix C. The proof of Lemma 4.4

Proof. Let |𝜈| = 1, and we take the derivative with respect to 𝜉𝑗(𝜔) of (2.10). Denote 𝜕𝑗𝜓𝑚 = 𝜕𝜉𝑗𝜓
𝜖
𝑚 and 𝜕𝑗𝑣𝑚 = 𝜕𝜉𝑗𝑣

𝜖
𝑚,

and we get

𝑖𝜖𝜕𝑡(𝜕𝑗𝜓𝑚) = − 𝜖
2

2
Δ(𝜕𝑗𝜓𝑚) + (𝜕𝑗𝑣𝑚)𝜓𝜖

𝑚 + 𝑣𝜖
𝑚(𝜕𝑗𝜓𝑚) + 𝜆

(︁
2|𝜓𝜖

𝑚|2𝜕𝑗𝜓𝑚 + (𝜓𝜖
𝑚)2𝜕𝑗𝜓𝑚

)︁
.

We have

𝜖d𝑡‖𝜕𝑗𝜓𝑚‖ ≤ 2‖𝜕𝑗𝑣𝑚‖∞ + 2𝜆‖𝜓𝜖
𝑚‖2∞‖𝜕𝑗𝜓𝑚‖,

𝜖 d𝑡‖∇𝜕𝑗𝜓𝑚‖ ≤ 2‖∇𝜕𝑗𝑣𝑚‖∞ + 2‖𝜕𝑗𝑣𝑚‖∞‖∇𝜓
𝜖
𝑚‖+ 2‖∇𝑣𝑚‖∞‖𝜕𝑗𝜓𝑚‖

+ 16𝜆‖𝜓𝜖
𝑚‖∞‖𝜕𝑗𝜓𝑚‖𝐿4‖∇𝜓𝜖

𝑚‖𝐿4 + 2𝜆‖𝜓𝜖
𝑚‖2∞‖∇𝜕𝑗𝜓𝑚‖,

𝜖 d𝑡‖∇2𝜕𝑗𝜓𝑚‖ ≤ 2‖∇2𝜕𝑗𝑣𝑚‖∞ + 4‖∇𝜕𝑗𝑣𝑚‖∞‖∇𝜓𝜖
𝑚‖+ 2‖𝜕𝑗𝑣𝑚‖∞‖∇2𝜓𝜖

𝑚‖
+ 2‖∇2𝑣𝑚‖∞‖𝜕𝑗𝜓𝑚‖+ 4‖∇𝑣𝑚‖∞‖∇𝜕𝑗𝜓𝑚‖+ 8𝜆‖𝜓𝜖

𝑚‖∞‖∇2𝜓𝜖
𝑚‖𝐿4‖𝜕𝑗𝜓𝑚‖𝐿4

+ 8𝜆‖∇𝜓𝜖
𝑚‖2𝐿6‖𝜕𝑗𝜓𝑚‖𝐿6 + 16𝜆‖𝜓𝜖

𝑚‖∞‖∇𝜓𝜖
𝑚‖𝐿4‖∇𝜕𝑗𝜓

𝜖
𝑚‖𝐿4 + 2𝜆‖𝜓𝜖

𝑚‖2∞
⃦⃦
∇2𝜕𝑗𝜓𝑚

⃦⃦
.

Owing to

‖𝜕𝑗𝜓𝑚‖𝐿4‖∇𝜓𝜖
𝑚‖𝐿4 ≤ 𝐶‖∇𝜕𝑗𝜓𝑚‖

𝑑
4 ‖𝜕𝑗𝜓𝑚‖1−

𝑑
4 ‖𝜓𝑚‖

1
2
𝐻2‖𝜓𝑚‖

1
2
∞

≤ 𝐶‖𝜓𝑚‖
1
2
𝐻2‖𝜓𝑚‖

1
2
∞

(︂
𝑑

4
‖∇𝜕𝑗𝜓𝑚‖+

(︂
1− 𝑑

4

)︂
‖𝜕𝑗𝜓𝑚‖

)︂
,

‖∇2𝜓𝜖
𝑚‖𝐿4‖𝜕𝑗𝜓𝑚‖𝐿4 ≤ 𝐶‖∇3𝜓𝑚‖

8+𝑑
12 ‖𝜓𝑚‖

4−𝑑
12

(︂
𝑑

4
‖∇𝜕𝑗𝜓𝑚‖+

(︂
1− 𝑑

4

)︂
‖𝜕𝑗𝜓𝑚‖

)︂
,

‖∇𝜓𝜖
𝑚‖2𝐿6‖𝜕𝑗𝜓𝑚‖𝐿6 ≤ 𝐶‖∇2𝜓𝜖

𝑚‖1+
𝑑
3 ‖𝜓𝜖‖1−

𝑑
3 ‖∇𝜕𝑗𝜓𝑚‖

𝑑
3 ‖𝜕𝑗𝜓𝑚‖1−

𝑑
3

≤ 𝐶‖∇2𝜓𝜖
𝑚‖1+

𝑑
3 ‖𝜓𝜖‖1−

𝑑
3

(︂
𝑑

3
‖∇𝜕𝑗𝜓𝑚‖+

(︂
1− 𝑑

3

)︂
‖𝜕𝑗𝜓𝑚‖

)︂
,



3280 P. LI AND Z. ZHANG

and

‖∇𝜓𝜖
𝑚‖𝐿4‖∇𝜕𝑗𝜓

𝜖
𝑚‖𝐿4 ≤ 𝐶‖𝜓𝑚‖

1
2
𝐻2‖𝜓𝑚‖

1
2
∞‖∇2𝜕𝑗𝜓𝑚‖

1
2+ 𝑑

8 ‖𝜕𝑗𝜓𝑚‖
1
2−

𝑑
8

≤ 𝐶‖𝜓𝑚‖
1
2
𝐻2‖𝜓𝑚‖

1
2
∞

(︂(︂
1

2
+
𝑑

8

)︂
‖∇2𝜕𝑗𝜓𝑚‖+

(︂
1

2
− 𝑑

8

)︂
‖𝜕𝑗𝜓𝑚‖

)︂
.

We can construct

𝜖 d𝑡‖𝜕𝑗𝜓𝑚‖𝐻2 ≤
𝐶1

𝜖2
‖𝜕𝑗𝑣𝑚‖𝐻2 +

𝐶2

𝜖4
‖𝜕𝑗𝜓𝑚‖𝐻2 .

Then we get for all 𝑡 ∈ (0, 𝑇 ]

‖𝜕𝑗𝜓𝑚‖𝐻2 ≤ 𝐶1𝑡

𝜖3
‖𝜕𝑗𝑣𝑚‖𝐻2 exp

(︂
𝐶2𝑡

𝜖4

)︂
≤ 𝐶(𝑡, 𝜆, 𝜖, |𝜈|)

√︀
𝜆𝑗‖𝑣𝑗‖𝐻2 ,

where 𝐶(𝑡, 𝜆, 𝜖, |𝜈|) depends on 𝑡, 𝜆, 𝜖 but is independent of dimensions.
Then for |𝜈| ≥ 2, by the Leibniz rule we have

𝑖𝜖𝜕𝑡𝜕
𝜈𝜓𝜖

𝑚 = − 𝜖
2

2
Δ(𝜕𝜈𝜓𝜖

𝑚) +
∑︁

𝜇⪯𝜈

(︂
𝜈
𝜇

)︂
𝜕𝜈−𝜇𝑣𝑚𝜕

𝜇𝜓𝜖
𝑚 + 𝜆

∑︁

𝜇⪯𝜈

(︂
𝜈
𝜇

)︂
𝜕𝜈−𝜇|𝜓𝜖

𝑚|2𝜕𝜇𝜓𝜖
𝑚

= − 𝜖
2

2
Δ(𝜕𝜈𝜓𝜖

𝑚) + 𝑣𝑚𝜕
𝜈𝜓𝜖

𝑚 + 𝜆
(︁
2|𝜓𝜖

𝑚|2𝜕𝜈𝜓𝜖
𝑚 + (𝜓𝜖

𝑚)2𝜕𝜈𝜓𝜖
𝑚

)︁

+
∑︁

𝜇≺𝜈,
|𝜈−𝜇|=1

(︂
𝜈
𝜇

)︂
𝜕𝜈−𝜇𝑣𝑚𝜕

𝜇𝜓𝜖
𝑚 + 𝜆

∑︁

𝜇≺𝜈

(︂
𝜈
𝜇

)︂ ∑︁

𝜂⪯𝜈−𝜇

(︂
𝜈 − 𝜇
𝜂

)︂
𝜕𝜈−𝜇−𝜂𝜓𝜖

𝑚𝜕
𝜇𝜓𝜖

𝑚𝜕
𝜂𝜓𝜖

𝑚.

Repeat the above procedures, and we get

𝜖d𝑡‖𝜕𝜈𝜓𝜖
𝑚‖ ≤ 2|𝜈|

∑︁

|𝜈−𝜇|=1

⃦⃦
𝜕𝜈−𝜇𝑣𝑚

⃦⃦
∞‖𝜕

𝜇𝜓𝜖
𝑚‖+ 2𝜆‖𝜓𝜖‖2∞‖𝜕

𝜈𝜓𝜖
𝑚‖

+ 2𝜆
∑︁

𝜇≺𝜈

(︂
𝜈
𝜇

)︂ ∑︁

𝜂⪯𝜈−𝜇

(︂
𝜈 − 𝜇
𝜂

)︂⃦⃦
𝜕𝜈−𝜇−𝜂𝜓𝜖

𝑚

⃦⃦
𝐿6‖𝜕

𝜇𝜓𝜖
𝑚‖𝐿6‖𝜕𝜂𝜓𝜖

𝑚‖𝐿6 ,

𝜖 d𝑡‖∇𝜕𝜈𝜓𝜖
𝑚‖ ≤ 2‖∇𝑣𝑚‖∞‖𝜕

𝜈𝜓𝑚‖+ 2𝜆𝐶
(︀
‖∇𝜓𝜖

𝑚‖𝐿4‖𝜕𝜈𝜓𝜖
𝑚‖𝐿4 + ‖∇𝜕𝜈𝜓𝜖

𝑚‖
)︀

+ 2|𝜈|
∑︁

|𝜈−𝜇|=1

(︀⃦⃦
∇𝜕𝜈−𝜇𝑣𝑚

⃦⃦
∞‖𝜕

𝜇𝜓𝜖
𝑚‖+

⃦⃦
𝜕𝜈−𝜇𝑣𝑚

⃦⃦
∞‖∇𝜕

𝜇𝜓𝜖
𝑚‖
)︀

+ 2𝜆
∑︁

𝜇≺𝜈

(︂
𝜈
𝜇

)︂ ∑︁

𝜂⪯𝜈−𝜇

(︂
𝜈 − 𝜇
𝜂

)︂[︁⃦⃦
∇𝜕𝜈−𝜇−𝜂𝜓𝜖

𝑚

⃦⃦
𝐿6‖𝜕

𝜇𝜓𝜖
𝑚‖𝐿6‖𝜕𝜂𝜓𝜖

𝑚‖𝐿6

+
⃦⃦
𝜕𝜈−𝜇−𝜂𝜓𝜖

𝑚

⃦⃦
𝐿6‖∇𝜕

𝜇𝜓𝜖
𝑚‖𝐿6‖𝜕𝜂𝜓𝜖

𝑚‖𝐿6 +
⃦⃦
𝜕𝜈−𝜇−𝜂𝜓𝜖

𝑚

⃦⃦
𝐿6‖𝜕

𝜇𝜓𝜖
𝑚‖𝐿6‖∇𝜕𝜂𝜓𝜖

𝑚‖𝐿6

]︁
.

and

𝜖 d𝑡

⃦⃦
∇2𝜕𝜈𝜓𝜖

𝑚

⃦⃦
≤ 2
(︀⃦⃦
∇2𝑣𝑚

⃦⃦
∞‖𝜕

𝜈𝜓𝑚‖+ ‖∇𝑣𝑚‖∞‖∇𝜕
𝜈𝜓𝑚‖

)︀
+ 8𝜆‖∇𝜓𝜖

𝑚‖2𝐿6‖𝜕𝜈𝜓𝑚‖𝐿6

+ 8𝜆‖𝜓𝜖
𝑚‖∞

⃦⃦
∇2𝜓𝜖

𝑚

⃦⃦
𝐿4‖𝜕

𝜈𝜓𝑚‖𝐿4 + 16𝜆‖𝜓𝜖
𝑚‖∞‖∇𝜓

𝜖
𝑚‖𝐿4‖∇𝜕𝜈𝜓𝜖

𝑚‖𝐿4

+ 2|𝜈|
∑︁

|𝜈−𝜇|=1

[︁⃦⃦
∇2𝜕𝜈−𝜇𝑣𝑚

⃦⃦
∞‖𝜕

𝜇𝜓𝜖
𝑚‖+ 2‖∇𝜕𝜈−𝜇𝑣𝑚‖∞‖∇𝜕𝜇𝜓𝜖

𝑚‖

+ ‖𝜕𝜈−𝜇𝑣𝑚‖∞‖∇2𝜕𝜇𝜓𝜖
𝑚‖
]︁

+ 2𝜆‖𝜓𝜖
𝑚‖2∞‖∇2𝜕𝜈𝜓𝑚‖

+ 6𝜆𝐶
∑︁

𝜇≺𝜈

(︂
𝜈
𝜇

)︂ ∑︁

𝜂⪯𝜈−𝜇

(︂
𝜈 − 𝜇
𝜂

)︂
‖𝜕𝜈−𝜇−𝜂𝜓𝜖

𝑚‖𝐻2‖𝜕𝜇𝜓𝜖
𝑚‖𝐻2‖𝜕𝜂𝜓𝜖

𝑚‖𝐻2 ,
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in which we use the inequality generalized from Proposition 3.6 in [55] as

‖∇2𝑓𝑔ℎ‖ ≤ 𝐶‖𝑓‖𝐻2‖𝑔‖𝐻2‖ℎ‖𝐻2 ,

‖(∇𝑓)(∇𝑔)ℎ‖ ≤ 𝐶‖𝑓‖𝐻2‖𝑔‖𝐻2‖ℎ‖𝐻2 .

Thus we get

𝜖 d𝑡‖𝜕𝜈𝜓𝜖
𝑚‖𝐻2 ≤ 𝐶3‖𝜕𝜈𝜓𝜖

𝑚‖𝐻2 + 𝐶4|𝜈|
∑︁

|𝜈−𝜇|=1

‖𝜕𝜈−𝜇𝑣𝑚‖𝐻2‖𝜕𝜇𝜓𝜖
𝑚‖𝐻2

+ 𝜆𝐶5

∑︁

𝜇≺𝜈

(︂
𝜈
𝜇

)︂ ∑︁

𝜂⪯𝜈−𝜇

(︂
𝜈 − 𝜇
𝜂

)︂
‖𝜕𝜈−𝜇−𝜂𝜓𝜖

𝑚‖𝐻2‖𝜕𝜇𝜓𝜖
𝑚‖𝐻2‖𝜕𝜂𝜓𝜖

𝑚‖𝐻2 .

An application of the Gronwall inequality yields

‖𝜕𝜈𝜓𝜖
𝑚‖𝐻2 ≤ exp

(︂
𝐶3𝑇

𝜖

)︂{︃
𝐶4𝑇 |𝜈|

𝜖

∑︁

|𝜈−𝜇|=1

‖𝜕𝜈−𝜇𝑣𝑚‖𝐻2‖𝜕𝜇𝜓𝜖
𝑚‖𝐻2

+
𝜆𝐶5𝑇

𝜖

∑︁

𝜇≺𝜈

(︂
𝜈
𝜇

)︂ ∑︁

𝜂⪯𝜈−𝜇

(︂
𝜈 − 𝜇
𝜂

)︂
‖𝜕𝜈−𝜇−𝜂𝜓𝜖

𝑚‖𝐻2‖𝜕𝜇𝜓𝜖
𝑚‖𝐻2‖𝜕𝜂𝜓𝜖

𝑚‖𝐻2

}︃

.

Use the induction argument and we get

‖𝜕𝜈𝜓𝑚‖𝐻2 ≤ 𝐶(𝑡, 𝜆, 𝜖, |𝜈|)
∏︁

𝑗

(︁√︀
𝜆𝑗‖𝑣𝑗‖𝐻2

)︁𝜈𝑗

.
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