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Enhancing diagnostic accuracy in rare and
common fundus diseases with a knowledge-
rich vision-language model
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Previous foundation models for fundus images were pre-trained with limited
disease categories and knowledge base. Here we introduce RetiZero, a vision-
language model that incorporates knowledge from over 400 fundus diseases.
The model is pre-trained on 341,896 fundus images with accompanying text
descriptions gathered from diverse sources across multiple ethnicities and
countries. RetiZero demonstrates exceptional performance across various
downstream tasks including zero-shot disease recognition, image-to-image
retrieval, clinical diagnosis assistance, few-shot fine-tuning, and cross-domain
disease identification. In zero-shot scenarios, it achieves Top-5 accuracies of
0.843 for 15 diseases and 0.756 for 52 diseases, while for image-to-image
retrieval, it scores 0.950 and 0.886 respectively. Notably, RetiZero’s Top-3
zero-shot performance exceeds the average diagnostic accuracy of 19 oph-
thalmologists from Singapore, China, and the United States. The model par-
ticularly enhances clinicians’ ability to diagnose rare fundus conditions,
highlighting its potential value for integration into clinical settings where
diverse eye diseases are encountered.

Blindness and visual impairment represent a substantial disease bur-
den globally, impacting millions of individuals across all populations.
Detection and timely treatment of ocular conditions, such as retinal
and optic nerve diseases, are crucial for reducing severe and perma-
nent damage. However, the insufficient availability of ophthalmic
medical resources severely limits the prompt screening and

management of fundus diseases with vast regional differences inmany
parts of the world.

In recent years, artificial intelligence (AI)-based fundus disease
screening systems have been proposed and achieved promising per-
formance on fundus disease detection and patients’ referral. Never-
theless, most previous AI-based methods were customized for and
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limited to specific diseases, such as diabetic retinopathy (DR)1,2,
glaucoma3,4, and retinopathy of prematurity5,6. Although several
methods were proposed for simultaneously screeningmultiple fundus
diseases with promising performance7–9, most current AI models for
ocular disease screeningwere trainedon task-specific datasets, leading
to inevitable errors in detection when there were new data (e.g., ima-
ges acquired by different camera) or changes in tasks (e.g., introducing
new or rare categories). Furthermore, due to limited healthcare
resources and the varying prevalence of fundus disease, collecting
comprehensive datasets covering all kinds of fundus abnormalities is
time-consuming and challenging. Consequently, most AI models were
trained on limited data and disease categories, restricting their feature
representation. Applying these models to different real-world settings
or tasks requires extensive retraining with large datasets. Moreover,
data quality and labeling issues further limit the widespread adoption
of AI models in ophthalmic clinical settings, especially from a global
perspective.

Driven by the abundance of big data and robust computing
hardware, large foundation models (LFMs) have excelled in compu-
ter vision tasks10,11. Pre-trained on massive datasets, LFMs provide
rich feature support for downstream tasks, such as object
detection12, few-shot recognition13, and zero-shot14, etc. The first
ophthalmic LFM, RETFound15, introduced in 2023, was trained on
large, unannotated retinal images using a masked autoencoder
(MAE) framework16. It provides rich feature support and improves
the performance of downstream tasks. However, such an approach
can hinder the model’s capacity to align feature information with
labels in downstream tasks. In contrast, the Foundation LAnguage-
Image model of the Retina (FLAIR)17, a Contrastive Language-Image
Pre-training (CLIP)-based LFMs enhance feature representation by
aligning text descriptions with image features, improving feature-
label alignment but having difficulties with complex semantic fea-
tures in medical imaging10. MAE-based pretraining approaches excel
in capturing complex semantic features in medical imaging by
leveraging masked autoencoding techniques that focus on recon-
structing obscured regions of an image, thereby fostering a deep
understanding of local structures and subtle pathological details
essential for accurate diagnostics. This approach encourages the
model to learn rich, fine-grained representations by emphasizing
contextual and structural information within the image. In contrast,
CLIP-based pretraining primarily optimizes for global image-text
alignment, aligning entire images with their corresponding textual
descriptions without delving into the intricate internal features.
While CLIP models are effective for tasks requiring broad semantic
understanding and cross-modal associations, their emphasis on
image-level alignment limits their ability to discern and interpret the
nuanced and complex semantic patterns crucial in medical contexts.
Consequently, CLIP-basedmethods struggle to effectively handle the
detailed and sophisticated features necessary for precise medical
image analysis, suggesting a significant limitation in their use for
healthcare diagnostics. Furthermore, current LFMs for ophthalmic
imaging are pre-trained on extensive yet categorically limited data-
sets. Therefore, developing LFMs with comprehensive ophthalmic
disease knowledge would be crucial for representing complex retinal
features to enhance downstream task performance. Nevertheless,
collecting massive and diverse ophthalmic data that covers a wide
range of fundus diseases for pretraining remains a significant
challenge.

To address these problems and challenges, we collected 341,896
fundus images-text pairs from 29 publicly available datasets (con-
taining 303,124 fundus images with labels), 180 ophthalmic literature
(23,328 fundus images with diseases-related keywords), and online
resources (15,544 fundus image-text pairs), encompassing over 400
retinal and optic nerve diseases acrossmultiple countries, regions and
ethnicities (Fig. 1a). As shown in Fig. 1b, our LFM, RetiZero, is based on

a contrastive vision-language pretraining framework that integrates
MAE-based pretraining knowledge and low-rank training methods.
Moreover, we introduced an uncertainty vision-language feature cali-
bration method using Dirichlet reparameterization within the con-
trastive vision-language pretraining framework, to further align vision
and language features in the high-dimensional embedding space.
Consequently, RetiZero achieved superior performance in various
downstream tasks, including zero-shot fundus disease recognition,
image-to-image fundus disease retrieval, AI-assisted clinical diagnosis,
internal domain fundus disease identification, few-shot fine-tuning,
and cross-domain fundus disease identification.

Results
Zero-shot fundus disease recognition
The biggest advantage of RetiZero is the capability of zero-shot learning,
which enables RetiZero to recognize fundus diseases using only textual
prompts, without needing to retrain or fine-tune themodel with labeled
fundus images (Task I in Fig. 1c). As shown in Fig. 2a, RetiZero achieved
overall Top-1, Top-3, and Top-5 scores of 0.442, 0.702, 0.840, respec-
tively, for recognizing 15 common fundusdiseases andnormal condition
of 30,089 fundus images (Eye-15 dataset, see in Supplementary Table 1).
These scores of RetiZero improved by 25.5% for Top-1 (P=0.01), 15.7%
for Top-3 (P=0.03), and 15.6% for Top-5 (P=0.04) over FLAIR. Fur-
thermore, in the analysis of individual diseases, RetiZero showed
remarkable zero-shot capability in identifying most categories, espe-
cially for retinitis pigmentosa (Top-1: 0.819, Top-3: 0.953, and Top-5:
0.974), retinal detachment (Top-1: 0.762, Top-3: 0.906, and Top-5:
0.963), and glaucoma (Top-1: 0.748, Top-3: 0.929, and Top-5: 0.972)
(Supplementary Fig. 1). To further validate RetiZero’s zero-shot cap-
ability in more challenging clinical scenarios, we assembled a more
demanding dataset named EYE-52 (see in Supplementary Table 2). This
dataset included 7007 fundus images from various ophthalmology
clinics, covering 52 fundus diseases. Many of these diseases are rare in
eye clinics but can lead to severe visual impairment if left undiagnosed.
The incidence and prevalence of each category in the EYE-52 dataset
were shown in Supplementary Table 3. As depicted in Fig. 2b, RetiZero
achieved overall Top-1, Top-3, and Top-5 scores of 0.360, 0.626, and
0.756, respectively, for recognizing these 52 types of fundus diseases in
a zero-shot manner, providing superior performance compared FLAIR
(0.092, 0.263, and 0.340, respectively) and Random recognizing (0.029,
0.088, and 0.147, respectively). Furthermore, RetiZero demonstrated
superior zero-shot performance, especially for recognizing several rare
fundus diseases. For instance, RetiZero achieved Top-1, Top-3, and Top-
5 scores of 0.616, 0.791, and 0.861, respectively, for identifying Bietti
Crystalline dystrophy; and 0.509, 0.808, and 0.915, respectively for
recognizing chorioretinal coloboma, the Top-1, Top-3, and Top-5 scores
were (Supplementary Fig. 2). Figure 2c shows the Top-5 prediction
results provided by RetiZero and FLAIR for three rare fundus disease
samples. More details on the rest of the 52 disease categories can be
found in Supplementary Fig. 2.

Fundus disease identification by image-to-image retrieval
For image-to-image retrieval (Fig. 1d, Task II), we treated each fundus
image in turn as the query, removing it from the main set to form the
candidate pool of all remaining images. We then passed the query
through RetiZero’s image encoder, generating a feature embedding.
Using the same encoder, we extracted embeddings for every image in
the candidate pool and computed similarity scores between the
query’s embedding and each candidate’s embedding. These similarity
scores ranked the candidate images by how closely they matched
the query, allowing us to retrieve the Top-K matches (e.g., Top-5).
Figure 2d and Supplementary Fig. 3 illustrate the excellent perfor-
mance of RetiZero in identifying 15 fundus diseases through image-to-
image retrieval. The overall scores for Top-1, Top-3, and Top-5 are
0.854, 0.928, and 0.950, respectively, representing an improvement of
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9.4%, 4.8%, and 3.2% over RETFound (all P < 0.001), and 300.2%, 121.1%,
74.0% over FLAIR (all P <0.001). In addition, RetiZero demonstrated
thebest performance across all categories compared toRETFound and
FLAIR (Supplementary Fig. 3). In the more challenging Eye-52 dataset,
RetiZero achieved overall Top-1, Top-3, and Top-5 scores of 0.726,
0.843, and 0.886, respectively (Fig. 2e). These scores represented
improvements of 12.4%, 7.9%, and 6.3% over RETFound (all P < 0.001),
and 767.8%, 389.9%, 271.5% over FLAIR, respectively (all P <0.001).
Figure 2f shows an example of the Top-5 prediction results from
RetiZero, RETFound, and FLAIR. Furthermore, in the analysis of indi-
vidual diseases, RetiZero demonstrated remarkable potential, parti-
cularly in identifying several rare fundus diseases, such as punctate

inner choroidopathy multifocal choroiditis (Top-1: 0.902, Top-3:
0.946, and Top-5: 0.962), chorioretinal coloboma (Top-1: 0.819, Top-3:
0.893, and Top-5: 0.910), and Bietti crystalline dystrophy (Top-1: 0.861,
Top-3: 0.936, and Top-5: 0.942). More details on the 52 disease cate-
gories can be found in Supplementary Fig. 4. In addition, we calculated
Precision@1, Precision@3, and Precision@5 to comprehensively
evaluate RetiZero’s performance in the task of fundus disease identi-
fication through image-to-image retrieval. Figure 2d, e demonstrates
that RetiZero achieved the highest Precision@1, Precision@3, and
Precision@5 on both testing datasets, EYE-15 and EYE-52. Meanwhile,
RetiZero demonstrated the best performance across most categories
compared to RETFound and FLAIR (Supplementary Figs. 5 and 6).

Fig. 1 | Overview of the framework. a Datasets for RetiZero pretraining: The
RetiZero model was pre-trained using data from three primary sources: public
datasets, ophthalmic literature, and online resources. We assembled a team of 12
ophthalmologists for manual data collection and cleaning. This involved down-
loading images and corresponding labels from public datasets, extracting images
and corresponding disease-related keywords from ophthalmic literature, and
downloading retinal diseases-relevant image-text pairs from online resources.
b RetiZero, which combines the strengths of self-supervised learning based on the
MAE architecture and contrastive learning from the CLIP architecture. Moreover,
we introduce an uncertainty vision-language feature calibration method into the

contrastive vision-language pretraining framework, to further calibrate visual-
language features in the high-dimensional embedding space. c Task I: Zero-shot
fundus disease recognition. d Task II: Fundus disease identification by image-to-
image retrieval. e Task III: AI-assisted clinical diagnosis. f Task IV: Internal domain
retinal disease identification. “Internal domain” means that we fine-tuned and tes-
ted the model using the data with similar feature distribution. g Task V: Few-shot
fine-tuning.WeevaluateRetiZero’s performance in identifying fundusdiseaseswith
very limited training data. h Task VI: Cross-domain fundus disease identification.
“Cross-domain”means that we fine-tuned and tested themodel using the data with
different feature distributions.
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Furthermore, we further visualized the heatmaps of different models’
weights for various fundus diseases using GradCAM18. Supplementary
Fig. 7 presents heatmaps illustrating the weights of different founda-
tional models for various fundus diseases. RetiZero’s weights were
more precisely concentrated on the regions affected by different
fundus diseases.

AI-assisted clinical diagnosis
As illustrated in Task III in Fig. 1e, we first compared the performance
of RetiZero with that of 19 ophthalmologists from Singapore, China
and the U.S., and then examined whether RetiZero can assist in the
clinical diagnosis made by ophthalmologists. In brief, for this clinical
validation study, we created a subset of data comprising a total of

Fig. 2 | Overall Top-1, Top-3, and Top-5 scores for zero-shot based fundus dis-
ease recognition and Fundus disease identification by image-to-image retrie-
val. a The zero-shot performance on EYE-15 dataset, which contains 30,089 fundus
images including 14 common fundus diseases and a normal condition. b The zero-
shot performance on the EYE-52 dataset, which contains 7007 fundus images

including 51 categories of fundus diseases and a normal condition. c Zero-shot
fundus diseases identification samples. d Image-to-image retrieval performance on
EYE-15 dataset. e Image-to-image retrieval performance on the EYE-52 dataset.
f Image-to-image retrieval samples. All P values were calculated with the two-sided
t-test with 95% confidence intervals. Source data are provided as a Source Data file.
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104 images by randomly selecting 2 samples per category from the
EYE-52 set, and the ophthalmologists were asked to make a clinical
diagnosis based on the retinal photographs without (Round 1, Fig. 3a)
and with (Round 2, Fig. 3b, conducted one week after Round 1) the
assistance of RetiZero. The diagnostic accuracy of the 19 ophthal-
mologists ranged from 0.337 to 0.788, with the median of 0.582,
while RetiZero’s zero-shot Top-1, Top-3, and Top-5 accuracies are
0.308, 0.635, and 0.798, respectively (Fig. 3c). Therefore, RetiZero’s
zero-shot Top-3’s performance was comparable to that of the
majority of ophthalmologists, while its Top-5’s performance sur-
passed that of all ophthalmologists. Furthermore, RetiZero’s per-
formance the fundus disease identification by image-to-image
retrieval for RetiZero achieved Top-1, Top-3, and Top-5 accuracies of
0.702, 0.760, and 0.808, surpassing that of the majority of
ophthalmologists.

With the assistance of RetiZero, the performance of 18 out of the
19 ophthalmologists improved (Fig. 3c), out of 1976 total responses
(104 questions × 19 doctors), 1569 responses (79.4%) remained
unchanged, while 407 responses (20.6%) were modified in the second
round.Of the 407modified responses, 279 (68.6%)were changed from
incorrect to correct, demonstrating that most AI-assisted modifica-
tions helped the clinicians rectify previousmisdiagnoses.Moreover, as
shown in Table 1, we further grouped the ophthalmologists by years of
experience as junior (≤5 years, 7 doctors), senior (5–10 years, 7 doc-
tors), and expert (>10 years, 5 doctors). Their average first-round
accuracies were 48.5%, 56.9%, and 62.3%, respectively, improving to
57.4%, 63.9%, and 69.0% in the second round, with respective
improvements of 18.4% (P = 0.01), 12.3% (P = 0.03), and 10.8%
(P < 0.001). This demonstrates that RetiZero-assisted diagnosis
enhances accuracy across all experience levels, with junior clinicians

Fig. 3 | AI-assisted clinical diagnosis results. a Online fundus image reading
system without RetiZero assistance. b Online fundus image reading system with
RetiZero assistance, cOphthalmologist diagnostic results, Top-1, Top-3, and Top-5

performance for zero-shot and image-to-image retrieval. Source data are provided
as a Source Data file.
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benefiting the most. Additionally, the clinicians’ confidence in their
diagnoses increased from an average of 2.7 (low to moderate) in the
first round to 3.0 (moderate, P = 0.04) in the second round, suggesting
that RetiZero assistance not only improved accuracy but also boosted
their confidence in making clinical diagnoses. Finally, there was a
strong correlation between the top-ranking scores from RetiZero and
the response modification scores of ophthalmologists (r =0.614,
P <0.001, see Methods for details)), suggesting that the higher the
correct result was ranked within the model’s top 5 predictions, the
greater the probability that the doctor would arrive at an accurate
diagnosis. Moreover, to more clearly illustrate the effectiveness of
RetiZero in assisted diagnostics, we further provided additional qua-
litative analysis in Supplementary Figs. 8–10.

Internal domain fundus disease identification
In Task IV (Fig. 1f), we collected three clinical datasets of retinal photo-
graphs, named as H1, H2, and H3, to validate the performance of Reti-
Zero in internal domain fundus disease identification tasks.
Supplementary Fig. 11 provides the data collection process and annota-
tion details of three datasets. “Internal domain”means thatwefine-tuned
and validated themodel separatelywithin eachof the three datasets. The
details of three datasets are shown in Supplementary Tables 4–6. As
shown in Fig. 4, RetiZero achieved average AUCs of 0.997, 0.980, and
0.993 on the three datasets, respectively, each encompassing 15, 13, and

12 different categories of fundus diseases and/or normal condition,
respectively. These results represent improvements of 1.9% (P=0.02),
6.9% (P=0.02) and 2.9% (P<0.001) compared to RETFound, and 1.1%
(P=0.02), 8.0% (P=0.04) and 3.0% (P<0.001) compared to FLAIR. This
is particularly apparent for certain fundus diseases with specific features,
such as macular hole, epiretinal membrane, and retinal artery occlusion.

Few-shot fine-tuning
In task V (Fig. 1g), we fine-tuned themodel using only five images from
each fundus disease to evaluate RetiZero’s performance with very
limited training data. The data details are provided in Supplementary
Tables 7–9. RetiZero achieved the highest AUC scores across the three
datasets compared to RETFound and FLAIR (Fig. 5). In the task of
identifying 15, 13, and 12 types of fundus diseases in the H1, H2, and H3
dataset, RetiZero achieved AUC values of 0.967, 0.859, and 0.942
respectively, representing improvements of 7.2% to 35.1% over
RETFound and FLAIR (all P < 0.001). These results indicated that even
with limited annotated data samples, RetiZero can effectively learn the
characteristic information of different fundus diseases in fundus
images.

Cross-domain fundus disease identification
To assess the robustness of RetiZero in the task of cross-domain fun-
dus disease identification (Task VI, Fig. 1h), we reorganized the three

Fig. 4 | The receiver operating characteristic (ROC) curves for internal domain
retinal disease identification. The P values were calculated with the two-sided t-
test, with 95% confidence intervals. AHAsteroidHyalosis, AMDAge-relatedMacular
Degeneration, CSCR, Central Serous Chorioretinopathy, DR Diabetic Retinopathy,

ERM Epiretinal Membrane, MH Macular Hole, PM Pathologic Myopia, RAO Retinal
Artery Occlusion, RD Retinal Detachment, RP Retinitis Pigmentosa, RVO Retinal
VeinOcclusion, TF Tessellated Fundus, VKHVogt-Koyanagi-Harada disease. Source
data are provided as a Source Data file.
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datasets of H1, H2, and H3 and only used the data with shared diseases
categories across these datasets. Then we sequentially used one of the
reorganized datasets, named rH1, rH2, and rH3, as internal testing sets
and utilized the remaining two datasets as external testing sets to
verify the robustness of different foundation models. The data infor-
mation for different experimental strategies is presented in Supple-
mentary Tables 10–12. As shown in Fig. 6, RetiZero achieved promising
performance in all validation settings. In the internal testing set of the
three datasets, RetiZero achieved AUC values of 0.998, 0.986, and
0.990, respectively, representing significant improvements of 3.1%,
8.6%, and 6.3% over RETFound (all P <0.001); and of 0.7%, 4.4%, and
5.0% over FLAIR (all P <0.001, Fig. 6a). In the external testing sets, the
performance of RetiZerowas similar to the internal testing set, with all
AUCs ≥0.912, and significantly outperformed RETFound and FLAIR in
all tasks (all P ≤0.01, see in Fig. 6b, c). Additionally, RetiZero achieved
outstanding performance in the identification of fundus diseases
across most of the categories, especially in diseases with unique
pathologic features such as epiretinal membrane, retinal artery
occlusion, and central serous chorioretinopathy (Supplementary
Figs. 12–14). We further conducted additional experiments to assess
whether training with both domains rH1 and rH2, as opposed to
training with only one of them, yields improved performance on
domain rH3 (see Supplementary Fig. 15). The results indicate that
incorporating both rH1 and rH2 during training leads to performance

enhancements of 0.5% and 0.6% on rH3, with statistical significance
(P = 0.029 and P =0.008, respectively). These findings highlight the
advantages of domain combination in achieving better generalization.
Furthermore, we evaluated the inference times of various foundational
models for diagnosing a single image (refer to Supplementary
Table 13). RetiZero, RETFound, and FLAIR demonstrated inference
times of 0.013, 0.012, and 0.017 seconds per image, respectively.
Although RetiZero’s inference time is marginally higher than
RETFound’s, it remains well within the acceptable range for real-time
processing.

In addition, we rigorously tested our model’s performance across
multiple datasets representing diverse ethnic groups. This included
two publicly available datasets (See Supplementary Tables 14, 15): the
2019 Sydney Innovation Challenge dataset (SIC, encompassing Cau-
casian and Indian populations, etc.,) and the SUSTech dataset (was
collected from China) for Diabetic Retinopathy (DR) staging. Addi-
tionally, we utilized two in-house datasets for AMD and DR screening
(See Supplementary Tables 16, 17): the Singapore Malay Eye Study
(SiMES) dataset was collected from Malay individuals and the Singa-
pore Indian Eye Study (SINDI) dataset was collected from Indian indi-
viduals. Across these diverse populations, RetiZero consistently
outperformed RETFound and FLAIR (see Supplementary Fig. 16).
These comprehensive experimental results underscore RetiZero’s
robust performance and generalizability, affirming its efficacy in

Fig. 5 | The receiver operating characteristic (ROC) curves for few-shot learn-
ing. The P values were calculated with the two-sided t-test, with 95% confidence
intervals. AH Asteroid Hyalosis, AMD Age-related Macular Degeneration, CSCR
Central Serous Chorioretinopathy, DR Diabetic Retinopathy, ERM Epiretinal

Membrane, MH Macular Hole, PM Pathologic Myopia, RAO Retinal Artery Occlu-
sion, RDRetinal Detachment, RP Retinitis Pigmentosa, RVORetinal Vein Occlusion,
TF Tessellated Fundus, VKH Vogt-Koyanagi-Harada disease. Source data are pro-
vided as a Source Data file.
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accurately diagnosing fundus diseases across varied demographic
groups and enhancing its potential for widespread clinical application.

Discussion
In this study,we trained a vision-language-foundationmodel, RetiZero,
using a vast amount of image-text pairs. Comprehensive experimental
results demonstrated that RetiZero has strong capability in repre-
senting fundus disease features across a wide range of downstream
tasks of fundus disease identification, including zero-shot recognition,
image-to-image retrieval, AI-assisted clinical diagnosis, internal
domain and cross domain classification, and few-shot fine-tuning. The
performance of RetiZero is superior to two state-of-the-art ophthalmic
LFMs, RETFound15 and FLAIR17. These results collectively demon-
strated the superior generalizable and robust performanceof RetiZero
in both common and rare fundus disease identification.

The superiority of RetiZero over RETFound15 and FLAIR17 can be
attributed to its unique design and diverse data used for pre-training.
Specifically, although the RETFound model15, pre-trained on a large
number of fundus images using theMAE architecture, can enhance the
performance of various downstream tasks, it includes limited number
of fundus disease categories, particularly rare fundus diseases. In
addition, it lacks the incorporation of textual information, resulting in

inadequate characterization of image feature attributes. This makes it
unsuitable for text prompt-based zero-shot fundus disease detection
tasks, thereby limiting its application in clinical practice, particularly
for the identification of rare fundus diseases. In contrast, FLAIR17,
based on the CLIP architecture, incorporates textual description
information during network training to enhance the representation of
image feature attributes. However, it was pre-trained on a very limited
dataset of fundus disease knowledge, leading to poor performance in
zero-shot recognition tasks for rare fundus diseases. Furthermore,
FLAIR17 and other standard CLIP-based models10,11 lack guidance for
learning information such as lesion contours and topological struc-
tures in images, resulting in low performance in fundus disease iden-
tification through image-to-image retrieval. In contrast to these
existing foundation modes, RetiZero leverages the synergy between
MAE-based self-supervision and contrastive alignmentwith a broad set
of disease descriptions to enhance its disease recognition capabilities.
By combining the detailed feature extraction of MAE, which excels in
capturing visual details through unsupervised learning from large-
scale image datasets, with the semantic richness of contrastive text-
image alignment, RetiZero gains a stronger implicit representation of
lesions. This approach not only retains the granularity of local visual
features critical for identifying subtle disease markers but also aligns

Fig. 6 | Cross-domain performance (AUC) of different foundation models for
fundus disease screening. Column a, Internal evaluation: Different foundation
models were adapted to each dataset by fine-tuning and internally evaluated on
hold-out testing data. Columns b, c, performance on external validation sets: The
three foundationmodels were tested on the other two external validation datasets.
P value was calculated using the two-sided t-test with 95% confidence intervals. The

dots represent the AUC scores from fine-tuning experiments with three different
random seeds. The error bars show 95% confidence intervals, and the bar center
represents the mean value of the AUC. The disease categories and dataset strategy
information are listed in SupplementaryTables 10–12. Sourcedata are provided asa
Source Data file.
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these features with a diverse range of textual disease descriptors.
Consequently, RetiZero achieves superior performance by effectively
bridging the gap between high-level semantic understanding and low-
level visual details, making it adept at recognizing a wide array of
fundus conditions, both common and rare.

Developing artificial intelligence algorithms to assist in the clinical
diagnosis of rare fundus diseases has been challenging. Although
image classification with few-shot learning has shown promising
results19,20, it is challenging to collect enough samples for training for
extremely rare diseases, especially considering there are more than
400 fundus diseases. Zero-shot learning would be a better approach
for this scenario. In previous literatures, there are only few reports
investigating zero-shot learning for fundus images, which only focus
on diabetic retinopathy or image quality assessment, and strugglewith
rare conditions21,22. The image-to-image retrieval approach is another
possible solution. Current literature only investigated diabetic retino-
pathy, not rare diseases, and the results showed limited performance,
possiblydue to the lack of integrationof textual information crucial for
complex disease identification23–26. To our knowledge, our study is the
first one touse zero-shot learning and image-to-image retrieval to cope
with the challenge of rare disease diagnosis. RetiZero leverages both
the MAE and CLIP architectures to enhance feature representation
from diverse datasets, achieving superior performance in zero-shot
fundus disease identification and image-to-image retrieval tasks. By
integrating the MAE and CLIP architectures, RetiZero bridges the
semantic gap, incorporates knowledge of over 400 types of fundus
diseases, and has been validated on a clinical dataset encompassing
more than 50 types.

Diagnosis of rare diseases is also very challenging for clinicians.
Our results show that the accuracy of junior, senior, and expert oph-
thalmologists was 0.485, 0.569, and 0.623, respectively, in classifying
the testing set with 104 retinal photos of 52 categories. In a clinical
scenario, clinicians may also list several diseases for differential diag-
nosis, and then integrate other information from history, ocular
examination, and other investigations for differential diagnosis. Our
study mimics this approach. Although the zero-shot Top-1 accuracy
(0.360) of RetiZero was lower than that of the ophthalmologists, the
zero-shot Top-3 (0.626) and Top-5 (0.756) accuracies of RetiZerowere
comparable to and exceeded those of most ophthalmologists,
respectively. This approach serves as a valuable reference for oph-
thalmologist in differential diagnosis. Our results also showed that
using the zero-shot Top-5 results fromRetiZero significantly enhanced
the ophthalmologists’ diagnostic accuracy, with expert ophthalmolo-
gists improving by 10.8% and junior ophthalmologists by 18.4%.
Moreover, the correlation between RetiZero’s reference predictions
and the accuracy improvements observed in ophthalmologists
underscores its potential to assist in differential diagnoses. In the
exploration of AI in the medical field, initial studies primarily focused
on comparing the performance of AI algorithms to physicians (AI-
physician comparison) to the performance of AI algorithms27–29.
However, in real-world implementation, AI algorithms can make
errors, posing potential risks to patient outcomes. To mitigate the
risks, therefore, AI-assisted diagnosis or AI-physician collaboration
have been proposed and investigated. Various approaches have been
reported, such as using AI algorithms to suggest the most likely diag-
nosis, which physicians then confirm30. Additionally, AI models have
been shown to improve the diagnostic performance of junior
doctors31. However, these studies mostly focus on common diseases
with their AI models typically provide only one most probable disease
diagnosis. In contrast, our RetiZero offers the top five results using the
Zero-shot approach, significantly enhancing the diagnostic accuracyof
ophthalmologistswith various levels of clinical experiences. Beyond its
robust zero-shot recognition capabilities, RetiZero’s alignment of
structured medical text with fundus imagery opens new avenues for
practical clinical integration and cross-institutional collaboration. For

example, busy ophthalmologists can rapidly screen rare pathologies—
such as Bietti crystalline dystrophy or chorioretinal coloboma—with-
out pre-training on large labeled sets, facilitating timely triage or
referral in resource-limited clinics. Its image-to-image retrieval func-
tion helps confirm diagnoses by surfacing visually similar cases from
vast, heterogeneous archives, which is particularly beneficial when
local datasets are small or unbalanced. Moreover, RetiZero’s top-5
differential diagnosis output can enhance the confidence and accuracy
of both junior and expert clinicians, making it especially attractive for
teleophthalmology networks or multicenter screening programs.

We also recognized limitations and areas for improvements in the
current work. Although our datasets include knowledge of over 400
types of fundus diseases, the imbalance across different categories
may limit RetiZero’s performance in downstream tasks. To address
this, we plan to further enrich the dataset with a more balanced
representation of various fundus diseases, particularly rare ones.
Potentially, addressing data imbalance between rare and common
ophthalmic pathologies could involve advanced synthetic data gen-
eration and tailored augmentation pipelines aimed specifically at
underrepresented classes. Generative Adversarial Networks (GANs) or
diffusion models can create realistic fundus images that mirror rare
disease appearances, thereby expanding the sample diversity and
allowing the network to learn clinically important features that are
otherwise scarce32,33. Beyond straightforward geometric transforma-
tions (e.g., rotations,flips), lesion-centered augmentations—like elastic
deformations or localized color perturbations—further enrich minor-
class variance without losing critical pathological signatures34. These
methods systematically enhance the representation of difficult or rare
pathologies, ultimately bolstering model robustness in the face of
severe data imbalance. In addition, while RetiZero has shown pro-
mising performance across multiple tasks and datasets, specialized
models optimized for specific tasksmay outperformmore generalized
models. Therefore, wewill continue to explore targeted improvements
to enhance RetiZero’s performance for specific applications.

In conclusion, the proposed feature-calibrated fundus vision-
language foundation model, RetiZero, which incorporates knowledge
of over 400 fundus diseases, effectively capture the rich contextual
feature in fundus images and learn the alignment between retinal
image features and disease-related textual information. RetiZero
demonstrated superior performance in feature representation and
generalizability across different fundus disease recognition tasks,
tested at multiple eye clinics using different fundus cameras, under
different degrees of domain drift, and with very limited training sam-
ples. Notably, the excellent performance of RetiZero’s exceptional
performance in zero-shot fundus disease identification and image-to-
image retrieval-based is of significant value for screening fundus dis-
eases in clinical practice, particularly rare fundus conditions. Further-
more, comprehensive AI-assisted clinical diagnosis results further
confirm that RetiZero can enhance ophthalmologists’ diagnostic
accuracy and confidence, offering particular benefit to less experi-
enced clinicians.

Methods
This study was approved by the Joint Shantou International Eye Center
Institutional Review Board and adhered to the principles of the
Declaration ofHelsinki. All fundus images used in this studyweremade
de-identified. In accordance with IRB regulations, if the data does not
contain any identifiable patient information, informed consent is not
required. As a result, this study has been granted approval to waive the
need for informed consent.

Data for pretraining
RetiZero uniquely integrates anMAE-based backbonewith a CLIP-style
contrastive framework and uncertainty-based feature calibration to
achieve robust image-text alignment across more than 400 fundus
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disease categories. RETFound was pre-trained using a Masked Auto-
encoder (MAE) approach on over 900,000 fundus images. This large-
scale pretraining allows RETFound to develop a deep understanding of
fundus image features. Therefore, we utilized RETFound as the back-
bone of our image encoder. This approach allows us to enhance
RetiZero’s ability to effectively handle complex fundus image data by
building on a robust, pre-established feature extractor.We pre-trained
RetiZero using a dataset we collected, comprising of 341,896 image-
text pairs that cover over 400 fundus diseases. As shown in Fig. 1a, the
image-text pretraining data mainly consists of three parts: publicly
available dataset with category information, data from the ophthalmic
literature with disease-related keywords descriptions, and image-text
pairs from online resources (Supplementary Table 18). Specifically, we
collected a total of 303,124 fundus images from 29 publicly available
datasets, encompassing over 100 distinct categories of fundus dis-
eases. To ensure consistency in the presentation of image descrip-
tions, we converted the fundus images with classification labels into a
uniform textual description format (Fig.1b). In addition, we engaged 12
ophthalmologists to compile and curate a comprehensive dataset.
They reviewed 180ophthalmic literature sources andonline resources,
identifying and documenting 23,228 fundus images with correspond-
ing disease-related textual descriptions from the literature, as well as
15,544 fundus images from online resources. A team of ten ophthal-
mologists was assigned to this task. Their responsibilities included
browsing various sources to locate fundus photographs, capturing
screenshots of these images, and recording the source (literature/
website), page number (book/page), and extracting the fundus
description that uniquely corresponded to each respective fundus
image. Our selection process was rigorous, including only those tex-
tual descriptions that precisely matched their corresponding color
fundus photographs. Any information unrelated to the image, such as
titles, background details, or descriptions of other imaging modalities
or outside the field of view, was deliberately excluded. Furthermore,
these ten ophthalmologists also assigned a diagnostic label for each
image simultaneously. The final dataset underwent a thorough cura-
tion and validation process by two experienced ophthalmologists.
Their responsibilities included unifying the labels to reduce label noise
and excluding non-standard images, such as blurry, over- or under-
exposed, montage, local view, monochrome images, and those anno-
tated with additional graphics, thereby reducing image noise. Finally,
all curated disease and lesion labels were converted into the standar-
dized format “a fundus image of [disease/lesion labels]” and input into
the text encoder model.

As shown in Supplementary Table 19, these images cover 414
ophthalmic labels, encompassing nearly all known fundus diseases to
date. Meanwhile, Supplementary Table 20 provides further details
about 180 ophthalmic literature sources. Furthermore, we collected
28,800 fundus images with relevant descriptions from the online
resources. The 12 ophthalmologists manually cleaned and organized
15,544 images along with their corresponding disease-related textual
descriptions. We pre-trained RetiZero using the PyTorch framework
on an Nvidia Geforce DGX A100 GPU (80G), with a batch size of 128
and the Adam optimizer. The data collection process for RetiZero
pretraining is illustrated in Fig. 1a.

The use of images from literature and certain websites in this
research should constitute fair use and should accordingly not con-
stitute copyright infringement. Our pre-trained model does not
generate any visible data similar to the images from these resources,
nor is any data from the literature and websites reused in other
downstream tasks. Importantly, the pre-trained model is sorely for
academic research and is not intended for commercial purposes. In
summary, the dataset for pretraining RetiZero covers nearly all
known fundus diseases, integrating very comprehensive ophthalmic
knowledge.

Data for internal domain fundus disease identification
To evaluate the performance of RetiZero in the task of fundus disease
identification, we curated three retinal photos datasets acrossmultiple
hospitals: 1) Healthcare dataset 1 (H1) where retinal photos were
acquired using the Topcon TRC-NW8 and Zeiss VISUCAM-200 devices
at the Joint Shantou International Eye Center; 2) Healthcare dataset 2
(H2) where retinal photos was acquired by the Topcon TRC-NW8 and
Zeiss VISUCAM-200 devices from four hospitals, including Longchuan
People’s Hospital, Heyuan; Puning People’s Hospital, Jieyang; Wuping
Hospital, Longyan; and Pengpai Memorial Hospital, Shanwei; 3)
Healthcare dataset 3 (H3) was acquired by the Topcon DRI OCT Triton
device at the JSIEC. The H1 and H2 datasets exhibit domain differences
due to varying clinic sources, whereas the H3 dataset differs fromboth
H1 andH2 due to the use of distinct fundus images acquisition devices.
Clinical assessment and labeling procedure are summarized in Sup-
plementary Fig. 11.

The H1 dataset consisted of 11,414 fundus images, covering 15
categories of fundus diseases and normal condition. We further
divided the H1 dataset into training (no. of images = 6942), validation
(n = 2284), and testing (n = 2288) for model fine-tuning, selection,
and performance verification, respectively (Supplementary Table 4).
The H2 dataset consisted of 7812 fundus images, representing 12
types of fundus diseases and normal condition (Supplementary
Table 5). To validate the performance of fine-tuning RetiZero for
fundus disease identification on the H2 dataset, we partitioned the
H2 dataset into training (n = 4682), validation (n = 1561), and testing
(n = 1569) set, respectively, for model fine-tuning, selection, and
performance evaluation, respectively. The H3 dataset consisted of
10,863 fundus images across 12 disease categories. It was divided
into training (n = 6511), validation (n = 2174), and testing (n = 2178)
sets for model fine-tuning, selection, and performance evaluation,
respectively (Supplementary Table 6). In this task, RetiZero was fine-
tuned for internal domain fundus disease identification using
PyTorch on an Nvidia Geforce 3090 GPU (24G). Adam optimizer and
cross-entropy loss function were adopted to guide the model fine-
tuning. The total iteration epoch and batch size were set to 100 and
64, respectively.

Data for few-shot fine-tuning
To assess RetiZero’s performance in the few-shot fine-tuning, we
reorganized the H1, H2, and H3 datasets. Specifically, we randomly
selected 5 samples from each disease category of H1, H2, and H3
training set for few-shot fine-tuning, while retaining the validation and
testing datasets for model selection and performance evaluation.
Detailed information on category and data distribution is provided in
Supplementary Tables 7–9. In this task, RetiZero was fine-tuned using
PyTorch on an Nvidia Geforce 3090 GPU (24G). The Adam optimizer
and cross-entropy loss function were employed for model optimiza-
tion, with a total of 1000 epochs and a batch size of 32.

Data for cross-domain fundus disease identification
To evaluate the generality and robustness of RetiZero in cross-domain
fundus disease identification, we again reorganized the H1, H2, and H3
datasets. This process identified 11 overlapping diseases categories
across the three datasets, which were subsequently renamed as rH1
(no. of images = 10,304), rH2 (n = 6829), and rH3 (n = 10,485). Details
areprovided inSupplementary Tables 10–12.We thenperformed three
experimental settings. Specifically, rH1, rH2, and rH3were sequentially
used as internal datasets for model fine-tuning, selection, and internal
testing, while the remaining two datasets served as external testing
sets to assess. In this task, RetiZerowasfine-tuned using PyTorch on an
Nvidia Geforce 3090 GPU (24G). The Adam optimizer and cross-
entropy loss functionwere employed, with themodel trained over 100
epochs and a batch size of 64.
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Data for the tasks of zero-shot and image-to-image retrieval
We combined the three datasets, H1, H2, and H3 from different hospi-
tals into a dataset named EYE-15, containing 30,089 fundus images that
included 14 common fundus diseases and 1 normal category. This
dataset was used to validate RetiZero’s performance in screening
common fundus diseases in zero-shot and image-to-image retrieval
tasks. The no. of images in each disease category in EYE-15 was provided
in Supplementary Table 1. Moreover, we further collect additional 7007
fundus images acquired by different fundus cameras (such as Topcon
TRC-NW8, Zeiss VISUCAM-200, andTopconDRIOCTTriton) from JSIEC
and the other four hospitals (EYE-52 dataset), comprising of 51 fundus
diseases and 1 normal condition, to validate the performance of zero-
shot fundus disease recognition and fundus disease identification by
image-to-image retrieval in a more challenging setting. As shown in
Supplementary Table 2, EYE-52 included a wide range of clinically rare
fundus diseases, such as albinism, Bietti crystalline dystrophy, choroidal
coloboma, and choroidal neoplasm.We adopted Top-1, Top-3, and Top-
5 accuracy to evaluate the performance of RetiZero in both tasks of
zero-shot fundus disease recognition and fundus disease identification
by image-to-image retrieval. Top-K accuracy is ametric used to evaluate
the performance of a classification model by determining whether the
correct label for a given input appears within the TopK f�g predictions
made by the model, as follows:

Top� K accuracy =

PN
i = 11 yi 2 TopK byi� �� �

Total number of inputs N
’ ð1Þ

where N and y represent the total number and label of input samples,
respectively. TopK f�g is the set of the topK predicted labels for the i-th
sample, 1 �f g is the indicator function that evaluates to 1 if the ground
truth label is in the topk predictions, and 0 otherwise. Supplementary
Fig. 11 provides the process of the collection for the EYE-15 and EYE-52
datasets. In this study, we also adopted Precsion@1, Precesion@3, and
Precsion@5 as the metrics to evaluate the performance of different
foundationmodels in the task of fundus disease retrieval. Precision@K
is a metric used to evaluate the performance of information retrieval
systems and ranking algorithms. It is specifically used to measure the
precisionof theTop-K results returnedby a system.Here is the formula
and its explanation:

Precision@K =
jRall \ RRe@K j

K
ð2Þ

where Rall is the set of all relevant samples for the given query,
RRe@K represents the set of the Top-K samples retrieved by the
system in response to the query. jRall \ RRe@K j denotes the number
of relevant samples in the Top-K retrieved documents, that is the
count of samples that are both relevant and retrieved within the
Top-K results, while K is the number of Top- samples considered for
the calculation.

Framework of RetiZero
Figure 1b provides an overview of the RetiZero framework. RetiZero
integrates the advantages of MAE self-supervised learning and CLIP
contrastive learning architectures. Specifically, the model was built
upon the MAE-based pre-trained backbone network RETFound15,
whose weights were frozen to preserve the model’s representation
capability for complex semantic information such as lesion contours
and topological structures in retinal images. Meanwhile, we intro-
duced low-rank learnable factors into the pre-trained RETFound and
leveraged the CLIP architecture to learn image-text knowledge, aiming
to enhance the model’s understanding of image-text correlations and
improve its feature representation capabilities. Furthermore, we
incorporated an uncertainty vision-language feature calibration
method based on Dirichlet reparameterization into the contrastive

vision-language pretraining framework. This further refined visual-
language features in the high-dimensional embedding space, thereby
enhancing the model’s ability to represent complex features in fundus
images. As a result, RetiZero was developed, integrating the advan-
tages of both MAE and CLIP architectures to provide robust feature
support for downstream tasks. The components of RetiZero are dis-
cussed in details in the following sections.

Image encoder
As shown in Fig. 1b, the image encoder consisted of MAE-based SSL
pre-trained backbone and low-rank learnable factors. MAE is a widely
used self-supervised learning approach that employs a simple auto-
encoder approach to reconstruct the original signal based on partial
observations. MAE-based SSL pretraining can guide the network to
focus on the rich structural information and contextual features in the
images. Therefore, RETFound15 was adopted as our MAE-based pre-
trained backbone. Low-rank learnable factors (LoRA) are a parameter-
efficient transfer learning method based on reparameterization35,
which utilizes low-rank representations to minimize the number of
trainable parameters. It enables a pre-trained large foundation model
to incorporate new knowledge into new target tasks, demonstrating
robust and state-of-the-art (SOTA) performance in various parameter-
efficient transfer learning tasks. Therefore, we utilized low-rank
learnable factors to introduce retinal feature description information
into the image encoder of RetiZero, enhancing its capacity to repre-
sent feature attributes of retinal images. Specifically, given the input
token sequence Fin 2 RBatch×N ×Cin and the output token sequence
Fout 2 RBatch×N ×Cout obtained by the projection layer W 2 RCout ×Cin ,
LoRA assumes that updates to W should be gradual and stable, where
Batch and N represent the batch size and token size of the token
sequence, Cin and Cout are the channel dimension of input token
sequence and output token sequence, respectively. Therefore, we
applied low-rank approximations to delineate this gradual update. The
details of LoRA operation were given in Supplementary Fig. 17. First,
freeze the transformer layer to keepW fixed while adding a bypass to
complete the low-rank approximation. And, the bypass consists of two
linear mapping layers, A 2 Rr ×Cin and B 2 RCout × r , where r≪ Cin,Cout

� �
and was set to 8 in this paper. Thus, the processing of the update layerbW can be described as:

Fout = bWFin ð3Þ

bW =W +∇W =W +BA ð4Þ

Themulti-head self-attentionmechanism identifies the regions of
focus using feature-relevant intensities, and previous works showed
that focusing adaptations on Query (Q) and Value (Va) matrices in the
transformer’s attention mechanism can effectively capture task-
specific nuances without the need for extensive retraining or increas-
ing model complexity36,37. Therefore, we apply low-rank approxima-
tion to the projection layers of the query and value to influence the
attention scores.:

Att Q,K,Vað Þ= Sof tmax
QKTffiffiffiffiffiffiffiffiffi
Cout

p +B

 !
Va ð5Þ

Q= bWQF =WQF +BQAQF ð6Þ

K =WKF ð7Þ

V = bWVaF =WVaF +BVaAVaF ð8Þ
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where K is the Key metric in transformer’s attention mechanism, WQ,
WK, and WVa are frozen projection layers of RETFound, while AVa, BQ,
AVa, and BVa are trainable LORA factors.

Text encoder
Descriptions of fundus images are typically more challenging than
those of natural images, as they often contain numerous specialized
clinical terms, sometimes even comprising of multiple lesion signs or
sentences. Therefore, in this paper, we utilize the BioClinicalBERT38

model as the text encoder for extracting textual features. We use its
pre-trained weights on medical texts from the MIMIC III dataset for
weight initialization and train it based on a vision-language contrastive
learning strategy to extract ophthalmic textual features.

Uncertainty-based feature calibration
Our dataset is collected from various global sources, including public
databases, ophthalmic literature, and online resources. Inevitably, it
includes complex data distributions such as differences in image
resolution, incomplete textual descriptions, and low-quality image-
text pairs. Therefore, focusing on these issues, we further introduced
an uncertainty vision-language feature calibration method based on
Dirichlet reparameterization39,40 into the contrastive vision-language
pretraining framework, to further calibrate visual-language features in
the high-dimensional embedding space for enhancing the robustness
of the model to represent complex features in fundus images. Speci-
fically, as shown in Fig. 1b, RetiZero’s pretraining consisted of a fundus
image encoder and a text encoder. The linear layer serves as a pro-
jection head for both the image encoder and the text encoder, map-
ping the acquired features to a 512-dimensional embedding feature
space. Let assume ϕ= ϕE ,ϕH

� �
denotes image encoder (ϕE) and cor-

responding projection head (ϕH). Given a fundus image Xi, the image
encoder was adopted to obtain feature representation of

FImg 2 RDF : FImg =ϕE X i

� �
, where DF is the dimension of image feature

space. Meanwhile, ψ= ψE ,ψH

� �
is used to represent text encoder (ψE)

and corresponding projection head (ψH). The text encoder (ψE) is

adopted to extract feature embedding FTxt 2 RDTxt : FTxt =ψE XTxt

� �
from text input XTxt, where DTxt is the dimension of text feature
embedding. Then, image projection head (ϕH) and text projection
head (ψH) were utilized to map the independent modality repre-

sentations into a joint unit hyper-sphere space: V =
ϕH FImgð Þ

jjϕH FImgð Þjj and

L=
ψH FTxtð Þ

jjψH FTxtð Þjj, respectively. The similarity between the input image (Xi)

and input text (XTxt) are evaluated by the cosine similarity based on the

normalized features: VTL, where T represents the transpose operator.
With obtained similarity metrics, the optimization goal of the
contrastive-based learning pre-training approach is to minimize the
distance of features betweenpaired images and text descriptionswhile
maximizing the distance between features of unpaired samples. Spe-
cifically, assuming that a batch contains N samples,
Vi 2 V 1,V2, . . . ,VN

� �
, and Li 2 L1, L2, . . . , LN

� �
represent image fea-

ture vector and text feature vector of each sample, while G = {0,1,…,N-
1} was the corresponding category label, respectively. To guide model
optimization, we use the following loss function,

LCon =LEm +LDl ð9Þ

where

LEm = � 1
2N

XN
i= 1

log
eSim VT

i , Lið Þ=τPN
k = 1e

Sim VT
i , Lkð Þ=τ

 !
+ log

eSim LTi ,Við Þ=τPN
k = 1e

Sim LTi ,Vkð Þ=τ

 ! !

ð10Þ

where N is the samples in a batch, Sim �ð Þ denotes the cosine similarity
function, τ is a trainable scale parameter and is set with reference to
FLAIR17. And the details of Dirichlet reparameterization steps was
shown in Supplementary Fig. 18, which includes three steps:

Step (1): Obtaining the evidence feature EV2L and EL2V by applying
Softplus activation function to similarity metrics between image and
text feature embedding to ensure the feature values are larger than 0:

EV2L = Sof tplus VTL
� �

and EL2V = Sof tplus LTV
� �

ð11Þ

where V2L and L2V indicate image-to-text and text-to-image contras-
tive direction.

Step (2): Parameterizing EV2L and EL2V to Dirichlet distribution, as:

αV2L, k = EV2L, k + 1, i:e:,αV2L, k = eV2L, k + 1, eV2L, k

= Sof tplus VT
k L1

� �
, . . . , Sof tplus VT

k LN
� �n o ð12Þ

αL2V , k = EL2V , k + 1, i:e:,αL2V , k = eL2V , k + 1, eL2V , k

= Sof tplus LTk V 1

� �
, . . . , Sof tplus LTk VN

� �n o ð13Þ

where αV2L, k ,αL2V , k , eV2L, k and eL2V , k are the k-th contrastive similarity
Dirichlet distribution parameters and evidence for the image-text
contrastive similarity of the k-th sample in a batch of N samples.

Step (3): Calculating the belief masses and corresponding uncer-
tainty score as:

bV2L, k =
eV2L, k
SV2L

=
αV2L, k � 1

SV2L
,uV2L =

N
SV2L

ð14Þ

bL2V , k =
eL2V , k
SL2V

=
αL2V , k � 1

SL2V
,uL2V =

N
SL2V

ð15Þ

where SV2L =
PN

k = 1 eV2L, k + 1
� �

=
PN

k = 1αV2L, k and

SL2V =
PN

k = 1 eL2V , k + 1
� �

=
PN

k = 1αL2V , k are the Dirichlet intensities of
image-to-text and text-to-image, respectively, used to constrain

1 =
PN

k = 1 bV2L, k +uV2L and 1 =
PN

k = 1 bL2V , k +uL2V . It can be seen from
Eqs. (14) and (15) the probability assigned to k-th sample is
proportional to the observed similarity evidence for sample k.
Conversely, if less total similarity evidence was obtained, the greater
the total uncertainty.

In this study, we associated the Dirichlet distribution with the
distribution of feature similarity between images and text descrip-
tions, thereby obtaining belief masses and corresponding overall
uncertainty score for the similarity of images and text description for
each sample of a batch, based on the evidence collected from the
feature similarity matrix. Therefore, we could work out the Dirichlet
distribution parameter of αV2L = αV2L, 1, . . . ,αV2L,N

	 

and

αL2V = αL2V , 1, . . . ,αL2V ,N

	 

for image-to-text, and text-to-image, while

obtaining the multinomial opinions D pV2L, ijαV2L, i

� �
and

D pL2V , ijαL2V , i

� �
where pV2L, i and pL2V , i were the sample assignment

probabilities on a simplex. Therefore, the loss function for the re-
parameterized similarity matrix as follows:

LDl =LV2L
Dl +LL2V

Dl ð16Þ

where,

LV2LDl = LV2LDl�CE + λ*LKL ð17Þ
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LL2V
Dl =LL2V

Dl�CE + λ*LKL ð18Þ

where L Dl−CE (LV2L
Dl�CE and LL2V

Dl�CE) was used to ensure that the correct
prediction for the sample with highest similarity between image and
text yielded more evidence than other samples, while LKL was used to
ensure that incorrect predictions would yield less evidence, and λ was
the balance factor that was gradually increased so as to prevent the
model from paying too much attention to the KL divergence in the
initial stageof training,whichmight result in a lackof goodexploration
of the parameter space and cause the network to output a flat uniform
distribution.

LDl�CE =
Z XN

k = 1

�yk log pk

� �" #
1

β αi

� �YN
k = 1

pαk�1
k dpk

=
XN
k = 1

yk ψ Sk
� �� ψ αk

� �� � ð19Þ

whereψ() was the digamma function, while β() is the multinomial beta
function for the concentration parameter α.

LKL = log
Γ
PN

k = 1bαk

� �
Γ Nð ÞQN

k = 1 Γ
PN

k = 1bαk

� �
0
@

1
A

+
XN
k = 1

bαk � 1
� �

ψ bαk

� �� ψ
XN
k = 1

bαk

 !" # ð20Þ

where bα = y+ 1� yð Þ � α is the adjusted parameter of the Dirichlet
distribution which could avoid penalizing the evidence of the ground-
truth class to 0, and Γ() is the gamma function. In general, as shown in
Eq. (10) and Eqs. (16)–(20), by introducing higher penalties for
uncertain image-txt pairs via uncertainty calibration. For instance,
for the text-image feature alignment with high uncertainty, it imposes
an extra penalty to avoid the model focusing excessively on incorrect
matches during contrastive pre-training.

We performed a comprehensive set of ablation studies (See
Supplementary Tables 21–24) to elucidate the individual contributions
of each module within RetiZero. The results confirm that our RetiZero
model consistently surpasses all other configurations, illustrating the
synergistic advantages gained from integrating an MAE-based enco-
der, text-image contrastive learning, and uncertainty calibration. Fur-
thermore, we conducted additional ablation experiments using only
publicly available datasets for pretraining and compared these out-
comes to those of our full RetiZero model, which also incorporates
data from ophthalmic literature and online resources (See Supple-
mentary Table 25). Although public datasets alone are sufficient for
reliably identifying common fundus diseases, they prove inadequate
for robustly detecting rare conditions; the inclusion of more diverse
data sources is thus indispensable. Thisfinding underscores the critical
importance of aggregating varied datasets to develop a knowledge-
rich vision-language model with strong clinical applicability across a
wide range of diseases.

Definition of Dirichlet distribution
The Dirichlet distribution was parameterized by its concentration K
parameters α = α1, . . . ,αK

	 

39,40. Therefore, the probability density

function of the Dirichlet distribution was computed as:

D Pjαð Þ=
1

B αð Þ
QK

k = 1p
αk�1
k f or P 2 SK

0 Otherwise

(
ð21Þ

where Sk is the K-dimensional unit simplex. and B αð Þ represents the K-
dimensional multinomial beta function.

AI-assisted clinical diagnosis settings
To assess the capability of RetiZero’s in recognizing fundus disease
recognition without retraining themodel, we randomly selected two
images from each category of the EYE-52 dataset, creating a subset
named EYE52-sub, which containing a total of 104 fundus photo-
graphs. We invited 19 ophthalmologists from 12 different institu-
tions and hospitals across Singapore, the United States, and China,
to make clinical diagnoses based on these 104 retinal images.
Among the participating ophthalmologists, seven have 3–5 years of
clinical experience, seven have 5–10 years, and five have more than
10 years. We developed an online fundus image reading system and
uploaded the 104 images to the server (Fig. 3). To mimic the zero-
shot setup, we provided 52 disease options as prompts on the
webpage. During the image reading process, the clinicians selected
a diagnosis from these 52 disease categories based solely on the
image content. Additionally, each of the ophthalmologists was also
asked to rate their confidence in their diagnostic results from level 1
to level 5.

To evaluate whether our RetiZero can assist clinicians in improv-
ing their accuracy in diagnosing fundus disease, we conducted a sec-
ond round of clinical evaluations with the same 19 ophthalmologists,
oneweek after the initial round.We used the same set of retinal images
and questions from the first round, but randomized the sequence of
the imagespresented. For eachquestion, RetiZeroprovided its top five
prediction results as references. This approach allows for a compara-
tive analysis of diagnostic performance with and without the assis-
tance of RetiZero’s predictions. Moreover, to mitigate potential bias,
we conducted additional experiments using a new set of 104 images
for the third round of testing to further demonstrate that our RetiZero
can assist clinicians in improving their accuracy in diagnosing fundus
disease (See Supplementary Table 26).

We also conducted an in-depth analysis of the correlation
between the position of the correct diagnosis within RetiZero’s top
five reference answers and the modifications made by ophthalmol-
ogists to their diagnoses. The top five results provided by RetiZero
were scored as follows: correct diagnoses appearing in positions 1, 2,
3, 4, and 5 were assigned 5, 4, 3, 2, and 1 points, respectively, while
those not appearing in the top five were assigned 0 points. This
scoring system allowed us to calculate the top-ranking score for
each case and assess how the ranking of the correct diagnosis with in
the top five influenced diagnostic accuracy of the ophthalmologists.
Moreover, we assessed themodifications made by ophthalmologists
to their answers. Assuming an ophthalmologist’s answers in the first
and second rounds for the same case were denoted as (x, y), the
scoring method was as follows: (True, True) = 0, (False, False) = 0,
(True, False) = −1, (False, True) = 1. By analyzing the modification
behavior of 19 ophthalmologists, we calculated a response mod-
ification score for each case, which reflected the ophthalmologists’
thought process and decision-making during the diagnostic
process.

Statistics & reproducibility
All results were analyzed and visualized with Python v.3.9, NumPy
v.1.26.4, SciPy v.1.11.4, seaborn v.0.13.2, Matplotlib v.3.9.2, pandas
v.2.2.2, Scikit-Learn v.1.5.1 and Pillow v.10.4.0. All statistical tests were
two-sided, with statistical significance set at a threshold of 0.05. No
statistical method was used to predetermine sample size. The sample
size was determined based on the availability of the existing dataset to
ensure the model could cover a variety of fundus disease types and
perform effective training and validation. No data were excluded from
the analyses. Each case contains valuable information that is crucial for
a comprehensive evaluation of the model’s performance. The experi-
ments were randomized. The dataset was randomly divided into
training, validation, and test sets to ensure the representativeness of
the data the model encountered at different stages and to reduce
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potential biases. The Investigators were blinded to allocation during
experiments and outcome assessment to avoid subjective influences
on the experimental results and improve the objectivity and reliability
of the study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The publicly available datasets used for pre-training are available at the
following links and references: APTOS: https://www.kaggle.com/c/
aptos2019-blindness-detection. Cataract: https://www.kaggle.com/
datasets/jr2ngb/cataractdataset. DDR: https://github.com/nkicsl/DDR-
dataset. Diabetic Retinopathy Level Detection: https://www.kaggle.com/
datasets/arbethi/diabetic-retinopathy-level-detection. Diabetic Retino-
pathy Organized: https://www.kaggle.com/datasets/dola1507108/
diabetic-retinopathy-organized. DR15: https://www.kaggle.com/
datasets/nawa393/dr15_test. Messidor: https://paperswithcode.com/
dataset/messidor-1. MURED: https://www.kaggle.com/datasets/
abhirampolisetti/multi-label-retinal-disease-mured-dataset. Retina Data-
set: https://www.kaggle.com/datasets/jr2ngb/cataractdataset. Kaggle DR:
https://www.kaggle.com/c/diabetic-retinopathy-detection/data. ODIR5K:
https://www.kaggle.com/datasets/andrewmvd/ocular-disease-
recognition-odir5k. AUS dataset: https://www.kaggle.com/competitions/
innovation-challenge-2019/data. SUSTech dataset41: https://www.kaggle.
com/datasets/mariaherrerot/the-sustechsysu-dataset. SiMES42, SIDNI43,
ACRIMA44, BEH45, DeepDRiD46, DR1-247, E-ophta48, AIROGS49,
DeepEyeNet50, FIVES51, G102052, Glaucoma dataset53,54, IDRiD55, JICHI56,
REFUGE57, ORIGA58, PARAGUAY59, EyePACS AirDoc60, JSIEC9, RFMid61.
Additional data sets supporting the findings of this study are not publicly
available due to the confidentiality policy of the Chinese National Health
Council and institutional patient privacy regulations. However, they are
available from the corresponding authors upon request. For replication
of the findings and/or further academic andAI-related research activities,
data may be requested from the corresponding author H.C. (drchen-
haoyu@gmail.com), and any requests will be responded to within 10
working days. Source data are provided with this paper.

Code availability
All codes are available at https://github.com/LooKing9218/RetiZero.
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