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ABSTRACT

We investigated the strong gravitational lensing properties of fuzzy dark matter (FDM) haloes, focussing on the magnification proper-
ties near radial critical curves (CCs). Using simulated lenses, we computed magnification maps for a range of axion masses and halo
configurations. We show that FDM produces enhanced central magnification and secondary CCs that are not easily reproduced by
standard cold dark matter (CDM), even when subhaloes are included. The strength and scale of these effects depend primarily on the de
Broglie wavelength, which is governed by the axion and halo masses. We find that axion masses in the range mψ ∼ 10−22–10−21 eV in
galaxy-mass haloes lead to distinctive magnification distributions. Our results suggest that observations of highly magnified, compact
sources near radial arcs, such as quasars or supernovae, could serve as a powerful test for the presence of FDM.
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1. Introduction

The lambda-cold dark matter cosmological model (ΛCDM)
provides the most successful description of our Universe to
date (Planck Collaboration VI 2020). In this framework, the
energy density of the Universe consists predominantly of myste-
rious dark energy (∼70%), which drives the accelerated expan-
sion (observed primarily at z < 1). The remaining ∼30%
corresponds to matter, of which only about 5% is the famil-
iar baryonic matter, while the remaining ∼25% is attributed
to the elusive cold dark matter (CDM). Although the grav-
itational effects of CDM have been evident for decades, its
true nature remains a mystery in modern cosmology. Although
the ΛCDM model accurately reproduces the large-scale struc-
ture of the universe, it still faces significant challenges on
small scales (Del Popolo & Le Delliou 2017), particularly at
scales .1 Mpc. These small-scale problems include, among oth-
ers, the core–cusp problem (Moore 1994; Moore et al. 1999;
Flores & Primack 1994; Oh et al. 2011; Gentile et al. 2004),
the missing satellites problem (Moore et al. 1999; Klypin et al.
1999), and the too-big-to-fail problem (Boylan-Kolchin et al.
2011, 2012).

Some progress has been made in addressing the core–cusp
tension through high-resolution cosmological simulations of
disc galaxies that incorporate strong baryonic feedback, particu-
larly supernova-driven outflows, and high star formation thresh-
olds (Guedes et al. 2011; McCarthy et al. 2012; Brook et al.
2012). However, the extent to which these mechanisms can alle-
viate other small-scale issues, such as core formation or satellite
abundances, remains debated (Schaller et al. 2015).
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The fundamental nature of dark matter remains unknown.
Alternative scenarios to CDM, such as self-interacting dark mat-
ter (Tulin & Yu 2018) or warm dark matter (Viel et al. 2013),
have been proposed to account for persistent discrepancies
between the predictions of standard CDM and observations on
small scales. Modifications to the ΛCDM paradigm have also
been proposed to address these small-scale issues. Among the
leading CDM candidates are weakly interacting massive par-
ticles (WIMPs) (Arcadi et al. 2018), which are fermionic and
behave as discrete particles, and wave dark matter (ψDM), a
bosonic alternative composed of ultralight particles with masses
below 10 eV (Hui 2021; Ferreira 2021). This latter model reflects
the particle–wave duality of quantum mechanics, as the de
Broglie wavelength of the particles exceeds their average sep-
aration in galaxies, allowing dark matter to be treated effectively
as a classical wave.

In particular, fuzzy dark matter (FDM) is a kind of
ψDM model that is non-self-interacting, non-relativistic,
and extremely light, with a mass in the range 10−23–
10−20 eV (Hu et al. 2000; Hui et al. 2017). One of the key advan-
tages of FDM is its ability to address two of the aforementioned
problems: the core–cusp problem, through the formation of a
solitonic core in galaxies (Schive et al. 2014; Mocz et al. 2017),
and the missing satellite problem, via the suppression of struc-
ture formation below the de Broglie scale (Robles et al. 2015;
Schive et al. 2016; Kulkarni & Ostriker 2021). This suppression
is reminiscent of warm dark-matter models. However, FDM is
still CDM and is indistinguishable from standard CDM predic-
tions on large scales (Schive et al. 2014; Hui 2021).

The FDM prediction of solitonic cores and the suppression
of small-scale structure in the linear regime (Hui 2021) make
this model highly testable and subject to numerous current con-
straints. Observations of the early Universe (Zhang et al. 2024),
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axion detection experiments (Aja et al. 2022; Leung et al.
2019), and searches for astrophysical-related phenom-
ena (Eberhardt et al. 2024; Pinetti 2025) have been used to
place general limits on the existence of ψDM. In the case
of FDM, the usual mass range, around 10−22 eV, has been
constrained by the small-scale spatial fluctuations measured via
the Lyman-α forest (Iršič et al. 2017; Kobayashi et al. 2017;
Armengaud et al. 2017), by galaxy dynamics and internal
structure (Nadler et al. 2021) and by the sizes and stellar radial
velocities of some ultra-faint dwarf galaxies (Dalal & Kravtsov
2022). These constraints disfavour an axion mass near the
commonly adopted value of 10−22 eV, yet they are subject to
systematic uncertainties. These arise from limited data and
poorly understood baryonic physics (Hui 2021) or from the
lack of full-wave simulations that could capture higher-order
effects (Dalal & Kravtsov 2022). Properly accounting for these
factors could potentially relax the current bounds. Regardless
of the strength of these constraints, it is crucial to develop
complementary approaches based on independent methods to
better assess and mitigate systematic uncertainties.

Gravitational lensing presents itself as an excellent tool
to probe axion masses and test the viability of FDM as a
dark matter candidate (Laroche et al. 2022; Amruth et al. 2023;
Powell et al. 2023; Broadhurst et al. 2025). Since lensing traces
the underlying projected mass distribution, it is sensitive to sub-
structure on different scales, as predicted by various dark-matter
models. Axion masses of around 10−22 eV in FDM are partic-
ularly notable for producing de Broglie wavelengths that give
rise to mass density fluctuations on parsec to kiloparsec scales
in galaxy clusters and galaxy-scale lens systems, respectively.
These fluctuations lead to distinctive patterns in the mass distri-
bution compared with the conventional smooth global profiles
expected from standard CDM. Such differences have already
been proposed as solutions for discrepancies between observa-
tional data and the best-fitting canonical CDM-based lensing
models (Amruth et al. 2023), such as the long-standing flux-ratio
anomalies (Keeton et al. 2003; Goldberg et al. 2010; Xu et al.
2015; Shajib et al. 2019), the position anomalies in radio obser-
vations (Spingola et al. 2018; Hartley et al. 2019), or the asym-
metry in microlensed stars in galaxy clusters (Broadhurst et al.
2025).

In this paper, we develop a lensing framework tailored to
FDM distributions in galaxy-scale systems, with a particular
focus on deviations in their magnification patterns compared
with the case of standard CDM haloes. We focus on radial
critical curves (CCs), which are often neglected in the litera-
ture, as smooth models predict demagnified central images, and
radial images are also less common than their tangential coun-
terparts. However, certain small-scale objects (smaller than the
de Broglie wavelength), such as active galactic nuclei, quasi-
stellar objects (QSOs), or supernovae, can be bright enough to
be observed even at modest magnification factors and be sen-
sitive to magnification changes due to FDM fluctuations. How-
ever, perhaps the most important fact is that near the CCs, the
differences between standard CDM and FDM can be accentu-
ated. The radial critical region corresponds to the portion of the
lens where (1 − κ) + γ = ε ≈ 0, where κ is the convergence, γ
is the shear, and ε is an arbitrarily small number. In this region,
since γ > 0 always, it must follow that κ > 1. In the classical
CDM scenario, adding a substructure increases the value of κ,
thereby making the term (1−κ) more negative and, in most cases,
leading to a reduction in magnification (µ ∝ ε−1). In contrast, in
FDM, negative mass fluctuations (with respect to the mean) relax
the condition for criticality and increase the probability of larger

magnification (smaller |ε|). In other words, this simple reasoning
leads to the expectation of a higher number of highly magnified
objects in the vicinity of the radial CC region in FDM models
compared to standard CDM. In this work, we provide a quan-
titative assessment of the differences between canonical CDM
and FDM near radial CCs in terms of their magnification statis-
tics. Here, we demonstrate that FDM predicts a magnification
distribution near the centre of haloes, specifically around radial
CCs, that differs significantly from that predicted by standard
CDM, even when including subhaloes as small-scale perturbers.
This behaviour represents an effect unique to FDM, providing a
promising avenue to test FDM models as an alternative to canon-
ical CDM.

This paper is structured as follows. Section 2 introduces
the basics of gravitational lensing, with a particular emphasis
on magnification, the observable we propose to use for distin-
guishing an FDM universe from one governed by the classi-
cal representation of CDM. In Section 3, we describe the var-
ious mass profiles implemented in our simulations, which are
later compared in terms of their magnification properties. In
Section 4, we present the methodology followed in this work.
The results of our analysis, highlighting the differences among
the models and the tests employed, are presented in Section 5.
In Section 6, we discuss the implications of our findings and the
potential of magnification as a tool for discriminating between
dark matter models. Finally, our main conclusions are sum-
marised in Section 7. We assume the Planck 18 cosmological
model (Planck Collaboration VI 2020) with Ωm = 0.31, Λ =
0.69, and h = 0.676 (100 km s−1 Mpc−1). In this work, we study
the differences between FDM and the standard CDM descrip-
tion within the ΛCDM framework. Without loss of generality,
we refer to the latter simply as CDM throughout the paper, even
though FDM is itself a form of CDM.

2. Lensing formalism

In this section, we briefly introduce the gravitational lensing for-
malism (Schneider et al. 1992), focussing on the gravitational
lensing effect caused by galaxy lenses. These lenses are typi-
cally described by a Navarro–Frenk–White (NFW) dark matter
halo (Navarro et al. 1996, 1997), consistent with both observa-
tions and hydrodynamic simulations (in CDM). A Sérsic profile
was adopted for the contribution from baryons. Finally, for the
FDM mass profiles, we included the soliton structure and density
fluctuations on top of an NFW profile.

The formalism presented here is, nonetheless, mass-model
independent and can be readily applied to any deflecting struc-
ture, including, but not limited to, NFW or Sérsic profiles. In
addition, when working with complex mass models, we can take
advantage of the deflection angle linearity, i.e. the total deflec-
tion angle can be expressed as the sum of the deflection angle of
each component. Specifically, if the total mass distribution can
be expressed as

Σtot(θ) =

N∑
i=1

Σi(θ), (1)

then the total deflection angle is

αtot(θ) =

N∑
i=1

αi(θ), (2)

where αi(θ) is the deflection angle at the position θ generated by
the mass distribution Σi.
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The position of a lensed image β and the corresponding
source position θ are connected through the lens equation

β = θ − α(Σ, θ), (3)

where α is the deflection angle induced at θ by a lens with a
surface mass density Σ(θ). Since α depends on θ, the equation
is generally non-linear, often admitting multiple image positions
for a given source location and lacking an analytical solution in
most cases.

The deflection angle is derived from the effective lensing
potential:

ψ(θ) =
Dds

DdDs

2
c2

∫
φ(Ddθ, z) dz, (4)

where Dd, Ds, and Dds represent the angular diameter distances
to the lens, to the source, and between the lens and the source,
respectively. The function φ denotes the Newtonian potential of
the lens. The deflection is then given by

α = ∇θψ, (5)

and the Laplacian of ψ is related to the surface mass density
through

∇
2
θψ = 2

DdDds

Ds

4πG
c2 Σ(θ) = 2

Σ(θ)
Σcrit

≡ 2κ(θ), (6)

where G is the gravitational constant, and κ is the convergence,
defined as the dimensionless surface mass density relative to the
critical value Σcrit.

Gravitational lensing also modifies the shape and size of
background sources. These distortions are encoded in the Jaco-
bian matrix

A ≡
∂β

∂θ
= δi j −

∂αi

∂θ j
= δi j −

∂2ψ

∂θi∂θ j
= δi j − ψi j = M−1, (7)

which is the inverse of the magnification tensor M.

3. Mass profiles

In the previous section, we introduced the lensing formalism for
a generic mass distribution Σ(θ), which is the 2D projection of
a generic ρ(θ, z) 3D profile, obtained by integrating the density
along the line of sight z. In this section, we summarise the mass
distributions used in this work for both the particle description
of CDM and the wave-like FDM models.

3.1. Navarro-Frenk-White profile

Simulations have shown that, under the ΛCDM paradigm, the
power spectrum of the density perturbations, combined with the
collisionless nature of CDM, point to cuspy dark haloes with
density profiles scaling as ρDM(r) ∝ r−1. These profiles are well
described by the NFW parameterisation (Navarro et al. 1996,
1997), from very massive galaxy clusters (M ∼ 1015 M�) to
galaxies with masses around M ∼ 1011–1012 M�. Simulations
of FDM haloes also show an NFW profile modulated by a cen-
tral solitonic core and density fluctuations characteristic of its
wave nature (Schive et al. 2014).

The NFW profile is a radial function given by

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2 , (8)

where the two parameters, ρs and rs, are the characteristic den-
sity and the scale radius of the halo. Lower-mass haloes are usu-
ally well described by NFW profiles as well, but the core–cusp
problem arises: the central density tends to an almost constant
value rather than rising steeply at the innermost radii. Fuzzy
dark matter (FDM) offers a natural solution to this discrep-
ancy through solitonic structures, as seen in numerical simu-
lations (Schive et al. 2014; Liao et al. 2024). The characteristic
density, ρs, can also be expressed as a function of the concentra-
tion parameter

ρs =
200
3
ρcrit

c3[
ln (1 + c) − c

1+c

] · (9)

The concentration parameter, c, is simply the ratio between
the radius, r200, and the scale radius of the halo (c =
r200/rs), and scales with the mass of the halo roughly as
M−0.1 (Dutton & Macciò 2014). The radius r200 encloses an aver-
age density 200 times that of the critical density:

r200 =
1.63 × 10−2

(1 + z)h

(
M200

h−1 M�

)1/3 [
Ω0

Ω(z)

]−1/3

kpc. (10)

Here, h is the dimensionless Hubble parameter, and M200 is
the mass enclosed within the sphere of radius r200, also com-
monly used to parametrise the halo, analogously to ρs and rs.
Defining x ≡ r/rs, the simplicity of the NFW profile, specifi-
cally its radial symmetry, allows an analytical derivation of its
surface mass density:

ΣNFW(x) =
2ρsrs

x2 − 1


1 − 2

√
x2−1

arctan
√

x−1
x+1 , x > 1

1 − 2
√

1−x2
arctanh

√
1−x
1+x , x < 1.

(11)

The limit at x = 1 is finite: ΣNFW(1) = 2
3ρsrs. The deflection

angle is then given by

αNFW(x) =
4ρsrsΣ

−1
crit

x
h(x), (12)

with the auxiliary function h(x) defined as

h(x) = ln
( x
2

)
+


2

√
x2−1

arctan
√

x−1
x+1 , x > 1

2
√

1−x2
arctanh

√
1−x
1+x , x < 1

1, x = 1.

(13)

The mass profile presented here is valid for CDM haloes and
subhaloes according to CDM predictions. This profile serves as
the central baseline model for FDM; further distinctions are out-
lined in the following subsection.

3.2. FDM profile

Simulations show that FDM halo profiles are composed of
three distinct components. First, a baseline NFW-like profile,
as described in the previous subsection. Second, a central soli-
tonic core that produces a flat inner density profile and naturally
addresses the core–cusp problem. Together, these two compo-
nents constitute the smooth mass distribution of the halo. Third,
small-scale wavelike density fluctuations, arising from the quan-
tum nature of the field, introduce granularity beyond the smooth
profile. The first component was discussed previously; here, we
focus on the solitonic core and small-scale wave-like density
fluctuation, which are unique features of FDM.

A24, page 3 of 13



Palencia, J. M., et al.: A&A, 701, A24 (2025)

10−2 10−1 100 101 102

Radius, r [kpc]

105

106

107

108

109

1010

1011

D
en

si
ty

,ρ
[M
�

kp
c−

3]

FDM
NFW
Soliton

Fig. 1. Radial profile of an FDM halo (Mh = 7 × 1011 M� and mψ =
10−22 eV at z = 0.9), neglecting quantum fluctuations (solid black line).
The inner profile of the halo is dominated by the soliton structure (dot-
dashed red line). At r = rsol, the profile transitions to a standard NFW
dark matter halo (dashed blue line). The radial variance of the fluctu-
ations, given by Eq. (21) (dot-dashed grey line) is shown in arbitrary
units.

3.2.1. Soliton

Solitons are stationary, spherically symmetric ground-state solu-
tions of the Schrödinger–Poisson equation. They appear as
a central flat density, as opposed to the cuspy inner density
of NFW haloes. Solitons exhibit a time-variable centre offset
(1 kpc) referred to as the soliton random walk, which arises from
wave interference (Schive et al. 2020). This random walk has a
timescale of approximately 100 Myr (Schive et al. 2020), which
is too large to affect the lensing systems that we observe. Solitons
are typically characterised by a single parameter, Ms, the soliton
mass. The so-called soliton–halo relation expresses the soliton
mass in terms of its host halo and redshift. This relation was
first identified in cosmological simulations (Schive et al. 2014).
More recent studies (Liao et al. 2024) confirm that it takes the
form Ms ∝ m−1

ψ (1 + zh)1/2M1/3
h , where mψ is the axion mass, Mh

is the halo mass, and zh is its redshift. Although this relation has
been confirmed by other studies, some results suggest different
relations, such as Ms ∝ M5/9

h (Mocz et al. 2017). A large scatter
in the soliton–halo relation has been reported, suggesting that
the relation may not be universal and remains an open question.
For the remainder of this work, we assume a soliton–halo rela-
tion as found by Schive et al. (2014) (Ms ∝ M1/3

h ), specifically
in the form reported by Liao et al. (2024), since their simulations
cover higher halo masses that had not been explored in previous
works.

The soliton mass density profile is given by

ρsol(r) =
ρc(

1 + 0.091
(

r
rc

)2
)8 , (14)

where

ρc = 0.019
(

mc2

10−22 eV

)−2 (
rc

kpc

)−4

M� pc−3. (15)

The radius rc is defined as the distance at which the density drops
to half its central value.

The smooth component of the FDM model mass density pro-
file, as shown in Fig. 1, is then

ρFDM(r) '
{
ρsol(r) r < rsol

ρNFW(r) r > rsol,
(16)

where rsol is the transition radius between models, which can be
found numerically from the condition ρsol(rsol) = ρNFW(rsol). It
is typically a few times rc: 2.5 . rsol/rc . 3.5 (Mocz et al. 2017;
Chiang et al. 2021; Furlanetto et al. 2025).

Finally, the 2D projection of the mass density profile (with-
out quantum fluctuations) can be obtained by numerically inte-
grating along the line of sight:

ΣFDM(r) = 2
∫ ∞

0
ρFDM(r, z) dz. (17)

Here, r is defined as the radial distance within the lens plane and
z is the tangential direction to the plane.

3.2.2. FDM fluctuations

In the preceding subsections, we described the smooth compo-
nent of the FDM profile, which is composed of a main NFW
halo in the outskirts and a soliton profile in the central region.
In addition, FDM exhibits density clumps roughly separated by
half the de Broglie wavelength, which depends on the axion and
halo masses:

λdB = 150
(

10−22 eV
mψ

) (
Mh

1012 M�

)−1/3

pc. (18)

Following Amruth et al. (2023), Kawai et al. (2022), Dalal et al.
(2021), we assumed that the integrated column density fluctua-
tions along the line of sight can be well approximated as a Gaus-
sian random field (GRF). This GRF can be drawn as a random
realisation from the power spectrum

P(k) =
4π

3rh(x)

(
λdB

2

)3

exp
−λ2

dBk2

4

 , (19)

where

rh(x) =

(∫
Z dz ρh(r)

)2∫
Z dz ρ2

h(r)
, (20)

is the effective halo size, which contains information on the den-
sity dispersion along the line of sight, Z. Here, ρh is the average
local mass density of the halo. This field is modulated by a radial
variance function that depends on x:

σ2(x) ≈



κ2
s

rsλdB

[
π

x
−

1
(x2 − 1)3

(
6x4 − 17x2 + 26

3
+

2x6 − 7x4 + 8x2 − 8
√

1 − x2
sech−1(x)

)]
, x < 1

κ2
s

rsλdB

[
π

x
−

1
(x2 − 1)3

(
6x4 − 17x2 + 26

3
+

2x6 − 7x4 + 8x2 − 8
√

x2 − 1
sec−1(x)

)]
, x > 1

,

(21)
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where the limit at x ≡ r/rs = 1 is κ2
s

rsλdB
(π − 64/21) and κs ≡

ρsrs/Σcrit is the characteristic convergence.
The surface mass density of the FDM can then be drawn as a

random realisation given P(k) in Eq. (19) modulated by the radial
variance given by Eq. (21). Neither the soliton nor the GRF den-
sity fluctuations admit analytical expressions for their deflection
angles and must therefore be computed numerically.

3.3. Sérsic profile

The profiles shown so far describe dark matter haloes that are in
good agreement with the data. Such haloes account for approxi-
mately 90% of the total mass of the galaxies, while the other 10%
consists of baryons, whose mass can be traced from the light dis-
tribution. The effect of the baryons is a dampening of the FDM
mass surface density fluctuations, as found by Amruth et al.
(2023). In the present study, we considered only a modest damp-
ening factor of ∼20% to show the differences between CDM and
FDM.

The surface brightness of elliptical galaxies, bulges, and
discs of spiral galaxies is best fitted by a S’ersic profile (r1/n),
where n is a free parameter known as the Sérsic index n.
Although not a 3D mass profile, the S’ersic profile is a good
approximation of the 2D projection of the mass distribution,
assuming a homogeneous light-to-mass ratio. Specifically, this
circularly symmetric mass profile is expressed as

Σ(r) = Υ Ie exp

−b(n)

( r
re

)1/n

− 1


 , (22)

where Υ is the light-to-mass ratio of the galaxy, Ie is the luminos-
ity density at the effective radius re, and b(n) is a constant defined
so that the luminosity enclosed within re equals half of the total
luminosity. The Sérsic index, n, determines the concentration of
the profile, with lower values corresponding to shallower inner
slopes and steeper outer fall-offs. Typical values include n ≈ 1
for exponential discs in spiral galaxies, and n ≈ 4 for bulges and
elliptical galaxies, corresponding to the de Vaucouleurs profile.

As in the NFW profile, we defined a dimensionless quantity
x = (r/re)1/n. As shown in Eq. (6), the convergence is half the
Laplacian of the lensing potential. The lensing potential, ψ, can
be obtained by solving that equation, and the deflection angle is
then the gradient of the lensing potential. To derive an analyti-
cal expression for the Sérsic profile, we followed the procedure
of Cardone (2004). The deflection angle takes the form

α(x) = 2αe x−n
[
1 −

Γ(2n, bx)
Γ(2n)

]
, (23)

where αe is the deflection angle at r = re, whose value is given
by

αe = nreκeb−2nebΓ(2n), (24)

in arcsec units. The quantity κe is defined as κe = Υ Ie/Σcrit,
where Γ(a, z) is the incomplete gamma function and Γ(a) is the
actual gamma function. The parameter b(n) can be found from
the equation

Γ(2n, b) = Γ(2n)/2. (25)

Tabulated values of b(n) for n ∈ {1, . . . , 15} can be found in
Mazure & Capelato (2002).

4. Methodology

In this work, we assumed different mock lenses by varying their
halo masses and ellipticities, and by adding various small-scale
perturbers to study the differences in radial magnification arcs
between CDM and FDM for different axion masses. For each
case, we computed the deflection angles numerically or, when
possible, analytically. We then added them linearly and com-
puted the magnification in the lens plane following Eq. (7):

det A =

(
1 −

∂αx

∂θx

) (
1 −

∂αy

∂θy

)
−
∂αx

∂θy

∂αy

∂θx
· (26)

The deflection angles for the Sérsic and NFW profiles were
obtained analytically (Eqs. (12) and (23)), significantly speeding
up the process. The soliton and FDM fluctuations were com-
puted numerically, according to Eqs. (1) and (2). Each pixel was
treated as a point lens, and the total deflection angle was esti-
mated via a convolution between the mass and distance kernels
using the fast Fourier transform (Cooley & Tukey 1965). For
each case, we simulated a field of view (FOV) ranging from three
to seven times the Einstein radius of the lens to fully cover the
CCs. This variable FOV is motivated by the ellipticity of the lens,
which stretches the CCs along one axis while compressing them
along the other. We assumed that all lenses were circularly sym-
metric when computing the deflection angle and added ellipticity
afterwards as

Fxelliptical = F ·
x

(1 − e) r

Fyelliptical = F ·
y(1 − e)

r
, (27)

where F is a circularly symmetric function, x and y are the Carte-
sian coordinates of the lens plane, r ≡

√
x2 + y2 is the radial dis-

tance within the plane, and e ≡ 1 − b/a is the ellipticity, with a
and b representing the major and minor semi-axes of the ellipse.

First, for a mock lens, we constructed the smooth CDM lens
model by combining an NFW dark matter halo with a Sérsic pro-
file representing the baryonic component of the galaxy. We then
computed the deflection angles for each component, added them
linearly, and obtained the resulting magnification map. Addition-
ally, we assumed a fiducial axion mass. For practical reasons,
we selected mψ from three values, mψ ∈ 0.4, 1, 10 × 10−22 eV:
the lower limit was motivated by the conservative constraint
on the axion mass from Chiang et al. (2023). The middle value
was chosen for historical reasons, as it is the most commonly
adopted in ultralight axion FDM studies and is found by many
studies to reproduce the observed properties of multiply lensed
images (Amruth et al. 2023; Laroche et al. 2022) or the inner-
most kinematics of dwarf galaxies (Broadhurst et al. 2020). The
upper value lies in a regime in which current constraints remain
weak.

We considered three different halo masses, M200: a fiducial
mass of 7 × 1011 M� as in Amruth et al. (2023), a smaller halo
of 3 × 1011 M�, and a massive halo of 4 × 1012 M�. The combi-
nation of three axion masses and three halo masses yields a total
of nine models, as shown in Table 1. We also adopted the lens
parameters from Amruth et al. (2023) for the HS 0810+2554
system, using zl = 0.89, zs = 1.51, rs = 50 kpc, and c = 9
for M200 = 7 × 1011 M�, scaling them with mass as c ∝ M−0.1

and r200 ∝ M1/3, where rs = r200/c.
To test the ellipticity effect, we adopted the values e = 0

(a perfectly axisymmetric system), e = 0.2 as in Amruth et al.
(2023), and e = 0.4 (an extremely elliptical configuration) for
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Table 1. List of models.

Model ID Mh [1012 M�] mψ [10−22 eV] λdB [pc]

11 0.3 0.4 560
12 0.3 1 224
13 0.3 10 22
21 0.7 0.4 422
22 0.7 1 169
23 0.7 10 17
31 4 0.4 236
32 4 1 95
33 4 10 9

Notes. The model ID consists of two indices representing the halo mass
and axion mass, respectively, with values increasing from 1 to 3. For
example, the most massive halo with the medium axion mass would be
identified as 32, while the lighter halo with the heaviest axion would be
indexed as 13.

one of the simulated lenses. We first computed the analytical
deflection quantities for the circular case and then applied the
ellipticity transformation described in Eq. (27).

For each case, once the magnification was computed, we
compared the magnification statistics in the lens plane from the
FDM model against the CDM model, both without subhaloes
(smooth case) and with small-scale perturbers. We adopted the
same contour radius given by the isomagnification contours from
the smooth CDM model (as shown in Fig. 2) and obtained the
magnification histograms of the pixels enclosed within them, as
shown in Fig. 3. These isomagnification contours trace the shape
of the radial critical curve in the smooth CDM model and were
normalised by the factor r/rCC, where r is the distance from the
centre to the contour and rCC is the distance to the critical curve.
In cases where ellipticity was introduced, r and rCC were mea-
sured with respect to the closest point on the critical curve to the
centre. Once we had the histograms for the magnification inside
the isomagnification contours, we estimated the probability of
having high magnification (µ > 10) inside the enclosed area
P(µ ≥ µε | θmodel), i.e. the p-value associated with the model
parameters θmodel. For an accurate depiction of the magnifica-
tion statistics in the presence of FDM density fluctuations, we
ensured that the pixel size provided a resolution of at least 10
pixels across the span of λdB, as defined in Eq. (18). We also per-
formed several GRF realisations to obtain a robust estimate of
the magnification statistics and to mitigate possible systematic
biases arising from a single realisation. For the soliton param-
eters, we used the publicly available code SHR1, adopting the
updated model by Liao et al. (2024), which is based on the orig-
inal formulation of Schive et al. (2014).

5. Results

In this section, we present the main results from the analysis of
magnification distributions within radial CCs in FDM-simulated
lenses (see Fig. 4) and compare them with those of their CDM
counterparts. We also examine the impact of ellipticity in both
scenarios and, finally, explore the effects of adding NFW sub-
haloes to the CDM model compared to the FDM case. For refer-
ence, the magnification maps corresponding to the lens models
listed in Table 1 are shown in Appendix A.

1 https://github.com/calab-ntu/
fdm-soliton-halo-relation

The key distinguishing feature of FDM (and ψDM in gen-
eral), compared to other dark matter models, is that destruc-
tive interferences give rise to negative density fluctuations with
respect to the NFW baseline, which in turn generate high-
magnification regions inside the CCs (see Fig. 5). Within these
curves, the critical condition is fulfilled:1− κ− γ ≈ 0 for tangen-
tial CCs, and 1−κ+γ ≈ 0 for radial CCs. Adding mass in the form
of small-scale perturbers could modify the local magnification
distribution; however, on average, it does not significantly affect
the global statistics, except for small background sources located
close to the perturbers, where the local PDF can change substan-
tially. In contrast, the wave-like fluctuations inherent to FDM can
produce extended high-magnification regions, provided that the
associated de Broglie wavelength is sufficiently large relative to
the lensing scale. These regions are intrinsically different from
those produced by CDM subhaloes or other small-scale struc-
tures. In the regime where the fluctuation scale is much smaller
than the scale of the lens, given by its Einstein radius (such as
in galaxy clusters), FDM behaves effectively as a population of
millilenses (Diego et al. 2024; Perera et al. 2025).

The two main parameters that govern the FDM fluctuations,
and thus the changes in magnification statistics, are the halo
mass, Mh, and the axion mass, mψ. The de Broglie wavelength
scales with both parameters as shown in Eq. (18), where λdB

increases as λdB ∝ m−1
ψ and λdB ∝ M−1/3

h . This makes the axion
mass the most important factor in the growth of the density fluc-
tuation scale. The size of the CCs–or, in other words, the lensing
area of influence for strong lensing effects– increases with the
halo mass approximately proportional to M.

Models 11 and 21 feature a λdB much larger than the typical
lens scale. In such cases, the resulting perturbations in magnifi-
cation patterns are excessively strong and would likely already
have been detected through image position anomalies. More-
over, no Einstein rings would form in these scenarios, and the
deviations far exceed existing tensions. Model 12 behaves sim-
ilarly, although the effects are slightly milder than in models 11
and 21.

Models 13, 22, and 31 show a large effect without completely
disrupting the CCs, as occurs in models 11, 21, and 12. These
models present a central demagnification caused by the soliton,
corresponding to larger halo and axion masses. All of these mod-
els exhibit the largest p-values, as shown in Fig. 4.

Models 23 and 32 are similar to each other and show smaller
perturbations confined to regions very close to the CCs, resem-
bling the millilensing or microlensing regime. Their p-values
also indicate an increased probability of high-magnification
regions (µ ≥ 10) near the centre, due to the presence of a sec-
ondary CC created by the soliton, at the cost of enhanced demag-
nification further in.

Finally, model 33 illustrates the regime in which FDM
approaches standard CDM within the resolution limits of this
study. At this resolution, the only distinction between FDM and
CDM is the presence of the solitonic core, which increases the
probability of high magnification near the halo centre. At much
higher resolution, the small-scale density fluctuations would still
be visible and their effects would resemble those of microlenses.

5.1. Ellipticity

In this study, we have considered only axisymmetric lenses up to
this point. However, real lenses typically exhibit some degree of
ellipticity. This ellipticity ranges from 0, corresponding to per-
fectly circular profiles, up to approximately e = 0.5, which is
considered extremely large, as higher values are rare in nature.
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Fig. 2. Illustration of the methodology employed in this work. Upper left: Zoom-in of the central halo region magnification map. The dot-dashed
white line shows the position of the radial CC, where maximum magnification is achieved (alongside the tangential CC, not shown here). Bottom
left: As in the upper left panel, but for the FDM case with a soliton structure at the centre, which further demagnifies the central region, along
with wave-like mass density fluctuations that are both positive and negative. Negative fluctuations (δκ < 0) create islands of high magnification
inside the CCs, whereas adding more mass (δκ > 0), both in FDM and in CDM, produces the opposite effect and increases demagnification. In
both cases, the coloured rings show isomagnification contours (defined in the symmetric CDM case as the CC shape and scaled down by a factor
r/rCC) inside the radial CC. These contours enclose regions where we collect magnification statistics of the simulated pixels within each curve for
later comparison. Right: Example magnification statistics. Both histograms show the magnification of pixels within the third ring (dark pink) of
the left panels. The purple histogram shows the CDM prediction, where µ . 1, as expected for an NFW profile. Ligh blue bins represent the FDM
prediction, where both the positive and negative fluctuations in δκ reduce and enhance the magnification compared to CDM. This results in a high
probability of both demagnified and highly magnified images. These simulations correspond to a perfectly symmetrical lens (e = 0), a halo mass
of M200 = Mh = 7 × 1011 M�, and an axion mass of mψ = 10−22 eV.

10−3 10−1 101 103

µ

10−3

10−2

10−1

100

101

D
en

si
ty

10−3 10−1 101 103

µ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r c
on

to
ur

r C
C

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r c

on
to

ur
r C

C

Fig. 3. Probability of magnification estimated within smooth CDM isomagnification contours for the CDM profile (left) and corresponding FDM
simulations (right). Brighter colours represent larger contours, with the outermost matching the radial CC, while darker colours correspond to
smaller contours closer to the centre of the halo. The dashed black vertical line marks a magnification value of ten, which we set as the threshold
for comparing p-values.

For ellipticity, we adopted three nominal values: 0, 0.2, and
0.4, and repeated the same analysis in each case, studying the
magnification distributions within the isomagnification contours
inside the radial CC. For simplicity, we restricted ourselves to
a single axion mass and halo mass, corresponding to those of

model 22. These magnification maps are shown in Fig. 6. We
observe a decrease in the area enclosed by the radial CC, which
moves progressively closer to the centre of the halo. Initially,
the shape stretches along the direction of the minor semi-axis,
but at higher ellipticities it also shrinks along that axis. As
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Fig. 4. p-values for a magnification factor equal to or larger than ten for each of the simulated lenses. The left panel shows the p-values for the
lightest halo mass (3 × 1011 M�) for all axion masses. Middle and right panels show the equivalent p-values for the 7 × 1011 M� and 4 × 1012 M�

haloes, respectively. The grey lines represent the complementary p-values for the CDM model at each halo mass. Halo masses increase from left
to right with green, blue, and purple colours. The squares, circles, and triangles represent different axion masses, increasing in this order. Dashed,
horizontal lines indicate the significance of finding an image with magnification equal to or greater than ten for each model. For the smooth model,
it is virtually impossible to achieve such magnification at a distance to the centre of the halo equal to half that of the CC.
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Fig. 5. Magnification patterns inside the radial CC (left) and mass den-
sity fluctuations (right). Open blue circles mark the positions of negative
mass density fluctuations, while open red circles indicate positive fluc-
tuations. Positive fluctuations in the mass (both present in CDM and
FDM) inside the radial CC lead to demagnification, whereas negative
mass fluctuations (exclusive in FDM) can result in new critical regions.
As we approach the centre of the halo, the negative fluctuations in FDM
can compensate the increase in κ from the underlying NFW + Sérsic,
fulfilling again the radial criticality condition, 1 − κ + γ ≈ 0.

shown in Fig. 7, for e = 0.2, the p-values are higher than in
the circular case. However, at the highest ellipticity, the area of
high magnification becomes significantly smaller. Images within
the smaller radial CC are more likely to be demagnified; thus,
the p-values are smaller than the two other cases. Neverthe-
less, some regions of high magnification exist between CCs
along the minor semi-axis, although these are not covered in this
work.

5.2. CDM subhaloes

The main objective of this paper is to demonstrate that the
enhanced magnification statistics observed in the central regions
of FDM haloes (containing both negative and positive mass fluc-
tuations relative to the underlying NFW) are difficult to repro-
duce within classical ΛCDM models, where mass offsets rela-
tive to the NFW baseline can only be positive. These enhanced
statistics appear to be a unique feature of the negative fluctua-
tions in FDM (or potentially other wave-like dark matter models

not considered here). To explore this, we focussed again on halo
model 2 (Mh = 7×1011 M�) and introduced subhaloes at various
positions and with different masses inside the region enclosed by
the radial CC.

We considered three subhalo masses: 106 M�, comparable to
the most massive globular clusters; 107 M�; and 108 M�, rep-
resentative of low-mass dwarf galaxies. Different subhalo posi-
tions were explored to account for the enhanced lensing effect
when a lens lies near the CC. In such cases, a point-mass lens of
mass M located close to a CC with magnification µ behaves as
if it has an effective mass of Meff = µ × M. We modelled sub-
haloes with axisymmetric NFW profiles, adopting concentration
parameters scaling as M−0.1 (Dutton & Macciò 2014) and scale
radii scaling as M1/3. We adopted reference values of c = 45.7
and rs = 0.18 kpc for a 106 M� subhalo, scaling these quantities
accordingly for the other masses.

When including subhaloes, we find a slight increase in the
magnification p-values (for µ ≥ 10) compared to the smooth
CDM case, as shown in Figs. 8 and 9. However, this enhance-
ment is smaller than that produced by FDM (see Fig. 4). Inter-
estingly, when the subhalo is too massive (108 M�), it can even
reduce the p-values with respect to the base model without sub-
haloes, when considering a large radius for the contour of the
studied region, as illustrated in Fig. 9. This can be understood
as an increase in the curvature of the deflection field of the oth-
erwise smooth model. Since magnification is inversely propor-
tional to the curvature of the deflection field, adding more (pos-
itive) substructure reduces the magnification. Alternatively, this
can be understood as the term µ−1

r = 1 − κ + γ deviating further
from ≈0 (and becoming more negative) when κ increases inside
the radial CC.

The inclusion of subhaloes induces two distinct effects:
(i) they can form small secondary CCs at their positions, result-
ing in higher µ, but locally reducing magnification near them.
However, the p-values in these regions remain low, and highly
magnified central images remain statistically rare; (ii) if located
near the radial CC and sufficiently massive, a subhalo can dis-
tort and pull the main CC inward. Even then, the probability of
achieving high magnifications stays below that expected from
FDM.
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Fig. 6. Ellipticity effects on magnification. From left to right, the lens ellipticity increases from none to high. The lens parameters are those of
model 22 from Table 1 (Mh = 7 × 1011 M� and mψ = 10−22 eV). The smooth CCs stretch along the major axis and compress along the minor axis,
forming an hourglass-shaped configuration. Fluctuations in FDM follow the elliptical mass distribution of the lens; as a result, fluctuations located
farther from the centre are attenuated, while those closer in are enhanced. Inside the radial CC, however, as the CC approaches the halo centre, the
density fluctuations overlap with the soliton region and are consequently suppressed. In contrast, the interface between the tangential and radial
CCs experiences enhanced magnification. The black lines correspond to the CCs of the smooth CDM model.
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Fig. 7. p-values for magnification values equal to or greater than ten in
both the smooth CDM model (purple), and the wave-like FDM model
(green). Each point represents the p-value calculated for pixels inside
the scaled CC contours, with a size expressed as a fraction of the radial
CC size (r/rCC). Different marker symbols denote the p-values corre-
sponding to different ellipticity realizations. As in Fig. 4, the p-value is
the probability within the given model of attaining a magnification equal
to or greater than ten. Dashed, horizontal dashed lines indicate the sig-
nificance contours. The halo and axion masses correspond to model 22
in Table 1, with Mh = 7 × 1011 M� and mψ = 10−22 eV.

When subhaloes are placed closer to the halo centre, their
impact on the global magnification statistics within the radial
CC region diminishes, as shown in Fig. 8. In the limit where a
subhalo lies exactly at the centre, its behaviour becomes nearly
indistinguishable from that of the smooth CDM case. This effect
is partially explained by the magnification of the macro model
(i.e. the galaxy halo) at the subhalo’s location. Subhaloes near
the radial CC, where µ > 1, thus behave as if they were more
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Fig. 8. p-values for magnification values equal or greater than ten in
the smooth CDM model (purple) and adding a subhalo of 107 M� at
different positions relative to the centre of the main halo. As in Figs. 4
and 7, the p-value is the probability of obtaining an image with magni-
fication equal to or greater than ten given the models. The significance
values are indicated by the dashed horizontal lines. The halo and axion
masses correspond to model 22 in Table 1, with Mh = 7 × 1011 M� and
mψ = 10−22 eV.

massive, effectively shifting the radial CC inward and increasing
the p-values within the smaller contours near the centre. Con-
versely, subhaloes located closer to the centre, where µ < 1,
behave as if they had lower effective masses. In these cases,
any increase in p-values is primarily driven by the formation of
secondary CCs, similar to those produced by a solitonic core;
however, these secondary CCs can also demagnify the region
inside them. Since the central macro magnification is lowest, the
enhancement in p-values for centrally placed subhaloes remains
minimal.
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Fig. 9. Same as Fig. 8, showing p-values for magnifications equal to or
greater than ten in the smooth CDM model and after adding subhaloes.
In this case, the subhalo mass varies between realisations, as colour-
coded in the legend, while its position is fixed at half the radius of the
radial critical curve from the centre of the main halo. The halo and axion
masses correspond to model 22 in Table 1, with Mh = 7 × 1011 M� and
mψ = 10−22 eV.

When the subhalo position is fixed (see Fig. 9), the behaviour
simplifies: more massive subhaloes, being stronger overdensi-
ties, more effectively demagnify their central region and reduce
the higher magnification area. Subhaloes closer to the radial CC
remain more efficient at perturbing and shifting the CC inward.

While subhaloes alone cannot reproduce the magnification
statistics of FDM, they may still contribute to positional anoma-
lies, similarly to perturbations introduced by small satellite
galaxies or low-mass cluster members.

6. Discussion

The results presented in this work highlight a key observational
distinction between standard CDM and FDM in the context of
strong gravitational lensing: FDM gives rise to a higher proba-
bility of magnification within the radial CC as a consequence of
interference-driven density patterns. In particular, the negative
mass fluctuations in FDM can compensate for the increase in
κ inside the radial CC, resulting in new critical regions around
the negative fluctuations. Meanwhile, standard CDM models,
even when including subhaloes, fail to reproduce similar levels
of central magnification. This behaviour, unique to FDM scenar-
ios, offers a promising avenue for constraining the nature of dark
matter through precise lensing measurements.

Specifically, we find that extended high-magnification
regions near the centre of lenses, associated with soliton-induced
secondary CCs and fluctuations on de Broglie scales, are difficult
to mimic with conventional CDM substructure. This result sug-
gests that magnification statistics within radial CCs, over a large
span of well-modelled lenses, can provide a complementary
probe of FDM. With the next generation of surveys, including
the ongoing EUCLID mission, the upcoming Rubin-LSST, and
Roman, thousands of galaxy-scale lensing systems are expected
to be discovered. These systems can then be followed up with

specialised instruments that are better suited for strong lensing
and/or spectroscopic analysis.

The magnification statistics presented here characterise
regions of high magnification but do not capture the spatial dis-
tribution of magnifications. Extended sources would require a
follow-up analysis incorporating convolved magnification maps
with specific source shapes. Nonetheless, point-like sources are
better suited to test this statistical framework. Given the resolu-
tion of our simulation, we argue that bright, small sources such
as quasars (QSOs) are well described by our results and rep-
resent an ideal observational test of the predictions presented
here. Subparsec, compact but luminous star clusters, which are
larger sources, are even more suitable, as they are less affected
by microlensing than QSOs.

While some axion mass ranges near 10−22 eV have been
excluded by complementary constraints, it has been argued that
these limits remain weak due to modelling assumptions or noisy
data. Here, we present a complementary lensing-based method
to constrain these ranges.

The smallest axion masses (10−23 eV) are unlikely, as the
large distortions they produce in the critical curves should
already have been observed. The intermediate range, around
10−22–10−21 eV, yields plausible effects. However, we argue that
the largest axion mass considered may provide the most com-
pelling case. While smaller axion masses produce deviations
from the smooth CDM model that are too strong to have gone
unnoticed, this higher mass yields lensing effects that remain
significant when applied to lower-mass haloes but consistent
with current observational constraints in more massive haloes,
where the behaviour closely resembles that of CDM. Interest-
ingly, these smaller haloes are more challenging to detect obser-
vationally, suggesting that this axion mass still offers a viable
and testable window for future studies.

Some unmodelled effects remain, such as the presence of a
central supermassive black hole. We argue that such a compo-
nent would act as a point-like lens, slightly shifting the smooth
CC outwards and introducing a small inner CC, while leaving
the main results of this work effectively unchanged. However, its
impact on the solitonic structure is less clear and is beyond the
scope of this study; therefore, a detailed analysis is deferred to
future work. It is also important to note that the true global den-
sity profiles of real galaxies remain uncertain. Current models
represent the best approximations based on available data and
theoretical expectations. Any revision to our understanding of
the smooth mass distribution would directly affect the resulting
lensing predictions and constraints.

A source of uncertainty arises in the detection of central
bright images, due to the difficulty in disentangling them from
the emission of the lens galaxy itself. In this regard, spectro-
scopic follow-up observations would be valuable to distinguish
between the two, since complementary images of the lensed
source provide an expected spectrum that can be used to sepa-
rate it from the lens galaxy. The application of this methodology
to observational data, along with the associated challenges, will
be addressed in future studies. With the advent of new facilities
conducting large, deep surveys, we anticipate a wealth of data–
particularly for central images of lensed QSOs–that will enable
a detailed statistical study of CDM versus FDM.

7. Conclusion

We explored the impact of wave-like dark matter fluctuations
on gravitational lensing magnification patterns, with a focus on
radial critical curves (CCs). Our analysis reveals observational
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signatures that distinguish FDM from classical CDM, particu-
larly in compact lensing configurations. The main conclusions
of this work are as follows.

– We have shown that wave-like density fluctuations inher-
ent to FDM can enhance magnification near radial CCs in
a manner that is difficult to reproduce with CDM, even when
including substructure. In particular, the negative fluctua-
tions in FDM (relative to the NFW profile), which are not
present in standard CDM, can produce islands of high mag-
nification in the region interior to the radial critical curve.
Such islands cannot be reproduced by classical CDM mod-
els.

– Our results indicate that axion masses in the range 10−22–
10−21 eV, especially within low-mass haloes, produce effects
distinguishable from CDM and merit further investigation.

– Statistical differences in magnification, particularly for
point-like sources such as QSOs or compact star clusters near
the centres of lenses, offer a promising observational signa-
ture for constraining ultralight axion dark matter. This work
motivates targeted searches for these compact, highly mag-
nified sources within radial arcs as potential probes of the
FDM parameter space.

– While enhanced central images are more probable in the
FDM scenario, they remain plausible, though less probable,
in standard CDM models with subhaloes. To place robust
constraints on the axion mass, a statistically significant sam-
ple of lenses with anomalous radial images is required. Each
system would necessitate a tailored lens model, given the
highly non-linear uncertainties associated with the observa-
tional data. A joint likelihood analysis combining multiple
systems would strengthen such constraints. Upcoming wide-
field surveys, such as Euclid, Rubin-LSST, and Roman are
expected to detect numerous lensed systems, providing a
promising dataset for pursuing this approach. The number
of systems with anomalous radial images required to place a
robust constraint on the axion mass within the FDM frame-
work is beyond the scope of this paper, as each system would
require a tailored lens model and propagate the highly non-
linear uncertainties inherent in the observational data.
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Appendix A: Simulated lenses
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Fig. A.1. Magnification maps of simulated lenses according to Table 1. Axion mass increases from left to right, and halo mass increases from top
to bottom.
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Appendix B: Image position anomalies

Fig. B.1. Radial image configurations for three lens models: a smooth particle-like CDM model (left panel), the same model with a 107 M� subhalo
placed halfway between the centre and the radial CC (central panel), and an FDM model corresponding to an axion mass of 5 × 10−22 eV (right
panel). The top row shows the CCs, while the bottom row shows the corresponding caustics. The blue dots in the bottom panels represent a
Gaussian source with a width of 0.8 pixels, placed at the radial caustic to produce bright radial images on the CC. The resulting arcs or images
appear in red in the top panels. In the smooth CDM case, the arcs are symmetric and located on top of the radial CC. When a subhalo is added, a
similar configuration arises, though the image appears closer to the centre and with lower magnification. In the FDM case, the arcs are asymmetric
and exhibit magnification fluctuations on the scale of the axion’s de Broglie wavelength. The two merged radial images seen in the CDM case are
now split into distinct components by the fluctuations. Although the caustics are broader in this case, we can confidently say that for an FDM lens,
if the source size is comparable to the de Broglie scale, significant image position asymmetries and brighter images closer to the centre can arise
compared to the particle-CDM model.
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