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ABSTRACT

Negative symptoms remain a major therapeutic challenge in schizophrenia, significantly impacting functional outcomes, yet
their underlying neural mechanisms remain poorly understood. Traditional static functional connectivity analyses, which ex-
amine average correlations over time, may overlook critical temporal features of brain network organization and fail to capture
dynamic shifts in connectivity patterns. Resting-state functional magnetic resonance imaging (rs-fMRI), particularly when ana-
lyzed using co-activation pattern analysis (CAP), provides a framework to study these dynamic network changes with greater
temporal resolution. Using CAP analysis of rs-fMRI data, we investigated brain network dynamics in 31 schizophrenia patients
with predominant negative symptoms, 31 patients without predominant negative symptoms, and 34 healthy controls. Eight dis-
tinct brain states were identified, characterized by antagonistic relationships between sensorimotor, default mode, and salience
networks. Compared to healthy controls, the overall schizophrenia group showed altered temporal characteristics, including
a reduced occurrence of a sensorimotor-dominant state and excessive transitions from this state to a control-salience network
state. Notably, patients with predominant negative symptoms demonstrated distinct temporal characteristics, including reduced
dwell time in sensorimotor-salience states and excessive transitions from sensorimotor to control-salience network states. In
contrast, patients without predominant negative symptoms did not exhibit such excessive state transitions, while their symptom
severity correlated with the occurrence of a cognitive-sensorimotor network state. Network alterations significantly correlated
with symptom severity in both the overall schizophrenia group and the subgroup without predominant negative symptoms,
while no significant correlations were observed in patients with predominant negative symptoms. These findings suggest that
predominant negative symptoms are associated with stable trait-like network reorganization characterized by excessive state
transitions rather than state-dependent dysregulation, providing potential neuroimaging markers for clinical assessment.
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Summary

» Network Dynamics in Negative Symptoms: Patients
with predominant negative symptoms demonstrated a
unique neural signature, characterized by both spatial
and temporal alterations, including reduced stability
of a sensorimotor-visual state and excessive transi-
tions from sensorimotor to control-salience network
states, suggesting a unique neural signature for nega-
tive symptomatology.

State-Dependent versus Trait-Like Changes: While
the network dynamics of patients without predom-
inant negative symptoms correlate with symptom
severity, suggesting a state-dependent dysregulation,
those with predominant negative symptoms exhibit
stable trait-like network reorganization characterized
by excessive state transitions, indicating different un-
derlying mechanisms.

Clinical-Neural Correlations: Network alterations sig-
nificantly correlate with symptom severity in both the
overall schizophrenia group and the subgroup without
predominant negative symptoms, while no significant
correlations were observed in patients with predomi-
nant negative symptoms, suggesting potential utility
as neuroimaging markers for clinical assessment.

1 | Introduction

Negative symptoms remain one of the most challenging aspects
of schizophrenia to address, despite significant advancements
in psychopharmacology. Affecting approximately 50%-60% of
individuals with schizophrenia, these symptoms significantly
impact clinical and functional outcomes, including long-term
quality of life (Chan et al. 2022; Galderisi et al. 2018). Negative
symptoms, characterized by diminished emotional expression
and motivational deficits (Correll and Schooler 2020; Marder
and Galderisi 2017; Strauss et al. 2019), are often resistant to
current therapeutic approaches, unlike positive symptoms
that typically respond to antipsychotics (Fusar-Poli et al. 2014;
Remington et al. 2016). This treatment resistance, combined
with the complexity and heterogeneity of symptom presenta-
tion, underscores the urgent need for objective biomarkers to
better characterize and manage negative symptoms (Krause
et al. 2018; Millan et al. 2014). Such biomarkers could guide the
development of personalized treatment strategies, particularly
for individuals with predominant negative symptoms (Galderisi
et al. 2015; Remington et al. 2016).

Resting-state functional magnetic resonance imaging (rs-
fMRI) has provided crucial insights into altered brain
connectivity in schizophrenia, with consistent findings of dy-
sconnectivity in networks such as the default mode network
(DMN), ventral attention network (VAN), and frontoparietal
networks (FPN) (Dong et al. 2017; Li et al. 2019; Woodward
etal. 2011). While static functional connectivity linked specific
network alterations to negative symptom severity—particu-
larly in reward-related regions (ventral striatum and orbitof-
rontal cortex) and DMN (Giordano et al. 2023; Wang, Chang,
and Wang 2023; Wang, Zhang, et al. 2023), these approaches
assume temporal stationarity, potentially overlooking the

dynamic nature of brain network interactions (Hutchison
et al. 2013; Lurie et al. 2020; Preti et al. 2017). Motivation and
expressive deficits have been suggested to arise from different
neural correlates within these networks (Giuliani et al. 2024;
Saleh et al. 2021). In contrast, dynamic connectivity analy-
ses have demonstrated the temporal variability of network
configurations (Di and Biswal 2015; Hutchison et al. 2013),
revealing critical insights into schizophrenia-related dy-
sconnectivity (Du et al. 2018; Yu et al. 2015). While sliding-
window approaches have been widely adopted in dynamic
connectivity studies, they face inherent limitations in tempo-
ral resolution and stability, particularly when characterizing
rapid state transitions (Keilholz et al. 2017; Leonardi and Van
De Ville 2015; Lurie et al. 2020). Moreover, existing dynamic
methods vary in their ability to balance temporal sensitiv-
ity with signal-to-noise considerations (Hindriks et al. 2016;
Shakil et al. 2016), which may partly explain the limited appli-
cation of these methods in studying negative symptoms. These
methodological challenges highlight the need for advanced
analytical approaches that can reliably capture both temporal
dynamics and spatial patterns of brain network organization
(Lurie et al. 2020; Preti et al. 2017).

Co-activation pattern (CAP) analysis offers a promising alterna-
tive by combining frame-wise temporal resolution with the abil-
ity to preserve whole-brain spatial patterns (Cohen et al. 2021;
Kaiser et al. 2019; Liu et al. 2018). Originally developed from
point process analysis approaches (Liu and Duyn 2013;
Tagliazucchi et al. 2012), CAP analysis conceptualizes brain
dynamics through distinct snapshots of neural activity, where
individual fMRI volumes are clustered based on their spatial
similarity to identify recurring activation patterns. Unlike tradi-
tional static methods or sliding window approaches that average
connectivity across arbitrary time windows, CAP analysis pre-
serves the native temporal resolution of fMRI data by treating
each volume as an independent sample of brain activity. This
data-driven method overcomes key limitations of traditional
sliding-window approaches by directly capturing instantaneous
brain states without temporal smoothing artifacts, enabling ro-
bust detection of recurring network configurations and their
temporal evolution (Kaiser et al. 2019; Murray et al. 2021).
Technically, the CAP methodology involves normalizing time
series data, applying clustering algorithms (typically k-means)
to identify representative brain states, and assigning each time
frame to its best-matching state based on spatial correlation
(Liu et al. 2018). Through this clustering process, the method
identifies representative activation patterns or states and char-
acterizes their spatial configuration and temporal sequence, al-
lowing researchers to track how the brain transitions between
different functional configurations over time. CAP analysis has
demonstrated unique strengths in quantifying rapid state tran-
sitions through multiple dynamic metrics, including dwell time,
occurrence rate, and transition probabilities (An et al. 2024;
Sun et al. 2024). The high temporal sensitivity of this method
allows detection of subtle variations in network engagement
patterns while maintaining spatial specificity across distributed
brain systems (Zhang et al. 2024). These attributes position CAP
analysis as a powerful tool for identifying disease-specific alter-
ations in brain network dynamics and their associations with
clinical symptoms (Janes et al. 2020; Mentink et al. 2021; Yang,
Tang, et al. 2021; Yang, Zhang, et al. 2021).
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This study aimed to investigate the dynamic network charac-
teristics associated with predominant negative symptoms in
schizophrenia using CAP analysis. Specifically, we explored
spatial stability, temporal dynamics, and state transition pat-
terns to uncover potential neural mechanisms underlying neg-
ative symptomatology. Furthermore, we sought to evaluate
the utility of dynamic network features as candidate neuro-
imaging biomarkers for assessing symptom severity and guid-
ing targeted interventions. Based on the evidence of altered
temporal dynamics in schizophrenia, we hypothesize that pa-
tients with predominant negative symptoms will exhibit dis-
tinct CAP temporal profiles, including reduced stability and
altered transitions among key networks such as the DMN, sa-
lience network, and sensorimotor network, compared to both
patients without predominant negative symptoms and healthy
controls.

2 | Materials and Methods
2.1 | Participants and Clinical Assessment

Patients were recruited from the Shanghai Mental Health
Centre, and diagnoses of schizophrenia were confirmed using
the Structured Clinical Interview for DSM-5 (Regier et al. 2013).
After excluding one schizophrenia patient with excessive head
motion (maximum translation or rotation greater than 2.5mm
or 2.5°), the final sample included 96 participants: 34 healthy
controls (HC; 21 males, mean age 26.1 +3.2years, mean educa-
tion 14.9 +3.7years), 31 schizophrenia patients with predom-
inantly negative symptoms (SCH_Neg; 21 males, mean age
24.6 +5.2years, mean education 12.4 + 2.1 years), and 31 schizo-
phrenia patients with non-predominant negative symptoms
(SCH_Non_Neg; 22 males, mean age 25.0 £ 5.6 years, mean ed-
ucation 13.2 +2.7years).

All participants were right-handed, assessed using the
Edinburgh Handedness Inventory (Oldfield 1971). Clinical
symptoms were assessed using the Positive and Negative
Syndrome Scale (PANSS) (Kay et al. 1987). The SCH_Neg
group was defined by a PANSS negative symptoms subscale
score of >3 on at least 3 items or >4 on at least 2 items, with
a PANSS positive symptom subscale score of <19 (Kong
et al. 2024; Rabinowitz et al. 2013; Stauffer et al. 2012). The
SCH_Non_Neg group consisted of patients not meeting the
criteria for predominant negative symptoms. The HC group
was recruited from the local community and screened to ex-
clude individuals with personal histories of psychiatric disor-
ders, neurological diseases, significant head injuries, or recent
substance abuse. All participants provided written informed
consent, and the study was approved by the Ethics Committee
of Shanghai Mental Health Centre approved the research pro-
tocol (No. 2021-50).

2.2 | MRI Data Acquisition

Neuroimaging data were collected using a 3-Tesla MR scanner
(Verio, Erlangen, Germany) at the Shanghai Mental Health
Centre. High-resolution T1-weighted structural images were
acquired through a magnetization-prepared rapid gradient-echo

(MPRAGE) sequence with the following parameters: repetition
time (TR)=2530ms, echo time (TE)=1.66ms, flip angle=7°,
field of view (FOV)=256X256mm, image matrix=256X 256,
and voxel size=1x1x1mm?, and 182 sagittal slices (total
scan time = 340s). Functional MRI data were obtained using
a planar echo imaging oxygen saturation dependence (ep2D
bold) sequence with TR=2600ms, TE=30ms, acquisition
matrix=64x64, flip angle=90° slice thickness=3.5mm,
FOV =448x448mm, voxel size=3.1Xx3.1x3.5mm, and 40
slices, and 180 volumes (total scan time=468s). During the
resting-state fMRI scan, all participants were instructed to keep
their eyes closed, stay awake, and avoid thinking about anything
specific.

2.3 | fMRI Data Preprocessing

fMRI data preprocessing was performed using DPARSF (http://
rfmri.org/DPARSF) (Yan and Zang 2010). The preprocessing
steps included the following: (1) removal of the first 10 time
points; (2) slice timing correction and realignment; (3) co-
registration of T1 images to fMRI data; (4) segmentation of T1
images into grey matter, white matter, and cerebrospinal fluid;
(5) spatial normalization of the fMRI data to MNI space; (6) nui-
sance regression using 24 head motion parameters, mean white
matter (WM), and mean cerebrospinal fluid (CSF) signal; (7)
detrending; (8) band-pass filter (0.01-0.08 Hz); and (9) spatial
smoothing with a 6 mm FWHM Gaussian kernel.

Following preprocessing, region-specific time series were ex-
tracted from the preprocessed functional data by averaging
the BOLD signals across all voxels within each of the 408 re-
gions of interest (ROIs). The parcellation scheme integrated 400
cortical regions from the Schaefer atlas (Schaefer et al. 2018),
which is based on Yeo's 7-network parcellation (Thomas Yeo
et al. 2011), along with 8 subcortical regions (bilateral caudate
nucleus, putamen, globus pallidus, and amygdala) from the
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al. 2002). These 8 subcortical regions were treated as a sepa-
rate network, referred to as the subcortical network (SCN). This
comprehensive 408-region parcellation was selected to provide
a balanced representation of cortical and subcortical structures
while maintaining comparable spatial resolution across regions
(Yang, Tang, et al. 2021; Yang, Zhang, et al. 2021). The corti-
cal parcellation encompasses seven canonical networks: visual
(VN), somatomotor (SMN), dorsal attention (DAN), salience/
ventral attention (SAN), limbic (LN), control (CN), and default
mode (DMN) networks. These networks were originally derived
using a clustering algorithm on resting-state functional connec-
tivity data (Thomas Yeo et al. 2011).

2.4 | Co-Activation Pattern (CAP) Analysis

CAP analysis was implemented as a frame-wise analytical ap-
proach that treats each fMRIvolume as an independent spatial
configuration, enabling direct characterization of momentary
brain states without temporal averaging. In this framework, a
CAP center represents a characteristic brain activation pattern
identified through clustering, while a CAP state indicates the
assignment of individual time points to their best-matching
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pattern. The CAP analysis was conducted to investigate dy-
namic brain functional connectivity using a region of interest
(ROI) approach, employing the open-source “capcalc” pack-
age (Frederick, B, capcalc [Computer Software] (2016-2022).
Available from https://github.com/bbfrederick/capcalc). This
package, referenced in Janes et al. (2020), is based on earlier
versions of the CAP pipeline reported in Kaiser et al. (2019).
The analysis involved several key steps: (1) Z score normaliza-
tion was applied to individual subject time series to eliminate
scale differences between ROIs; (2) All time series from HC
group subjects were concatenated into a large-scale matrix;
(3) An improved k-means clustering algorithm was applied
to identify co-activation patterns (CAPs), treating each time
point as a 408-dimensional vector; (4) The optimal number of
clusters was determined by testing a range from 2 to 20 clus-
ters and evaluating multiple metrics, including the silhou-
ette coefficient (Rousseeuw 1987), Calinski-Harabasz index
(Calinski and Harabasz 1974), Davies-Bouldin index (Davies
and Bouldin 1979), sum of squared errors, average state transi-
tion probability, and mean error (see Supporting Information
for further details); (5) Clustering was implemented with 100
iterations, 5 random initializations, and a distance measure
based on 1 minus Pearson's correlation coefficient to capture
similarity in spatial activation patterns; (6) Dimensionality
reduction was conducted through principal component analy-
sis (PCA) prior to clustering, using the default settings which
retain 8 principal components, balancing data reduction
with information preservation; (7) The resulting cluster cen-
ters were mapped back to brain space for visualization and
interpretation, with normalized Z value maps ranging from
—1 to 1. To ensure consistent state definitions across groups
while quantifying potential alterations in patient populations,
the clustering pattern derived from the HC group was subse-
quently applied to the schizophrenia groups by calculating
the spatial similarity for each frame between schizophrenia
groups and the normalized CAP patterns derived from the HC
group (Yang, Tang, et al. 2021; Yang, Zhang, et al. 2021). Each
frame was assigned to the CAP state with the highest similar-
ity using Pearson's correlation.

2.5 | Spatial Stability of CAP States

The spatial stability analysis quantifies the consistency of acti-
vation patterns within each CAP state, providing insights into
the reliability of network configurations across time and sub-
jects (see Supporting Information for detailed calculations).
The spatial stability of each CAP state was assessed using two
complementary methods. First, the individual stable activa-
tion rate (iSAR) was calculated for stable regions within each
CAP state. Stable regions were identified at the group level as
areas showing consistent positive (threshold > 0.4) or negative
(threshold < —0.4) activation in more than 50% of subjects. For
each subject, iSAR was then calculated as the proportion of
frames maintaining stable positive or negative activation in
these regions (Zhang et al. 2024). Second, global stability was
evaluated by calculating the distance to the CAP center for
each frame (i.e., each time point of whole-brain activity), de-
fined as 1—r, where r is the Pearson correlation between the
frame and the CAP center. A lower mean distance indicates
higher overall spatial stability. Together, these metrics offer

a comprehensive view of CAP state stability, addressing both
regional and global consistency.

2.6 | Temporal Dynamics of CAP States

The temporal dynamics analysis characterizes how brain states
evolve over time, quantifying both the persistence of individual
states and the patterns of transitions between different network
configurations (see Supporting Information for methodologi-
cal details). To investigate the temporal characteristics of CAP
states, several dynamic features were extracted at the individ-
ual level. The dwell time, defined as the average duration a
subject remains in a specific CAP state before transitioning to
another, was calculated to assess the stability of each state. The
occurrence rate, representing the frequency of each CAP state
relative to the total number of state occurrences, was computed
to evaluate the prevalence of different states. Additionally, the
transition probability matrix was derived, quantifying the like-
lihood of transitioning between different CAP states. To capture
the complexity of state transitions, the entropy of Markov tra-
jectories was calculated using the transition probability matrix
(Ekroot and Cover 1993). This metric provides insight into the
predictability and variability of state transitions, with lower en-
tropy values indicating more deterministic transitions between
CAP states (An et al. 2024).

2.7 | Spatial Similarity and Transition Dynamics
of CAP States

Spatial similarities of CAP states were quantified using Pearson
correlation coefficients. Transition probabilities between CAPs
were calculated from the observed state sequences. To evalu-
ate the symmetry of transitions, forward and reverse transition
probabilities for all state pairs were correlated. To investigate
whether states with higher spatial similarity exhibit preferen-
tial transitions, the correlation between spatial similarity and
symmetrized transition probabilities (average of the transition
probability matrix and its transpose) was analyzed. This anal-
ysis was conducted at both group and individual levels, focus-
ing on inter-state transitions by excluding diagonal elements.
The group-level analysis employed the mean transition matrix
across all subjects, while the individual-level analysis consid-
ered subject-specific transition matrices. For the individual-
level analysis, anti-correlated CAP pairs were excluded to
reduce their influence on linear fitting. These analyses aimed to
elucidate the relationship between the spatial organization and
temporal dynamics of brain states.

2.8 | Reproducibility Analysis

To ensure the robustness of our findings, we conducted sev-
eral complementary validation analyses (see Supporting
Information for further details). First, we evaluated the in-
fluence of PCA dimensionality on clustering performance by
comparing results using different numbers of principal com-
ponents (8, 20, 60) and the full-dimensional data. Second,
we examined the stability of CAP dynamics across different
cluster numbers (k=6, k=7, and k=38) to verify that our
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main findings were not dependent on the specific choice of
k. Third, we assessed whether deriving CAPs from different
subject groups (healthy controls, schizophrenia patients, or
all subjects combined) affected the detection of group differ-
ences. Fourth, we tested the stability of results across differ-
ent parcellation schemes (AAL-116, Brainnetome-246, and
Schaefer-408). Finally, we performed external validation
using the independent COBRE dataset to assess the general-
izability of our findings.

2.9 | Statistical Analysis

Demographic characteristics were compared using chi-square
tests for categorical variables and one-way ANOVA for con-
tinuous variables. Clinical measures were compared between
schizophrenia subgroups using independent t-tests. Group
comparisons of CAP dynamic features were conducted using
analysis of covariance (ANCOVA), controlling for age, sex,
and education level, with post hoc Tukey's HSD tests. Partial
Spearman correlation analyses, adjusting for age, sex, and ed-
ucation level, examined relationships between CAP features
and clinic symptom scores. Pearson correlation analyzed the
relationship between spatial similarity and symmetrized transi-
tion probabilities of CAP states. All analyses were performed for
schizophrenia subgroups (SCH_Neg, SCH_Non_Neg) and also
the whole schizophrenia (SCH) group.

To control for multiple comparisons, false discovery rate (FDR)
correction was performed using the Benjamini-Hochberg proce-
dure. For comparisons between two groups (HC vs. SCH), FDR
correction was applied across all features within each CAP dy-
namic property (e.g., spatial stability, temporal dynamics, tran-
sition probabilities). For analyses involving three groups (HC,
SCH_Neg, SCH_Non_Neg), FDR correction was applied to the
p values from post hoc pairwise tests (i.e., HC vs. SCH_Neg, HC
vs. SCH_Non_Neg, SCH_Neg vs. SCH_Non_Neg) within each
feature. For correlation analyses with clinical symptom scores,
FDR correction was performed separately for each clinical scale
within each CAP feature type. Statistical significance was set
at p<0.05 (two-tailed). All statistical analyses were conducted

using Python (version 3.10.11) with scipy (version 1.11.4), stats-
models (version 0.14.2), and pingouin (version 0.5.4) packages.

Additionally, to evaluate the potential influence of medication,
we conducted sensitivity analyses by including chlorpromazine
equivalent dosage as an additional covariate for participants
with available medication information. A parallel analysis in-
corporating illness duration as a covariate was also performed.
Further details of these sensitivity analyses are provided in the
Supporting Information.

3 | Results
3.1 | Demographics and Clinical Characteristics

Table 1 summarizes the demographic and clinical character-
istics of the study participants. Significant differences in edu-
cation were observed among the three groups (HC, SCH_Neg,
and SCH_Non_Neg groups) (F=5.34, p=0.006). SCH_Neg
patients had higher PANSS negative scores (t=4.78, p <0.001),
general psychopathology scores (t=2.37, p=0.021), and total
PANSS scores (t=2.92, p=0.005) compared to SCH_Non_Neg
patients.

3.2 | CAP States and Their Spatial Patterns

We employed CAP analysis to explore dynamic co-activation pat-
terns across fMRI data, deriving coactivation patterns from all
HC subjects through temporal k-means clustering. Eight distinct
CAP states were identified based on multiple evaluation metrics
(see Figure S1), exhibiting unique spatial patterns of activation
and deactivation across various functional networks. These
states formed four pairs with opposing spatial configurations
(Figure 1). To reflect the dominant network contributions, each
CAP is described by its primary positively and negatively acti-
vated networks with activation percentages generally above 20%,
ordered by activation strength. The first pair comprised CAP1
(VN+/SMN+/DMN+, CN-/SAN-) and CAP6 (CN+/SAN+,
DMN-/VN-/SMN-), while the second pair consisted of CAP2

TABLE1 | Demographic and clinical characteristics of the study participants.

Characteristic HC (n=34) SCH_Neg (n=31) SCH_Non_Neg (n=31) Statistics P

Sex (male, %) 21 (61.8%) 21 (67.7%) 22 (71.0%) X =0.64 0.725
Age 26.1+3.0 24.6+5.3 25.0+5.9 Fy45=0.78 0.462
Year of education 149+3.6 12.4+29 13.2+£29 Fpo3=5.34 0.006**
Duration of Illness — 64.8+42.8 56.3+61.0 (n=30) f(s9)=0.63 0.530
CPZ — 211.5+182.6 (n=25) 239.0+184.9 (n=29) t(52)=—0.55 0.587
PANSS postive — 12.5+£3.2 13.0£5.3 Looy= —0.46 0.645
PANSS negative — 274+£6.5 19.4+6.6 t(éo):4.78 <0.001%**
PANSS general — 38.6x7.0 33.0x11.1 t(60)22'37 0.021*
PANSS total — 78.5+12.7 65.4+21.5 t(so) =2.92 0.005**

Note: Values are presented as mean + standard deviation or n (%). Significance levels: *p <0.05; **p <0.01; ***p < 0.001.
Abbreviations: CPZ: chlorpromazine equivalent dose; HC: healthy controls; PANSS: Positive and Negative Syndrome Scale.; SCH_Neg: Schizophrenia patients with
predominant negative symptoms; SCH_Non_Neg: Schizophrenia patients without predominant negative symptoms.
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FIGURE1 | Spatial patterns of the eight identified CAPs. Each CAP represents a distinct configuration of positive (red) and negative (blue) activa-

tion across various brain networks. Z values indicate the degree of activation relative to the mean signal, with positive values representing increased
activation and negative values representing decreased activation. Radar plots show the activation percentage for each network in each CAP, with
connecting lines (red for positive activation, blue for negative activation) visualizing the overall activation pattern across brain networks. The CAPs
are characterized as follows: CAP1 (VN+/SMN+/DMN+, CN-/SAN-), CAP2 (SMN+/VN+, DMN-/CN-), CAP3 (SMN+/SAN+, DMN-/CN-), CAP4
(DMN+/CN+, SMN-/VN-), CAP5 (SMN+, DMN-/SMN-), CAP6 (CN+/SAN+, VN-/DMN-/SMN-), CAP7 (DMN+/CN+, SMN-/SAN-), and CAP8
(CN+/SMN+, SMN-/DMN-). Abbreviations: CN, control network; DAN, dorsal attention network; DMN, default mode network; LN, limbic network;
SAN, salience/ventral attention network; SCN, subcortical network.; SMN, somatomotor network; VN, visual network.

(SMN+/VN+, DMN-/CN-) and CAP4 (DMN+/CN+, SMN-/
VN-). The third pair included CAP3 (SMN+/SAN+, DMN-) and
CAP7 (DMN+/CN+, SMN-/SAN-), and the fourth pair contained
CAP5 (SMN+, DMN-/SMN-) and CAP8 (SMN+/CN+, SMN-/
DMN-), which share similar DMN deactivation patterns but
show opposing network organization primarily through control

network activity (prominent in CAP8 but minimal in CAPS5)
and through multiple other networks with reversed activation
patterns (see Table S6 for complete network activation profiles).
These anti-correlated pairs underscored the dynamic interplay
between different functional networks, particularly emphasizing
the antagonistic relationships among the DMN, SMN, and SAN.
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FIGURE 2 | Spatial similarity and transition dynamics of CAP states in HC group. (A) Spatial similarity matrix between CAP states. (B) Group-
level transition probability matrix. (C) Group-level correlation between spatial similarity and symmetrized transition probabilities. (D) Individual-
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(y-axis: CAP state B to A, x-axis: CAP state A to B). For C-F, each point represents a CAP state pair, excluding diagonal elements (within-state transi-
tions). Shaded areas indicate 95% confidence intervals. Significance levels: *p <0.05, **p <0.01, ***p < 0.001, ****p <0.0001.

3.3 | Transition Probabilities and Spatial CAP3-CAP7, CAP5-CAP8), with correlation coefficients
Similarities Between CAP States ranging from —0.97 to —0.99, demonstrating clear spatial sym-

metry within each pair (Figure 2A). The transition probabil-
Spatial similarity analysis identified four pairs of anti- ity matrix revealed distinct patterns across states, with CAP7

correlated CAP  states (CAP1-CAP6, CAP2-CAP4, and CAP1 showing the highest persistence probabilities (0.54
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and 0.52, respectively), while CAPS5 exhibited the lowest (0.29)
(Figure 2B). Inter-state transition probabilities were generally
lower (0.01-0.18), with the most frequent transitions observed
between CAP1-CAP2 (0.18) and CAP4-CAP6 (0.17). Notably,
transitions between anti-correlated CAP pairs were minimal
(0.001-0.03), suggesting functional segregation among these
pairs. Group-level analysis showed a significant positive cor-
relation between spatial similarity and symmetrized transi-
tion probabilities (r=0.82, p <0.001), which was also observed
at the individual level (r=0.59, p<0.001) (Figure 2C,D).
Examination of transition probability symmetry revealed
positive correlations at both group (r=0.57, p<0.01) and indi-
vidual (r=0.16, p<0.001) levels (Figure 2E,F), with a weaker
correlation at the individual level, indicating asymmetry in
dynamic transitions among CAP states. Additional analyses
for SCH_Neg and SCH_Non_Neg groups are presented in the
Figure S2.

3.4 | Spatial Stability of CAP States

The spatial stability of CAPs revealed significant differences
between groups. In the whole-group comparison (HC vs. the
whole SCH), schizophrenia patients exhibited greater distances
to CAP centers in both CAP2 and CAP5, while showing reduced
distance in CAP4 compared to HC, though these differences did
not survive FDR correction (Figure 3A,B). Similarly, SCH pa-
tients showed higher positive iSAR in CAP6 compared to HC.
In the subgroup comparison (HC, SCH_Neg, SCH_Non_Neg),
CAP2 iSAR was lower in SCH_Neg compared to both HC and
SCH_Non_Neg groups, while CAP4 distance to center was re-
duced in both patient subgroups compared to HC.

3.5 | Temporal Dynamics of CAP States

The temporal dynamics of CAP state differed significantly
among groups. In the whole-group comparison (HC vs. the whole
SCH; Figure 4, Table S1), CAP3 exhibited longer dwell times in
HC compared to SCH (p=0.006) (Figure 4A). Occurrence rates
differed significantly for CAP3 (p=0.007), CAP5 (p=0.006),
and CAP7 (p=0.019) (Figure 4B). Specifically, SCH showed
higher occurrence rates for CAP3 and CAP7 compared to HC,
while HC exhibited a higher rate for CAP5. Transition proba-
bility analysis revealed differences in several transitions, with
HC showing higher probabilities for CAP3 to CAP8, CAP4 to
CAP6, and CAPS self-transitions, while SCH exhibited higher
probabilities for CAP5 to CAP6 and CAP6 to CAP3 transitions
(Figure 4C). Markov trajectory entropy was higher in HC for
transitions to CAP3 from multiple states and lower for CAP2
and CAPS self-transitions compared to SCH (Figure 4D).

In the subgroup comparison (HC, SCH_Neg, SCH_Non_Neg;
Figure 5, Table S2), both patient groups exhibited shorter CAP3
dwell times compared to HC, with SCH_Neg showing the
most pronounced reduction (Figure 5A). For occurrence rates,
SCH_Neg patients showed higher CAP3 rates and lower CAP5
rates relative to HC (Figure 5B). Regarding transition probabil-
ities, SCH_Non_Neg exhibited increased CAP1 to CAP3 tran-
sitions compared to both HC and SCH_Neg groups, while HC
demonstrated higher probabilities in CAP4 to CAP6 and CAP5

self-transitions compared to both patient groups. Most notably,
SCH_ Neg patients showed distinct CAP5 to CAP6 transition pat-
terns, with significantly higher probabilities than both HC and
SCH_Non_Neg groups (Figure 5C). Markov trajectory entropy
analysis revealed lower entropy values in both patient groups
compared to HC across multiple transitions to CAP3, with
SCH_Neg showing the most consistent reductions (Figure 5D).

3.6 | Clinical Correlations of CAP Features

Significant correlations between CAP features and clinical
symptoms were observed in the whole SCH group after FDR
correction. The distance to center for CAP7 positively cor-
related with PANSS positive scores (r=0.343, p=0.032), while
the distance to center for CAP3 showed a significant negative
correlation with positive symptoms (r=—0.366, p=0.032). The
occurrence rate of CAP8 was positively associated with PANSS
positive (r=0.430, p=0.005), general psychopathology (r=0.449,
p=0.003), and total scores (r=0.443, p=0.004). For transition
probabilities, CAP5 to CAP7 transitions positively correlated
with PANSS positive scores (r=0.438, p=0.032), while CAP3 to
CAP1 transitions showed strong negative correlations with neg-
ative symptoms (r=—0.528, p=0.001), general psychopathology
(r=-0.493, p=0.005), and total scores (r=-0.526, p=0.001).
These correlations are visualized in Figure S5.

Further analysis of SCH subgroups revealed distinct patterns. In
the SCH_Neg group, no significant correlations remained after
FDR correction (Figure S6). In contrast, the SCH_Non_Neg
group showed strong positive correlations between the occur-
rence rate of CAP8 and all PANSS measures after FDR correc-
tion: positive symptoms (r=0.647, p=0.002), negative symptoms
(r=0.570, p=0.012), general psychopathology (r=0.630,
p=0.003), and total score (r=0.668, p=0.001) (Figures 6 and
S7). The different correlation patterns between subgroups sug-
gest distinct neurobiological mechanisms may underlie symp-
tom manifestation in different schizophrenia subtypes.

3.7 | Reproducibility of CAP Analysis

To assess the robustness of our findings, we conducted compre-
hensive reproducibility analyses across multiple methodological
dimensions (detailed in Supporting Information). Varying the
PCA dimensionality (8, 20, 60 components, and full data) re-
vealed consistent spatial patterns (r=0.98-1.0) and maintained
key group differences in temporal dynamics across all condi-
tions (Figure S8). Comparing different cluster numbers (k=6,
7, 8) demonstrated high spatial correspondence between equiv-
alent CAP states (r=0.68-0.95) and preserved significant group
differences, particularly for occurrence rates of corresponding
states (Figure S9). Analysis of different clustering sources (HC,
SCH, or combined) showed that HC-derived CAPs provided
optimal sensitivity for detecting disease-related alterations
while maintaining consistent spatial patterns (Figure S10).
Testing across multiple brain parcellation schemes (AAL-116,
Brainnetome-246, Schaefer-408) confirmed that our findings
were robust to atlas choice, with the Schaefer-408 atlas provid-
ing superior clustering quality (Figure S11). Finally, external
validation using the independent COBRE dataset demonstrated
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strong spatial correspondence between matched CAP states
(r>0.90) and replicated key group differences in temporal dy-
namics in a two-group comparison (HC vs. SCH) (Figure S12).

3.8 | Medication and Illness Duration Effects

Sensitivity analyses examining the influence of antipsychotic
medication and illness duration revealed differential effects on

CAP features. In the medication model, none of the previously
significant features in the two-group comparison retained signif-
icance, while in the subgroup comparison, only the difference
in CAP2 iSAR between SCH_Neg and SCH_Non_Neg remained
significant (t=2.457, p=0.016). The illness duration model pre-
served more significant findings, including CAP5 occurrence
rate (F=6.077, p=0.016) and multiple Markov trajectory entropy
measures in the two-group comparison. In the subgroup anal-
ysis, the duration model maintained significant differences in
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FIGURE 5 | Temporal dynamics of CAP states in three-group comparison (HC, SCH_Neg, SCH_Non_Neg). (A) Dwell time for each CAP state.
(B) Occurrence rate for each CAP state. (C) Transition probabilities between CAP states. (D) Markov trajectory entropy for transitions between CAP
states. Bar plots show mean values with standard error. Asterisks indicate significant differences between groups (*p <0.05, **p < 0.01, ***p <0.001),
while + indicates significance retained after FDR correction applied to post hoc pairwise tests within each CAP state. Detailed statistical data are

provided in Table S2.
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FIGURE 6 | Significant correlations between CAP features and clinical symptoms in the SCH_Non_Neg group. Only correlations that remained

significant after FDR correction are shown. FDR correction was applied separately for each clinical scale within each CAP feature. Significant levels:

*p<0.05, **p<0.01, ***p <0.001 (FDR-corrected).

CAP2 iSAR (HC vs. SCH_Neg, t=-2.25, p=0.027; SCH_Neg vs.
SCH_Non_Neg, t=2.323, p=0.022), CAP5 occurrence rate (HC
vs. SCH_Neg, t=—-2.56, p=0.012), and CAP5 to CAP6 transition
probability (HC vs. SCH_Neg, t=2.187, p=0.031; SCH_Neg vs.
SCH_Non_Neg, t=-2.756, p=0.007). Detailed results are pre-
sented in Tables S4 and S5.

4 | Discussion

In this study, we investigated dynamic network characteristics in
schizophrenia using CAP analysis, focusing on patients with pre-
dominant negative symptoms. Our findings revealed two distinct
layers of network disruption: general disease effects and symptom-
specific alterations. At the general disease level, patients exhibited

altered spatial stability, with tendencies towards greater variabil-
ity in sensorimotor-related networks (CAP2, CAP5) and reduced
variability in a default-mode state (CAP4). Temporally, they dis-
played instability in a key sensorimotor-salience state (CAP3),
evidenced by decreased dwell time and increased occurrence,
alongside a reduced prevalence of a sensorimotor-dominant state
(CAP5). At the symptom-specific level, the SCH_Neg group was
uniquely characterized by significantly lower spatial stability in
a sensorimotor-visual state (CAP2). This group also showed pro-
found temporal disruptions, including a sharply reduced CAP3
dwell time, lower CAPS5 occurrence, and markedly increased
transitions from this sensorimotor state to a control-salience state
(CAPS to CAPS6). The dissociation between global disease-related
changes and subgroup-specific patterns underscores the hetero-
geneity of neural dysfunction in schizophrenia.
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4.1 | Neural Mechanisms Underlying Spatial
Stability Alterations

The observed network stability alterations in schizophrenia
reveal distinct patterns of disruption in both regional activa-
tion consistency and global spatial configurations, manifesting
general disease effects and symptom-specific characteristics
(Doucet et al. 2020; Georgiadis et al. 2024). At the general dis-
ease level, schizophrenia patients demonstrated impaired sta-
bility in maintaining sensorimotor network states, evidenced
by increased spatial variability (greater distance to center) in
both CAP2 (sensorimotor-visual) and CAP5 (sensorimotor-
dominant). Particularly noteworthy was the disrupted balance
in the anti-correlated CAP2-CAP4 pair, where schizophrenia
patients showed destabilized sensorimotor-visual processing in
CAP2 coupled with an overly rigid default-control state (CAP4),
in contrast to the balanced stability maintained by healthy con-
trols. This imbalanced pattern, together with the destabilization
of the sensorimotor-dominated CAP5, suggests a fundamental
disruption in the brain's ability to maintain appropriate dy-
namic segregation between external sensory and internal cog-
nitive processing (Fan et al. 2022; Kaufmann et al. 2015; Long
et al. 2020).

Crucially, the destabilization of the sensorimotor-visual state
(CAP2) was most pronounced in the SCH_Neg group, which
showed significantly lower regional activation consistency
(iSAR) compared to both controls and SCH_Non_Neg patients.
This suggests that while a general deficit in sensorimotor net-
work stability exists in schizophrenia, a profound and specific
inability to consistently engage sensorimotor-visual networks
for environmental processing may be a distinct neural signature
of predominant negative symptoms (Kaufmann et al. 2015; Sun
et al. 2021). In contrast, the enhanced stability of the control-
salience network (increased positive iSAR in CAP6) in the over-
all patient group may hint at a compensatory mechanism or a
different aspect of network dysregulation that warrants further
investigation (Arkin et al. 2020; Horne et al. 2021). Taken to-
gether, while global spatial stability alterations in several states
characterize the disease process, the specific and robust de-
stabilization of CAP2 in the SCH_Neg group points toward a
key mechanism underlying symptom heterogeneity in schizo-
phrenia (Pico-Perez et al. 2022; Vanes et al. 2019; Voineskos
et al. 2024), where preserved sensorimotor integration might
serve as a protective factor against negative symptoms.

4.2 | Temporal Dynamics and Clinical
Implications

Analysis of temporal dynamics revealed distinct alterations in
brain network states acrossschizophrenia patients. At the general
disease level, the shortened dwell time of CAP3 (sensorimotor-
salience) indicates reduced temporal stability in coordinating
sensorimotor and salience network activation while suppress-
ing default mode activity (Kottaram et al. 2019), consistent with
widespread temporal stability reduction in sensory and percep-
tual systems observed in schizophrenia (Hegarty et al. 2020;
Hou et al. 2023; Long et al. 2023). The altered occurrence pat-
tern further suggests a shift from external sensory processing

to internal cognitive states, marked by an increased occur-
rence of the DMN-control state (CAP7) at the expense of the
sensorimotor-dominant state (CAP5) (Bolton et al. 2020; Dima
et al. 2020; Yang, Tang, et al. 2021; Yang, Zhang, et al. 2021).
These temporal characteristics manifest through complex alter-
ations in state transition patterns. Notably, patients exhibited
heightened transitions from the sensorimotor-dominant state
(CAP5) to the control-salience state (CAP6), while showing
reduced transitions between other states like CAP4 to CAP6.
Further, the flexibility of network dynamics showed a multi-
faceted dysregulation; pathways leading into the sensorimotor-
salience state (CAP3) became more rigid and predictable (lower
entropy), whereas the ability to sustain certain perceptual states
appeared compromised (higher entropy for CAP2 and CAP5
self-transitions), reflecting a challenged ability to maintain
flexible network configurations necessary for adaptive behav-
ior (Blair et al. 2024; Hou et al. 2023; Wang, Peng, et al. 2021;
Wang, Jiang, et al. 2021; Yang et al. 2015). The alterations in
CAP3 temporal dynamics, together with the overall pattern of
network state changes, point to disrupted integration between
large-scale brain networks (Snyder et al. 2021; Wang et al. 2016;
Yang, Tang, et al. 2021; Yang, Zhang, et al. 2021), underlying im-
paired sensory processing and environmental interaction (Long
et al. 2023; Schimmelpfennig et al. 2023).

SCH_Neg patients showed distinct temporal characteristics
that suggest specific pathophysiological mechanisms (Giuliani
et al. 2024; Raucher-Chene et al. 2022; Wang, Chang, and
Wang 2023). This was most evident in their state transition dy-
namics, where the SCH_Neg group exhibited a markedly in-
creased probability of transitioning from the sensorimotor state
(CAP5) to the control-salience state (CAP6). This suggests a pro-
found inability to sustain engagement with sensorimotor infor-
mation, leading to an excessively rapid, and perhaps premature,
recruitment of higher-order control networks. Such an imbal-
anced dynamic—an impaired maintenance of perceptual states
coupled with a hyperactive switch to cognitive control—may
directly underlie the avolition and diminished expression char-
acteristic of negative symptoms (Cattarinussi et al. 2023; Correll
and Schooler 2020; Wertz et al. 2019). This interpretation is sup-
ported by converging evidence from our data: this group also
showed the most pronounced reduction in CAP3 dwell time and
the lowest occurrence of CAP5, alongside the most consistently
reduced entropy for transitions into CAP3, all pointing to a core
deficit in maintaining stable, externally focused brain states. In
contrast, the SCH_Non_Neg group displayed a different pattern,
with increased transitions from CAP1 to CAP3, potentially re-
flecting a more adaptive dynamic that preserves a degree of flexi-
bility between perceptual and cognitive states (Collin et al. 2025;
Kuehn et al. 2025). It is important to acknowledge, however, that
the SCH_Neg group also presented with higher general psycho-
pathology scores. While the observed temporal patterns strongly
align with the negative symptom profile, future studies should
aim to disentangle the unique contribution of negative symptoms
from that of overall illness severity (Chan et al. 2022; Voineskos
et al. 2024). These distinct temporal characteristics not only ad-
vance our understanding of symptom-specific mechanisms but
also provide potential neuroimaging markers for clinical assess-
ment and therapeutic targeting (Giuliani et al. 2024; Ramirez-
Mabhaluf et al. 2023; Wang, Zhang, et al. 2023).
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4.3 | Clinical Correlations and Symptom-Specific
Mechanisms

Our correlation analyses revealed complex relationships between
network dynamics and clinical symptomatology, highlighting
both pathological and potentially adaptive neural processes. At
the general disease level, network instability manifested through
two primary patterns. First, states associated with internal men-
tation and higher-order control were linked to greater symptom
severity. The instability of CAP7 (DMN-control) and higher
occurrence of CAP8 (cognitive-sensorimotor integration) cor-
related with more severe positive and general psychopathology,
respectively (Yang, Tang, et al. 2021; Yang, Zhang, et al. 2021;
You et al. 2022). This suggests that excessive engagement of
these internal cognitive states may contribute to clinical symp-
toms (Kottaram et al. 2019). Second, and perhaps more impor-
tantly, we identified a potentially protective dynamic: a higher
probability of transitioning from CAP3 (sensorimotor-salience)
to CAP1 (integrated visual-sensorimotor-DMN) was strongly as-
sociated with lower negative and general symptom scores. This
suggests that the ability to efficiently transition from process-
ing salient external information to a state of broader perceptual
and cognitive integration may serve as a crucial resilience fac-
tor against core symptoms of schizophrenia (Bolton et al. 2020;
Hare et al. 2019; Thakuri et al. 2024).

The subgroup analysis revealed two distinct clinical-neural
profiles, clearly illustrating the heterogeneity of the disorder.
Notably, the SCH_Neg group exhibited no significant correla-
tions between their pronounced network alterations and symp-
tom severity. This dissociation provides strong support for a
“trait-like” model of predominant negative symptoms, where
the observed network dysfunctions (e.g., CAP2 instability and
rapid CAP5-to-CAP6 transitions) represent a stable, enduring
neurobiological characteristic rather than a fluctuating state-
dependent phenomenon (Giordano et al. 2023; Raucher-Chene
et al. 2022; Wu et al. 2021). In stark contrast, the SCH_Non_Neg
group displayed a dynamic, state-dependent symptom-network
relationship. Here, the occurrence rate of CAP8 correlated
strongly with all dimensions of symptomatology, including
positive, negative, and general psychopathology. This finding
is critical as it directly addresses the potential confounding in-
fluence of general symptoms, suggesting that in this subgroup,
CAP8 occurrence may function as a state-dependent marker of
overall illness severity rather than a mechanism specific to one
symptom domain (Li et al. 2023; Niu et al. 2025). These distinct
patterns demonstrate that predominant negative symptoms may
arise from a stable disruption of network flexibility, whereas
other symptoms in less severe subtypes could emerge from
state-dependent network dysregulations that track with overall
illness burden (Bolton et al. 2020; Vanes et al. 2019; Yang, Tang,
et al. 2021; Yang, Zhang, et al. 2021).

4.4 | Medication and Illness Duration Effects

A critical consideration in schizophrenia neuroimaging is the
potential confounding influence of antipsychotic medication
and illness duration. Our sensitivity analyses revealed differen-
tial effects of these factors on CAP features. When controlling
for chlorpromazine equivalent dosage, most group differences

observed in our primary analyses, particularly in the two-group
comparison, did not retain statistical significance. This out-
come may suggest that some observed network dynamics are
influenced by medication, or alternatively, that antipsychotic
treatment may partially normalize or mask underlying patho-
physiological alterations, a distinction our cross-sectional design
cannot fully resolve (Sarpal et al. 2015; Wang, Peng, et al. 2021;
Wang, Jiang, et al. 2021; Yang, Tang, et al. 2021; Yang, Zhang,
et al. 2021). Notably, the reduced regional stability (iSAR) of
CAP2 robustly differentiated the SCH_Neg group from the
SCH_Non_Neg group even after accounting for medication ef-
fects. This provides strong support that this specific deficit in
sensorimotor-visual network stability is a core feature of the pre-
dominant negative symptom subtype, potentially independent
of typical medication exposure.

In contrast, a greater number of findings remained significant
after controlling for illness duration. Crucially, the key temporal
signatures characterizing the SCH_Neg group—including their
lower CAPS5 occurrence rate and, most importantly, their height-
ened transition probability from CAP5 to CAP6—remained
robust. The resilience of these findings to the effects of illness
duration argues against them being merely a consequence of
disease chronicity. Instead, it strengthens the interpretation
that these specific temporal dynamics, particularly the exces-
sive switching from sensorimotor to control-salience states,
may represent stable, trait-like neural markers of the negative
symptom phenotype rather than an artifact of long-term illness
(Li et al. 2025; Li et al. 2017). Taken together, while caution is
warranted in interpreting findings sensitive to medication, our
sensitivity analyses underscore the robustness of the core spatial
(CAP2iSAR) and temporal (CAP5-to-CAP6 transition) features
that distinguish patients with predominant negative symptoms,
bolstering their potential as valid neurobiological targets.

4.5 | Strengths and Limitations

The primary strength of this study lies in its comprehensive
approach to ensuring the robustness and generalizability of
our findings. Our CAP analysis results are consistent with es-
tablished principles of brain network dynamics, such as the
preferential transitions between spatially similar states and the
functional segregation of anti-correlated networks, lending con-
fidence to our methodological approach (Sun et al. 2024; Yang,
Tang, et al. 2021; Yang, Zhang, et al. 2021; Zhang et al. 2024).
Crucially, we conducted extensive validation analyses, detailed
in the Supporting Information, which demonstrated the stabil-
ity of our main findings across different analytical choices, in-
cluding PCA dimensionality, cluster numbers, and parcellation
schemes. Furthermore, the successful replication of key tem-
poral dynamic alterations in the independent COBRE dataset
substantially strengthens the generalizability of our results. The
three-group design was another key strength, enabling the dis-
sociation of general disease-related effects from neural patterns
specific to predominant negative symptoms.

Nevertheless, several limitations should be acknowledged. First,
the sample size is relatively modest, and the single-center de-
sign may limit the broader generalizability of our findings.
Second, while our sensitivity analyses addressed the influence
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of medication and illness duration, the cross-sectional nature
of the data precludes definitive conclusions about their causal
effects. The observed group differences in general psychopa-
thology scores also warrant caution in attributing all findings
exclusively to negative symptomatology. Finally, the temporal
resolution of our fMRI data (TR=2.6s) may not fully capture
more rapid state transitions. Future research employing larger,
multi-center, and longitudinal cohorts is needed to confirm these
findings, track their developmental trajectory, and ultimately
explore their potential as targets for therapeutic intervention.

4.6 | Conclusions

Our analysis revealed distinct patterns of dynamic network
disruption in schizophrenia, particularly in relation to negative
symptoms. SCH_Neg patients exhibit impaired sensorimotor-
visual network stability and excessive transitions from senso-
rimotor to control-salience states. In addition, these network
alterations are independent of symptom severity, suggesting
stable trait-like reorganization. In contrast, SCH_Non_Neg pa-
tients maintain more adaptive network dynamics, with state-
dependent dysregulation that correlates with clinical symptoms,
potentially serving as a buffer against negative symptomatology.
These findings advance our understanding of schizophrenia's
neural underpinnings and provide a foundation for developing
targeted interventions based on dynamic network biomarkers.
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