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Abstract

Background/Objectives: Auditory sentence comprehension often remains impaired in in‑
dividuals with post‑stroke aphasia despite recovery in word‑level comprehension. Neu‑
roimaging studies have identified a left perisylvian network, especially temporal regions,
as central to sentence comprehension, while the role of left frontal areas and specific
white matter tracts remains debated. This study uses advanced fixel‑based analysis
(FBA) of diffusion MRI to precisely map white matter alterations related to complex sen‑
tence comprehension deficits in subacute Mandarin‑speaking aphasic patients, address‑
ing gaps from prior voxel‑based and English‑specific research. Methods: Twenty‑three
right‑handed native Mandarin speakers with subacute (1–6 months post‑onset) single left‑
hemisphere strokes underwent diffusion MRI. Standard preprocessing and FBAwere con‑
ducted. Whole‑brain linear regression assessed associations between fiber density and
cross‑section (FDC) and non‑canonical sentence comprehension, controlling for age, ed‑
ucation, time post‑stroke, and verb comprehension. Mean FDC was calculated for each
tract containing at least one significant fixel identified by FBA. Partial Spearman’s corre‑
lations examined relationships between mean FDC values within these tracts and com‑
prehension accuracy for each sentence type, controlling for the same covariates. Results:
Canonical sentenceswere comprehended significantly better than non‑canonical sentences.
FBA identified significant positive correlations between FDC and non‑canonical sentence
comprehension in the left superior longitudinal fasciculus (SLF II and SLF III), arcuate fas‑
ciculus (AF), middle longitudinal fasciculus, inferior fronto‑occipital fasciculus, and the
isthmus and splenium of the corpus callosum. Fiber density reduction primarily drove
reductions in FDC, whereas reductions in fiber cross‑section were limited to dorsal tracts
(SLF III and AF). Conclusions: This study highlights a distributed left perisylvian white
matter network critical for complex sentence comprehension in Mandarin speakers, refin‑
ing neurocognitivemodels by identifying specific white matter substrates and demonstrat‑
ing FBA’s utility in aphasia research.
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1. Introduction
The sentence is one of the most fundamental linguistic units for communication. Au‑

ditory sentence comprehension, which engages nearly all core processes involved in lan‑
guage comprehension [1], is frequently impaired in individuals with post‑stroke apha‑
sia and often remains compromised even after auditory word comprehension has re‑
covered [2]. Post‑stroke auditory sentence comprehension deficits may arise from var‑
ious underlying causes, including syntactic processing impairments, cognitive control
deficits [3,4], and working memory impairments [5].

Various neuroimaging techniques have been employed to underpin the neural corre‑
lates of auditory sentence comprehension, including functional magnetic resonance imag‑
ing (fMRI) [6–8], voxel‑based lesion symptom mapping (VLSM) [9–16], structural dis‑
connection mapping [16,17], connectome‑based lesion‑symptom mapping (CLSM), and
tract‑ [18–20] or connectome‑level analyses [10,13,15,21] of diffusion magnetic resonance
imaging (dMRI). Based on evidence from these studies, current neurocognitive models of
sentence processing [1,3,22–24] describe a network of left perisylvian brain regions that
are central to auditory sentence comprehension, with particular emphasis on left tempo‑
ral areas. However, the specific contribution of left frontal regions—particularly the left
posterior inferior frontal gyrus—remains debated. Some models suggest it is crucial for
core syntactic computations and complex sentence processing [3,22], while others argue
that its role is either non‑specific or primarily confined to sentence production rather than
comprehension [24]. As for white matter, dorsal tracts have been considered crucial for au‑
ditory sentence comprehension [1,22,25,26]. More specifically, the left arcuate fasciculus
(AF) and superior longitudinal fasciculus (SLF) have been implicated in syntactic process‑
ing [26–29], phonological processing [30], and verbal working memory [15]. Evidence also
suggests that ventral tracts contribute to sentence comprehension [13,15,24]. For example,
the left inferior longitudinal fasciculus (ILF) and inferior fronto‑occipital fasciculus (IFOF)
are associated with syntactic processing [15] and general sentence comprehension [16,29].
The left extreme capsule fiber system, which is considered a continuous ventral fiber sys‑
tem encompassing uncinate fasciculus and IFOF [31,32], has also been implicated in sup‑
porting syntactic processing [27,33,34]. In addition, white matter tracts in the right hemi‑
sphere [35] and interhemispheric tracts—particularly the corpus callosum [15,22,36,37]—
have also been suggested to be important for auditory sentence comprehension.

However, previous neuroimaging studies have primarily been conducted at the voxel
level, limiting the capacity to accurately resolve complex fiber architectures, such as cross‑
ing fibers. Recently, a sub‑voxel resolution neuroimaging technique called fixel‑based anal‑
ysis (FBA) has been developed. FBA is an advanced diffusionMRI (dMRI) analytical frame‑
work that enables statistical inference at the level of individual fiber populations within
voxels—termed fixels. FBA can estimate multiple fiber orientations per voxel [38,39], of‑
fering a more precise and detailed representation of white matter structure, particularly
in regions with fiber crossings. FBA employs three fixel‑derived metrics: fiber density
(FD) [40], fiber cross‑section (FC), and their combined measure, fiber density and cross‑
section (FDC) [41]. FD reflects the intra‑axonal volume fraction at themicrostructural level,
whereas FC indicates the macroscopic cross‑sectional area of fiber bundles. Consequently,
FDC, the product of FD and FC, relates to the total intra‑axonal volume, serving as an
index of information transmission capacity. This approach enhances sensitivity and inter‑
pretability when identifying microstructural and morphological alterations along specific
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fiber tracts, thus overcoming the limitations inherent to voxel‑averaged measures, which
can be confounded by complex fiber architectures [41].

Previous research on the neural basis of auditory sentence comprehension has pri‑
marily focused on English‑speaking participants, with few studies including Mandarin‑
speaking aphasic patients. Evidence from Mandarin speakers could enhance the under‑
standing of whether specific brain structures support sentence comprehension universally
across languages.

A common pattern seen in patients with aphasia is difficulty with sentences that devi‑
ate from the typical word order for a language. In English and Chinese, this is the Subject‑
Verb‑Object order, which corresponds to the Agent‑Theme order. Canonical sentences
(Example 1a–c) follow this typical word order. Non‑canonical sentences deviate from this
standard word order bymoving constituents such as the object across the verb and subject.
Ba‑sentences (Example 2a) inMandarin Chinese are sentences in which the object is placed
immediately after the function word ‘把’ (ba), followed by the verb or verb phrase, result‑
ing in non‑canonical Subject‑Object‑Verb order. Passive sentences (Example b) are typical
non‑canonical sentences both in Chinese and English, as they follow the Theme‑Agent
order. Object extracted wh‑questions (Example 2c) are considered non‑canonical in Man‑
darin Chinese because wh‑wordsmove to the sentence initial position at Logical Form [42].
InMandarin Chinese, subject relative clauses (Example 2d) are also non‑canonical because
they reverse the Agent‑Theme order, unlike English where object relative clauses are non‑
canonical. Despite structural differences, both languages show increased difficulty with
non‑canonical sentences [43].

Example 1. Example of canonical sentences in Mandarin Chinese. (a) active sentence;
(b) subject‑extracted wh‑question; (c) object relative clause.

(a)Mandarin
男人 在 埋葬 女人

[nanren zai maizang nüren]
man PROG bury woman

‘ The man is burying the woman. ’
(b)Mandarin

谁 在 埋葬 女人？

[shui zai maizang nüren]
who PROG bury woman

‘ Who is burying the woman. ’
(c)Mandarin
男人 埋葬 的 女人 戴着 帽子。

[nanren maizang de nüren dai‑zhe maozi]
man bury REL woman wear‑PROG hat

‘The woman who the man buries is wearing a hat.’

Example 2. Example of non‑canonical sentences in Mandarin Chinese. (a) ba‑sentence;
(b) passive sentence; (c) object extracted wh‑question; (d) subject relative clause.
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(a)Mandarin
女人 把 男人 埋葬了。

[nüren ba nanren maizang‑le]
woman BA man bury‑PFV

‘ The woman buried the man. ’
(b)Mandarin

女人 被 男人 埋葬了。

[nüren bei nanren maizang‑le]
woman BEI man bury‑PFV

‘ The woman was buried by the man. ’
(c)Mandarin

男人 在 埋葬 谁？

[nanren zai maizang shui]
man PROG bury who

‘ Who is the man burying? ’
(d)Mandarin
埋葬 男人 的 女人 戴着 帽子。

[maizang nanren de nüren dai‑zhe maozi]

bury man REL woman
wear‑
PROG

hat

‘The woman who buries the man is wearing a hat.’

This study aims to precisely map white matter structures associated with auditory
sentence comprehension impairments in 23 native Mandarin‑speaking individuals with
aphasia during the subacute stage of stroke using FBA. We focus on the subacute stage
to minimize the influence of non‑linguistic factors—such as neurological instability and
consciousness disturbance—on the accurate assessment of language function in the acute
stage, and to reduce the influence of extensive neural plasticity and functional reorganiza‑
tion typically observed in the chronic stage.

2. Materials and Methods
2.1. Participants

Participants in this study were from an ongoing post‑stroke aphasia cohort at the
Department of Rehabilitation, Huashan Hospital, Fudan University, recruiting from in‑
patients or regular outpatients receiving rehabilitation treatment. The present analysis
utilized data from all patients enrolled between July 2024 and February 2025. Inclusion
criteria for the cohort comprised a confirmed diagnosis of a single‑hemispheric stroke
within six months before the assessment and subsequent aphasia verified by theMandarin
version of the Western Aphasia Battery (MAB). Exclusion criteria encompassed comorbid
neurological disorders (e.g., moyamoya disease, multiple sclerosis, Parkinson’s disease,
and other Parkinsonian syndromes), psychiatric disorders (e.g., major depressive disor‑
der, bipolar disorder, schizophrenia), and contraindications to magnetic resonance imag‑
ing. To ensure the absence of significant non‑linguistic cognitive impairments, patients
with Non‑Language‑based Cognitive Assessment (NLCA) scores ≤ 65 were excluded. A
total of 385 stroke patients without aphasia or with comorbidities were excluded from the
cohort, as were 107 patients with post‑stroke aphasia exhibiting severe non‑language cog‑
nitive deficits. Ultimately, 23 participants (19 men and 4 women) were included in the
current analysis, with a mean stroke duration of 9.4 weeks at assessment. All participants
were native Mandarin speakers, right‑handed (based on Edinburgh Handedness Inven‑
tory), and had normal or corrected‑to‑normal hearing and vision. Among the 23 partici‑
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pants, 11 were diagnosed with Broca’s aphasia, 8 with anomic aphasia, 2 with Wernicke’s
aphasia, and 2 with transcortical motor aphasia, according to the MAB. All participants
provided informed consent according to the protocol approved by the institutional review
board. Demographic details are summarized in Table 1.

Table 1. Participants’ demographic and behavioral data.

Variables Range, Mean and Standard Deviation
Age (years) Range 30–79; M = 55.4; SD = 12.6

Education (years of formal schooling) Range 6–19; M = 13.5; SD = 3.9

Time post stroke (weeks) Range 4–20; M = 9.4; SD = 4.7

Total score of the NLCA Range 68–79; M = 73.9; SD = 3.2

Aphasia Quotient from the MAB Range 33.2–92.5; M = 61.5; SD = 19.3

Score on the Auditory Word Recognition
task of the MAB Range 24–59; M = 49.2; SD = 10.1

Accuracy of the Verb Comprehension
Test in the CALB‑AVS (%) Range 25–100; M = 75.9; SD = 20.2

Accuracy of canonical sentences in the
Sentence Comprehension Test of the

CALB‑AVS (%)
Range 25–100; M = 72.5; SD = 24.5

Accuracy of non‑canonical sentences in
the Sentence Comprehension Test of the

CALB‑AVS (%)
Range 18.8–100; M = 66.0; SD = 25.1

NLCA = Non‑language‑based Cognitive Assessment; MAB = Mandarin version of the Western Aphasia Battery;
CALB‑AVS = Assessment of Verbs and Sentences from the Chinese Aphasia Language Battery.

2.2. Behavioral Data

Participants’ non‑linguistic cognitive abilities were assessed using the Non‑language‑
basedCognitiveAssessment (NLCA) [44], which evaluates five non‑linguistic cognitive do‑
mains: visuospatial function, attention, memory, reasoning, and executive function. The
maximum total score is 80.

The Mandarin version of the Western Aphasia Battery (MAB) [45] was administered
to evaluate the overall severity of aphasia in participants. Adapted from the verbal section
of the original Western Aphasia Battery, the MAB comprises ten subtests: Conversational
Questions, PictureDescription, Yes/NoQuestions, AuditoryWordRecognition, Sequential
Commands, Repetition, ObjectNaming,Word Fluency, SentenceCompletion, andRespon‑
sive Speech. The Aphasia Quotient (AQ), a weighted average of the subtest scores, serves
as an index of overall aphasia severity.

The Assessment of Verbs and Sentences from the Chinese Aphasia Language Battery
(CALB‑AVS) [46], adapted from the Northwestern Assessment of Verbs and Sentences
(NAVS) [47], was used to evaluate verb and sentence deficits in the participants. The CALB‑
AVS comprises five subtests, amongwhich the Verb Comprehension Test and the Sentence
Comprehension Test were the focus of this study. The Verb Comprehension Test consists
of 20 trials in which participants were asked to identify the correct image from four action
pictures within five seconds after hearing a verb. In the Sentence Comprehension Test,
participants were asked to match an auditorily presented sentence to the corresponding
picture, choosing between two role‑reversed alternatives. The 28 test sentences represent
seven sentence types, three canonical—active sentences (Example 1a), subject‑extracted
wh‑questions (Example 1b), object relative clauses (Example 1c); and four non‑canonical—
ba‑sentences (Example 2a), passive sentences (Example 2b), object‑extracted wh‑questions
(Example 2c), and subject relative clauses (Example 2d).
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2.3. Image Acquisition

dMRI images were acquired using a 3.0T uMR 790 scanner (United Imaging Health‑
care, Shanghai, China) with an echo planar imaging (EPI) sequence (time of
repetition [TR] = 3835 ms; time of echo [TE] = 75.7 ms; flip angle = 90◦; field of view
[FOV] = 209 × 209 mm2; matrix size = 116 × 116; number of slices = 78; voxel
resolution = 1.8 × 1.8 × 1.8 mm3; multiband factor = 3; acquisition time = 6 min 38 s).
A total of 92 non‑collinear diffusion‑weighted directions were collected at b‑values of
1500 s/mm2 and 3000 s/mm2, along with six interleaved b = 0 s/mm2 images. All im‑
ages were acquired with both anterior–posterior (AP) and posterior–anterior (PA) phase‑
encoding directions for susceptibility distortion correction.

T1‑weighted (T1w), T2‑weighted (T2w), and fluid‑attenuated inversion recovery
(FLAIR) images were also acquired at the same MRI session using the same scanner as
part of the protocol of the aphasia cohort. T1w images were acquired with a fast spoiled
gradient echo sequence (TR = 7.2 ms; TE = 2.7 ms; flip angle = 8◦; FOV = 208 × 300 mm2;
matrix size = 116 × 116; number of slices = 320; voxel resolution = 0.8 × 0.8 × 0.8 mm3).
T1w images were used for lesion segmentation, while T2w and FLAIR images were not
used in the current study. The total scan time for all images was approximately 35 min.

2.4. Image Preprocessing

dMRI data were preprocessed using MRtrix3 (version 3.0.4) [48] and FSL (version
6.0.7.9) [49]. A brief overview of the preprocessing pipeline is provided below. First,
the data were denoised using MRtrix3’s dwidenoise [50], followed by removal of Gibbs
ringing artifacts [51]. Susceptibility‑induced off‑resonance fields were estimated us‑
ing TOPUP from FSL [52]. Subsequently, eddy current‑induced distortion correction,
susceptibility‑induced distortion correction [53], outlier detection and replacement [54],
between‑volumes and within‑volumes motion correction [55] as well as susceptibility‑by‑
movement correction [56] were performed with EDDY from FSL. B1 field inhomogeneity
was corrected using theN4 algorithm [57]. The preprocessed dMRI datawere resampled to
ACPC orientation, and their corresponding gradient directions were rotated accordingly.
Finally, brain extraction was performed using SynthStrip [58]. All preprocessing steps
were visually inspected for quality control

2.5. Lesion Segmentation

Stroke lesions were automatically segmented from participants’ T1w images and spa‑
tially normalized to the Colin27 template using the LINDA (Lesion Identification with
Neighborhood Data Analysis) package [59] in R. The lesion masks were then manually
checked and, if necessary, edited to correct errors in the automatic segmentation. Figure 1
shows the lesion overlay map.

2.6. Fixel‑Based Analyses (FBA)

FBA analyses were conducted using MRtrix3 (version 3.0.4) [48]. Following prepro‑
cessing, tissue response functions were estimated [60,61] and averaged across participants.
The dMRI data and brain masks were subsequently upsampled to an isotropic voxel size
of 1.25 mm. Fiber orientation distributions (FODs) were estimated using multi‑tissue
spherical deconvolution with group‑averaged tissue response functions [39]. Global in‑
tensity normalization of FODs was performed using mtnormalise [62]. A study‑specific
FOD template was generated, and each subject’s FOD data was registered to this tem‑
plate [63]. The template FODs were then segmented into fixels [64], producing a tem‑
plate fixel mask for subsequent fixel‑based analyses. Metrics including FD, FC, and FDC
were calculated. FC values were log‑transformed [log(FC)] to achieve normal distribu‑
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tion centered around zero. Whole‑brain fiber tractography [65] was performed on the
FOD template, followed by Spherical‑deconvolution Informed Filtering of Tractograms
(SIFT) [64] to reduce tractography biases. A fixel‑fixel connectivity matrix was then gen‑
erated based on the SIFT‑filtered whole brain tractogram to facilitate fixel smoothing and
connectivity‑based fixel enhancement [66,67]. Finally, the FD, log(FC), and FDC data un‑
derwent connectivity‑based spatial smoothing, where smoothing weights were calculated
bymultiplying a 10mm full‑width half‑maximum (FWHM)Gaussian kernel with the fixel–
fixel connectivity weights [66].

 

Figure 1. Lesion overlay map for all participants. Color represents the number of participants with
lesions at each voxel.

2.7. Tract Segmentation

Tract segmentation was performed using TractSeg (version 2.9) [68]. Peaks of the
spherical harmonic function were extracted from each voxel in the template FOD im‑
age [69]. These peaks were input into TractSeg to generate tract masks, tract endpoint re‑
gions, and tract orientation maps (TOMs) [70]. For all 72 tracts defined in TractSeg [68,71],
probabilistic tractography was conducted on TOMs. Only fibers not leaving the bundle
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mask and starting and ending in the endpoint regions were kept [72]. Each tract’s result‑
ing tractogram comprised 2000 streamlines. Corresponding fixel tract density maps [73]
were then generated and binarized to create fixel masks for each tract.

2.8. Statistical Analyses

Behavioral analyses were conducted using R (version 4.5.1; R core team 2025). Non‑
parametric statistical analyses were performed due to violations of normality assump‑
tions. A Wilcoxon signed‑rank test was used to compare comprehension accuracy be‑
tween canonical sentences and non‑canonical sentences. Then the Friedman test, a non‑
parametric alternative to repeated measures ANOVA, was employed to assess overall dif‑
ferences in comprehension accuracy across multiple sentence types within subjects. Upon
finding a significant main effect, post hoc pairwise comparisons were performed using
paired Wilcoxon signed‑rank tests with Bonferroni‑Holm correction to control for multi‑
ple testing, identifying specific differences between sentence types. Spearman correlation
analyses were conducted to examine the relationships among AQ, auditory word recog‑
nition scores, verb comprehension accuracy, and comprehension accuracy for canonical
sentences and non‑canonical sentences.

Whole‑brain fixel‑based analyses were performed using MRtrix3 (version 3.0.4). Lin‑
ear regression models were fit with fixel‑wise FDC as the response variable and accuracy
for non‑canonical sentences from the Sentence Comprehension Test of the CALB‑AVS
as the predictor. Covariates include age, years of education, log‑transformed time post‑
stroke, and the overall accuracy of the Verb Comprehension Test from the CALB‑AVS. Fol‑
lowing established guidance for controlling false positives in FBA [74], our primary analy‑
ses focus exclusively on FDC. However, we also conducted post hoc exploratory analyses
with analogous models for FD and log(FC) to investigate the contributions of fiber mi‑
crostructure and morphometry. All variables in these models were mean‑centered and
scaled to unit variance. Correlation coefficients of the predictors of interest served as effect
size measures. Connectivity‑based fixel enhancement [66,67] was applied to enhance the
statistical maps. Family‑wise error (FWE)‑corrected p‑values were computed using non‑
parametric bootstrapping with 5000 permutations, and statistical significance was set at
an FWE‑corrected threshold of p < 0.05. The current study was conducted among stroke
survivors, whose lesions could lead to outliers in fixel measures in the corresponding re‑
gions. To assess the robustness of our primary analysis results against potential bias intro‑
duced by outliers in FDC (the response variable in our primary analyses), we reanalyzed
the data using the same linear regression models while excluding outliers identified by
Cook’s distance ≥ 1 [75].

Tract‑wise analyses were performed using R (version 4.5.1; R core team 2025). Tracts
containing > 0.1% significant fixel identified in the FBA in their fixel masks were selected
as tracts of interest. Partial Spearman’s correlations were performed between mean FDC
values within these tracts of interest and the accuracy scores from each sentence type of
the Sentence Comprehension Test from the CALB‑AVS, with age, years of education, log‑
transformed time post‑stroke, and accuracy scores of the Verb Comprehension Test from
the CALB‑AVS as covariates. Analogous post hoc exploratory correlation analyses were
conducted for mean FD and mean log(FC). Statistical significance was defined using a
Bonferroni‑Holm‑corrected threshold of p < 0.05.

3. Results
3.1. Behavioral Analyses

The means, 95% confidence intervals of the mean, and data distribution of accuracy
for each sentence type in the Sentence Comprehension Test from the CALB‑AVS are pre‑
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sented in Figure 2. Comprehension accuracy for non‑canonical sentences was significantly
lower than for canonical sentences (p = 0.010). Specifically, participants performed signif‑
icantly worse on subject relative clauses compared to active sentences (Bonferroni‑Holm‑
corrected p = 0.003). No other significant differences in comprehension accuracy were ob‑
served among the remaining sentence types.

Figure 2. Comprehension accuracy of different sentence types. Shown are means (histogram), 95%
confidence intervals of the mean (bars) and data distributions (violin plots) of the accuracy for each
sentence type in the Sentence Comprehension Test from the CALB‑AVS. Each data point represents
individual participant performance. Only subject relative clauses showed significantly decreased
accuracy compared to active sentences.

Correlational analyses (Figure 3) demonstrated a strong positive association between
comprehension accuracy for canonical vs. non‑canonical sentences (rs = 0.89, Bonferroni‑
Holm‑corrected p < 0.001). Additionally, comprehension accuracy for canonical sentences
was positively correlated with verb comprehension accuracy (rs = 0.67, Bonferroni‑Holm‑
corrected p < 0.01), auditory word recognition score (rs = 0.52, Bonferroni‑Holm‑corrected
p < 0.05) and AQ (rs = 0.53, Bonferroni‑Holm‑corrected p < 0.05). Similarly, comprehension
accuracy for non‑canonical sentences showed positive correlations not only with verb com‑
prehension accuracy (rs = 0.64, Bonferroni‑Holm‑corrected p < 0.01) but also with auditory
word recognition score (rs = 0.73, Bonferroni‑Holm‑corrected p < 0.001) and AQ (rs = 0.68,
Bonferroni‑Holm‑corrected p < 0.01).
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3.2. Fixel‑Based Analyses

Figure 4 illustrates the spatial distribution of 1601 fixels where FDC exhibited a signif‑
icant positive association with non‑canonical sentence comprehension accuracy (family‑
wise error corrected p < 0.05), controlling for age, education, log‑transformed time post
stroke, and verb comprehension accuracy. These fixels were predominantly situated in
the left perisylvian region and the posterior corpus callosum. No fixel demonstrated a
negative relationship between FDC and non‑canonical sentence comprehension accuracy.
The results of the same analysis after excluding outliers are shown in Figure A7, which re‑
vealed a similar pattern. Post hoc exploratory analyses revealed a broader perisylvian dis‑
tribution of fixels (1003 fixels) in which impaired non‑canonical sentence comprehension
was linked to reduced FD (Figure A1), compared to a more restricted parietal distribution
of fixels (20 fixels) where impaired non‑canonical sentence comprehension was associated
with reduced FC (Figure A2).

Figure 3. Correlational analyses of selected language assessment results. (Upper triangle): Spear‑
man correlation coefficients between variables, with asterisks indicating the Bonferroni‑Holm‑
corrected p‑value levels: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. (Diagonal): density plots of vari‑
ables. (Lower triangle): scatter plots of variables with LOESS smooth lines and shaded confidence
intervals. Abbreviations: MAB_AQ = Aphasia Quotient from the Mandarin version of the Western
Aphasia Battery (MAB); MAB_word = Auditory word recognition score from MAB; VCT = Overall
accuracy on the Verb Comprehension Test; SCT_C = Accuracy of canonical sentence comprehension
in the Sentence Comprehension Test; SCT_NC =Accuracy of non‑canonical sentence comprehension
in the Sentence Comprehension Test.
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Tracts that contained significant fixels exhibiting associations between reduced FDC
and impaired non‑canonical sentence comprehension are listed in Table 2. A positive lin‑
ear relationship was observed between non‑canonical sentence comprehension accuracy
and FDC in fixels located in the left superior longitudinal fasciculus II (SLF II), superior
longitudinal fasciculus III (SLF III), arcuate fasciculus (AF), middle longitudinal fasciculus
(MdLF), inferior fronto‑occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF),
and the isthmus (ICC) and splenium (SCC) of the corpus callosum. Figure 5 illustrates
the spatial distribution of significant fixels relative to white matter tracts. Specifically, sig‑
nificant fixels were primarily located in the ventral portion of the left SLF II, the caudal
portion of the left SLF III, the middle portion of the left IFOF, the left ILF, the left MdLF,
the rostral‑ventral portion of the ICC, and the rostral‑dorsal portion of the SCC.

 

Figure 4. Significant fixels for positive association between non‑canonical sentence comprehension
accuracy and fiber density and cross‑section product (FDC), colored by the standardized regression
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coefficients of non‑canonical sentence comprehension accuracy (βNC) in the linear models. A total of
1601 significant fixels were found. primarily located in the left perisylvian region and the posterior
corpus callosum. (Top left): Coronal view of significant fixels. (Top right): Sagittal view of signifi‑
cant fixels. (Bottom left): Axial view of significant fixels. (Bottom right): Sagittal view of streamlines
traversing significant fixels. Abbreviations: R = Right; L = Left.

 

Figure 5. Streamlines illustrating the spatial relationship betweenfixels, where FDCwas significantly
associatedwith non‑canonical sentence comprehension accuracy after controlling for covariates, and
white matter tracts. Streamlines are colored based on effect size (the standardized regression coeffi‑
cients of non‑canonical sentence comprehension accuracy from the corresponding linear models).

Table 2. White matter tracts containing significant fixels where FDC was positively associated with
non‑canonical sentence comprehension accuracy (family‑wise error corrected p < 0.05).

Tract *
Number of
Significant

Fixels in Tract

Number of
Total Fixels in

Tract

Percentage of
Significant

Fixels in Tract

Max Effect
Size (βNC) †

AF left 1522 22,478 6.77% 0.47
SLF III left 763 7873 9.69% 0.47
MdLF left 581 23,711 2.45% 0.43
SLF II left 350 11,695 2.99% 0.42

ICC 218 44,676 0.49% 0.41
ST_PAR left 67 27,839 0.24% 0.40
ILF left 43 7001 0.61% 0.24
IFOF left 40 15,602 0.26% 0.31
SCC 38 18,847 0.20% 0.20

ST_OCC left 4 11,730 0.03% 0.30
ST_POSTC left 3 11,850 0.03% 0.21

SLF I left 2 10,757 0.02% 0.19
ST_PREC left 2 15,527 0.01% 0.20
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Table 2. Cont.

Tract *
Number of
Significant

Fixels in Tract

Number of
Total Fixels in

Tract

Percentage of
Significant

Fixels in Tract

Max Effect
Size (βNC) †

CST left 1 10,985 0.01% 0.19
T_PREC left 1 14,438 0.01% 0.19

* AF = arcuate fasciculus; SLF III = superior longitudinal fasciculus III; MdLF = middle longitudinal fascicu‑
lus; SLF II = superior longitudinal fasciculus II; ICC = isthmus of the corpus callosum; ST_PAR = striato‑parietal
tract; ILF = inferior longitudinal fasciculus; IFOF = inferior fronto‑occipital fasciculus; SCC = splenium of cor‑
pus callosum; ST_OCC = striato‑occipital tract; ST_POSTC = striato‑postcentral tract; SLF I = superior lon‑
gitudinal fasciculus I; ST_PREC = striato‑precentral; CST = corticospinal tract; T_PREC = thalamo‑precentral
tract. † βNC = standardized regression coefficients of non‑canonical sentence comprehension accuracy in the
linear models.

Exploratory analyses showed fixels where FD reductions associated with impaired
comprehension of non‑canonical sentences had a similar spatial distribution pattern as
that of FDC (Figure A3). In contrast, only fixels located in the caudal portion of the left
SLF III and caudal parietal portion of the left AF exhibited FC reductions associated with
impaired comprehension of non‑canonical sentences (Figure A4).

3.3. Tract‑Wise Analyses

Tract‑wise partial correlation analyses revealed that comprehension accuracy for ac‑
tive sentences was positively associated with the mean FDC of the left MdLF and SLF II
(Figure 6). Accuracy in comprehending object extracted sentences, subject relative clauses,
and all non‑canonical sentences was positively correlated with the mean FDC of the left
SLF III. Additionally, comprehension accuracy for subject relative clauses was also posi‑
tively associated with the mean FDC of the left SLF II.

Figure 6. Partial Spearman correlation coefficients between comprehension accuracy for differ‑
ent sentence types and mean FDC of various tracts of interest, controlling for age, education, log‑
transformed time post stroke and verb comprehension accuracy. Cells indicating correlations that
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survived Bonferroni‑Holm correction for multiple comparisons (family‑wise α = 0.05, adjusted
α = 0.000694) are opaque with white labels; cells not surviving the correction are displayed with
reduced opacity and gray labels.

Regarding FD (Figure A5), comprehension accuracy for ba‑sentences was positively
correlated with themean FD of the ICC, while comprehension accuracy for subject relative
clauses was positively associated with the mean FD of the left AF, left SLF II, and left SLF
III. Comprehension accuracy for non‑canonical sentences was positively correlated with
the mean FD of the left AF, left SLF III, and left MdLF.

No statistically significant correlation was found between comprehension accuracy
for any sentence type and the mean FC of the tracts of interest.

4. Discussion
4.1. Behavioral Analysis Results

The sentence comprehension test results showed poorer performance on non‑
canonical sentences compared to canonical sentences in Mandarin speakers with post‑
stroke aphasia, consistent with findings in native English speakers with aphasia [47].
Comprehension of non‑canonical sentences requires assigning thematic roles in an or‑
der that deviates from the typical ”agent‑verb‑patient/theme” sequence, thereby demand‑
ing greater processing resources [76], which are likely compromised in aphasic patients.
Among the sentence types examined, subject relative clauses exhibited the greatest impair‑
ment. In Mandarin, successful comprehension of subject relative clauses depends not only
on the ability to assign thematic roles (similar to object relative clauses in English) but also
on hierarchical structure processing and sufficient working memory capacity [77]. These
increased demands likely make subject relative clauses more vulnerable in aphasia.

4.2. Fixel‑Based Analysis Results

This study aimed to identify the white matter pathways underlying auditory compre‑
hension of sentences. Our results indicated that reduced FDC in the left peri‑Sylvian white
matter was associated with impaired comprehension of non‑canonical sentences. The sig‑
nificant fixels likely corresponded to the left SLF II, SLF III, AF, IFOF, ILF, MdLF, ICC, and
SCC. Exploratory analyses indicated that FDC reduction within these tracts was primarily
driven by FD reduction, suggesting microstructural axon loss or damage [41]. Only the
left SLF III and AF exhibited FC reduction, indicative of macrostructural tract atrophy [41].
Reduced FD has been suggested to reflect a decreased number of axons or reduced intra‑
axonal size within the fiber tract, while FC initially remains unchanged as extra‑axonal
space is filled by inflammatory or glial cells. Subsequent clearance of debris leads to fiber
tract atrophy and reduced FC [41]. Therefore, FD reductions may signify early fiber dam‑
age, whereas the observed FC reduction in the left SLF III and AF may indicate more ad‑
vanced neurodegeneration and atrophy. These findings are consistent with previous fixel‑
based studies in stroke patients demonstrating widespread FD reduction accompanied by
more localized FC reduction [78,79]. A detailed discussion of each white matter tracts’ role
in sentence comprehension follows.

4.2.1. Dorsal Language Stream Tracts (AF, SLF)

Our findings in Mandarin speakers are in line with previous works in English speak‑
ers suggesting that complex sentence comprehension depends on left dorsal
tracts [1,25,26,28], supporting a language‑general role of the left AF and SLF in auditory
processing of syntactically complex sentences.
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The AF connects the temporal lobe to the inferior and middle frontal gyri as well as
the precentral gyrus of the same hemisphere [68,71]. The anatomical connections of AF
allow for efficient communication between temporal regions (processing auditory input
andmeaning) and frontal regions (involved in syntactic processing andworkingmemory).
According to Friederici’s theory [22], the left AF plays a crucial role in the neural network
underlying sentence comprehension by supporting the integration and processing of syn‑
tactic information. Damage to the left AF, particularly its long segment (connecting the
temporal and the frontal areas) [20,80], has been associated with impaired understand‑
ing of sentences [81], especially syntactically complex sentences such as object extraction
ones [16].

The SLF II connects the inferior parietal lobule (notably the angular gyrus) and the
lateral parieto‑occipital cortex to the dorsolateral prefrontal cortex (including the middle
and superior frontal gyri) [68,71,82]. The left SLF II is thought to support the integration of
information necessary for understanding complex sentence structures, likely by facilitat‑
ing communication between regions responsible for higher‑level syntactic operations and
working memory [83]. The disconnection of left SLF has been shown to impair compre‑
hension of complex sentences [16].

The SLF III, the ventral branch of the SLF, connects the supramarginal gyrus—which
is thought to contribute to phonological working memory and the integration of seman‑
tic and syntactic information [22,84,85]—to the inferior frontal gyrus [68,71,82,86], which
is involved in syntactic processing, semantic processing, and executive control [22,87,88].
This tract and its cortical endings constitute an important part of the fronto‑parietal net‑
work [89], supporting semantic prediction and integration in sentence comprehension [90].
The lesion to the left SLF III has been found to be associated with impaired semantic mem‑
ory [91] and comprehension of complex sentences [16].

4.2.2. Ventral Language Stream Tracts (IFOF, ILF, MdLF)

Ventral stream tracts such as IFOF and ILF have been proposed to be part of the system
for processing receptive syntax [15,24]. The IFOF connects the orbitofrontal and inferior
frontal gyri to the ipsilateral occipital lobe [68,71], whereas the ILF links the ventral and lat‑
eral temporal cortices with the occipital lobe [68,71]. Evidence indicates that the left IFOF
supports semantic processing [92] and is broadly involved in various language functions,
including sentence comprehension [29]. The contribution of the left ILF to sentence com‑
prehension likely stems from its role in enabling lexical‑semantic mapping [93], which in
turn facilitates more efficient semantic processing [94]. The lesion of the left IFOF and ILF
has been associatedwith sentence comprehensiondeficits in peoplewith aphasia [15,16,95],
consistent with the findings of the present study.

The MdLF, as defined in TractSeg [68,71], is a long association fiber tract connecting
the superior temporal gyrus and temporal pole to the parietal lobe. Although the role
of MdLF in language remains relatively understudied [93], evidence suggests its involve‑
ment in semantic processing [96], attention and verbal working memory during speech
processing [97]. Damage to the left MdLF has been associated with impaired auditory
comprehension of both canonical and non‑canonical sentences [15,16].

4.2.3. Beyond Traditional Dual‑Stream Tracts

The ICC contains fibers that interconnect the posterior parietal and superior tempo‑
ral cortices across hemispheres [68,71]. It plays a critical role in integrating information
processed separately by the left and right hemispheres during auditory language compre‑
hension. The left hemisphere is typically specialized for syntactic and lexical‑semantic
processing, while the right hemisphere is more involved in processing prosodic (intona‑
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tion, rhythm) and other suprasegmental features [1]. Patients with lesions in the poste‑
rior corpus callosum often exhibit impaired coordination between syntactic and prosodic
cues during auditory sentence comprehension, despite preserved basic syntactic process‑
ing [37]. Consistent with our current findings, previous studies using indirect structural
disconnectionmapping [16] and connectome‑based lesion‑symptommapping [13,15] have
implicated the posterior corpus callosum in sentence comprehension.

4.3. Tract‑Wise Analysis Results

It is worth highlighting that our tract‑wise analyses have further demonstrated rela‑
tionships between FDC reduction in white matter tracts and auditory comprehension im‑
pairments of different sentence types. Due to the relatively small sample size of this study,
it is possible that not all relationships were revealed. However, current results already in‑
dicated that FDC reduction in the left MdLFwas associated with impaired comprehension
of simple active sentences, which is in line with previous findings [16], further supporting
MdLF’s involvement in general sentence comprehension. Additionally, FDC reduction
in the left SLF II was associated with impaired comprehension of subject relative clauses,
reinforcing its role in supporting the comprehension of complex sentence structures. Sim‑
ilarly, FDC reduction in the left SLF III correlated with impaired comprehension of object
extracted wh‑questions and subject relative clauses, both requiring the maintenance and
integration of displaced logical [42] or syntactic components, thus suggesting the role of
the left SLF III in working memory [15,16].

4.4. Research and Clinical Implications

Our results support the theory that the dorsal pathway (including left AF and SLF) is
involved in the processing of syntactically complex sentences and that the posterior part
of the corpus callosum facilitates interplay between syntactic and prosodic information, as
proposed in Friederici’s model of the neural basis of language comprehension [1,23]. Our
findings not only provide cross‑linguistic evidence for the current model, but also offer
insight into the specific spatial distribution of white matter fibers involved in the model.

Clinically, these insights have important implications for improving language ability
in patients with post‑stroke aphasia. Transcranial magnetic stimulation (TMS) and other
noninvasive brain stimulation techniques have demonstrated efficacy in improving lan‑
guage ability for post‑stroke aphasia in addition to speech and language therapy [98–100].
However, the optimal stimulation sites and parameters to enhance sentence comprehen‑
sion remain unclear. Recent evidence suggests that TMS is more likely to activate white
matter than gray matter [101]. Precise localization of white matter that is related to sen‑
tence comprehension deficits could enable personalized tractography‑based navigated
TMS [102,103], potentially improving therapeutic effects. Moreover, white matter mor‑
phological measures of fiber tracts identified in this study could serve as biomarkers to
assess the neuroplastic effects of therapies targeting sentence comprehension.

4.5. Limitations

The present study has several limitations. First, the relatively small sample size of
this study may reduce its statistical power. Previous studies employing fixel‑based anal‑
ysis have shown reasonable results with a similar sample size of 20–30 subjects [104–107].
Several tools have been developed for power analysis of voxel‑based neuroimaging
study [108,109], but there is still no dedicated tool for power analysis of fixel‑based study.
Therefore, a post hoc power analysis was conducted for FBA using R package pwr [110]
(see Figure A for the results). Results of the post hoc power analysis indicated that the sam‑
ple size of 23 was enough for detecting significant fixels in the left peri‑sylvian region and
the corpus callosum. The relatively small sample size did restrict sub‑group analysis for
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different types of aphasia. Second, deficits in non‑canonical sentence comprehension may
arise from different underlying causes, such as problems in syntactic processing, deficits in
cognitive control [4], or limitations in verbal working memory [15]. Despite that, we used
NLCA to exclude severe cognitive deficits but did not capture subtler impairments inwork‑
ing memory or attention. This study did not delineate among these potential contributing
factors. Future studies may benefit from adding verbal working memory tasks to control
for these factors. Third, neighboring white matter fixel masks may overlap, meaning that
a single fixel could be associated with multiple white matter tracts. Thus, the associations
between fixel location and tracts are not definite. The number and percentage of signifi‑
cant fixels overlapping with another tract are shown in Table A1. The fiber bundles that
include a large proportion of overlapping fixels in the significant fixel are: left SLF II, left
SLF III, left MdLF, left ILF, left IFOF, and SCC. Tract‑wise results in these tracts should be
taken with caution. Finally, this study was cross‑sectional and focused on subacute stroke
patients, which complicates direct comparison with previous studies primarily conducted
on chronic stroke populations. Reduced fractional anisotropy (FA), mean diffusivity (MD),
axial diffusivity (AD), and radial diffusivity (RD) have been observed in lesional white
matter during the subacute stage compared to the chronic stage of stroke, possibly result‑
ing from the presence of cellular debris, inflammatory infiltration and relatively preserved
myelin in the lesional area during the subacute phase [111]. It is reasonable to speculate
that similar effects would influence fixel‑based metrics. Longitudinal studies extending
into the chronic phase might help in addressing this problem.

4.6. Future Directions

Future research should incorporate verbal working memory tasks to distinguish
white matter tracts involved in verbal working memory from those related to complex
syntax processing. Furthermore, structuralMRI analyses can be integrated to provide com‑
plementary information on graymatter regions associated with auditory sentence compre‑
hension and clarify the spatial relationships between white and gray matter correlates of
sentence comprehension. With a larger sample size, subgroup analyses of aphasia types
can be performed to elucidate distinct neural correlates. Subsequent longitudinal studies
will provide more evidence regarding the relationship between post‑stroke white matter
plasticity and sentence auditory comprehension ability.

5. Conclusions
Fixel‑based analysis revealed that reduced FDC of fixels in the left AF, SLF II, SLF

III, IFOF, ILF, MdLF, ICC, and SCC is related to impaired non‑canonical sentence compre‑
hension. Tract‑wise analyses revealed dissociative associations between distinct tracts and
varying levels of syntactic complexity. These findings provide novel insights that can in‑
form future research and refine current neurocognitivemodels of sentence comprehension.
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CLSM Connectome‑based lesion‑symptom mapping
FBA Fixel‑based analysis
FOD Fiber orientation distribution
FD Fiber density
FC Fiber cross‑section
Log(FC) Log‑transformed fiber cross‑section
FDC Product of fiber density and cross‑section
MAB Mandarin version of the Western Aphasia Battery
AQ Aphasia quotient
NLCA Non‑language‑based Cognitive Assessment
NAVS Northwestern Assessment of Verbs and Sentences
CALB‑AVS Assessment of Verbs and Sentences from the Chinese Aphasia Language Battery
EPI Echo planar imaging
TR Time of repetition
TE Time of echo
FOV Field of view
TOM Tract orientation maps
FWE Family‑wise error
SIFT Spherical‑deconvolution Informed Filtering of Tractograms
SLF II Superior longitudinal fasciculus II
SLF III Superior longitudinal fasciculus III
AF Arcuate fasciculus
MdLF Middle longitudinal fasciculus
IFOF Inferior fronto‑occipital fasciculus
ILF Inferior longitudinal fasciculus
ICC Isthmus of the corpus callosum
SCC Splenium of corpus callosum
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Appendix A

 

Figure A1. Significant fixels for positive association between non‑canonical sentence comprehension
accuracy and fiber density (FD), colored by the standardized regression coefficients of non‑canonical
sentence comprehension accuracy (βNC) in the linear models. A total of 1003 significant fixels were
found, primarily located in the left perisylvian region. (Top left): Coronal view of significant fixels.
(Top right): Sagittal view of significant fixels. (Bottom left): Axial view of significant fixels. (Bottom
right): Sagittal view of streamlines traversing significant fixels. Abbreviations: R = Right; L = Left.
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Figure A2. Significant fixels for positive association between non‑canonical sentence comprehension
accuracy and log‑transformed fiber cross‑section [log(FC)], colored by the standardized regression
coefficients of non‑canonical sentence comprehension accuracy (βNC) in the linear models. A total of
20 significant fixels were found. primarily located in the left parietal region. (Top left): Coronal view
of significant fixels. (Top right): Sagittal view of significant fixels. (Bottom left): Axial view of signif‑
icant fixels. (Bottom right): Sagittal view of streamlines traversing significant fixels. Abbreviations:
R = Right; L = Left.
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Table A1. Significant fixels overlapping between tracts.

Number of
Overlapping
Significant
Fixels

Tract 1 *

Number of
Significant
Fixels in
Tract 1

Percentage of
Significant

Fixels in Tract 1
that Overlap

Tract 2 *

Number
of Signifi‑
cant Fixels
in Tract 2

Percentage of
Significant

Fixels in Tract 2
that Overlap

38 SCC 38 100% ICC 218 17%
43 ILF left 43 100% MdLF left 581 7%
579 MdLF left 581 100% AF left 1522 38%
347 SLF II left 350 99% AF left 1522 23%
42 ILF left 43 98% AF left 1522 3%
39 IFOF left 40 98% MdLF left 581 7%
39 IFOF left 40 98% AF left 1522 3%
743 SLF III left 763 97% AF left 1522 49%
180 ICC 218 83% AF left 1522 12%
153 ICC 218 70% MdLF left 581 26%
21 IFOF left 40 53% ILF left 43 49%
156 SLF II left 350 45% SLF III left 763 20%
6 IFOF left 40 15% ICC 218 3%
45 SLF II left 350 13% MdLF left 581 8%
49 MdLF left 581 8% SLF III left 763 6%
1 SCC 38 3% IFOF left 40 3%
1 ILF left 43 2% ICC 218 0%
3 ICC 218 1% SLF II left 350 1%

* AF = arcuate fasciculus; ICC = isthmus of the corpus callosum; IFOF = inferior fronto‑occipital fasciculus;
ILF = inferior longitudinal fasciculus; MdLF = middle longitudinal fasciculus; SCC = splenium of corpus callo‑
sum; SLF II = superior longitudinal fasciculus II; SLF III = superior longitudinal fasciculus III.

 

Figure A3. Streamlines illustrating the special relationship between fixels, where FD was signif‑
icantly associated with non‑canonical sentence comprehension accuracy after controlling for co‑
variates, and white matter tracts. Streamlines are colored based on effect size (the standardized
regression coefficients of non‑canonical sentence comprehension accuracy from the corresponding
linear models).
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Figure A4. Streamlines illustrating the special relationship between fixels, where FC was signifi‑
cantly associated with non‑canonical sentence comprehension accuracy after controlling for covari‑
ates, and white matter tracts. Streamlines are colored based on effect size (the standardized re‑
gression coefficients of non‑canonical sentence comprehension accuracy from the corresponding
linear models).

Figure A5. Partial Spearman correlation coefficients between comprehension accuracy for differ‑
ent sentence types and mean FD of various tracts of interest, controlling for age, education, log‑
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transformed time post stroke and verb comprehension accuracy. Cells indicating correlations
that survived Bonferroni‑Holm correction for multiple comparisons (family‑wise α = 0.05, adjusted
α = 0.000694) are opaque with white labels; cells not surviving the correction are displayed with re‑
duced opacity and gray labels.

Figure A6. Results of post hoc power analysis. (a) Effect size (Cohen’s f 2) map for the primary FBA.
(b) Based on the effect sizemap, a powermapwas generated for n = 23 subjects. (c) The corresponding
sample size map was also generated to determine the number of subjects required with 80% power.
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Figure A7. Significant fixels for positive association between non‑canonical sentence comprehension
accuracy and fiber density and cross‑section product (FDC), after removing outliers using Cook’s
distance. Fixels are colored by the standardized regression coefficients of non‑canonical sentence
comprehension accuracy (βNC) in the linear models. A total of 2052 significant fixels were found.
primarily located in the left perisylvian region and the posterior corpus callosum. Notice that signif‑
icant fixels extended slightly laterally in the left frontal and temporal regions as well as slightly right‑
ward in the posterior corpus callosum, compared to Figure 4. (Top left): Coronal view of significant
fixels. (Top right): Sagittal view of significant fixels. (Bottom left): Axial view of significant fixels.
(Bottom right): Sagittal view of streamlines traversing significant fixels. Abbreviations: R = Right;
L = Left.
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