

Cohort profile: Guangzhou breast cancer study (GBCS)

Jiao Wang^{1,4} · Na Li¹ · Cheng Kun Xiao¹ · Shu Shu Han¹ · Min Jie Lu¹ · Xiao Yi Lin¹ · Ze Fang Ren¹ · Lin Xu^{1,2,3,4}

Received: 8 October 2024 / Accepted: 12 November 2024 / Published online: 16 December 2024
© The Author(s) 2024

Abstract

The Guangzhou Breast Cancer Study (GBCS) is a patient-based prospective cohort study designed to identify risk factors and underlying mechanisms for breast cancer (BC) incidence and prognosis, specifically addressing the need for individualized prevention in South China, where BC incidence is notably high. Based in Guangzhou, China, the GBCS began recruitment in 2008, comprises three complementary studies: the Guangzhou breast cancer cohort with 5471 breast cancer patients, a case–control study with 1551 cases and 1605 controls, and an immunohistochemistry (IHC) cohort with 1063 breast cancer patients. Participants are primarily aged 41–60 years. Cohort follow-up is conducted every three months in the first year, every six months in the second and third years, and annually thereafter. High follow-up rates have been achieved until 2023, with 73.5% for the Guangzhou breast cancer cohort and 98.6% for the IHC cohort still active. Baseline data collection included demographic characteristics and breast cancer risk factors, while follow-up data included survival, treatment details, disease history, occupational history, post-diagnostic lifestyle, and laboratory measures, including genetic markers, proteins, and environmental exposures. The study encourages global collaborations and invites interested researchers to contact the corresponding author at xulin27@mail.sysu.edu.cn with specific research ideas or proposals.

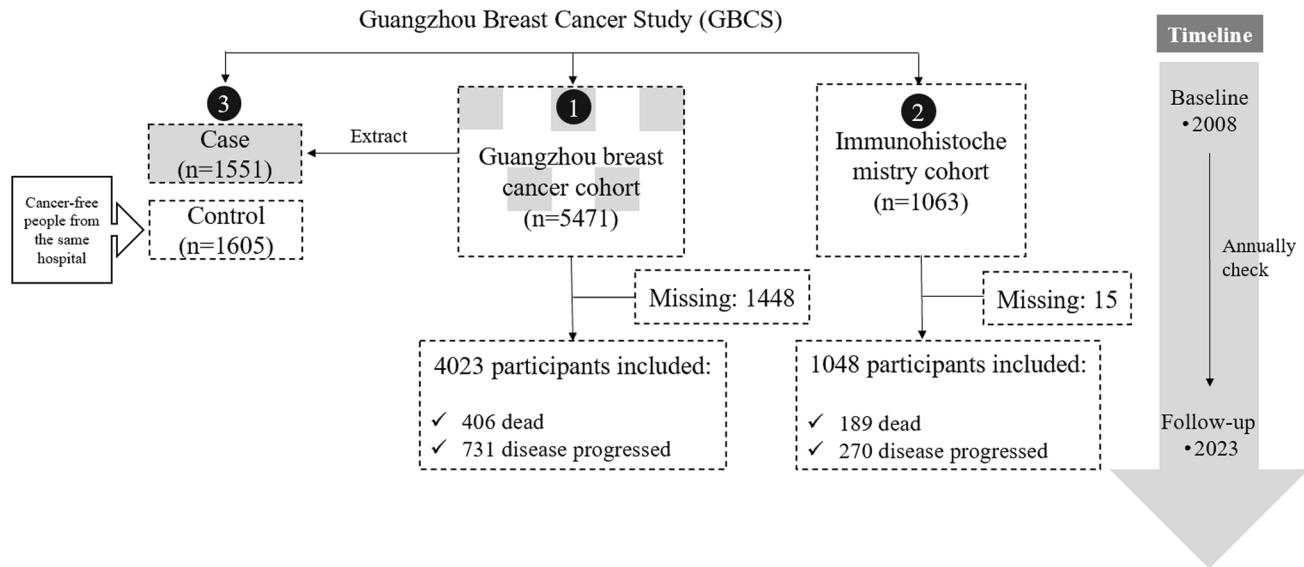
Keywords Breast cancer · Cohort · Case-control · Immunohistochemistry

Why was the GBCS set up?

Breast cancer (BC) is the most prevalent cancer and the leading cause of cancer mortality in women globally [1], and its burden has been rising over the past decades [2]. As of 2022, the World Health Organization (WHO) reported 2.3 million new BC cases and 670,000 related deaths worldwide [3]. Although BC can affect women at any age after puberty, its incidence increases with age and significant geographical disparities exist, with higher rates in developed regions compared to less developed areas [4].

✉ Lin Xu
xulin27@mail.sysu.edu.cn

¹ School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong Province, China


² School of Public Health, The University of Hong Kong, Hong Kong, China

³ Institute of Applied Health Research, University of Birmingham, Birmingham, UK

⁴ Greater Bay Area Public Health Research Collaboration, Guangzhou, China

In China, the most populous developing country, rapid economic growth over the past five decades has brought about significant lifestyle and environmental changes, contributing to an increased BC burden. Currently, BC is the most common cancer in Chinese women, account for 12.2% of all new BC cases and 9.6% of BC-related deaths globally [5]. South China, in particular, shows the highest incidence of BC in the country [6], underscoring the need for region specific strategies to mitigate this rising burden. Furthermore, despite the development of various BC risk prediction models [7, 8], there is limited models tailored for Asian women that incorporate DNA or protein biomarkers [9]. Additionally, efficient prognostic information is needed to optimize patient care and alleviate the strain on healthcare systems.

To address these challenges, the Guangzhou Breast Cancer Study (GBCS) was established in 2008 with the support of the School of public health, the First and the Second Affiliated Hospitals and the Cancer Center of Sun Yat-sen University. The GBCS recruited 9029 patients with breast diseases, including 5471 BC patients for the Guangzhou breast cancer cohort. The whole study also includes a case–control study with 1551 BC cases and 1605 controls,

Fig. 1 Overview of the Guangzhou breast cancer study (GBCS)

as well as an immunohistochemistry (IHC) cohort including 1063 BC patients (Fig. 1). The GBCS aims to elucidate the risk factors and underlying mechanisms of BC incidence and prognosis, ultimately benefiting the local population and contributing to global BC research.

Who is in GBCS?

The GBCS consists of three interrelated studies: a Guangzhou breast cancer cohort, a case-control study, and an immunohistochemistry (IHC) cohort, each designed to investigate different aspects of BC in South China.

Guangzhou breast cancer cohort

The Guangzhou breast cancer cohort is a patient-based, prospective cohort study designed to explore the risk factors and prognosis of BC in South China. Participants were recruited from the First Affiliated Hospital, Second Affiliated Hospital and Cancer Center of Sun Yat-sen University from October 2008 to January 2018. Initially, 9029 patients with various breast diseases were enrolled in the study, all of whom provided informed consent (Supplementary Table 1). Among these participants, 5471 were confirmed to have BC and met the inclusion criteria for the Guangzhou breast cancer cohort, which included: (a) a pathological diagnosis of primary BC; (b) newly diagnosed cases; and (c) residency in the Pearl River Delta region for at least five years. Exclusion criteria were applied to exclude patients with a history of malignancy or mental illness, those unable to communicate

due to severe illness, and those with cognitive impairments. Of these 5471 BC patients, 335 were diagnosed with ductal carcinoma in situ and 5136 had invasive BC.

Case-control study

In the GBCS case-control study focuses on identifying risk factors for the occurrence of BC. From October 2008 to March 2012, 1736 women diagnosed with BC from Guangzhou breast cancer cohort (as mentioned above) were unselectively included as cases. Moreover, cancer-free controls, frequency-matched by age, were selected from women undergoing routine medical examinations at the same hospitals during the same period. The inclusion criteria for controls included the absence of breast malignancy, confirmed by mammography, B-ultrasonography or self-reported, and residency in the Pearl River Delta region for at least 5 years. After excluding individuals diagnosed with other cancers, those with mental illness, and those who declined to complete questionnaires or donate blood samples, the final study included 1551 cases (89.3% participation rate) and 1605 controls (90.5% participation rate).

Immunohistochemistry (IHC) cohort

The GBCS IHC cohort investigates the underlying mechanisms of BC progression. This cohort includes 1063 women diagnosed with primary invasive BC, with tumors larger than 1 cm, recruited from the Cancer Center of Sun Yat-sen University between January 2008 and December

2015. Exclusion criteria included a history of other malignant tumors or mental illnesses (such as Alzheimer's disease) and severe illnesses or language difficulties that prevent completion of the questionnaire. Histone modification markers and protein levels in tumor and adjacent tissues were assessed using tissue microarrays (TMAs) and immunohistochemistry.

How is the cohort followed up?

The GBCS cohort employs both active and passive follow-up methods. Active follow-ups are conducted every three months during the first year after diagnosis, either via phone calls or outpatient visits. In the second and the third years, follow-up occur every six months. Thereafter, participants are followed up annually until death. These follow-ups collect vital information, including survival statuses, treatment details, disease history, occupational history, post-diagnostic lifestyle changes, and updated contact details. Detailed follow-up variables are shown in Table 1. Passive follow-up is conducted through the hospital's electronic medical record system, which provide authoritative data on disease progression and mortality. This method enables the capture of comprehensive clinical information, such as serum tumor markers, cell types and lipid profile, which are meticulously retrieved from medical records. As of 31 December 2023, at least four rounds of follow-up have been completed for all patients, with 4023 (73.5%) participants of Guangzhou breast cancer cohort and 1048 (98.6%) participants of IHC cohort being successfully followed up.

What has been measured?

The GBCS collected a comprehensive range of data through structured questionnaires, clinical records and laboratory assays to investigate BC etiology, progression and outcomes. All GBCS participants completed a structured questionnaire developed by the Breast Cancer Epidemiology Research Group of Vanderbilt University, tailored to reflect current research on BC etiology and the demographic characteristics specific to the Guangdong region. Baseline data were obtained by face-to-face interviews, typically lasting 30–60 min [10–12], and included information on demographic factors, menstrual and reproductive history, disease history, contraceptive use, hormone therapy, dietary history, physical activity, occupational history, personal habits, and family history of cancer. Detailed baseline characteristics of the participants from the questionnaire are shown in Table 2. Furthermore, clinical data, such as tumor size, nodal status, clinical stage, and receptors status (i.e., estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), were meticulously retrieved from medical records. Participants fasted for

Table 1 Summary of follow-up variables in the Guangzhou Breast Cancer Study (GBCS) cohort

Sections	Variables
Survival statuses	Recurrence Metastasis Death Other newly diagnosed diseases
General treatment	Radiotherapy Chemotherapy Surgery Endocrine therapy
Disease history	Heart disease, hypertension, diabetes, allergies, hyperlipidemia, arthritis, other diseases
Occupational history	Type of occupation, daily working hours
Physical exercise	Type of activity, weekly activity hours
Personal health behaviour	Smoking status Tea Sleep habits
Serum tumor markers	CEA CA199 CA125 CA153 CA211
Cell types	Eosinophil Basophil Lymphocyte Monocyte Neutrophil
Lipid markers	Total cholesterol Triglyceride High-density lipoprotein Low-density lipoprotein
Demography	Name Age Identity card number Address Mobile phone number Email Address Household size Menopausal status

10–12 h before providing blood and urine samples, which were collected under the supervision of trained research assistants and stored at -80°C until further analysis. Each participant was assigned a unique identity number to ensure the accuracy and traceability of the samples.

A wide range of laboratory variables was measured, including 26 urinary metals, 53 single nucleotide polymorphisms (SNPs), 27 cytokines, 14 histone modification markers, 16 proteins, 4 Epstein-Barr virus (EBV) antibodies, anti-*Toxoplasma gondii* (*T. gondii*) and anti-*Chlamydia*

Table 2 Summary of questionnaire data collected at baseline in the Guangzhou breast cancer cohort, IHC cohort, and case-control study

Exposure category	Variable/exposure
Past medical history	Diagnosed breast diseases (specifically itemized) Diagnosed tumor Diagnosed other diseases (specifically itemized) Infection-induced fever Dysmenorrhea
Menstrual and reproductive history	Age of menarche Parity and breastfeeding history Menopause status and associated timing Contraceptive history Contraceptive history History of hormone-replacement therapy use
Contraceptive methods and hormone use	Physical activity at different ages
Physical activity	Meat Taste Oils Fried food The old fire soup Herbal tea
Dietary history	Smoking Passive smoking Alcohol Tea
Personal health behaviour	Occupation Afternoon nap Daily sleep time Occupational exposures
Occupational history	Family history of cancers Height Weight
Family history	Name Age Identity card number Address Mobile phone number Email Address Occupation Household size Marital status Educational level Income
Development history and measurement	
Demography	

trachomatis (*C. trachomatis*) IgG. Each laboratory variable and the corresponding measurement sample are shown in Table 3.

The study was in accordance with the Declaration of Helsinki and approved by the Sun Yat-sen University Ethics Committee (Institutional Review Board approval number: 2012–8).

Urine metal detection

Twenty-six metals were quantified using inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 7500ce ICP-MS, Agilent Technologies). Before analysis, urine samples were diluted with dilute nitric acid. The quantification of metals was performed by ICP-MS, calibrated with external standards provided by Spex Industries, with internal standards (89Y, 103Rh and 175Lu) added to each sample

Table 3 Summary of laboratory variables measured in the Guangzhou breast cancer cohort, IHC cohort, and case–control study

Variable categories	Variables	Populations
Urinary metals	Batch 1: beryllium, titanium, germanium, niobium, molybdenum, tellurium, platinum, bismuth, vanadium, chromium, cobalt, arsenic, selenium, rubidium, strontium, cadmium, indium, cesium, and thallium Batch 2: lithium, manganese, nickel, copper, zinc, barium, lead, vanadium, chromium, cobalt, arsenic, selenium, rubidium, strontium, cadmium, indium, cesium, and thallium	Batch 1: 240 cases and 246 controls Batch 2: 445 cases and 495 controls
SNPs	rs1136410, rs17883901, rs1800871, rs1801133, rs1805087, rs1805414, rs2051579, rs2069705, rs2228611, rs2234693, rs250108, rs28366003, rs2981582, rs3219145, rs3736360, rs3918242, rs6505162, rs8679, rs10889221, rs1078985, rs12644365, rs4976412, rs6926191, rs9485372, rs9383951, rs2471214, rs10107389, rs10511591, rs3176626, rs11033111, rs2046210, rs14192, rs911157, rs1052536, rs1061217, rs1075496, rs1290005, rs1711418, rs1800796, rs2273534, rs2292179, rs2605039, rs3751812, rs3816358, rs3845744, rs6829064, rs8109631, rs10216653, rs10989563, rs11078676, rs12380505, rs17102086, and rs2591592	1551 cases 1605 controls
Histone modification markers	H3K4me2, H3K4me3, H3K9me1, H3K9me2, H3K9me3, H3K27me3, H3K36me3, H4K20me3, H3k9ac, H4k5ac, H4k8ac, H4k12ac, H4K16ac, and H3K18ac	1061 patients of IHC cohort
Proteins	MCM5, FOXA1, ECM1, NDUFAB1, AGR2, Eelfg, Glut, STMN1, Calpain7, CMBL, HID1, ENO1, MLPH, ERK1, MIPEP, and GRB7	1061 patients of IHC cohort
Cytokines	MIP1- β , IL-6, IFN- γ , IL-1ra, IL-5, GM-CSF, TNF- α , RANTES, IL-2, IL-1 β , Eotaxin, Basic-FGF, VEGF, PDGF-BB, IP-10, IL-13, IL-4, MCP1, IL-8, MIP1- α , IL-10, G-CSF, IL-15, IL-7, IL-12p70, IL-17, and IL-9	794 cases 268 controls
EBV antibodies	IgA antibodies against EBV VCA-p18 and EBNA-1, IgG antibodies against EBV VCA-p18 and EBNA-1	349 cases 500 controls
Anti- <i>T. gondii</i> IgG	-	1121 cases 400 controls
Anti- <i>C. trachomatis</i> IgG	-	1121 cases 400 controls

to ensure accuracy [13]. Samples underwent at least three replicate analyses, with rigorous quality control, including matrix blanks and quality-control samples, to avoid cross-contamination and ensure precision.

DNA isolation and genotyping

Genomic DNA was extracted from blood samples using the TIANamp Genomic DNA Kit (TianGen Biotech Co., Ltd., Beijing, China). Fifty-three SNPs were genotyped using Sequenom's MassARRAY system (San Diego, California, USA) [14, 15]. Both positive and negative control methods were used for quality control, with 5% of samples being randomly selected for duplicate testing, achieving a 100% concordance rate.

Construction of tissue microarray (TMA) and IHC

Histone modification markers and protein levels were evaluated using TMAs and IHC [16]. TMAs were proceeded through a series of steps, including antigen retrieval, blocking and incubating with specific antibodies. IHC stained

sections were then digitally captured using the Pannoramic Scanner and analyzed with CaseViewer software. Staining intensity (scored from 0 to 3) and the percentage of positive strained tumor cells (0%–100%) were evaluated by an experienced pathologist blinded to the clinical data.

Serological tests

Serum cytokine levels were quantified using the Bio-Plex Pro Human Cytokine 27-plex assay (Bio-Rad, M500KCAF0Y) on a Luminex 200 platform (Luminex Corporation, Austin, TX, USA), allowing for rapid and accurate multiplex detection.

IgA and IgG antibodies against EBV VCA-p18 and EBNA-1 were measured using enzyme-linked immunosorbent assay (ELISA) kits (Zhongshan Bio-Tech, Zhongshan, China) [17]. The assays were standardized using a reference serum provided with each kit, with defined optical density (OD) cut-off values determining seropositivity [18].

Anti-*T. gondii* IgG was measured using commercial ELISA kits (Haitai Biological Pharmaceuticals Co., Ltd, Zhuhai, China) [19], with results validated against positive,

negative, and critical controls. Similarly, anti-*C. trachomatis* IgG and total IgG were detected using ELISA kits (Savyon diagnostics, Israel and Cusabio Biotech Co, China, respectively), with seropositivity defined as a cut-off index (COI) higher than 1.1. All serological assays were conducted according to the manufacturer's instructions, with blinded assessment to prevent bias in the analysis of case-control differences.

What has been found?

Guangzhou breast cancer cohort

Up to 31 December 2023, the cohort has been followed up for a mean of 8.22 years (standard deviation = 3.12). The mean age of participants were 47.9 years at baseline, primarily includes pre-menopausal women (62.8%) and women with menarche after 12 years of age (86.9%) (Table 4). Most participants were married (92.1%) and had a history of breastfeeding (85.8%). Notably, 15% of patients had a family history of BC, 24.3% were overweight or obese ($BMI \geq 25 \text{ kg/m}^2$), and 20.7% were diagnosed at clinical stages III or IV. After a mean follow-up duration of 8.22 years, disease progression was observed in 731 patients (18.2%), and 406 deaths (10.1%) were recorded (Table 5).

Case-control study

In the case-control study, participants had a mean age of 48.4 years (Table 4). A higher proportion of controls (45.1%) were post-menopausal compared to cases (39.2%). Education attainment was significantly higher in controls than in cases ($P < 0.01$), whereas other characteristics showed no significant differences ($P > 0.05$).

Immunohistochemistry (IHC) cohort

The IHC cohort, with a mean age of 48.5 years, predominantly comprised women aged 41 to 60 years (64.6%) (Table 4). The distribution of menopausal status, age at menarche and marital status among the participants closely resembled those of the Guangzhou breast cancer cohort. A family history of BC was reported by 10.5% of participants and 21.6% of patients tested positive for HER2 status. 73.5% of patients had a histological grade of I or II. During a mean follow-up of 8.53 years (standard deviation = 4.02), disease progression occurred in 270 (25.8%) patients, with 189 deaths (18.0%) recorded (Table 5).

Published results

Until to 31 August 2024, the GBCS has published 51 papers on various risk factors related to the occurrence and prognosis of breast cancer, as detailed in Fig. 2 and Supplementary Table 2. Of various factors studies (i.e., genetic factors, metal exposure, clinical characteristics, lifestyles, pathogenic microorganisms and proteins), genetic factors have been a primary focus, with polymorphisms in genes such as *PARP1*, *ESR1*, *FGFR2*, *FGF1*, *RBFOX2*, *FTO*, *IL-6*, and *HSPD1* identified as modifiers of BC risk and survival [20–23]. Epigenetic studies within the cohort showed that histone modifications, including H3K9me2, H3K9me3, H3K4me2, H3K27me3, H4K20me3, and H4K16ac, were strongly associated with disease progression and mortality [24–27].

The associations between urine levels of metal exposure and breast cancer risk have also been evaluated, with findings indicating that higher levels of strontium [odds ratio (OR) (95% confidence interval (CI)) for the highest versus the lowest tertile: 2.24 (1.42–3.81)] [10] and cadmium [OR (95% CI): 1.16 (1.01–1.34)] [28] were associated with a higher risk of BC. Conversely, higher selenium [OR (95% CI): 0.50 (0.30–0.81)] [28], thallium [OR (95% CI): 0.36 (0.21–0.60)] [29], vanadium [OR (95% CI): 0.60 (0.37–0.97)] [29], and cesium levels [ORs (95% CI): 0.50 (0.30–0.82)] [30] were associated with a lower risk of BC, which were consistent with other studies [31–33].

Furthermore, we found that long interval (> 5 years) between first and second birth was associated with a better progression free survival (PFS) [hazard ratio (HR) (95% CI): 0.64 (0.42–0.97)] [34], whereas weight loss at 2 years [HR (95% CI): 1.34 (0.87–2.06)] or more than 2 years [HR (95% CI): 1.95 (1.22–3.10)] after diagnosis increased the risk of BC progression [35]. In addition, specific Chinese lifestyles such as taking a nap [36] and drinking tea [37] appeared to be associated with a lower risk of BC progression.

Infectious agents such as Epstein-Barr virus and *Toxoplasma gondii* infection have also been examined, with results showing that Epstein-Barr virus infection being associated with a higher BC risk among ER+, PR+, and HER2+ patients [18], while *Toxoplasma gondii* infection being associated with a lower BC mortality and progression risk [HR (95% CI): 0.60 (0.37–0.99) for mortality; HR (95% CI): 0.67 (0.46–0.98) for progression] [38]. Specific mechanisms have been demonstrated in cellular experiments [39, 40].

Additionally, the role of proteins such as FOXA1 in BC prognosis has been characterized, with time-varying effect observed. Specifically, higher FOXA1 expression was initially associated with improved survival rate in the early post-diagnosis period. However, the potential protective

Table 4 Baseline characteristics of the Guangzhou Breast Cancer Study (GBCS) participants

Characteristics	Guangzhou breast cancer cohort BC patients (n=5471) (%)	Case-control study			IHC cohort	
		Cases (n=1551) (%)	Controls (n=1605) (%)	P*	BC patients (n=1063) (%)	
Age at diagnosis, years	47.92±10.74	48.39±11.46	48.35±11.38		48.46±10.40	
≤40	1370 (25.0)	419 (27.0)	444 (27.7)		254 (23.9)	
41–60	3394 (62.1)	907 (58.5)	931 (58.0)		686 (64.6)	
≥61	703 (12.9)	225 (14.5)	230 (14.3)	0.919	122 (11.5)	
Menopausal status						
Pre-menopausal	3344 (62.8)	928 (60.8)	864 (54.9)		597 (59.3)	
Post-menopausal	1985 (37.2)	598 (39.2)	710 (45.1)	<0.010	409 (40.7)	
Educational level						
Below junior school	2469 (48.1)	736 (49.9)	596 (38.2)		294 (55.9)	
Senior high school	1284 (25.0)	399 (27.1)	581 (37.2)		116 (22.1)	
College or above	1384 (26.9)	340 (23.1)	385 (24.6)	<0.010	116 (22.1)	
Age of menarche, years						
≤12	700 (13.1)	194 (13.0)	233 (14.9)		89 (8.7)	
>12	4633 (86.9)	1302 (87.0)	1327 (85.1)	0.117	934 (91.3)	
Marital status						
Never married	180 (3.4)	64 (4.2)	62 (4.0)		19 (1.8)	
Married	4904 (92.1)	1350 (89.5)	1386 (89.3)		978 (94.7)	
Widowed or divorced	239 (4.5)	95 (6.3)	104 (6.7)	0.857	36 (3.5)	
Parity						
0	333 (6.2)	125 (8.2)	117 (7.4)		39 (3.8)	
≥1	5057 (93.8)	1391 (91.8)	1454 (92.6)	0.410	979 (96.2)	
BMI, kg/m ²						
<23	2848 (53.9)	819 (54.8)	871 (56.7)		514 (51.3)	
23–24.9	1152 (21.8)	302 (20.2)	308 (20.0)		234 (23.4)	
≥25	1281 (24.3)	374 (25.0)	358 (23.3)	0.490	254 (25.3)	
Breastfeeding history						
No	725 (14.2)	236 (16.8)	285 (18.7)		53 (9.9)	
Yes	4396 (85.8)	1166 (83.2)	1236 (81.3)	0.179	485 (90.1)	
Family history						
No	4516 (85.0)	1451 (96.5)	1509 (97.0)		921 (89.5)	
Yes	795 (15.0)	52 (3.5)	47 (3.0)	0.493	108 (10.5)	
Clinical stage						
I/II	3866 (79.3)	–	–		708 (69.9)	
III/IV	1010 (20.7)	–	–		305 (30.1)	
ER status						
Negative	1211 (24.3)	–	–		268 (26.5)	
Positive	3765 (75.7)	–	–		744 (73.5)	
PR status						
Negative	1664 (33.5)	–	–		275 (27.2)	
Positive	3297 (66.5)	–	–		735 (72.8)	
HER2 status						
Negative	2616 (54.7)	–	–		554 (61.6)	
Equivocal	1160 (24.3)	–	–		151 (16.8)	
Positive	1006 (21.0)	–	–		194 (21.6)	
TNBC						
No	4271 (89.8)	–	–		826 (92.3)	
Yes	485 (10.2)	–	–		69 (7.7)	

Table 4 (continued)

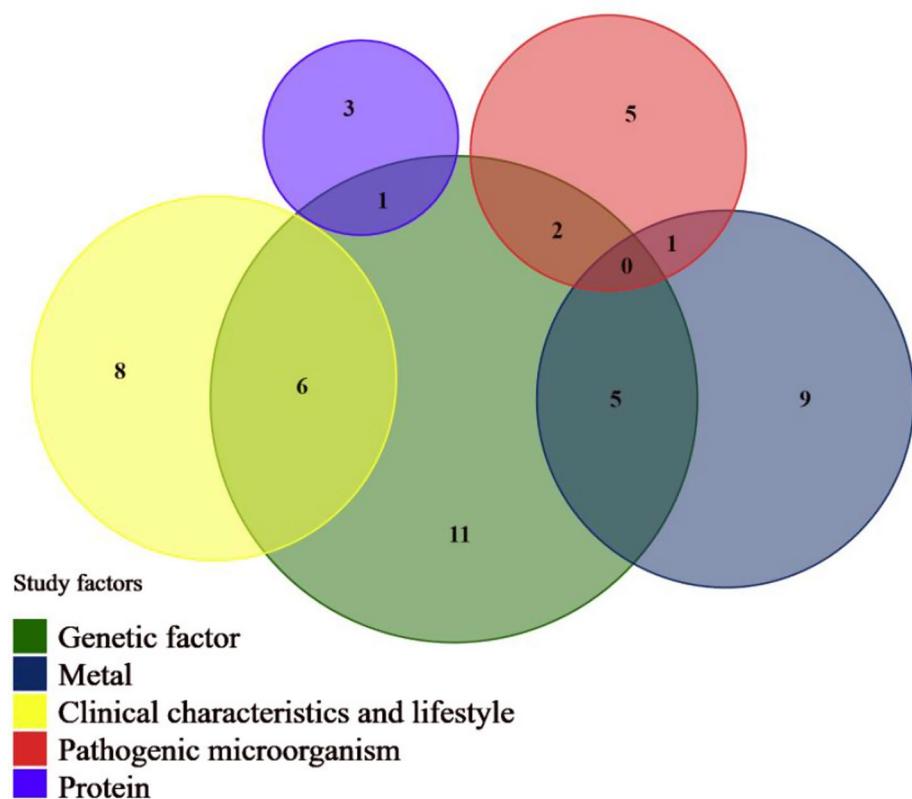
Characteristics	Guangzhou breast cancer cohort BC patients (n=5471) (%)	Case-control study		P*	IHC cohort BC patients (n=1063) (%)
		Cases (n=1551) (%)	Controls (n=1605) (%)		
Ki-67					
≤ 14%	1209 (26.4)	–	–		364(36.4)
> 14%	3375 (73.6)	–	–		637(63.6)
Histological grade					
I/II	–	–	–		710 (73.5)
III	–	–	–		256 (26.5)

*P values are for differences between cases and control in the case-control study

BC Breast cancer, IHC Immunohistochemistry

Table 5 Follow-up results of Guangzhou breast cancer cohort and immunohistochemistry (IHC) cohort

	Guangzhou breast cancer cohort (n=4023)	IHC cohort (n=1048)
Mean follow-up year (SD)	8.22 (3.12)	8.53 (4.02)
Overall mortality, n (%)	406 (10.1%)	189 (18.0%)
Disease progression, n (%)	731 (18.2%)	270 (25.8%)
SD: Standard devia- tion		


effect appeared to diminish over time, eventually giving way to an adverse effect in the later years [16].

What are the main strengths and weaknesses?

The GBCS represents a unique and comprehensive study in South China, with several strengths. First, the GBCS cohort includes three sub-studies, each focused on investigating distinct aspects of BC, including risk factors, underlying mechanisms and prognostic indicators. This multifaceted approach enables the investigation of BC across the entire disease spectrum, from preventive to treatment. Another strength lies in its extensive and detailed data collection

by face-to-face interview using validated questionnaires. This approach captures region-specific risk factors such as socioeconomic conditions, diet habits (tea intake) and lifestyle factors (late sleep timing and napping) at baseline and follow-up. Third, the robust biorepository, which includes blood, urine, and breast carcinoma tissue samples were collected and stored according to standardized protocols, provides valuable resources for future research. This biobank supports advanced analyses such as Mendelian randomization and multi-omics approaches, potentially offering insights into the causal pathways and therapeutic responses in BC. Fourth, the long-term sustainability of the GBCS is supported by continuous funding from the Natural Science Foundation of China and the Science and Technology Planning Project of Guangdong Province, as well as strong institutional collaborations. These factors have contributed to high follow-up rates and minimized attrition. Finally, the extended follow-up period has resulted in a large number of mortality cases, offering opportunities to examine the long-term impacts of risk factors on BC prognosis. However, there are limitations to consider. First, the reliance on self-reported data for lifestyle factors and medical history introduces the potential for recall bias. Additionally, the participants were recruited from three leading hospitals in Guangzhou rather than through random sampling, which may limit the generalizability of findings to other populations. However, random sampling in a hospital-based patient cohort is generally impractical and unlikely to be feasible.

Fig. 2 A wayne diagram of factors associated with breast cancer risk and mortality that have been studied by the GBCS*. *The size of the circle represents the number of published articles. The color of the circle represents different categories of research factors

Can I get hold of the data? Where can I find out more?

The GBCS seeks and encourages collaboration to maximize the use of research data from all over the world. While the dataset contains sensitive information and is not publicly available for download, researchers with specific ideas or proposals are invited to request access. To initiate a collaboration, interested parties should contact the corresponding author, Professor Lin Xu at xulin27@mail.sysu.edu.cn. Further details about the study and opportunities for collaboration can also be obtained through this contact.

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s10654-024-01180-y>.

Acknowledgements The authors are grateful to the participants and the investigators from the Guangzhou Breast Cancer Study.

Author contributions L. X. has full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: L. X., J. W. Acquisition, analysis or interpretation of data: all authors. Statistical analysis: J. W., N. L., S. S. H., C. K. X., X. Y. L. and M. J. L. Drafting of the manuscript: J. W., N. L., S. S. H., C. K. X. and M. J. L. Critical revision of the manuscript for important intellectual content: L. X. and Z. F. R.

Funding This work was funded by the Natural Science Foundation of China [No. 82373661, 82103930 and 81773515] and the Natural Science Foundation of Guangdong [2022A1515011546].

Declarations

Competing interests The authors declare no competing interests.

Ethics approval The Guangzhou Medical Ethics Committee of the Chinese Medical Association approved the Guangzhou Breast Cancer Study (ID: 2012-8). All participants provided written, informed consent before participation.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

1. Collaboration GBoDC. The Global Burden of Cancer 2013. *JAMA Oncology* 2015; **1**: 505–27.
2. Xu Y, Gong M, Wang Y, Yang Y, Liu S, Zeng Q. Global trends and forecasts of breast cancer incidence and deaths. *Sci Data*. 2023;10:334.

3. Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. *Breast*. 2022;66:15–23.
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin*. 2018;68:394–424.
5. Fan L, Strasser-Weippl K, Li J-J, et al. Breast cancer in China. *Lancet Oncol*. 2014;15:e279–89.
6. Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022. *J Nat Cancer Center*. 2024;4:47–53.
7. Antoniou AC, Easton DF. Risk prediction models for familial breast cancer. *Future Oncol*. 2006;2:257–74.
8. Jacobi CE, de Bock GH, Siegerink B, van Asperen CJ. Differences and similarities in breast cancer risk assessment models in clinical practice: which model to choose? *Breast Cancer Res Treat*. 2009;115:381–90.
9. Shen A, Wei X, Zhu F, et al. Risk prediction models for breast cancer-related lymphedema: A systematic review and meta-analysis. *Eur J Oncol Nurs*. 2023;64: 102326.
10. Chen LJ, Tang LY, He JR, et al. Urinary strontium and the risk of breast cancer: a case-control study in Guangzhou. *China Environ Res*. 2012;112:212–7.
11. Wang P, Ren FM, Lin Y, et al. Night-shift work, sleep duration, daytime napping, and breast cancer risk. *Sleep Med*. 2015;16:462–8.
12. Lin W, Lin HD, Guo XY, et al. Allelic expression imbalance polymorphisms in susceptibility chromosome regions and the risk and survival of breast cancer. *Mol Carcinog*. 2017;56:300–11.
13. Wilschefski SC, Baxter MR. Inductively coupled plasma mass spectrometry: introduction to analytical aspects. *Clin Biochem Rev*. 2019;40:115–34.
14. Liao Y-H, Ren J-T, Zhang W, et al. Polymorphisms in homologous recombination repair genes and the risk and survival of breast cancer. *J Gene Med*. 2017;19: e2988.
15. Ellis JA, Ong B. The MassARRAY® system for targeted SNP genotyping. In: White SJ, Cantsilieris S, editors. *Genotyping: methods and protocols*. New York: Springer; 2017. p. 77–94.
16. Chen QX, Yang YZ, Liang ZZ, et al. Time-varying effects of FOXA1 on breast cancer prognosis. *Breast Cancer Res Treat*. 2021;187:867–75.
17. Ng MH, Chen HL, Luo RX, et al. Serological diagnosis of nasopharyngeal carcinoma by enzyme linked immunosorbent assay: optimization, standardization and diagnostic criteria. *Chin Med J*. 1998;111:531–6.
18. He JR, Tang LY, Yu DD, et al. Epstein–Barr virus and breast cancer: serological study in a high-incidence area of nasopharyngeal carcinoma. *Cancer Lett*. 2011;309:128–36.
19. Wang L, He LY, Meng DD, et al. Seroprevalence and genetic characterization of *Toxoplasma gondii* in cancer patients in Anhui Province. *Eastern China Parasites Vect*. 2015;8:162–8.
20. Xi J, Su Y, Beeghly Fadiel A, et al. Association of physical activity and polymorphisms in FGFR2 and DNA methylation related genes with breast cancer risk. *Cancer Epidemiol*. 2014;38(6):708714.
21. Cen YL, Qi ML, Li HG, et al. Associations of polymorphisms in the genes of FGFR2, FGF1, and RBFOX2 with breast cancer risk by estrogen/progesterone receptor status. *Mol Carcinog*. 2013;52 Suppl 1:E52–59.
22. Tang LY, Chen LJ, Qi ML, et al. Effects of passive smoking on breast cancer risk in pre/post-menopausal women as modified by polymorphisms of PARP1 and ESR1. *Gene*. 2013;524(2):8489.
23. Zhu RM, Lin W, Zhang W, et al. Modification effects of genetic polymorphisms in FTO, IL-6, and HSPD1 on the associations of diabetes with breast cancer risk and survival. *PLoS ONE*. 2017;12:14.
24. Zhou M, Yan JQ, Chen QX, et al. Association of H3K9me3 with breast cancer prognosis by estrogen receptor status. *Clin Epigenetics*. 2022;14(1):135.
25. Xiao CK, Ren Y, Chen Q, et al. H4K20me3, H3K4me2 and H3K9me2 mediate the effect of ER on prognosis in breast cancer. *Epigenetics*. 2024;19(1):2343593.
26. Wang B, Zhou M, Shi YY, et al. Survival is associated with repressive histone trimethylation markers in both HR-positive HER2-negative and triple-negative breast cancer patients. *Virchows Arch Int J Pathol*. 2023;482(6):1047–1056.
27. Wang B, Zhou M, Gan XL, et al. Combined low levels of H4K16ac and H4K20me3 predicts poor prognosis in breast cancer. *Int J Clin Oncol*. 2023;28(9):1147–1157.
28. Wei XL, He JR, Cen YL, et al. Modified effect of urinary cadmium on breast cancer risk by selenium. *Clin Chim Acta Int J Clin Chem*. 2015;438:8085.
29. Tang LY, Su Y, He JR, et al. Urinary titanium and vanadium and breast cancer: a case-control study. *Nutr Cancer*. 2012;64(3):368–376.
30. Qin YC, Tang LY, Su Y, et al. Association of urinary cesium with breast cancer risk. *Asian Pac J Cancer Prev APJCP*. 2014;15(22):9785–9790.
31. Larsson SC, Orsini N, Wolk A. Urinary cadmium concentration and risk of breast cancer: a systematic review and dose-response meta-analysis. *Am J Epidemiol*. 2015;182(5):375–380.
32. Zhu X, Pan D, Wang N, et al. Relationship Between Selenium in Human Tissues and Breast Cancer: a Meta-analysis Based on Case-Control Studies. *Biol Trace Elem Res*. 2021;199(12):4439–4446.
33. Gamboa-Loira B, Mérida-Ortega Á, Rothenberg SJ, et al. Metal exposure and breast cancer among Northern Mexican women: assessment of genetic susceptibility. *Environ Sci Pollut Res Int*. 2022;29(59):89002–89013.
34. Zhang JY, Wang MX, Wang X, et al. Associations of reproductive factors with breast cancer prognosis and the modifying effects of menopausal status. *Cancer Med*. 2020;9(1):385–393.
35. Zhang YX, Liang ZZ, Li YQ, et al. Association between weight change and breast cancer prognosis. *Breast Cancer Res Treat*. 2022;193(3):677–684.
36. Liang ZZ, Zhang YX, Lin Y, et al. Joint effects of multiple sleep characteristics on breast cancer progression by menopausal status. *Sleep Med*. 2019;54:153–158.
37. Zhang JY, Liao YH, Lin Y, et al. Effects of tea consumption and the interactions with lipids on breast cancer survival. *Breast Cancer Res Treat*. 2019;176(3):679–686.
38. Ye HM, Lu MJ, Liu Q, et al. Beneficial Effect of *Toxoplasma gondii* Infection on the Prognosis of Breast Cancer Was Modified by Cytokines. *Clin Epidemiol*. 2023;15:469–481.
39. Chen M, Yang P. *Toxoplasma gondii* *gra5* deletion mutant protects hosts against *Toxoplasma gondii* infection and breast tumors. *Front Immunol*. 2023 Jun 23;14:1173379.
40. Arias-Calvachi C, Blanco R, Calaf GM, et al. Epstein-Barr Virus Association with Breast Cancer: Evidence and Perspectives. *Biology*. 2022;11(6):799.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.