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A B S T R A C T

Exposure to environmental chemicals is prevalent. While previous studies reported associations between mul
tiple chemical exposures and metabolic syndrome (MetS), they did not comprehensively account for correlations 
among exposures. We used machine learning methods including Boruta algorithm and least absolute shrinkage 
and selection operator (LASSO) regression, combined with weighted quartiles sum (WQS) regression to inves
tigate the associations of phenols, polycyclic aromatic hydrocarbons (PAHs), metals, and phthalates with MetS 
and its components. Data were drawn from the 2005–2012 National Health and Nutrition Examination Survey 
(NHANES). The mean (standard deviation (SD)) age of 2596 participants was 48.4 (17.9) years. After adjusting 
for age, sex, body mass index, race/ethnicity, marital status, education, poverty income ratio, physical activity, 
smoking, and alcohol, higher 2-Phenanthrene (2-PHE) and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) 
concentrations were associated with a higher odds of the MetS (odds ratio (OR) = 4.26, 95 % confidence interval 
(CI) 2.40–7.58 per ng/mL, and 3.24, 1.75–6.02 per ng/L, respectively). WQS index for environmental chemicals 
was positively associated with the MetS (OR = 1.31, 95 % CI 1.09–1.57). Moreover, we observed consistent and 
stronger positive associations with MetS (OR = 1.54, 95 % CI 1.04–2.30) in current smokers. Exposure to 
phenols, PAHs, metals, and phthalates was positively associated with an increase in metabolic syndrome and its 
components, which was more pronounced in current smokers.

1. Introduction

Metabolic syndrome (MetS) is a multifactorial disorder (Eckel et al., 
2005), While previous studies have mainly focused on lifestyle and ge
netic factors (Cornier et al., 2008; Kassi et al., 2011), increasing atten
tion is now being paid to environmental factors, including phenols and 
phthalates (Zhan et al., 2022), polycyclic aromatic hydrocarbons (PAHs) 
(Li et al., 2023a) and heavy metals (Deyssenroth et al., 2018). These 
pollutants, derived from combustion processes, industrial emissions 
(Bulka et al., 2019; Kim et al., 2013b), plastic and personal care products 
(Zhang et al., 2019), are pervasive in air, water, food and household 
items (Yilmaz et al., 2020). Recent studies reported positive associations 
of environmental pollutant exposure and MetS (Eze et al., 2015; Ren and 
Tong, 2008). For example, developmental exposure to phthalates was 
associated with a higher risk of MetS (Neier et al., 2019). Moreover, 
exposure to PAHs was associated with higher risks of hypertension and 
obesity (Poursafa et al., 2017), and exposure to bisphenol A (BPA) 

(Teppala et al., 2012) and metals such as mercury (Hg) and cadmium 
(Cd) was associated with a higher risk of MetS (Jeong, 2018; Roy et al., 
2017).

Despite these findings, most studies focus on individual pollutants, 
overlooking the cumulative impact of chemical mixtures. Our study 
addresses this by employing advanced machine learning techniques to 
analyze the non-linear interactions among phenols, phthalates, PAHs, 
and heavy metals. This approach enables the assessment of combined 
exposures and their collective effects on MetS, providing a more 
comprehensive understanding of the environmental contributors to its 
risk.

Given the widespread exposure to multiple environmental pollutants 
and their potential combined impact on MetS, we hypothesize that 
simultaneous exposure to phenols, phthalates, PAHs, and heavy metals 
is significantly associated with a higher risk of MetS. We further hy
pothesize that these associations can be more accurately characterized 
using advanced machine learning that account for complex, non-linear 
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interactions among exposures. The primary objectives of the study are 
to: (1) assess the independent and combined effects of these pollutants 
on MetS risk, (2) explore their complex interactions, and (3) quantify the 
relative contribution of these exposures using weighted quantile sum 
(WQS) regression models.

2. Materials and methods

2.1. Study population

The National Health and Nutrition Examination Survey (NHANES) is 
a large-scale program administered by the Centers for Disease Control 
and Prevention (CDC) to assess the health and nutritional status of the 
non-institutionalized U.S. population. The survey includes demographic 
information, dietary habits, and interviews on health-related issues. In 
addition, NHANES includes a physical examination component with 
physiological measurements and laboratory tests (Liu et al., 2022b). 
NHANES was approved by the National Center for Health Statistics 
(NCHS) Research Ethics Review Board, and all participants volunteered 
(Ashley et al., 2020). The study used population data from the 
2005–2012 cycle. We excluded participants aged under 20 years and 
those with missing data on any of the key variables, including envi
ronmental chemicals, demographic characteristics and MetS compo
nents, resulting in a final sample of 2596 participants for this study 
(Supplementary Fig. 1).

2.2. Measurements of environmental chemicals

Our analyses included data on environmental chemicals from four 
NHANES cycles, covering the period from 2005 to 2012. Urine samples 
were processed, dispensed, and frozen at − 20 degrees Celsius until 
assayed. To avoid bias in the estimation of the types of substances below 
the limit of detection (LOD), only samples with detectable environ
mental contaminants in at least 65 % of the samples were included in our 
analyses (Johnson et al., 2021; Saadati et al., 2013). Results below the 
detection limit are expressed as the detection limit divided by the square 
root of two (Aimuzi et al., 2023). A total of 28 environmental pollutants 
were included, including three phenols, nine PAHs, three metals, and 11 
phthalates (Supplementary Table 1). Laboratory test methods for phe
nols, PAHs, metals, and phthalates and the 28 adopted environmental 
chemicals are described in detail in the Supplementary Material.

2.3. Assessment of MetS and its components

MetS was defined by the presence of at least three of the following 
conditions: hypertension, hypertriglyceridemia, low HDL-C, hypergly
cemia, and central obesity (Yoon et al., 2021). The specific diagnostic 
criteria were as follows (Grundy et al., 2004): (1) hypertension: systolic 
blood pressure (SBP) ≥ 130 mmHg, diastolic blood pressure (DBP) ≥85 
mmHg, or undergoing antihypertensive therapy; (2) central obesity: 
waist circumference ≥102 cm for men and ≥88 cm for women; (3) 
hyperglycemia: fasting blood glucose ≥100 mg/dL or receiving anti
hyperglycaemic therapy; (4) low HDL-C: serum HDL-C < 40 mg/dL for 
men and <50 mg/dL for women; (5) hypertriglyceridemia: serum tri
glycerides of ≥150 mg/dL.

2.4. Covariates

We initially included the following variables as covariates in our 
analysis, based on the directed acyclic graph (Supplementary Fig. 2) and 
previous literatures (Che et al., 2023; Li et al., 2023b; Lo et al., 2021): 
age, sex, race/ethnicity, education, marital status, poverty income ratio 
(PIR), BMI, smoking, physical activity, and alcohol intake. Specifically, 
age was treated as continuous. The classification of race/ethnicity 
included Mexican American, Other Hispanic, Non-Hispanic White, 
Non-Hispanic Black, and Other/multi-racial groups, with the ’Other’ 

category encompassing individuals identifying as Asian, American 
Indian/Alaska Native, Native Hawaiian/Pacific Islander, or those 
reporting more than one race. PIR represented the ratio of household 
income to the poverty threshold and was considered a categorical var
iable with three levels: <1, 1 ≤ PIR ≤ 3, and PIR > 3. Marital status 
includes married/cohabiting, widowed/divorced, separated/never 
married. Educational attainment was categorized as follows: less than 
9th grade, 9th–11th grade, high school graduation/General Educational 
Development (GED) or equivalent, some college/associate’s degree, 
college or higher. Physical activity was assessed through self-reported 
responses to questions regarding the frequency and intensity of exer
cise, such as ̀ `In the past 30 days, how often did you engage in vigorous 
physical activities for at least 10 min at a time?’’ and ``In the past 30 
days, how often did you engage in moderate-intensity physical activities 
for at least 10 min at a time?’’. Alcohol intake was assessed by asking 
participants, ``Have you ever consumed at least 12 alcoholic drinks in 
your lifetime?’’ and ``During the past 12 months, how many days did 
you have at least one alcoholic drink?’’. Never smokers were individuals 
who had smoked fewer than 100 cigarettes in their lifetime, while 
former smokers were those who had smoked more than 100 cigarettes 
but were not currently smoking at the time of the survey. Current 
smokers referred to individuals with a history of smoking over 100 
cigarettes and still actively smoking during the survey period.

2.5. Statistical analysis

For demographic characteristics, mean and standard deviation (SD) 
were used to represent continuous variables, while proportions indi
cating the presence or absence of MetS were employed for categorical 
variables. For normally distributed data, we used the t-test, and for 
skewed variables, the Wilcoxon rank sum test was used for between- 
group comparisons. For the test of differences in categorical variables, 
we used the chi-square test. Given that the distributions of all environ
mental chemicals were right-skewed, we applied a natural logarithmic 
transformation (ln-transformation) to enhance the normality of the data. 
We also adjusted the environmental chemical concentrations based on 
urinary creatinine levels to account for varying dilution levels in urine 
samples. The MetS and its components were analyzed as binary out
comes. We compared the distribution of various environmental chem
icals by the presence of the MetS and its components. Additionally, 
survey weights were applied to ensure that the results reflect nationally 
representative estimates.

In addition, we constructed regularized partial correlation networks 
to capture the association between pairs of environmental chemicals. 
Graphical lasso was used to estimate the sparse inverse covariance 
matrix (Epskamp and Fried, 2018). The method introduces L1 regular
isation to achieve matrix sparsity, which pushes some elements of the 
inverse covariance matrix to zero. This sparse inverse covariance matrix 
reveals the direct relationship between variables, independent of other 
variables’ indirect correlations. In a biased correlation network graph, 
each node represents an environmental chemical, and the weights of the 
edges indicate the biased correlation coefficients, with red edges rep
resenting positive correlations, while blue edges indicating negative 
correlations.

To explore in depth the association of multiple environmental 
chemicals with MetS and its components, we employed a composite 
statistical approach. First, for the association of individual environ
mental chemicals with MetS, we used standard multivariable logistic 
regression with post hoc false discovery rate (FDR) correction 
(Benjamini and Hochberg, n.d.) to reduce false positive rate caused by 
multiple comparisons. Next, we applied the LASSO regression, Boruta 
algorithm, and extreme gradient boosting (XGBoost) regression for 
feature selection, aiming to identify the most relevant environmental 
chemicals related to MetS. Environmental chemicals identified across all 
three methods were selected for the final analysis. Finally, we used WQS 
regression to estimate the cumulative effect of the screened 
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environmental chemical mixtures on MetS. We further stratified the 
analysis by smoking status to explore potential effect modification due 
to smoking.

We also conducted several sensitivity analyses, as follows. (1) We 
also used quantile based g-computation (QGC) and random forest (RF) 
model to investigate the effect weights of different environmental 
chemicals on MetS. (2) Given the potential interactions between envi
ronmental chemicals, we also introduced the h-statistic to detect po
tential interactions between these chemicals (Jerome and Bogdan, n.d.). 
A value of 0 for the h-statistic indicates no interaction, whereas a value 
of 1 indicates that the observed changes can be explained entirely by 
interactions between the input features. (3) A restricted cubic spline 
generalized additive model (GAM) was used to fit univariate 
exposure-response relationship curves. Detailed methods of LASSO 
regression, Boruta algorithm, XGBoost regression, WQS, QGC and RF 
model were described in Supplementary Material. All data analyses were 
performed in R 4.3.1 with a significance level of 0.05.

3. Results

3.1. Demographic characteristics

The mean (standard deviation (SD)) age of 2596 participants was 
48.4 (17.9) years. 49.7 % were men. Compared to those without Mets, 
participants with MetS were older, had higher proportion of non- 
Hispanic white ethnicity and lower education, were married/living 
with partner, had lower PIR, higher BMI, lower physical activity, more 
current smokers and alcohol users (P form <0.001 to 0.001) (Table 1). 
The concentrations of four environmental chemical groups including 28 
chemicals by MetS and its components were shown in Supplementary 
Table 2.

3.2. Association of individual environmental chemicals with MetS

After adjusting for age, sex, body mass index, race/ethnicity, marital 
status, education, poverty income ratio, physical activity, alcohol, and 
smoking, higher 2-Phenanthrene (2-PHE) and mono-(2-ethyl-5- 
hydroxyhexyl) phthalate (MEHHP) levels were associated with an 
higher odds of MetS (OR = 4.26, 95 % CI 2.40–7.58 per ng/L, and 3.24, 
1.75–6.02 per ng/mL, respectively). Additionally, 2-PHE was associated 
with a higher odds of hyperglycemia, low HDL-C, hypertriglyceridemia 
and central obesity. Of the three metals, only higher Hg was associated 
with higher odds of hyperglycemia (1.15, 1.00–1.31 per ug/L). 
Furthermore, higher Mono-(2-ethyl-5-carboxypentyl) phthalate 
(MECPP) was associated with higher odds of low HDL-C (1.47, 
1.01–2.12 per ng/mL) and hypertension (1.67, 1.11–2.53 per ng/mL) 
(Fig. 1, Supplementary Table 3). The correlations between these 28 
environmental chemicals were ranged from − 0.27 to 0.54, with chem
icals of the same category tend to cluster together, and showing positive 
correlations (Fig. 2).

3.3. Environment chemicals associated with MetS by feature selection

Using LASSO regression, Boruta algorithm and XGBoost regression, 
we identified 16, 15, and 10 environmental chemicals associated with 
MetS, respectively. Comparing the screening results from these three 
methods, we found nine environmental chemicals identified by all. 
These nine environmental chemicals included four categories, as fol
lows: (1) phenols (benzophenone-3 (BP-3)), (2) PAHs (2-Naphthalene 
(2-NAP), 3-Phenanthrene (3-PHE), 2-Phenanthrene (2-PHE), 1-Pyrene 
(1-PYR)), (3) metals (lead (Pb)), and (4) phthalates (mono-(2-ethyl)- 
hexyl phthalate (MEHP), MEHHP, MECPP) (Table 2, Supplementary 
Fig. 3).

3.4. Association of multiple environmental chemicals with MetS

The nine environmental chemicals identified were included in the 
WQS regression to generate a composite index for combined exposure (i. 
e., WQS index). The WQS index showed a positive association with MetS 
(OR = 1.31, 95 % CI: 1.09–1.57), hyperglycemia (1.30, 1.10–1.55), low 
HDL-C (1.20, 1.01–1.43), hypertriglyceridemia (1.32, 1.12–1.55), and 
central obesity (1.51, 1.16–1.98) (Table 3). No association with hyper
tension was observed. Of the five outcomes showing significant associ
ations, 2-PHE showed the highest estimated weight regarding the 
associations with MetS, hyperglycemia, hypertriglyceridemia, and cen
tral obesity (Fig. 3, Supplementary Figs. 4 and 5), with WQS weights 
being 0.46, 0.28, 0.56, and 0.53, respectively, while 2-NAP showed the 
highest estimated weight for low HDL-C (WQS weight = 0.49) (Sup
plementary Table 4).

In addition, the WQS index showed a significant interaction with 
smoking status in terms of the association with MetS (P for interaction =

Table 1 
Sample characteristics in all participants and by the presence of metabolic 
syndrome (MetS).

Characteristics Total (n =
2596)

No MetS (n =
1817)

MetS (n =
779)

P-value

Age [years, mean (SD)] 48.4 (17.9) 45.1 (17.7) 55.2 
(16.2)

<0.001

Sex [n (%)] ​ ​ ​ 0.20
Men 1291 

(49.7)
881 (50.6) 410 (48.0) ​

Women 1305 
(50.3)

860 (49.4) 445 (52.0) ​

Race/ethnicity [n (%)] ​ ​ ​ <0.001
Mexican American 412 (15.9) 252 (14.5) 160 (18.7) ​
Other Hispanic 225 (8.7) 156 (9.0) 69 (8.1) ​
Non-Hispanic White 1241 

(47.8)
809 (46.5) 432 (50.5) ​

Non-Hispanic Black 515 (19.8) 362 (20.8) 153 (17.9) ​
Other/multi-racial 203 (7.8) 162 (9.2) 41 (4.8) ​
Education [n (%)] ​ ​ ​ <0.001
Less than 9th grade 277 (10.7) 156 (9.0) 121 (14.2) ​
9th-11th grade 390 (15.0) 233 (13.4) 157 (18.4) ​
High School grad/GED or 

equivalent
601 (23.2) 370 (21.3) 231 (27.0) ​

College or AA degree 718 (27.7) 504 (28.9) 214 (25.0) ​
College Grad or Above 610 (23.4) 478 (27.4) 132 (15.4) ​
Marital Status [n (%)] ​ ​ ​ <0.001
Married/living with 

partner
1589 
(61.2)

1041 (59.8) 548 (64.1) ​

Widowed/divorced/ 
separated

549 (21.1) 332 (19.1) 217 (25.4) ​

Single/never married 458 (17.7) 368 (21.1) 90 (10.5) ​
Poverty income ratio [n 

(%)]
​ ​ ​ <0.001

<1 532 (20.5) 341 (19.6) 191 (22.3) ​
1–3 1070 

(41.2)
682 (39.2) 388 (45.4) ​

>3 994 (38.3) 718 (41.2) 276 (32.3) ​
BMI [kg/m2, mean (SD)] 29.0 (6.6) 27.1 (5.8) 33.0 (6.5) <0.001
Physical activity [n (%)] ​ ​ ​ <0.001
Low 1275 

(49.1)
759 (43.6) 516 (60.4) ​

High 1321 
(50.9)

982 (56.4) 339 (39.6) ​

Smoking [n (%)] ​ ​ ​ <0.001
Never 1403 

(54.0)
1002 (57.6) 401 (46.9) ​

Former 633 (24.4) 376 (21.6) 257 (30.1) ​
Current 560 (21.6) 363 (20.8) 197 (23.0) ​
Alcohol [n (%)] ​ ​ ​ 0.001
No 1788 

(68.9)
1237 (71.1) 551 (64.4) ​

Yes 808 (31.1) 504 (28.9) 304 (35.6) ​

Note: Continuous variables were presented as mean±standard deviation (SD). 
Categorical variables were presented as n (%). MetS, metabolic syndrome; BMI, 
body mass index. Values in bold font are statistically significant (P < 0.05).
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0.01). After stratifying by smoking status, the association of WQS index 
with MetS was more pronounced in the current smokers than the never 
smokers (OR and 95 % CI 1.54 (1.04–2.30) versus 1.27 (0.94–1.73)) 
(Table 4). Specifically, we observed consistent and stronger positive 
associations with hypertriglyceridemia (OR = 1.71, 95 % CI 1.22–2.40) 
and low HDL-C (1.40, 1.06–1.85) in current smokers. In the current 
smokers, the first three greatest estimated weights of MetS-related 
chemicals were 2-PHE (WQS weight = 0.33), 1-PYR (WQS weight =

0.22), and Pb (WQS weight = 0.18) (Supplementary Table 5).

3.5. Sensitivity analyses

First, in the QGC model, we observed that chemicals such as 2-PHE, 
MEHHP, and Pb continued to carry more weight in association with 
MetS and its components (Supplementary Fig. 6, Supplementary 
Table 6). Second, we assessed the importance of environmental 

Fig. 1. Associations between environmental chemicals and hyperglycemia (A), Low HDL-C (B), hypertension (C), hypertriglyceridemia (D), central obesity (E), and 
MetS (F) in logistic regression.
Note: (1) Red indicates a positive correlation between the environmental chemical and MetS or its components, while blue indicates a negative correlation. (2) All 
models were adjusted for age, sex, race/ethnicity, education, marital status, poverty income ratio, BMI, physical activity, smoking, alcohol.

Fig. 2. Regularized partial correlation network.
Note: (1) Red edges indicate positive correlations and blue edges indicate negative correlations. (2) Edge weights indicate partial correlation coefficients.
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chemicals using the RF model and observed that 2-PHE and MEHHP 
remained the two most important environmental chemicals in their ef
fects on MetS (Supplementary Fig. 7). Third, h-statistic results suggested 
that there was no significant interaction between the different envi
ronmental chemicals (Supplementary Figure 8). Fourth, a positive as
sociation was observed between 2-PHE, MEHHP, and MetS and its 
components in the dose-response analysis (Supplementary Figs. 9–14).

4. Discussion

Using a robust statistical methodology that included machine 
learning and regression models, our study demonstrated that higher 
exposure to phenols, PAHs, metals, and phthalates was associated with 
higher odds of MetS and its components. Moreover, a composite index 
(WQS index) derived from nine identified chemicals demonstrated 
positive associations with MetS and some of its components, with more 
pronounced effects noticed among current smokers. Our results high
light the critical public health implication of addressing environmental 
pollutants as modifiable risk factors for MetS.

Phenols, PAHs, metals, and phthalates are widely recognized as EDCs 
(Braun, 2017; Fan et al., 2023) that can significantly impact health 
through various mechanisms (Monneret, 2017; Sun et al., 2022). A 
recent study showed that the association of EDCs with MetS was pri
marily through disruption of insulin and glucose metabolism (Vanni 
et al., 2021). For example, phenols and phthalates have been involved in 
pancreatic β-cell dysfunction, increasing the risk of obesity and insulin 
resistance through mechanisms involving oxidative stress and inflam
mation (Lin et al., 2011). Furthermore, proteomic studies showed that 
phthalates and their metabolites interfere with lipid storage mecha
nisms, leading to impaired insulin sensitivity and adipokines secretion 
(Ellero-Simatos et al., 2011; Liu et al., 2022a). Furthermore, proteomic 
studies showed that phthalates and their metabolites interfere with lipid 
storage mechanisms, leading to impaired insulin sensitivity and adipo
kines secretion (Blüher, 2012; Piya et al., 2013). Disruption of adipokine 
secretion by phthalates may thus contribute to the development of in
sulin resistance and obesity (Hsia et al., 2022; Schaffert et al., 2022), 
particularly in populations with high environmental exposure (Liu et al., 
2022a; Xu et al., 2021).

Similarly, PAHs are highly soluble in lipids, easily absorbed by the 
gastrointestinal tract, and tend to accumulate in adipose tissue across 
various organs (Kumari et al., 2023). Existing experimental evidence 
indicates that exposure to PAHs affects lipid metabolism in adipose 
tissue, leading to an increase in body weight and fat mass (Irigaray et al., 
2006). Furthermore, PAHs may form more active metabolites when 
metabolized by host cell enzymes, resulting in stronger toxicity 
(Shimada and Fujii-Kuriyama, 2004). Previous studies showed that 
higher levels of PAH exposure were associated with higher prevalence of 
MetS components, such as increased waist circumference, hyperglyce
mia, and dyslipidemia (Li et al., 2023c; Shahsavani et al., 2021). 
Phthalates have been shown to disrupt endocrine functions, leading to 
long-term metabolic disturbances such as insulin resistance and dysli
pidemia, primarily through oxidative stress pathways (Kim et al., 
2013a). In contrast, PAHs were associated with hypertension and 
obesity via mechanisms involving inflammation and oxidative stress, 
contributing to a higher risk of MetS (Mallah et al., 2021; Zhou et al., 
2023). Furthermore, exposure to metals such as mercury and cadmium 
might impair insulin signalling and exacerbate oxidative stress, thereby 
increasing the risk of MetS (Masenga et al., 2023).The impact of metal 
exposure on metabolic health also warrants attention. Metals such as 
arsenic, cadmium, and lead have also been identified as significant 
contributors to MetS development. These metals disrupt insulin 
signaling pathways, leading to insulin resistance and impaired glucose 
metabolism (Paithankar et al., 2021). Chronic exposure to these metals 
was associated with increased oxidative stress, inflammation, and 
mitochondrial dysfunction, all of which are key factors in the patho
genesis of MetS (Haidar et al., 2023). A recent review and meta-analysis 
reinforced the association between metal exposure and MetS risk, 
highlighting the need for continued monitoring and regulation of these 
environmental contaminants (Caito and Aschner, 2015).

Our study showed that 2-PHE and MEHHP had the greatest weights 
among the nine environmental chemicals in the association with MetS 
after accounting for the context of mixed exposures. 2-PHE is a category 
of PAHs that predominantly permeates the human physiological system 
via various environmental vectors, including tobacco smoke inhalation, 

Table 2 
Association of environmental chemicals with MetS using LASSO regression, 
Boruta algorithm, and XGBoost regression.

Environmental chemicals LASSO 
regression†

Boruta 
algorithm†

XGBoost 
regression†

Phenols (ng/ 
mL)

BPA √ £ £

BP-3 √ √ √
TCS √ £ £

MeP £ £ £

PrP √ £ £

PAHs (ng/L) 1-NAP √ √ £

2-NAP √ √ √
3-FLU £ √ √
2-FLU £ √ £

3-PHE √ √ √
1-PHE £ √ £

2-PHE √ √ √
1-PYR √ √ √
9-FLU √ √ £

Metals (ug/L) Cd £ £ £

Pb √ √ √
Hg √ £ £

Phthalates (ng/ 
mL)

MCNP £ £ £

MCOP £ £ £

MnBP √ £ £

MEP £ £ £

MEHP √ √ √
MBzP £ £ £

MCPP £ £ £

MEHHP √ √ √
MEOHP £ √ £

MiBP £ £ £

MECPP √ √ √

MetS, metabolic syndrome; PAHs, polycyclic aromatic hydrocarbons; LASSO 
regression, least absolute shrinkage and selection operator regression; XGBoost 
regression, extreme gradient boosting regression.

† : ``√’’ and ``×’’ represent whether the environmental chemical was asso
ciated with MetS, respectively.

Table 3 
Associations of WQS index with MetS and its components.

Outcome WQS direction‡ OR (95 % CI)† P-value

Hyperglycemia N 1.15 (0.96–1.37) 0.14
P 1.30 (1.10–1.55) 0.003

Low HDL-C N 0.95 (0.79–1.14) 0.61
P 1.20 (1.01–1.43) 0.04

Hypertension N 0.99 (0.86–1.14) 0.85
P 1.01 (0.84–1.21) 0.94

Hypertriglyceridemia N 0.97 (0.79–1.20) 0.81
P 1.32 (1.12–1.55) <0.001

Central obesity N 1.51 (1.11–2.06) 0.01
P 1.51 (1.16–1.98) 0.002

MetS N 1.11 (0.88–1.39) 0.39
P 1.31 (1.09–1.57) 0.003

MetS, metabolic syndrome; Low HDL-C, low high density cholesterol; OR, Odds 
Ratio; CI, confidence interval; WQS, weighted quantile sum. Values in bold font 
are statistically significant (P < 0.05).

† All models were adjusted for age, sex, race/ethnicity, education, marital 
status, poverty income ratio, BMI, physical activity, smoking, alcohol.

‡ “N” and “P” indicate the association in WQS analyses was assumed in 
negative and positive direction, respectively.
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atmospheric pollutant exposure, and culinary processes (Joksić et al., 
2022). Exposure to environmental chemicals such as 2-PHE and MEHHP 
may influence metabolic health through multiple pathways. 2-PHE, a 
polycyclic aromatic hydrocarbon, is known to disrupt endocrine func
tions, potentially by interacting with estrogen receptors (Haverinen 
et al., 2021; Sun et al., 2021; Zhang et al., 2016), thereby affecting 
metabolic processes linked to MetS. Experimental studies have sug
gested that PAHs like 2-PHE may alter lipid metabolism and promote 
adipogenesis, leading to increased fat accumulation and insulin resis
tance (Irigaray et al., 2006; Mustieles et al., 2017). Similarly, MEHHP, a 
metabolite of phthalates, is implicated in metabolic disruption via the 
activation of peroxisome proliferator-activated receptor alpha (PPARα), 
which may play an important role in lipid metabolism and oxidative 
stress responses (Feige et al., 2010). This activation may contribute to 
the development of insulin resistance and other components of MetS 
(Perez-Diaz et al., 2024). The pronounced associations of 2-PHE and 
MEHHP with MetS observed in our study likely reflet their specific 
endocrine-disrupting properties and their widespread environmental 
presence. In contrast, other chemicals may exhibit weaker associations 
due to their differing metabolic pathways, exposure routes, or less sig
nificant effects on key metabolic processes. For example, chemicals with 
lower bioavailability or weaker receptor-binding affinities might not 

elicit as strong a metabolic response, resulting in non-significant 
associations.

Our findings also indicate that the association between multiple 
environmental chemical exposure and MetS were more pronounced in 
current smokers, suggesting that smoking-induced oxidative stress may 
amplify the adverse effects of endocrine-disrupting chemicals on meta
bolic health (Caliri et al., 2021; Lee et al., 2022). These results highlight 
the importance of considering both lifestyle and environmental factors 
in MetS prevention strategies. We recommend that policymakers 
strengthen regulatory efforts to reduce environmental pollutants and 
promote tobacco control measures, while healthcare providers should 
prioritize screening and education on reducing exposure to harmful 
chemicals. Further studies are warranted to explore the combined effects 
of EDCs and smoking on MetS and to evaluate the effectiveness of in
terventions aimed at mitigating these risks.

Our research possessed numerous strengths. To our understanding, 
this study represents the initial attempt to comprehensively explore the 
association of phenols, PAHs, metals, and phthalates on MetS and its 
components. Furthermore, we used a robust statistical framework inte
grating multiple methods to analyze the single and cumulative effects of 
different environmental chemicals on MetS and its components. How
ever, some limitations warrant consideration. First, due to the cross- 

Fig. 3. Index weights from WQS model regression on association between different categories of environmental chemicals and MetS.
Note: (1) Two independent WQS indices were generated, one modelled in the positive direction (A) and one modelled in the opposite direction to the MetS (B). (2) 
The red dashed line is the reference standard for the weighting measure: 1/N. N is the type of environmental pollutant. (3) All models were adjusted for age, sex, 
race/ethnicity, education, marital status, poverty income ratio, BMI, physical activity, smoking, alcohol.

Table 4 
Associations of WQS index with MetS and its components by smoking status.

Smoking status WQS direction‡ Hyperglycemia Low HDL-C Hypertension Hypertriglyceridemia Central obesity MetS
OR (95 % CI)† OR (95 % CI)† OR (95 % CI)† OR (95 % CI)† OR (95 % CI)† OR (95 % CI)†

Never N 1.09 (0.89–1.33) 0.73 (0.54–1.01) 1.08 (0.83–1.42) 0.87 (0.67–1.12) 1.06 (0.69–1.62) 0.92 (0.73–1.15)
P 1.24 (0.94–1.63) 0.91 (0.70–1.18) 1.25 (0.94–1.65) 1.19 (0.94–1.52) 1.05 (0.72–1.53) 1.27 (0.94–1.73)

Former N 0.85 (0.59–1.22) 1.14 (0.75–1.74) 1.28 (0.87–1.87) 1.04 (0.72–1.50) 1.24 (0.70–2.19) 1.12 (0.77–1.64)
P 1.24 (0.86–1.78) 1.61 (1.06–2.47) 1.19 (0.85–1.67) 0.84 (0.60–1.16) 1.27 (0.69–2.35) 1.30 (0.87–1.93)

Current N 1.12 (0.75–1.67) 0.83 (0.55–1.25) 1.02 (0.73–1.43) 1.18 (0.85–1.64) 1.18 (0.62–2.24) 0.92 (0.55–1.54)
P 1.22 (0.86–1.74) 1.40 (1.06–1.85) 1.02 (0.65–1.61) 1.71 (1.22–2.40) 1.50 (0.85–2.63) 1.54 (1.04–2.30)

MetS, metabolic syndrome; Low HDL-C, low high density cholesterol; OR, Odds Ratio; CI, confidence interval; WQS, weighted quantile sum. Values in bold font are 
statistically significant (P < 0.05).

† All models were adjusted for age, sex, race/ethnicity, education, marital status, poverty income ratio, BMI, physical activity, alcohol.
‡ “N” and “P” indicate the association in WQS analyses was assumed in negative and positive direction, respectively.
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sectional nature of this study, causal associations between environ
mental chemicals and MetS cannot be confirmed, although the inverse 
direction, i.e., the presence of MetS led to the exposure of environmental 
chemicals, is very unlikely. Second, biomonitoring of urine could not 
accurately quantify exposure to more toxic PAHs, thus compromising 
precision in estimating PAH exposure. Finally, concentrations of me
tabolites in urine at a single time point may not be representative of 
long-term exposure and may not accurately reflect associations with 
progressive changes leading to MetS.

5. Conclusion

In conclusion, our mixture analysis revealed a significant and novel 
association between exposure to multiple environmental chemicals, 
including phenols, PAHs, metals, and phthalates, and an increased risk 
of metabolic syndrome and its components. This association was 
particularly pronounced in current smokers, suggesting a higher 
vulnerability in this group to the harmful effects of these exposures. 
These findings underscore the urgent need for targeted preventive and 
regulatory interventions to reduce chemical exposures, especially in 
high-risk groups such as smokers, to address the rising public health 
burden of metabolic diseases in the context of increasing environmental 
challenges.
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Navas, A., Hauser, R., Olea, N., Arrebola, J.P., 2017. Human adipose tissue levels of 
persistent organic pollutants and metabolic syndrome components: combining a 
cross-sectional with a 10-year longitudinal study using a multi-pollutant approach. 
Environ. Int. 104, 48–57.

Neier, K., Cheatham, D., Bedrosian, L.D., Gregg, B.E., Song, P.X.K., Dolinoy, D.C., 2019. 
Longitudinal metabolic impacts of perinatal exposure to phthalates and phthalate 
mixtures in mice. Endocrinology 160, 1613–1630.

Paithankar, J.G., Saini, S., Dwivedi, S., Sharma, A., Chowdhuri, D.K., 2021. Heavy metal 
associated health hazards: an interplay of oxidative stress and signal transduction. 
Chemosphere 262, 128350.

Perez-Diaz, C., Uriz-Martínez, M., Ortega-Rico, C., Leno-Duran, E., Barrios-Rodríguez, R., 
Salcedo-Bellido, I., Arrebola, J.P., Requena, P., 2024. Phthalate exposure and risk of 
metabolic syndrome components: a systematic review. Environ. Pollut. 340, 122714.

Piya, M.K., McTernan, P.G., Kumar, S., 2013. Adipokine inflammation and insulin 
resistance: the role of glucose, lipids and endotoxin. J. Endocrinol. 216, T1–t15.

Poursafa, P., Moosazadeh, M., Abedini, E., Hajizadeh, Y., Mansourian, M., 
Pourzamani, H., Amin, M.M., 2017. A systematic review on the effects of polycyclic 
aromatic hydrocarbons on cardiometabolic impairment. Int. J. Prev. Med. 8, 19.

Ren, C., Tong, S., 2008. Health effects of ambient air pollution–recent research 
development and contemporary methodological challenges. Environ. Health 7, 56.

Roy, C., Tremblay, P.Y., Ayotte, P., 2017. Is mercury exposure causing diabetes, 
metabolic syndrome and insulin resistance? A systematic review of the literature. 
Environ. Res. 156, 747–760.

Saadati, N., Abdullah, M.P., Zakaria, Z., Sany, S.B., Rezayi, M., Hassonizadeh, H., 2013. 
Limit of detection and limit of quantification development procedures for 
organochlorine pesticides analysis in water and sediment matrices. Chem. Cent. J. 7, 
63.

Schaffert, A., Karkossa, I., Ueberham, E., Schlichting, R., Walter, K., Arnold, J., 
Blüher, M., Heiker, J.T., Lehmann, J., Wabitsch, M., Escher, B.I., von Bergen, M., 
Schubert, K., 2022. Di-(2-ethylhexyl) phthalate substitutes accelerate human 
adipogenesis through PPARγ activation and cause oxidative stress and impaired 
metabolic homeostasis in mature adipocytes. Environ. Int. 164, 107279.

Shahsavani, S., Fararouei, M., Soveid, M., Hoseini, M., Dehghani, M., 2021. The 
association between the urinary biomarkers of polycyclic aromatic hydrocarbons 
and risk of metabolic syndromes and blood cell levels in adults in a Middle Eastern 
area. J. Environ. Health Sci. Eng. 19, 1667–1680.

Shimada, T., Fujii-Kuriyama, Y., 2004. Metabolic activation of polycyclic aromatic 
hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 95, 
1–6.

Sun, J., Fang, R., Wang, H., Xu, D.X., Yang, J., Huang, X., Cozzolino, D., Fang, M., 
Huang, Y., 2022. A review of environmental metabolism disrupting chemicals and 
effect biomarkers associating disease risks: where exposomics meets metabolomics. 
Environ. Int. 158, 106941.

Sun, K., Song, Y., He, F., Jing, M., Tang, J., Liu, R., 2021. A review of human and animals 
exposure to polycyclic aromatic hydrocarbons: health risk and adverse effects, 
photo-induced toxicity and regulating effect of microplastics. Sci. Total. Environ. 
773, 145403.

Teppala, S., Madhavan, S., Shankar, A., 2012. Bisphenol a and metabolic syndrome: 
results from NHANES. Int. J. Endocrinol. 2012, 598180.

Vanni, R., Bussuan, R.M., Rombaldi, R.L., Arbex, A.K., 2021. Endocrine disruptors and 
the induction of insulin resistance. Curr. Diabetes Rev. 17, e102220187107.

Xu, P., Liu, A., Li, F., Tinkov, A.A., Liu, L., Zhou, J.C., 2021. Associations between 
metabolic syndrome and four heavy metals: a systematic review and meta-analysis. 
Environ. Pollut. 273, 116480.

Yilmaz, B., Terekeci, H., Sandal, S., Kelestimur, F., 2020. Endocrine disrupting chemicals: 
exposure, effects on human health, mechanism of action, models for testing and 
strategies for prevention. Rev. Endocr. Metab. Disord. 21, 127–147.

Yoon, S.J., Kim, S.K., Lee, N.Y., Choi, Y.R., Kim, H.S., Gupta, H., Youn, G.S., Sung, H., 
Shin, M.J., Suk, K.T., 2021. Effect of Korean Red Ginseng on metabolic syndrome. 
J. Ginseng Res. 45, 380–389.

Zhan, W., Yang, H., Zhang, J., Chen, Q., 2022. Association between co-exposure to 
phenols and phthalates mixture and infertility risk in women. Environ. Res. 215, 
114244.

Zhang, Y., Dong, S., Wang, H., Tao, S., Kiyama, R., 2016. Biological impact of 
environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. 
Environ. Pollut. 213, 809–824.

Zhang, Y., Dong, T., Hu, W., Wang, X., Xu, B., Lin, Z., Hofer, T., Stefanoff, P., Chen, Y., 
Wang, X., Xia, Y., 2019. Association between exposure to a mixture of phenols, 
pesticides, and phthalates and obesity: comparison of three statistical models. 
Environ. Int. 123, 325–336.

Zhou, S., Li, X., Dai, Y., Guo, C., Peng, R., Qin, P., Tan, L., 2023. Association between 
polycyclic aromatic hydrocarbon exposure and blood lipid levels: the indirect effects 
of inflammation and oxidative stress. Environ. Sci. Pollut. Res. Int. 30, 
123148–123163.

R. Li et al.                                                                                                                                                                                                                                        Hygiene and Environmental Health Advances 12 (2024) 100112 

8 

http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0031
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0031
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0031
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0031
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0032
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0032
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0032
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0032
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0033
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0033
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0033
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0034
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0034
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0034
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0035
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0035
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0035
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0035
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0036
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0036
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0036
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0037
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0037
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0037
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0038
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0038
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0038
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0038
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0039
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0039
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0039
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0040
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0040
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0041
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0042
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0042
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0042
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0042
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0042
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0043
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0043
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0043
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0044
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0044
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0044
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0045
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0045
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0045
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0046
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0046
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0047
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0047
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0047
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0048
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0048
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0049
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0049
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0049
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0050
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0050
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0050
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0050
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0051
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0051
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0051
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0051
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0051
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0052
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0052
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0052
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0052
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0053
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0053
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0053
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0054
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0054
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0054
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0054
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0055
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0055
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0055
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0055
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0056
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0056
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0057
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0057
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0058
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0058
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0058
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0059
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0059
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0059
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0060
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0060
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0060
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0061
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0061
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0061
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0062
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0062
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0062
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0063
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0063
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0063
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0063
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0064
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0064
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0064
http://refhub.elsevier.com/S2773-0492(24)00025-4/sbref0064

	Associations between exposure to multiple environmental chemicals and metabolic syndrome: A mixture analysis
	1 Introduction
	2 Materials and methods
	2.1 Study population
	2.2 Measurements of environmental chemicals
	2.3 Assessment of MetS and its components
	2.4 Covariates
	2.5 Statistical analysis

	3 Results
	3.1 Demographic characteristics
	3.2 Association of individual environmental chemicals with MetS
	3.3 Environment chemicals associated with MetS by feature selection
	3.4 Association of multiple environmental chemicals with MetS
	3.5 Sensitivity analyses

	4 Discussion
	5 Conclusion
	Ethics approval and consent to participate
	Consent for publication
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Supplementary materials
	References


