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Objectives: The association between SARS-CoV-2 spike protein and cerebrovascular diseases raised a con-
cern of cerebrovascular safety of COVID-19 vaccines. We aimed to determine the risk of radiologic cerebral
small vessel disease (cSVD) progression with BNT162b2 and CoronaVac.
Methods: In this community-based prospective cohort study, community-dwelling subjects underwent
brain magnetic resonance imaging (MRI) before and 4 months after vaccination with BNT162b2 or Coro-
naVac. Unvaccinated subjects received serial brain MRI over a comparable interval. The primary outcome
was progression of a composite of six standard cSVD biomarkers. We compared the risk of cSVD progres-
sion between vaccinated and unvaccinated subjects and identified predictors of primary outcome within
each vaccine subgroup.
Results: Of the 415 subjects recruited, 190 received BNT162b2, 152 received CoronaVac, and 73 remained
unvaccinated. A total of 60 (14.4%) had COVID-19 infection before follow-up MRI, and 109 (26.3%) devel-
oped the primary outcome. Neither BNT162b2 (adjusted odds ratio [aOR] 0.61, 95% confidence interval
[CI] 0.30-1.26, P = 0.179) nor CoronaVac (aOR 0.71, 95% CI 0.34-1.47, P = 0.349) was associated with cSVD
progression. Among the BNT162b2 recipients, a higher surrogate virus neutralization test was associated
(aOR 0.97, 95% CI 0.95-0.99, P = 0.002) with a lower risk of cSVD progression.
Conclusions: BNT162b2 and CoronaVac did not increase cSVD burden in community-dwelling citizens. The
association between surrogate virus neutralization test and cSVD progression among BNT162b2 recipients
requires further investigation.
© 2024 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious
Diseases.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

compromise to the cerebrovascular system has been implicated
in SARS-CoV-2 infection through viral spike protein-mediated en-

As of April 2024, the SARS-CoV-2 pandemic caused more than 7 dothelial dysfunction, hypercoagulability, and downregulation of
million deaths worldwide [1]. Apart from the respiratory damage, angiotensin-converting enzyme 2 (ACE2) [2]. These postulations
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were supported by studies that demonstrated a much higher in-
cidence of severe cerebral small vessel disease (cSVD) in patients
with severe COVID-19, which could happen within weeks after in-
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Similarly, the native-like mimicry of SARS-CoV-2 spike protein
induced either by a nucleoside-modified messenger RNA (mRNA)
vaccine (e.g. BNT162b2) or an inactivated virus vaccine (e.g. Coro-
naVac) may trigger endotheliopathy through binding to circulatory
or endothelial ACE2 [5,6]. The subsequent downstream molecu-
lar signaling may promote vascular inflammation, fibrotic remod-
eling, and occlusions of cerebral terminal arterioles [7,8], which
may potentiate cSVD, enhancing the long-term risk of stroke and
dementia [9]. A prospective clinical study revealed transient en-
dothelial dysfunction within 24 hours after mRNA vaccine injection
[10]. Several self-controlled case series reported a safety concern of
ischemic and hemorrhage stroke risk among BNT162b2 recipients
over a 28-day period [11-13].

Although COVID-19 vaccines have covered majority of the
world’s population [1], effective bivalent booster vaccination is ad-
vocated in response to the evolving variants of interest [14,15]. Yet,
uptake rate of booster vaccinations has been low. For instance, only
22.5% of the US population received bivalent boosters as of May
2024 [16]. Because concerns about side effects, including potential
longer-term cerebrovascular safety, could be a reason for vaccine
hesitancy [17,18], there is a compelling need to elucidate the po-
tential cerebrovascular effects of COVID-19 vaccines.

In this prospective cohort study, we aimed to evaluate the risk
of radiologic progression of cSVD in BNT162b2 and CoronaVac re-
cipients who were SARS-CoV-2 infection-naive. The study results
would clarify the safety concerns of COVID-19 vaccines and inform
immunization policy.

Methods
Study design and participants

Community-dwelling citizens in the CUHK Brain Health Cohort
(CBHC) who received baseline cognitive assessment, cardiovascu-
lar risk factor screening, and a magnetic resonance imaging (MRI)
brain scan before the COVID-19 pandemic offered a unique op-
portunity for this prospective study. The CBHC was a community-
based cohort of adults aged 40-75 years without preexisting neu-
rologic diseases recruited randomly from all geographical districts
and socio-economic classes in Hong Kong, with reference to the
government census data (NCT03592563).

From June 2021 to May 2022, we enrolled unvaccinated SARS-
CoV-2 infection-naive subjects from the CBHC. Exclusion criteria
were (i) subjects with past or active SARS-CoV-2 infection; (ii)
subjects who received only one COVID-19 vaccination; (iii) history
of stroke, transient ischemic attack, or neurodegenerative disease;
and (iv) contraindications to MRI examination. Based on personal
choice, the recruited participants either remained unvaccinated or
received BNT162b2 or CoronaVac vaccine, followed by homologous
or heterologous booster(s) over time intervals, as recommended by
World Health Organization (i.e. the first and second vaccinations
were 1 month apart, followed by an optional booster in 3 months
after the second dose). All subjects then had clinical follow-up,
serologic assessment, and a follow-up MRI brain scan after the last
COVID-19 vaccine dose (see MRI and radiologic biomarkers). Unvac-
cinated controls had a follow-up MRI after a comparable inter-
val. At the concluding visit, we measured blood pressure and re-
peated blood tests for cardiovascular risk factors. All study partic-
ipants underwent serologic tests to ascertain the vaccine-induced
antibody level and confirm whether natural SARS-CoV-2 infection
had occurred (see Serologic Tests). The study was approved by the
institutional review board (Joint CUHK-NTEC CREC Reference No.
2021.386) and registered at ClinicalTrials.gov (NCT04992195). All
study participants provided a written informed consent. We fol-
lowed the STrengthening the Reporting of OBservational studies in
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Epidemiology reporting guideline. Figure S1 shows a schematic di-
agram of the study algorithm.

Data collection

We collected demographic parameters, including age, sex,
smoking, and alcohol status. We assessed the body mass in-
dex, blood pressure, Montreal cognitive assessment, glycated
hemoglobin Alc, lipid profile, and renal and liver function tests at
baseline [19]. These assessments were repeated 16 + 4 weeks after
the last vaccination (i.e. the second or third dose of COVID-19 vac-
cine) for vaccinated participants or at a comparable time interval
for unvaccinated controls. Medical co-morbidities including hyper-
tension, dyslipidemia, diabetes mellitus, and ischemic heart disease
were clarified by self-reporting and the territory-wide public elec-
tronic health care database.

Vaccination groups and controls

CoronaVac and BNT162b2 were the two vaccines available
during the study period. CoronaVac group included subjects
with homologous CoronaVac vaccinations. Whereas the BNT162b2
group included subjects with either homologous or heterologous
BNT162b2 vaccination, i.e. subjects given at least one dose of
BNT162b2 in the immunization regimen. Controls were those re-
mained unvaccinated throughout the study period. We verified the
vaccine types and dates of vaccination through the government
central electronic vaccination record system.

Magnetic resource imaging and radiologic biomarkers

Subjects with two or three doses of homologous/heterologous
CoronaVac or BNT162b2 vaccinations had a follow-up MRI brain
in 16 4+ 4 weeks after the last vaccination (Figure S1). The 16-
week interval between the last vaccination and follow-up MRI
brain was determined based on (i) previous studies that reported
detectable structural brain and cerebrovascular changes within 20
weeks of infection [20], (ii) self-controlled case series that detected
potential safety signals for ischemic and hemorrhagic stroke within
28 days of COVID-19 vaccine [11-13], and (iii) radiologic studies
that suggested a high incidence of radiologic cSVD within a few
weeks after severe COVID-19 infection [3,4]. Unvaccinated controls
underwent a follow-up MRI scan at a comparable time interval.
We acquired all MRIs with the same Siemens MAGNETOM Prisma
scanner, with a scan protocol containing 3D T-1 weighted, axial
T2-weighted, coronal 2D FLAIR, time-of-flight MR angiogram, ax-
ial susceptibility-weighted imaging, and axial diffusion-weighted
imaging (see Supplementary Methods for details).

The cSVD biomarkers selected in this study had been reported
to be detectable shortly after SARS-CoV-2 infection and represent
cerebrovascular pathologies resulted from inflammatory steno-
occlusive disease of distal arterioles [4,21]. These cSVD biomarkers
were quantified according to the Standards for Reporting Vascular
Changes on Neuroimaging criteria [22]: (i) white matter hyperin-
tensity (WMH) are FLAIR-hyperintense lesions. WMH volume and
WMH ratio (WMH volume divided by intracerebral volume) were
determined by Accubrain, a cloud-based automated brain quantifi-
cation tool [23]. (ii) Lacunes are ischemic lesions either round or
ovoid, subcortical, fluid-filled cavities of size <15 mm. (iii) Cere-
bral microbleed (CMB) were 2-5 mm lesions of low signal on
susceptibility-weighted sequence. (iv) Cortical cerebral microinfarct
(CMI) were T1-hypointense and fluid-attenuated inversion recovery
(FLAIR)-hyperintense cortical lesions of size 0.5-4 mm. (v) Perivas-
cular space (PVS) were fluid-filled round, ovoid, or linear spaces
of size <3 mm that follow the typical course of small perforat-
ing vessels as they penetrate white or deep gray matter, with sig-
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nal intensity similar to that for cerebrospinal fluid without a T2-
hyperintense rim. A visual rating scale for PVS was described pre-
viously [24]. Manual radiologic assessments were performed by
vascular neurologists or neuroradiologists with >10 years of expe-
rience (B.Y.I,, S.M.,, J.A., and T.L.). All raters were blinded to the time
sequence of the paired MRI scans, demographics, clinical parame-
ters, COVID-19 vaccination, and infection status. We pre-processed
T1-weighted imaging with bias field correction using Functional
MRI of the Brain’s Automated Segmentation Tool [25].

Serological tests

Details of the serologic test are provided in Supplementary
Methods. In brief, the surrogate virus neutralization test (SVNT)
detects the total immunodominant neutralizing antibodies target-
ing the viral spike protein receptor-binding domain. History of
SARS-CoV-2 infection was determined by the enzyme-linked im-
munosorbent assay using either ORF8 (CoronaVac) or nucleopro-
tein (BNT162b2 or unvaccinated controls) [26,27]. The assay was
validated from the results of 100 negative controls. We defined the
sera sample as serologically positive for ORF8 or nucleoprotein if
the optical density value was three SDs above the mean of the neg-
ative controls.

Primary and secondary outcomes

Primary outcome was radiologic progression of cSVD, as de-
fined by (i) WMH progression, defined as an increase of WMH ratio
>0.25 or a WMH volume increased by >0.58 ml, (ii) new CMB, (iii)
new CMI, (iv) increase in PVS grading by >1, or (v) new lacunes.
The criteria for WMH progression were based on a meta-analysis
of community-based cohorts [28]. Secondary outcomes were the
components of the primary outcome. These biomarkers are asso-
ciated with increased risk of stroke and vascular cognitive impair-
ment [22,29].

Statistical analysis

We expressed normally distributed continuous variables as
means + SD, non-normally distributed continuous variables as me-
dian (interquartile range) and categorical data as number (percent-
age). Skewness and kurtosis were used to determine normality
of continuous variables. One-way analysis of variance or Kruskal-
Wallis test was used for comparison of continuous variables among
three groups (unvaccinated, CoronaVac, BNT162b2). The chi-square
test was used for comparison of categorical variables for expected
counts five or more, whereas Fisher’s exact test was used for ex-
pected count less than five. Two-sided tests with P <0.05 were
considered statistically significant.

In the primary analysis, we used multivariable logistic regres-
sion models to evaluate the effect of COVID-19 vaccination and
other risk factors on the primary composite outcome. We first sub-
jected covariates to univariate logistic regression models. The co-
variates that reached a significance level of P <0.1 or of clinical rel-
evance were subjected to the final multivariable model, adjusting
for covariates stated in Figure S2. In the primary model, we con-
sidered the longitudinal changes in laboratory findings (Model 1).
Sensitivity analyses were performed using (i) baseline and follow-
up laboratory findings at discrete time points, (ii) data-driven for-
ward stepwise, covariate selection approach considering longitudi-
nal laboratory changes, or (iii) data-driven forward stepwise, co-
variate selection approach considering laboratory results at discrete
time points (Models 2-4). In a simplified model, we performed
multivariable logistic regression, adjusting for age, sex, any cardio-
vascular co-morbidities as a binary variable (hypertension, diabetes
mellitus, dyslipidemia, ischemic heart disease), baseline radiologic
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findings as the cSVD score [30] (Model 5), and time-lapse be-
tween baseline and follow-up MRI. We also performed a complete-
case analysis by excluding participants in the unvaccinated group
who received COVID-19 vaccine after the follow-up MRI but be-
fore the blood tests (Model 6). Secondary outcomes (WMH pro-
gression, new CMB) were evaluated in a similar manner (Models
7 and 8). Logistic regression was performed to determine the risk
factors associated with the primary outcome within the BNT162b2
and CoronaVac subgroups, with the addition of sVNT as one of the
covariates (Models 9 and 10). Figure S2 summarizes the statistical
analysis plan. Missing data were assumed to be missed at random
and imputed by multiple imputation with chained equations with
values kept within reasonable ranges (Table S1).

Results
Demographic and clinical characteristics of the study participants

From June 1, 2021 to February 28, 2023, we recruited 415 par-
ticipants who were SARS-CoV-2 infection-naive, with physical as-
sessment, blood tests, and brain MRI completed before the COVID-
19 pandemic (Figure 1). During the period when most recruitment
took place, Hong Kong was relatively unaffected by COVID-19 and
<60% of the 7.5 million population had received two vaccine doses
(Figure S3).

Of the 415 subjects, 152 (36.6%) were in the CoronaVac group,
190 (46.3%) were in the BNT162b2 group, and 73 (17.6%) were un-
vaccinated controls. The mean age was 63.5 & 7.2 years, 170 (41.1%)
were female, 192 (46%) had hypertension, 82 (19.8%) had diabetes
mellitus, and 220 (53.1%) had dyslipidemia. Unvaccinated controls
had higher platelet count and hemoglobin level and slightly lower
intracerebral volume (Tables 1, S2-3). The median interval between
last vaccination and follow-up brain MRI was 118 days (interquar-
tile range 108-129). Two unvaccinated subjects received COVID-19
vaccine after the follow-up MRI but before serologic blood tests.

Longitudinal changes in blood pressure, blood glucose, lipid
levels, intracerebral volume, and Montreal cognitive assessment
scores were comparable among the three groups. A total of 60
(14.4%) participants had evidence of SARS-CoV-2 infection before
the follow-up brain MRI; none required hospitalization. No par-
ticipant developed incident dementia, mild cognitive impairment,
clinical strokes, or thromboembolic complications in the study pe-
riod. The time intervals between baseline and follow-up MRI were
comparable among the control, BNT162b2, and CoronaVac groups
(1.6 £ 0.5 vs 1.4 £+ 0.6 vs 1.4 + 0.6 years, P = 0.174). Overall, 102
(24.6%) subjects had the radiologic primary end point.

Primary analysis

In the primary logistic regression model, we included age,
sex, natural COVID-19 infection, time-lapse between baseline and
follow-up MRI, baseline WMH volume, CMB, PVS grading, lacunes,
CMI, dyslipidemia, and increase in white cell count as covariates
(Table S4). Neither BNT162b2 (adjusted odds ratio [aOR] 0.61, 95%
confidence interval [CI] 0.30-1.26, P = 0.179; incidence: 21.1% vs
27.4%) nor CoronaVac (aOR 0.71, 95% CI 0.34-1.47, P = 0.349; inci-
dence: 27.6% vs 27.4%) was associated with the primary end point,
compared with the no vaccination group (Model 1, Table 2). Dys-
lipidemia and increase in white cell count were significantly asso-
ciated with the progression of cSVD. The sensitivity analyses (Mod-
els 2-5, Tables S5-8) and the exclusion of two participants with
protocol violation (Model 6, Table S9) yielded similar results.

Secondary outcomes

There were 50 (12%) subjects with WMH progression and 29
(7.0%) subjects with new CMBs. BNT162b2 (WMH progression: aOR
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Brain Health Longitudinal
Study Cohort with baseline

MRI Brain and blood test
(n=500)
Loss to follow-up
Refused study
> Vaccinated before study
commencement
(n=85)
v
Recruited participants with baseline
MRI Brain and blood test
(n=415)
Unvaccinated Vaccinated
(n=73) (n=342)
Vaccinated after l l
second MRI and
before blood test [* BNT162b2 CoronaVac
(n=2) (n=190) (n=152)

v
Unvaccinated before second
MRI brain and blood test
(n=71)

Figure 1. Study flow diagram.
MRI, magnetic resource imaging.

0.58, 95% CI 0.22-1.50, P = 0.258; incidences 11.1% vs 13.7%; new
CMB: aOR 0.69, 95% CI 0.22-2.19, P = 0.532; incidence 5.3% vs
5.5%) and CoronaVac (WMH progression: aOR 0.44, 95% CI 0.16-
1.21, P = 0.117; incidence 12.5% vs 13.7%; new CMB: aOR 1.19, 95%
Cl 0.39-3.56, P = 0.761; incidence 9.2% vs 6.8%) were not associ-
ated with WMH progression or new CMB (Models 7 and 8, Tables
S$10-11). New cortical microinfarct (n = 18), lacunes (n = 3), and
progression of enlarged perivascular space (n = 18) were excluded
from the secondary analyses due to the low event rates.

Subgroup analyses

In the BNT162b2 subgroup (n = 190), 117 (61.5%) participants
received two doses of BNT162b2. Among 73 (38.4%) participants
who had three doses of vaccine, 64 (33.4%) participants received
a homologous regimen (three doses of BNT162b2), whereas nine
(4.7%) received a heterologous regime (two doses of CoronaVac
and one dose of BNT162b2). sVNT was negatively associated (aOR
0.97, 95% CI 0.95-0.99, P = 0.002) with the primary composite end
point (Model 9, Figure 2). Such an association was not observed in
the CoronaVac subgroup (Model 10, Table S12). COVID-19 infection
was not associated with the primary end point in both vaccination
groups (BNT162b2: aOR 1.17, 95% CI 0.56-2.45, P = 0.674; incidence
20.7% vs 23%; CoronaVac: aOR 0.94, 95% CI 0.34-2.59, P = 0.889;
incidence 27.3% vs 30.8%).

Discussion
In a SARS-CoV-2 infection-naive community cohort, we found

that neither CoronaVac nor BNT162b2 vaccine was associated with
subclinical progression of MRI cerebrovascular disease biomarkers.

To the best of our knowledge, this is the first prospective in-
vestigation on how COVID-19 vaccines might affect cerebrovascu-
lar health. Before our study, the reported stroke risk associated
with COVID-19 vaccines had been inconsistent. Two self-controlled
case series suggested an increased hemorrhagic stroke risk up to
13 days after a booster of BNT162b2 but not CoronaVac [11,12],
such an association was absent in a meta-analysis [31]. One self-
controlled case series in the United Kingdom showed a small in-
crease in arterial thromboembolism with BNT162b2 [13]. Of note,
retrospective collection of “adverse events after immunization”
from pharmacovigilance systems limited the interpretation of these
studies because avoidance and inaccessibility of medical care dur-
ing the pandemic undermined the record of mild strokes, lead-
ing to reporting bias [32]. In addition, owing to the failure to ad-
just for time-dependent covariates, such as metabolic risk factor
control and SARS-CoV-2 infection, self-controlled case series might
only determine the short-term risks of vaccines, without untan-
gling the confounders of SARS-CoV-2 infection, COVID-19 vaccina-
tion, and the probable deteriorated metabolic risk profile during
the heavy hit of the pandemic. In contrast, our study provided a
prospective baseline and post-vaccination cSVD assessments un-
til 16 weeks after vaccination, covering the peaks of the circulat-
ing vaccine-induced spike protein and the neutralizing antibod-
ies levels [33]. Moreover, radiologic cSVD biomarkers have been
shown to predict long-term risk of stroke and cognitive impair-
ment [8,9,22]. For instance, WMH is associated with increased like-
lihood of incident dementia and ischemic stroke over a period
exceeding 5 years [34,35]. The current study, thus, unveiled im-
portant longer-term safety data of CoronaVac and BNT162b2 on
cerebrovascular health. sVNT detects the total immunodominant
neutralizing antibodies targeting the viral spike protein receptor-
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Table 1
Characteristics of study participants.

Control BNT162b2 CoronaVac P-value
(n=73) (n = 190) (n =152)

Demographic information

(mean [SD])

Age 64.58 (6.83) 62.37 (8.07) 63.99 (8.04) 0.058

Female sex (%) 38 (52.1) 69 (36.3) 63 (41.4) 0.066

Years between MRI scans 1.6 (0.5) 1.4 (0.6) 1.4 (0.6) 0.174

Days between last vaccine and second - 119.00 118.00 -

MRI (median [interquartile range]) [107.20, 128.00] [108.00, 129.20]

Booster vaccine (%) - 55 (28.9) 31 (204) —

Ever-smoker (%) 9(12.3) 21 (11.1) 21 (13.8) 0.741

Ever-drinker (%) 10 (13.7) 24 (12.6) 21 (13.8) 0.943

Body mass index 23.95 (3.38) 23.91 (3.40) 24.09 (3.89) 0.908

Medical comorbidities n(%)

Hypertension 40 (54.8) 84 (44.2) 68 (44.7) 0.272

Dyslipidemia 36 (49.3) 108 (56.8) 76 (50.0) 0.355

Diabetes mellitus 20 (27.4) 38 (20.0) 24 (15.8) 0.122

Ischemic heart disease 5 (6.8) 28 (14.7) 21 (13.8) 0.216

Medications n(%)

Antiplatelet 12 (16.4) 38 (20.0) 33 (21.7) 0.652

Statins 37 (50.7) 99 (52.1) 74 (48.7) 0.821

Oral anticoagulants 2 (2.8) 5(2.7) 2 (1.3) 0.307

MOoCA scores (mean [SD])

Baseline MoCA 24.00 26.00 25.00 0.070
[21.00, 26.00] [23.00, 28.00] [22.75, 27.00]

Follow-up MoCA 24.00 26.00 25.00 0.087
[21.00, 26.00] [23.00, 28.00] [22.75, 27.00]

COVID-19 infection before follow-up 9 (12.3) 29 (15.3) 22 (14.5) 0.832

MRI (%)

Serological tests (median

[interquartile range])

Surrogate virus neutralization test 0.00 88.97 20.18 <0.001
[0.00, 10.45] [71.72, 97.56] [3.47, 44.60]

Nucleocapsid protein 0.06 [0.05, 0.07 [0.05, 0.14] 0.32 [0.12, 0.88] <0.001
0.15]

Primary composite event (%) 20 (27.4) 40 (21.1) 42 (27.6) 0.309

MoCA, Montreal cognitive assessment; MRI, magnetic resonance imaging.

Predicted Risk of Primary Cerebrovascular Events
° °
3 a

°
N
X

50
SsVNT

100

Figure 2. Estimated risk of primary outcome vs sVNT level by multivariable logistic regression. Higher sVNT level was associated with lower estimated risk of primary
outcome: adjusted odds ratio 0.97, 95% confidence interval 0.95-0.99, P = 0.002.
SVNT, surrogate viral neutralization test.
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Table 2

Predictors of primary composite outcome by multivariable logistic regression
(model 1), adjusted for age, sex, COVID-19 infection, baseline radiologic findings,
and time-lapse between baseline and follow-up brain imaging.

Covariates Adjusted odds ratio (95% P-value
confidence interval)
BNT162b2 vs Unvaccinated 0.61 (0.30-1.26) 0.179
CoronaVac vs Unvaccinated 0.71 (0.34-1.47) 0.349
BNT162b2 vs CoronaVac 0.86 (0.47-1.58) 0.633
Dyslipidemia 1.81 (1.02-3.19) 0.041
Increase in white cell count 1.34 (1.09-1.64) 0.005
Increase in glucose 1.10 (1.00-1.22) 0.054

binding domain in an isotype- and species-independent manner
[36] and, thus, is a reflection of vaccine immunogenicity. The neg-
ative correlation between sVNT and the primary outcome in the
BNT162b2 subgroup suggested that higher neutralizing antibody
levels against spike protein induced by BNT162b2 was associated
with a lower risk of cSVD progression. Because circulating vaccine-
induced spike protein is the key driver of mRNA vaccine-induced
immune response and endotheliopathy [7,10], a poor neutralizing
antibody response might lead to cerebrovascular insult due to a
delayed antibody-mediated clearance of spike protein. Such a find-
ing was not observed in the CoronaVac subgroup, possibly due to
a smaller amount of spike protein produced [12]. However, this
finding should be interpreted with caution because (i) we did not
measure the spike protein level and endothelial function, (ii) aOR
was close to 1 per unit increase of sVNT, (iii) there were no clin-
ical strokes recorded. This potential signal may inform vaccination
strategy in immunocompromised individuals who may mount a
poor neutralizing antibody response to mRNA-based vaccines [37];
future studies are required to substantiate these findings.

Natural SARS-CoV-2 infection is a strong risk factor of clinical
strokes and was associated with radiologic infarcts, white matter
abnormalities, cerebral microbleeds, and intracerebral hemorrhage
[21,38]. However, these radiologic changes were not observed in
vaccine recipients who had natural infection. Because these indi-
viduals had no cSVD progression and recovered from SARS-CoV-
2 infection without hospitalization, future studies should elucidate
whether vaccination could attenuate the pro-stroke effect of SARS-
CoV-2 infection, plausibly through minimizing infection severity,
immune-mediated thrombosis, and endothelial damage [6,33].

Lastly, because dyslipidemia and increase in white cell count,
which reflects vascular inflammation [39], were risk factors of
cSVD progression in our study, long-term stringent control of car-
diovascular risks, such as hypertension, diabetes, dyslipidemia, and
systemic inflammation, is, overall, more important than short-term
predispositions, if any, by SARS-CoV-2 vaccination.

Our study has the following limitations: first, compared with
the vaccination group, the sample size of unvaccinated subjects
was relatively small due to the steep increase in vaccination rate
soon after the implementation of the territory-wide vaccination
program in late 2021 [1]. The confounding effect of “healthy-
vaccinee bias” was possible [40]. Second, based on the higher
immunogenicity of mRNA-based vaccine and, thus, potentially, a
higher cerebrovascular impact, we categorized recipients with a
single BNT162b2 dose into the BNT162b2 group. Therefore, the cu-
mulative effects of homologous BNT162b2 vaccinations on the pri-
mary outcome could have been diluted by those with heterolo-
gous BNT162b2 vaccinations. Third, our cohort recruited only cit-
izens without preexisting cerebrovascular disease and the results
could not be generalized to patients with established cerebrovas-
cular diseases. Fourth, the study was conducted among Chinese
participants receiving the primary vaccine series; thus, the results
may not be generalized to people of other ethnicities who received
bivalent COVID-19 vaccines. Last, longer-term monitoring for clin-
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ical events is needed to substantiate our study findings on radio-
logic cerebrovascular events.

In conclusion, CoronaVac and BNT162b2 appeared not to in-
crease the radiologic cSVD burden in community-dwelling citizens.
The higher risk of radiologic cSVD progression in poor responders
of BNT162b2 may inform vaccination strategy in individuals who
may have suboptimal neutralizing antibody response to mRNA-
based vaccines. Because natural SARS-CoV-2 infection in vaccine
recipients was not associated with cSVD progression, further stud-
ies should evaluate whether vaccination could mitigate cerebrovas-
cular insult from subsequent SARS-CoV-2 infection.
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