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A B S T R A C T  

We consider the challenges as s oci ated with causal infe re nce in s e t tings wher e da ta fr om a r andomiz ed trial a re augme n te d with c ontro l d a ta fr om 

a n exte rn al sourc e to improv e efficie ncy in es t imat ing the average tr ea tme n t effect (ATE). This question is motivated by the SUNFISH trial, 
which inves ti gated the effect of ris dip l am on motor function in patie n ts with spinal mus cul ar a tr ophy. While the original analysis used only data 
ge ne rated b y the trial, we explore an altern ativ e an alysis inc or porating ex tern al c ontr ols fr om the p l a ce bo arm of a historical trial. We cast the 
s e tting into a formal causal inferenc e framew ork and show how these designs are char acteriz ed by a lack of full randomization to treatme n t a nd 

hei gh te ned depe nde ncy on modeling. To address this, we outline su ffic ie n t caus al as sumption s about the exchang e ability between the internal 
a nd exte rn al c on trols to ide n tify the ATE a nd es tablish a c onne ction with nov el gra phical crite ria. Furthe rmor e, we pr opose estima tors, r eview 

efficiency bounds, develop an approach for efficient doubly robust est imat ion even when unknown nuisance models are estim ate d with flexible 
ma chine learnin g methods, su gge st mode l diagnos tics, a nd de mons trat e finit e-s amp le pe rforma nce of the methods through a simulation study. 
The ideas and methods are i l lustra ted thr ough their applica tion to the S UNFISH trial, wher e w e find th at extern al c ontrols can increase the 
efficiency of tr ea tment effect est imat ion. 

KEY W OR DS : causal infe re nce; double-robus tness; exte rnal -con trol; machine-lea rning. 
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1 I N T R O D U C T I O N 

stablishing the causal effect of a novel in te rve n tion is imper-
tiv e for m aking informe d de cisions about its adoption or ap-
rov al. Randomized clinical tri als (RCTs) ge ne ra te r o bust caus al
vide nce b y e nsuring the indepe nde nce of tr ea tme n t assi gnme n t
nd baseline factors . How ev er, ac c es sib le additional data about
he control treatme n t motivates altern ativ e study designs that
a n be nefit from this addition al inform a tion and/or addr es s e th-
cal or feasibility c onc er ns fac ing s ta nda rd RCT e nrollme n t, such
s in rare-dis eas e s e ttings (Mas sicotte e t al., 2003 ; Jan s en-Van
er Weide et al., 2018 ). We consider hybrid trials where study
 articip ants are r andomiz ed to tr ea tment via a known me ch a-
ism a nd exte rn ally c olle cte d c ontr ol pa tie n t re c ords (extern al
on trols) a re av ail ab le at analysis ( Zhu e t al., 2020 ). 
As a mot ivat ing example, w e c onside r the a nalysis of SUN-

ISH (NCT02908685) (Mercuri et al., 2022 ), a two-part multi-
site r andomiz ed p l a ce bo-contro lled tri al designed to inves ti gate
he efficacy of ris dip l am on motor functioning for patie n ts with
pinal mus cul ar a tr op hy (S MA), a rare dis eas e. While the analy-
is was c onducte d using only data ge ne rated b y the trial, we pro-
ose an altern ativ e an alysis inc or porating ex tern al c ontr ols fr om

he p l a ce bo arm of a P h as e 2 tri al of o les oxime (NCT01302600)
o incre ase po we r. In Pa rt 2 of SUNFISH, 180 patie n ts with Type
e c eiv e d: March 4, 2024; Revised: July 10, 2024; Accepted: August 22, 2024 
The Author(s) 2024. Published by Oxford University Press on behalf of The In te rn ation a
 re ative Common s A ttribution Licen s e ( https://creativ ec ommons .org/lic ense s/by/4.0/ ), wh

he original work is properly cited. 
 a nd non-a mbula n t Type 3 SMA we re ra ndomized 2:1 to re-
 eiv e ris dip l a m or con trol; the prima ry e ndpoin t of in te res t was
he change in Motor Function Measure (MFM) at 12 months
 �MF M 

). While the external controls exhibit promise as an ad-
ition al sourc e of inform ation due t o t e mporal a nd geogra phic
imilarities to the SUNFISH trial, differing distributions of im-
orta n t cha racte ris tics known t o affect mot or functioning, such
s the patie n t’s age (Figure 1 , noise adde d), c ould induc e c on-
ounding. We aim to develop a n a nalysis fra mework for deciding
ow (and if) to leverage this external control data to more pre-
ise ly e stim ate causal effe cts in simil ar s e ttings. 
The challenges as s oci ated with using external controls in fa-

or of a traditional RCT have been studied for at least half of a
e n tury, with Pocock’s 1976 cr iter ia (Pocock, 1976 ) becoming
 freque n tly refe re nc e d s ta nda rd for evaluating the suitability of
xtern al c ontrols . More re c e n tly, othe rs h av e outline d practical
on sideration s and potenti al s ources of bi as in hybrid trials with
xtern al c ontro ls ( Zhu e t al., 2020 ; Hall e t al., 2021 ). 
The first ac c ount of the s e t ting thr ough the lens of causal in-

e re nce was provided by Li et al. ( 2023 ), whose foundational
 ork outline d caus al as sumption s (the s ame as in this work)

o ide n tify the tr ea tme n t effect a nd proposed a doub ly ro bust
stim ator base d on the efficie n t influe nc e curv e. Our w ork is
l Biome tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the 
ich permits unre stricted re use, dis tribution, a nd reproduction in any me dium, provide d 
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FIGURE 1 A s umm ary of baseline cha racte ris tics believ e d to h av e an effe ct on a patie n t’s (cha n ge in) motor functionin g measure me n t (MFM). 
While Scoliosis and SMA Type are similarly distributed in both s amp les, enro llment age and baseline MFM levels h av e somewh a t gr ea ter 
de gre es of discrepancy. Note: noise was added to all data points in this figure (but not in the re mainde r of the ma n uscript) to maintain first 
release ri gh ts for c ohort-lev el s umm a ry in a future clinical pa pe r; the r efor e, these measur es should not be in te rpreted as the exa ct findin gs of the 
s tudy a nd a r e pur ely for motiva tion al purposes . 
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comple me n ta ry: unde r the same setting, we develop alternative
es timators a nd es tablish theory that allows for machine learning-
based e st imat ion of the n uisa nce functions. Furthe rmore, our
focus is c omparativ ely on dev eloping a c omprehensiv e causal
framework to guide pract it ione rs a nd r egula tors. 

Propen sity s core me thods h av e be en propose d to estim ate
the c ondition al probability of an individual re c eiving the tr ea t-
me n t to eithe r mat ch ext e rnal con trols to s tudy pa rticipa n ts (Lin
et al., 2018 ) or inversely wei gh t exte rnal con trols (M a gare t e t al.,
2022 ). Others h av e focuse d on estim ating the c ondition al av er-
ag e tre atme n t effect (CATE) (Zhou and Ji, 2021 ). An alterna-
tive approach to incorporating external controls forgoes an ex-
p licit caus al model, bor rowing infor ma tion fr om extern al c on-
tr ols thr ough a n ada ptive Bayesia n prior. The a moun t of borro w -
in g a d apts to he tero geneity be tw e en the intern al and external
con trols, with exte rnal con tro ls whos e outc ome c onflicts with
in te rn al c ontrols c ontributing less to the prior (Schmidli et al.,
2014 ; Ibrahim et al., 2015 ; Liu et al., 2021 ). 

Causal infe re nc e ch allenges in this s e t ting ar e closely r ela ted
to those of ge ne rali zab ility/transportab ility (Cole and Stuart,
2010 ; D e gtia r a nd Ros e, 2023 ; Shi e t al., 2023 ). Becaus e both
s e ttings ge ne rally ne c e ssit ate a nd leve rage some de gre e of c om-
parability betw e en multip le popul ation s, they adopt simil ar as-
sumptions and proposed estimators (Dahabreh et al., 2019a ; Shi
et al., 2023 ). How ev e r, the a nalysi s goal s typically differ (effi-
cie ncy ve rsus ta rge t popul ation c ov e rage), a nd diffe ring ta rget
pa ra mete rs a nd da ta pr oduce dis tinct es tim ators . 

In this w ork, w e dev e lop a causal frame work in te nded to as-
sist pract it ioners in conduct ing the analysis of a r andomiz ed
trial incor porating ex te rnal con trols, drawing focus to two pri- 
ma ry the mes. ( 1 ) Ra ndomization to treatme n t is no longer 
(fully) under investigator control. ( 2 ) Adjustment for imbal- 
ances due to a lack of randomization can increase dependence 
on s tatis tical models. To address ( 1 ), we prese n t a causal in- 
fe re nce fra mework for ri gorously defining the ta rget pa ra mete r, 
as s es sing as sumption s vi a grap hical cr iter ia , choosing betw e en
cl as s es of es timators, a nd checking model as sumption s. Leverag- 
in g a dva nces in s tatis tical causal infe re nc e the ory (Hines et al.,
2022 ), we alleviate ( 2 ) by building upon the pr eviously pr o- 
pos ed doub ly ro bus t es t imator (Li et al ., 2023 ) and pro vin g
conditions under which the estimator is efficient and asymp- 
totically norm al ev e n whe n machine lea rning methods a re used 

for the n uisa nce functions, a n importa n t adva nc e th at allows 
for valid infe re nce unde r broade r dat a -ge ne rating me ch anisms . 
The v ari anc e re duction and doub le-ro bustnes s are exp lored 

thr ough a simula tion s tudy, a nd the e n tire causal fra mework is 
de mons tra ted thr ough a study of patie n ts with spinal m us cul ar 
a tr ophy. 

2 S ET T I N G 

In a hybrid trial design with extern al c ontro ls, d ata from two 

sour ces ar e use d to estim a te a tr ea tme n t effe ct. Pre cisely defin-
ing this o bj e ctiv e re quires carefully a nswe ring two questions. 
( 1 ) What two p o pula t io n s gen era t ed the da ta? Diffe re nces be-
tw e en these populations govern both the capacity to combine 
the two data sources and the methods to do so accurately and ef- 
ficie n tly. ( 2 ) Wha t definit io n of trea tment effe ct? He tero geneity of
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ndividual tr ea tme n t effe cts causes av erag e tre atme n t effects to
a ry depe nding on the populat ion composit ion. 
Denot e the out come of in te res t b y Y , baseline cov ari ates co l-

e cte d both in the trial and for external controls by Z, and a bi-
ary tr ea tment by A ( a = 1 is the expe rime n tal tr ea tme n t a nd
 = 0 is the contr ol tr ea tme n t, pos sib ly a p l a ce bo, a ctive con-
rol, or other intervention). For ease of exposition, we wi l l re-
er to the dichotomous tr ea tme n ts as tr ea tme n t a nd con tr ol, r e-
pe ctiv ely. We use D to indicate the source of the data ( d = 1
or RCT and d = 0 for external contro l). Definition s of popul a-
ion s relev a n t to infe re nce va ry across con texts a nd dis cip lines;
e adopt definitions commonly used within the causal infe re nce

itera tur e (D e gtiar and Rose, 2023 ). The stud y sa mp le c onsists
f n rct iid copies of the random vector (Y , Z, A, D = 1) sam-
led from the (possibly hypothetical) population from which

he s tudy sa mple is a simple ra ndom sa mple. Inves ti gators also
 av e ac c ess n ec iid c opies of the random v e ctor (Y , Z, A, D =
) from a se c ond sample of individuals, the external controls.
hese external con trols mi gh t have come from one of several

our ces, including pr evious clinical tri als (Darras e t al., 2021 )
nd electronic health re c ord (EHR ) sys te ms (Ca rri ga n et al.,
020 ), and it is implicitly understood that they have been se-

e cte d to satisfy the inclusion/exclusion cr iter ia of the trial and
e re adminis te red the same contr ol tr ea tment as the internal
 ontrols . These individuals are view e d as a simple random sam-
le from a nothe r populat ion, t itled the extern a l control p o pu-

a t io n . Prese n tly, no assumptions a re made about the r ela tion-
hip betw e e n the exte rn al c on trol a nd s tudy popul ation s. For
 ∈ { 0 , 1 } , we posit the exis te nce of pote n tial outcomes Y 

a

ha t r epr ese n t the outcome that would have been o bs erv e d un-
e r the in te rve n tion to re c eiv e tr ea tme n t A = a (Rubin, 2005 ).
e m ake thre e ass umptions expe cte d to hold in an RCT ( A1 -

3 ) and a fourth ( A4 ) motivated by the d isc ussion in Sec-
ion 3 . 

( A1 ) Co nsis t ency : Y 

a = Y if A = a for a ∈ { 0 , 1 } . 
( A2 ) Excha ngeabil ity : Y 

a ⊥ A | D = 1 for a ∈ { 0 , 1 } . 
( A3 ) Posit ivity of trea tment assi gnment : 0 < Pr (A = 1 | D = 

1) < 1 . 
( A4 ) Mean -e xcha ngeabil ity across p o pula t io ns : there ex- 
ists X ⊂ Z s uch th at E [ Y 

0 | D = 1 , X = x ] = E [ Y 

0 | D = 

0 , X = x ] for all x with p(x | D = 1) > 0 . 

2.1 Ta r g et pa ra mete r 
hile a n umbe r of diffe re n t pa ra mete rs mi gh t be of scie n-

ific in te res t, in this pa pe r we focus on the ATE in the s tudy
opula tion, a na tural choice because it is typical pa ra mete r

h at w ould h av e be e n es tim ate d in a n RCT without exte rnal
 ontrols . This tr ea tme n t effe ct is define d as the expe cte d dif-
e re nc e betw e en outc omes if the study population were as-
igned the tr ea tment v ers us if the study population were as-
igned the control: τ ≡ E[ Y 

1 − Y 

0 | D = 1] . When tr ea tment
ffects are he tero geneous and the external control population
 iffer s from the study population, τ may differ from E[ Y 

1 −
 

0 | D = 0] or E[ Y 

1 − Y 

0 ] . Ide n t ificat ion of these two pa ra m-
 ters als o r equir es as sumption s beyond thos e for τ . Becaus e
 = 0 implies A = 0 a nd s tudy pa rticipa n ts a re ra ndomized

o tr ea tme n t, we ca n equivale n tly define τ as E[ Y 

1 − Y 

0 | A =
] , which is the average tr ea tme n t effect among the tr ea ted
ATT). 

3 C  A U S A L  I D E N T I F I C  AT I O N  

nder A1 - A3 , τ = E[ Y | A = 1 , D = 1] − E[ Y | A = 0 , D =
] so that the diffe re nce of mean outcomes between the tr ea t-
e n t a nd in te rn al c on trol a rm s is a con sis te n t es timator. Such

de n t ificat ion is pos sib le becaus e, within the RCT ( D = 1 ),
atie n ts a re ra ndomized to tr ea tme n t. How ev e r, this ide n-
 ificat ion (linking of coun te rfactual pa ra mete r with the ob-
 erv ab le d at a distribution) doe s not incor porate ex tern al c on-
rols, a nd th us no efficie ncy h as be en gaine d. Inc orporat-
ng of external controls comes at the expen s e of randomiza-
ion: while Pr (A = 1 | D = 1) is unde r inves ti gator con trol,
r (A = 1) = Pr (A = 1 | D = 1) Pr (D = 1) , and D is not ran-
omly as signed. Con s eque n tly, the re is no just ificat ion, with-
ut further as sumption s, for Y 

0 | D = 1 and Y 

0 | D = 0 being
qual in distribution (or eve n mome n ts), implying that in-
e rnal a nd exte rn al c ontrol outc omes m ay diffe r sys te mati -
ally. 
To address this, we sho w ho w kno wledg e of the underlying

ausal structure generating the data, as form alize d through a
aus al grap h, can identify a sufficie n t s e t of v ari ab les X ⊂ Z
h at, when c onditione d on, re c ov er exch ang e ability of Y 

0 across
he s tudy a nd exte rn al c ontro l popul ation s. As a simp le exam-
 le, con sider a cas e whe re a n outcome Y is a caus al des cen-
e n t of a cov ari ate X plus an independent noise term so that
 = f (X , ε) . If, acros s popul ation s, f and the distribution of
w ere fixe d but the distribution of X shifted, then the distribu-

 ion and expectat ion of Y (ge ne rally) diffe r acros s the popul a-
ion s. Rel ating this to hybr id tr ial s, di scre pancie s in the distri-
ution of causes of the outc ome betw e e n the s tudy a nd exte rnal
ontro l popul ation s are respon sib le for d iffering d istributions of
 

0 | D = 1 and Y 

0 | D = 0 . 
Grap hical condition s for ide n tifying ave rag e tre atme n t effects

n the cases of ge ne rali zab ility (Dahabreh et al., 2019b ) and
ra nsportability (Ba reinboim a nd Pea rl, 2013 ) h av e be en dev el-
pe d. How ev e r, causal gra phs for this extern al c ontro l s e tting
ose unique ch allenges . First, whereas a causal graph is typi-
ally defined with respect to a spec i fic population, in the ex-
ern al c ontro l s e tting d ata is s amp le d from tw o, pos sib ly dis-
 inct, populat ions. Furthermore, while the typical goal of causal
rap h s is to veri fy i f { Y 

0 , Y 

1 } ⊥⊥ A | X , in the extern al c ontrol
 e tting the o bj e ctiv e is inst ead t o verify if Y 

0 ⊥⊥ D | X for some
 ⊂ Z. 
Motiv ated by thes e unique cha racte ris tics, we propose a va ri -

 n t of SWIGs (Richa rdson a nd Ro bin s, 2013 ) in spired by s e lec -
ion di agram s (Ba reinboim a nd Pea rl, 2013 ), which a re modi -
ed causal graphs that determine the transportability of causal
 ela tions. Let G denote a causal graph (SWIG), which encodes
he inves ti g ator’s kno wledg e of the caus al proces s a nd con tains
ll v ari ab les Z (pos sib ly unmeas ure d) th a t ar e dir ect causes of Y 

 i. e. h av e a rrows poin ting from Z to Y ). A sele ct io n SWIG D is



4 � Biometrics , 2024, Vol. 80, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/4/ujae095/7887652 by U
niversity of H

ong Kong user on 28 O
ctober 2025
� Ev ery e dge in G is also an edge in D ; 
� D con tains a n extra ed ge, S Z i −→ Z i , whe neve r

p(z i | v, d = 1) � = p(z i | v, D = 0) for some c olle ction
of v ari ab les V ⊂ Z\ Z i ; and 

� D contains an extra edge, S Y −→ Y , whenever p(y | z, d =
1) � = p(y | z, d = 0) . 

Intuitiv ely, this proc ess adds S variables to p inpo in t discrepa n-
cies in the study and extern al c ontro l distribution s, which are in-
form ativ e for unde rs ta nding if Y 

0 | D = 1 � = Y 

0 | D = 0 . The fol-
lowing r esult, wher e c ondition al indepe nde nce s tate me n ts a re
evaluated on G using the rules of d -separ ation, formaliz es this
b y de mons tra ting how this pr ocess ide n tifies which v ari ab les are
su ffic ie n t so that , af ter their adjustment, the distribution of Y 

0 is
balanc e d. 

T heore m 1 Let the sele ct io n S WIG D b e co ns truct ed as a bo ve and
let X ⊂ Z. Then: 

(i) If Y 

0 ⊥ S | X , then p (Y 

0 | X , D = 1) = p (Y 

0 | X , D = 1) .
(ii) If Y 

0 �⊥ S | X , then there e x is ts so me two dis tribu t io ns
co mpa t i ble wit h G such t hat p(Y 

0 | X , D = 1) � =
p(Y 

0 | X , D = 1) , even if p(y 0 | z, D = 1) = p(y 0 | z, D =
0) . 

To ide n tify E[ Y (0) | D = 1] using both in te rnal a nd exte rnal
c ontrols, w e lev erage the pre c e d ing d isc ussion to make an as-
sumption about the comparability of internal and external con-
tro ls ( A4 ). As sumption 4 st ate s that while Y 

0 mi gh t sys te mati -
cally differ betw e en the study and external control population,
once diffe re nces in the distribution of X are ac c ounte d for, the
expectation of Y 

0 is the s ame acros s popul ation s . While inv es-
tigators do not r andomiz e individuals to D (and thus tr ea tment
A ), once X is conditioned upon, the mean of Y 

0 is independent
of D , mimicking randomization. By Theorem 1, A4 i s sati sfied if
the re exis ts s ome s e t of v ari ab les X ⊂ Z s uch th at Y 

0 ⊥⊥ S | X on
the selection SWIG D . 

Equipped with these caus al as sumption s, the targe t pa ra mete r
τ can be identified with the o bs erv e d data distribution. By condi-
tioning, τ can be written as E[ Y 

1 | D = 1] − E X | D =1 [ E[ Y 

0 | D =
1 , X ]] . The first term, as noted earlier, is equivalent to E[ Y | A =
1] under A1 - A3 . The se c ond te rm ca n be shown, using A1 - A4 ,
to be equal to E X | D =1 [ E[ Y | A = 0 , X ]] . 

Ther efor e, we have that 

τ = E[ Y | A = 1] − E X | D =1 [ E(Y | A = 0 , X )] . (1)

4 E ST I M AT I O N  

In what follows, define m a (x ) as E[ Y | A = a, X = x ] , πa (x ) as
Pr (A = 1 | X = x, D = 1) ( th e treatm ent pro p ensity score ), and
πd ( x ) as Pr ( D = 1 | X = x ) ( the stud y pro p ensity score ). Corre-
spond ing estimator s a re de noted as ̂ m a ( x ) , ̂  πa ( x ) , and ̂  πd ( x ) ,
respe ctiv ely. Fr om Equa tion 1 , τ is ide n ti fied as the di ffe re nce be-
tw e en μ1 := E[ Y | A = 1] and μ0 := E X | D =1 [ E[ Y | A = 0 , X ]] .
When X is high dimensional or contains con tin uous cova riates,
simple nonpa ra metric es timators of μ0 a re no longe r feasible,
a nd th us models a re ne e de d for the “n uisa nce” functions m 0 (x )
a nd πd (x ) . Th us, dis tributional diffe re nc es betw e e n in te rnal a nd
extern al c ontr ols, fr om a stat ist ical perspect ive, hei gh te n model 
depe nde ncy. In this se ction, w e outline thre e prim ary cl as s es of
estim ators th at wi l l be app lied to the S MA examp le. 

4.1 Outco me bas ed mode ls 
The qua n tity μ0 ave rages the expe cte d outc ome of c ontrols 
giv en baseline c ovariates X over the distribution of X in the 
s tudy. Because it depe nds on the data only through m 0 (x ) and 

the m argin al distribution of X in the s tudy population, we ca n 

con sider a simp le p lu g-in e s timator, whe re a regression model ̂ m 0 (x ) is fit on the in te rnal a nd exte rn al c ontro l d a ta and its pr e-
dictions a re ave raged ove r the e mpirical dis tribution of X from 

the study s amp le: 

̂ μ0 ,om 

= n 

−1 
rct 

n ∑ 

i =1 

D i ̂  m 0 (X i ) . 

In the causal infe re nce lite rature, this es tim ator is fre que n tly 
r eferr ed to as standar diza tion or g -computa tion (He rna n a nd 

Ro bin s, 2020 ). For this estimator, the benefit of incorporating 
extern al c ontrols c omes fr om a mor e r efine d estim ate of m 0 (x ) . 

4.2 Stud y p rope n s ity s co r e- bas ed mode ls (IPDW) 
As an altern ativ e to modeling the outcome, πd (x ) can be used to 

re-wei gh t the outcomes of the contro ls s o that their distribution 

of X in this re-wei gh ted population is the same as the tr ea ted. 
This idea is analogous to inverse propensity score wei gh ting in 

causal infe re nc e. The us ual propen sity s core, π (x ) := Pr (A = 

1 | x ) is equal to πa ( x ) πd ( x ) . While πa ( x ) is known by trial-
design, πd (x ) is unknown, and so the tr ea tment assignment 
me ch anism across the entire s amp le is unknown . After esti- 
mating ̂  πd (x ) and ̂  πa (x ) , w e c onside r the es timator ̂  μ0 ,ipdw = 

n 

−1 
rct 

∑ n 
i =1 

̂ W 

ipdw 
i Y i , where 

̂ W 

ipdw 
i = 

(1 − A i ) ̂  πd (X i ) 
[1 − ̂ πa ( X i )] ̂  πd ( X i ) + [1 − ̂ πd (X i )] 

. 

Methods that handle extreme weights in ̂  μ0 ,ipdw or leverage ̂  πd 
for mat ching inst ead of wei gh ting a re d isc ussed in Section 8 of 
the Supporting Information . 

4.3 Efficien t es timators 
The propose d estim ators in the previous s ection s, which are 
plu g-in e stimators for μ0 based on Equation 1 and its in- 
ve rse prope nsity wei gh ted a nalog, incorporate a model for ei- 
ther m 0 (x ) or πd (x ) . Heuristically, more pre cise estim ators for 
m 0 (x ) or πd (x ) can produce a less variable estimator of τ . Since 
the goal of incor porating ex tern al c ontrol s i s to increase effi- 
cie ncy in es t imat ing τ , a releva n t aim is to cons truct es timators
th at achiev e the gr ea test r eduction in v ari anc e, for which w e turn 

to se mipa ra metric efficie ncy theory. 
Any regula r a nd asymptotically linea r (RAL) es timator for 

τ has an asymptotic v ari ance of at least B τ ≡ E [ φ(O ; P ) 2 ] , 
where O = (Y , X , A, D ) and φ(O ; P ) is the efficient influ ence 
curve (EIC) for τ (Kos oro k, 2008 ). The EIC in this s e tting is 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae095#supplementary-data
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Li et al., 2023 ) 

φ(O ; P ) = 

1 

q 

{
D [ m 1 (X ) − m 0 (X ) − τ ] 

+ 

DA 

πa (X ) 
[ Y − m 1 (X )] − W 

dr [ Y − m 0 (X )] 
}
, 

(2) 

here q ≡ ∫ 
πd ( x ) d P , r( X ) ≡ Var (Y 

0 | X , D =
) / Var (Y 

0 | X , D = 1) and where 

W 

dr ≡ D (1 − A ) πd (X ) + (1 − D ) πd (X ) r(X ) 
πd (X )[1 − πa (X )] + [1 − πd (X )] r(X ) 

. 

We c onsider tw o type s of e stim ators base d upon the form of
(O ; P ) , where we write φ as a function of a distribution P 

o hi ghli gh t that it depe nds on the n uisa nce functions m 1 (x ) ,
 0 ( x ) , πd ( x ) , and r( x ) as we ll as the t a rget pa ra mete r τ . If these

unctions we re known, the n (afte r unce n te ring) the es timator
 

−1 ∑ n 
i =1 φ(O i , P ) would achieve the efficiency bound. There-

ore, the first influenc e-curv e-base d estim a tor, as pr oposed by Li
t al. ( 2023 ) and based upon a n es t imat ing equat ion, plugs in fit-
ed models for the n uisa nce functions: 

 aipw = 

1 

n 

n ∑ 

i =1 

1 ̂ q 

{
D [ ̂  m 1 (X ) − ̂ m 0 (X )] + 

DA ̂ πa (X ) 
[ Y − ̂ m 1 (X )]

−̂ W (A, D, X )[ Y − ̂ m 0 (X )] 
}
, 

here ̂  q = 

n rct 
n and 

̂ W 

dr = 

D (1 − A ) ̂  πd (X ) + (1 − D ) ̂  πd (X ) ̂  r (X ) ̂ πd (X )[1 − ̂ πa (X )] + [1 − ̂ πd (X )] ̂  r (X ) 
. 

An altern ativ e strate gy is through targete d m aximum like-
ihood est imat ion ( TMLE) (Va n de r Laa n a nd Rose, 2011 ).

hile the two a pproaches he r e pr oduc e asymptotically e quiv-
le n t es tim ators, TMLE is a plug -in estim ator a nd th us respects
he boundaries of the p arameter sp ace for all s amp le sizes, po-
e n tially lea din g to impro v e d perform anc e in sm all s amp le sizes.
nstea d of usin g fitted models ̂  m 1 (x ) and ̂  m 0 (x ) to form a sim-
 le p lu g-in e stimator of τ (as with ̂  μ0 ,om 

), the models are fluctu-
ted so that n 

−1 ∑ n 
i =1 φ(O i , ̂  P 

∗
) = 0 , implying that it, like ̂  τaipw ,

 o lves the efficie n t influe nc e curv e estim ating e quation. Thi s i s
c c omplishe d thr ough fit ting a log i stic r egr e ssion mode l of the
utc ome (scale d to [0,1]) on h (D, A, X ) with an offs e t given
y the logit of ̂  m A (X ) , where 

h (D, A, X ) ≡ 1 
q 

{
DA ̂ πa (X ) 

− D (1 − A ) ̂  πd (X ) + (1 − D )(1 − A ) ̂  πd (X ) ̂  r (X ) ̂ πd (X )[1 − ̂ πa (X )] + [1 − ̂ πd (X )] ̂  r (X ) 

}
. 

For each o bs erv a tion, this model pr oduces pr edictions under
he s e ttings A = 1 and A = 0 , which defines our updated mod-
ls ̂  m 

∗
1 (x ) and ̂  m 

∗
0 (x ) . Be cause c onv e rge nc e oc c ur s after only one

pdat e it e ration, the TMLE es timator, ̂  τtmle , is jus t a plu g-in e s-
imator using the updated models ̂ m 

∗
1 (x ) and ̂ m 

∗
0 (x ) : ̂  τtmle =

 

−1 
rct 

∑ n 
i =1 D i 

[̂ m 

∗
1 (X i ) − ̂ m 

∗
0 (X i ) 

]
. Further details are prese n ted

n Section 9 of the Supporting Information . 
4.4 Infe re nce 
or the wide adoption of a method and its r egula tory appr oval,

nfe re n tial prope rties should be establ ished, includ ing cond i-
ions under which the estimator is consis te n t a nd ho w me asures
f unce rtain ty ca n be cons tructed. The consis te ncy of the first
wo approaches is con tinge n t upon their n uisa nce functions es-
imates: when ̂  m 0 i s consi s te n t for m 0 , ̂  μ0 ,om 

is consis te n t for μ0 ,
 nd whe n ̂ πd (x ) i s consi s te n t for πd (x ) , ̂ μ0 ,ipdw i s consi s te n t
or μ0 . While this seemingly favors flexib le, d at a -ad aptive me th-
ds to avoid misspec i fying m 0 (x ) and πd (x ) , doing so ge ne rally

eads to slow rates of c onv e rge nce a nd a poorly unde rs tood lim-
t ing distribut ion for ̂  τ . Ther efor e, parametric models and confi-
e nce in te rv als con structed vi a the nonpa ra metric boots tra p a re
e c ommende d. 

The trade-off betw e en re ducing bias through using flexible
odels and maintaining valid 

√ 

n inference motivates the us-
ge of ̂  τaipw and ̂  τtmle , which pos s es s s ever al desir able s tatis ti -
al prope rties. Firs t, the models a r e doubly r obust in the sense
hat ̂  τ converges in probability to τ if either ̂ m 0 (x ) c onv erges
n probability to m 0 (x ) and ̂ m 1 (x ) c onv er ges in proba bility to
 1 (x ) or if ̂  πd (x ) c onv er ges in proba bility to πd (x ) (Li et al.,

023 ). Furthe rmore, whe n cross-fitting is used, ̂  τaipw and ̂  τtmle 
re both efficient and asymptotically normally distribute d, ev en
he n the n uisa nce functions a re es tim ate d at slow er rates, allo w -

ng for more flexible est imat ion of these functions using popular
a chine learnin g methods. 

 heore m 2 Un der cert ain regu larity con dit io ns ( Suppo rt ing In
orma tion , Se ct io n 10), ̂ τdr , mea n ing either ̂ τaipw or ̂ τtmle , sat-
sfies 

√ 

n ( ̂  τdr − τ ) −→ N(0 , E [ φ(O, P )]) . Ther efor e, ̂ τdr is
oot-n co nsis t en t, semiparametric efficien t, and asympt ot ic ally no r-
 a l with asympt ot ic a lly va lid co nfidence int ervals given by ̂  τdr ±
 . 96 

√ ̂ var ( φ( O, ̂  P )) /n . 

5 M O D E L  A N D  A S S U M  P  T I O N  A S  S E S  S M E N TS  

he analysis of causal effects in hybrid trials with extern al c on-
rols subs ta n tively diffe rs from that of an RCT because addi-
ion al ass umptions and te chniques are ne e de d to ide n tify a nd es-
im ate the av erag e tre atme n t effect. Con s eque n tly, as we d isc uss
ow a nd de mons trate in our SMA exa mple in Section 7 , model
nd assumption asse ss me n ts ca n p l ay a critical ro le in v alid ating
he trustworthiness of res ults . 

5.1 Covari ate imbal ance 
ov ari ate imbal ance, here the dis simil arity in cov ari ate distribu-

ions of the control arms, plays a critical role in the ide n t ificat ion
 nd es t imat ion of τ . As shown in Se ction 3 , c ov ari ate imbal ances
n the causes of the outcome are respon sib le for Y (0) differ-
ng in distribution acr oss contr ol arms. This in turn nece ssit ate s
ov ari ate adjus tme n t to ide n tify τ as a function of the external
on trol dis tribution. Cova riate imbala nce also has importa n t im-
 lication s in v ari anc e re duction: the efficiency gain a t tributable
 o ext ern al c ontrol s i s proportional to E[(1 − πd (X )) | D = 1] ,
o that va ria nce gains a re la rges t whe n the re is comp le te cov a ri -
 nce bala nce. Furthe rmore, cova riate imbala nce increases model

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae095#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae095#supplementary-data
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depe nde ncy because infe re nces a re extra po l at ed t o regions with
limite d c ommon s upport. Conv e rsely, unde r c omplete c ovariate
bal ance, the me thod s di s cus s ed in Section 4 are typically sti l l
consis te n t for τ even when the functional form of m 0 is incor-
re ctly spe c i fied, per mit ting a degr ee of model in s en sitivity. 

Due to these factors, n ume rical as s es sme n t is re c om-
mended to explicate the de gre e of cov ari ate bal ance.
One measure of cov ari ate bal ance is the normalized dif-
fe re nce, ̂ �x = 

√ 

2( X 1 − X 0 ) T ( ̂  �1 + ̂

 �0 ) −1 ( X 1 − X 0 ) ,
where X d and 

̂ �d are the s amp le mean and cov ari ance
matrix of X in con trol a r m d. A lter natively, imbalance
ca n be jud ged using the prope n sity s core by calcul atinĝ �πd = n 

−1 
rct 

∑ n 
i =1 D i ̂  πd (X i ) − n 

−1 
ec 

∑ n 
i =1 (1 − D i ) ̂  πd (X i ) . 

When the distribution of X is the same in the study and ex-
tern al c ontro l popul ation s, w e expe ct both 

̂ �x and 

̂ �πd to be
0. La rge r values are consis te n t with less covariate bala nce, a nd̂ �πd > 0 . 25 has previously been su gge sted as a threshold in
the context of generali zab ility (Stuart et al., 2011 ). Hypothesis
te sts of the se st at ist ics are not re c ommende d as de parture s
from 0 do not inv alid ate the methods of Section 4 . However,
re porting the se (or re late d) s umm aries is useful be cause it
provides a d iffic ulty measure for the s tatis tical task of a djustin g
for imbalance. 

5.2 Assu mpt ion 4 

T he S election SWIG of S e ction 3 provides a the oretical jus-
t ificat ion for A4 based upon background kno wledg e of the
caus al proces s. While as sumption s within caus al infe re nce a re
ofte n un tes table, A4 , when c ombine d with the consis te ncy
as sumption, imp lies that u (X ) := E[ Y | A = 0 , D = 1 , X ] −
E[ Y | A = 0 , D = 0 , X ] = 0 , a so-called “te st able implication”
that can also appear in transportability settings (D e gtia r a nd
Rose, 2023 ). Thi s i s an ass umption th at tw o (nonpa ra met-
ric) r egr es sion function s are equal. While s ome s tatis tical tes ts
a re a pp licab le (Racine e t al., 2006 ; L uedtk e et al., 2019 ),
decision s about whe ther t o incorporat e ext ern al c ontrols on
the basis of such tests are inadvis ab le due to their limited
powe r in sa mple sizes common to these trials a nd chal -
le nges posed b y pos t-selection infe re nce. Importa n tly, a fail -
ur e to r eject A4 thr ou gh the se te sts should not be taken
as proof in its favor. A lter na tively, we r ecommend visual di-
agnostics as s upporting inform ation following the incorpora-
tion of external contro ls. Becaus e E[ Y | A = 0 , D, πd (X )] =
E[ Y | A = 0 , πd (X )] under A4 , one useful one-dimensional di-
agnost ic is plott ing the mea n outcomes of in te rn al c ontrols
agains t exte rn al c on trols with simila r es tim ate d s tudy prope nsity
sc ores . 

Instead of scrut iniz ing A4 in isolat ion, sensit ivity analyses
can directly examine how its vio l ation inc ur s bias in es ti -
mating τ . When the nuisance functions are estim ate d c on-
sis te n tly, the asymptotic bias of the estimators is E[ Pr (D =
0 | A = 0 , X ) u (X ) | D = 1] . The first term highlights a funda-
me n tal tra de-off: co v ari ate bal a nce a nd more exte rn al c on-
tr ols impr ove efficie ncy but hei gh te n se nsitivity to bias. When
the terms are independent [non-advers ari al u (X ) ], the bias is
uppe r-bounded b y Pr (D = 0 | A = 0) E[ u (X ) | D = 1] , which
can be estim ate d using either a pre-determined model (possi- 
b ly a con s ta n t B ) or a n es tima tor (fit ting models for E[ Y | A =
0 , D = d, X ] ) for u (x ) . One cr iter ia for evaluating robust-
ness is to determine the minimum magnitude B r equir ed to 

shift the c onfidenc e in te rv al for τ s o tha t the tr ea tme n t ef-
fect is no longe r dee med si gnifica n t. In Section 11 of the Su 

pporting Information , we also provide an upper bound on 

E[ u (X ) | D = 1] that can be useful in s e t tings wher e the r esid-
ual v ari ation in the outc ome is sm all r ela tive to the tr ea tme n t ef-
fect. 

6 S I M U L AT I O N  ST U DY  

We perform a simulation study t o evaluat e the properties of the 
propose d estim ator s, foc using on when the distribution of X dif- 
fers betw e en intern al and extern al c ontrols . We evaluate the es- 
timat ors in t erm s of their bi as and v ari ance, whe ther their confi- 
de nce in te rvals achieve their s tate d c ov era ge ( S upporting Info 

rmation , Section 13), and whether they achieve higher power 
whi le control ling Type-1 error. 

In c onc ordanc e with our S MA app lication, we simul ate a 
trial inves ti gating a con tin uous e ndpoin t with 150 RCT pa- 
tie n ts ra ndomized 2:1 to tr ea tme n t a nd 50 exte rn al c ontrols . All
simul ation s are run for 1000 re plicate s. Full det ails of the dat a - 
ge ne rating me ch a nism a nd n uisa nce function models a re avail - 
able in the Supporting Information (Section 12); importa n tly, 
πd (x ) is non-cons ta n t so that A �⊥ D . To hi ghli gh t how ce r-
tain s e t tings benefit fr om the us age of flexib le estimators for the 
n uisa nc e functions, w e evaluate the afore me n tioned prope rties 
when the nuisance functions have a known functional form, are 
inc orre ctly spe cifie d, or are adaptively estim ate d using m achine 
learning methods. In Setting 1, all n uisa nce functions a re es ti - 
m ate d with c orre ctly spe c i fie d linear models . In Setting 2, an in-
c orre ctly spe cifie d linear model is used for πd (x ) while Random 

Fores ts a re used for m a (x ) . In Setting 3, inc orre ctly spe c i fied lin-
ea r models a re used for m a (x ) while a Random Forest is used for 
πd (x ) . In Set ting 4, incorr ectly spec i fied linear models are used 

for both m a (x ) and πd (x ) . Both m a (x ) and πd (x ) are modeled 

with Random Forests in Setting 5. 
To estim ate τ , w e c ompa re a n RCT-only cova riate-adjus ted 

AI PW est imator ( ̂  τrct ) with the four proposed estimators ( ̂  τom 

≡̂ μ1 − ̂ μ0 ,om 

, ̂  τipdw ≡ ̂ μ1 − ̂ μ0 ,ipdw , ̂  τaipw , and ̂  τtmle ). Both dou- 
b ly ro bus t a ppr oaches corr espond to their cr oss- fit (10- fold) 
v ari ants. For ̂  τom 

and ̂  τipdw , 95% c onfidenc e intervals were con- 
structed via the non-parametric bootstrap. Confidence intervals 
we re ge ne rated for ̂  τaipw and ̂  τtmle using the closed-form formula 
fr om Theor em 1. 

Bia s an d va ria n ce : W ith cor rectly spec i fied pa ra metric mod -
els (Setting 1), all external control approaches are unbi as ed and 

exhibit les s v ari a bility (Ta ble 1 ). Howe ve r, pe rforma nce gains 
a re not gua ra n te e d unde r depa rtur es fr om corr ectly spec i fied
pa ra metric models. In Settings 2 and 3, where one nuisance func- 
tion is inc orre ctly spe c i fied, the singly robust approaches ( ̂  τom 

and ̂  τipdw ) are bi as e d. Conv ersely, the doubly robust approaches 
(with one n uisa nce function es tim ate d flexibly and the other 
mis s ec i fied) have minimal bias but lower MSEs than ̂  τrct . Fur- 
thermore, while double ro bustnes s offers no protection against 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae095#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae095#supplementary-data
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TAB LE 1 Res ults (bi as, mean-s quar ed err or, and 95% c onfidenc e interval c ov erage) of the simul ation . 

̂ τrct ̂ τom 

̂ τipdw ̂ τaipw ̂ τtmle 

Bias MSE Cov. Bias MSE Cov. Bias MSE Cov. Bias MSE Cov. Bias MSE Cov. 

Setting 1 −1.8e-03 0.31 0.96 2.5e-04 0.22 0.93 −2.9e-03 0.24 0.93 −4.2e-04 0.23 0.95 6.6e-06 0.22 0.96 
Setting 2 3.4e-02 0.31 0.95 − − − 4.0e-01 0.38 0.86 2.0e-01 0.25 0.94 2.2e-01 0.25 0.94 
Setting 3 3.6e-02 0.34 0.95 4.1e-01 0.38 0.85 − − − 1.1e-01 0.24 0.96 6.8e-02 0.24 0.96 
Setting 4 2.5e-02 0.34 0.96 4.0e-01 0.39 0.85 4.0e-01 0.39 0.86 4.2e-01 0.42 0.86 4.1e-01 0.40 0.88 
Setting 5 −4.7e-03 0.32 0.95 2.2e-01 0.24 0.93 4.8e-02 0.22 0.94 5.8e-02 0.21 0.96 6.3e-02 0.21 0.96 
In Setting 1, all n uisa nce functions are estim ate d with c orre ctly spe c i fie d linear models . In Setting 2, an inc orre ctly spe c i fie d linear model is use d for m a (x ) . In Setting 3, inc orre ctly 
spec i fied linear models are used for πd (x ) while Ra ndom Fores ts a re used for m a (x ) . In Set ting 3, incorr ectly spec i fied linear models are used for m a (x ) while a Random Forest is used 
for πd (x ) . In Setting 4, inc orre ctly spe c i fied linea r models a re used for both m a (x ) a nd πd ( x ) . Both m a ( x ) and πd ( x ) a re modeled with Ra ndom Fores ts in Setting 5. 

FIGURE 2 ( A ) Power across diffe re n t treatme n t effect sizes (points for ̂  τaipw and ̂  τtmle are jittered due to ove rla pping values). The dashed line 
corresponds to the si gnifica nc e lev el of 0.05 to de mons trate Type-1 e rror con trol unde r the n ull hypothesis . ( B ) Pow e r across diffe re n t exte rnal 
contro l s amp le sizes (with RCT s amp le sizes and tr ea tment effect size held fixed). While the SMA application has an external control sample 
size ∼50, other studies might h av e ac c es s to l a rge r exte rn al c ontr ol gr oups. 
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ias when both nuisance functions ar e incorr ectly spec i fied

Setting 4), the dat a -adaptive e st imat ion of both function s (Se t-
in g 5) lea ds t o estimat es with minimal bias and v ari ability, high-
i gh ting the infe re n ti al gain s that are pos sib le through flexib ly

odeling the n uisa nc e functions . 
Power and Type-1 error : To hi ghli gh t a ppl icabil ity to cl in-

cal trials, we simulate powe r unde r va rying de gre es of tr ea t-
e n t effect sizes and extern al c ontro l s amp le sizes (Figure 2 ).
e r eplica te Set tin g 5, modelin g the (unknown) n uisa nce func-
ions with Random Fore sts. Re sults are only depicted for ̂  τaipw 
nd ̂  τtmle since con structing theore tically v alid c onfidenc e in-
erval s in thi s s e tting is unclear for ̂  τom 

a nd ̂  τipdw . Whe n τ =
 , both external contro l me thods achieve satisfactory Type-
 error control ( ≤ α = 5% ). Across treatme n t effect sizes,
o wer g ains over ̂ τrct ranged from 13 to 65%. Furthermore,
hile our S MA app lication only has a pool of 50 external

ontr ols, mor e power gains are pos sib le with l arger s amp le
izes. 
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FIGURE 3 ( A ) Selection Diagram for the SMA hybrid trial. MFM 0 and MFM 12 correspond to the MFM scores at baseline and 12 months, 
respe ctiv ely. Type refers to the SMA Type and A is the tr ea tment (ris dip l am). ( B ) Diagnostic of Assumption 4. B uck ets were created based on ̂ πd (x ) in incre me n ts of 0.05. Error bars correspond to 95% c onfidenc e intervals . 
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TA BLE 2 Est imates of the causal effect for the SMA application. 

Method 

̂ τ 95% CI P -value 

̂ τrct 2.33 (0.82, 3.85) 0.002 ̂ τom 

1.93 (0.71, 3.13) < 0.001 ̂ τipdw 1.79 (0.54, 3.00) 0.002 ̂ τaipw 1.92 (0.66, 3.18) 0.003 ̂ τtmle 1.80 (0.54, 3.06) 0.005 
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7 S M A  E X A M P L E  

We de mons trate a n imple me n tation of the outlined causal in-
fe re nce fra mework using the SUNFISH (NCT02908685) trial.
Further details of the trial are provided in the Supporting Info
rmation (Section 14). After restricting to comp le te cas es with
Type 2 or non-a mbula n t Type 3 S MA be tw e en the ages of 2-
25, the RCT and external control samples contain 159 and 48
o bs erv ation s, respe ctiv ely. T he tar ge t parame t er of int erest is
defined as τ = E[�1 

MF M 

| D = 1] − E[�0 
MF M 

| D = 1] . We are
in te res ted in testing H 0 : τ = 0 v ers us H 1 : τ � = 0 . Based on
d isc ussions with the study team, we hypothesize the causal
mode l de picted in Figure 3 . The mode l is con s erv ative in the
s en s e that no as sumption s are made about diffe re nces in dis-
tribution of the cov ari ates be tw e en the RCT and the exter-
n al c ontro l popul ation s. Bas ed upon this selection diagram,
E[�0 

MF M 

| D, X ] = E[�0 
MF M 

| X ] , where X = (Age , SMA Type ,
Sco liosis, and MFM 0 ) . To as s es s cov ari ate imbal anc e, w e es ti -
mate ̂ �πd = 0 . 02 . This res ult, c onsis te n t with minimal cova ri -
a te imbalance, incr eases c onfidenc e the historical p l a ce bo arm is
su ffic ie n tly (pre-outcome) comparable to the internal controls. 

We estimate τ with just the RCT data ( ̂  τrct ) using AIPW and
compar e r esults to the four proposed estimators: ̂  τom 

, ̂  τipdw , ̂  τaipw ,
and ̂  τtmle . For the doubly robust methods, the n uisa nce functions
are fit using Random Forests (with cr oss-fit tin g usin g 10 folds)
while linear models are used for ̂  τom 

and ̂  τipdw . Confidence in-
te rvals a re b ased upon the nonp a ra metric boots tra p for ̂  τom 

a nd
 τipdw and from the closed-form formula for ̂  τaipw and ̂  τtmle . All five

me thods provide simil a r es timates for τ and reject H 0 (Table 2 ).
Ov erall, the c onfidenc e intervals for the four methods incorpo-
rating external controls have widths betw e e n 80% a nd 93% the
width of the c onfidenc e interval using just the RCT data. 

To as s es s A4 , we plot (Figure 3 ) the means of �MF M 

for
contr ols gr ouped by D and binning by ̂ πd (x ) . Under A4 , we
expe ct th at E[�MF M 

| D = 1 , A = 0 , πd (x )] = E[�MF M 

| D =
0 , A = 0 , πd (x )] . We also estim ate d the asymptotic bias (via a
plu g-in e st imate, Sect ion 5.2 ) to be −0.19, which is small re la - 
tive to the tr ea tme n t effect and has a sign in the con s erv ative di-
rection . Alto ge the r, the e mpirical evide nc e provides s upport th at 
vio l ation s of A4 for this external control arm are not respon sib le 
for the estim ate d benefit of ris dip lman . 

8 D I S  C U S S  I O N 

While it is well unde rs tood that devi ation s in cha racte ris tics a nd 

protoco ls be twee n the RCT a nd exte rn al c ontro ls pos e signifi- 
ca n t challe nges to syn thesiz ing informat ion to estimate causal ef- 
fe cts, the absenc e of a causal infe re nce fra mew ork h as hindere d 

the clear communication of releva n t c onc epts . The (causal) tar- 
get pa ra mete r is ra rely defined (Zhou a nd Ji, 2021 a nd Li et al.,
2023 are notable exceptions) and d isc ussions of bias ce n te r on 

pract ical heurist ics (Pocock, 1976 ; Viele et al., 2014 ). Our pro- 
pos ed caus al frame work give s rise to a n easy-to-in te rpret ta rget 
pa ra mete r, e ncourages the embedding of as sumption s and inves- 
tig ator kno wledg e into a caus al grap h, and allows bi as to be ex- 
plicitly defined as a property of the causal model or violation of 
the as sumption s. 

A limitation is the depe nde ncy upon A4 to ide n tify the causal 
effect, which can only be as s es s ed after d ata co llection and for 
which the re mi gh t be little powe r t o t es t e mpirically due to the
small s amp le sizes commonp l ace in this s e t ting. Furthermor e, a 
null hypothesis of no difference might be of less interest than 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae095#supplementary-data
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eveloping bounds based on the severity of the vio l ation s. While
he method s di scussed are app licab le to continuous and binary
utcomes, the extension to survival data would be an importa n t
ontribution. 
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