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ABSTRACT

We consider the challenges associated with causal inference in settings where data from a randomized trial are augmented with control data from
an external source to improve efficiency in estimating the average treatment effect (ATE). This question is motivated by the SUNFISH trial,
which investigated the effect of risdiplam on motor function in patients with spinal muscular atrophy. While the original analysis used only data
generated by the trial, we explore an alternative analysis incorporating external controls from the placebo arm of a historical trial. We cast the
setting into a formal causal inference framework and show how these designs are characterized by a lack of full randomization to treatment and
heightened dependency on modeling. To address this, we outline sufficient causal assumptions about the exchangeability between the internal
and external controls to identify the ATE and establish a connection with novel graphical criteria. Furthermore, we propose estimators, review
efficiency bounds, develop an approach for efficient doubly robust estimation even when unknown nuisance models are estimated with flexible
machine learning methods, suggest model diagnostics, and demonstrate finite-sample performance of the methods through a simulation study.
The ideas and methods are illustrated through their application to the SUNFISH trial, where we find that external controls can increase the

efficiency of treatment effect estimation.
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1 INTRODUCTION

Establishing the causal effect of a novel intervention is imper-
ative for making informed decisions about its adoption or ap-
proval. Randomized clinical trials (RCTs) generate robust causal
evidence by ensuring the independence of treatment assignment
and baseline factors. However, accessible additional data about
the control treatment motivates alternative study designs that
can benefit from this additional information and/or address eth-
ical or feasibility concerns facing standard RCT enrollment, such
as in rare-disease settings (Massicotte et al., 2003; Jansen-Van
Der Weide et al., 2018). We consider hybrid trials where study
participants are randomized to treatment via a known mecha-
nism and externally collected control patient records (external
controls) are available at analysis (Zhu et al., 2020).

As a motivating example, we consider the analysis of SUN-
FISH (NCT02908685) (Mercuri et al., 2022), a two-part multi-
site randomized placebo-controlled trial designed to investigate
the efficacy of risdiplam on motor functioning for patients with
spinal muscular atrophy (SMA), a rare disease. While the analy-
sis was conducted using only data generated by the trial, we pro-
pose an alternative analysis incorporating external controls from
the placebo arm of a Phase 2 trial of olesoxime (NCT01302600)
to increase power. In Part 2 of SUNFISH, 180 patients with Type

2 and non-ambulant Type 3 SMA were randomized 2:1 to re-
ceive risdiplam or control; the primary endpoint of interest was
the change in Motor Function Measure (MFM) at 12 months
(Aprar). While the external controls exhibit promise as an ad-
ditional source of information due to temporal and geographic
similarities to the SUNFISH trial, differing distributions of im-
portant characteristics known to affect motor functioning, such
as the patient’s age (Figure 1, noise added), could induce con-
founding. We aim to develop an analysis framework for deciding
how (and if) to leverage this external control data to more pre-
cisely estimate causal effects in similar settings.

The challenges associated with using external controls in fa-
vor of a traditional RCT have been studied for at least half of a
century, with Pocock’s 1976 criteria (Pocock, 1976) becoming
a frequently referenced standard for evaluating the suitability of
external controls. More recently, others have outlined practical
considerations and potential sources of bias in hybrid trials with
external controls (Zhu et al., 2020; Hall et al., 2021).

The first account of the setting through the lens of causal in-
ference was provided by Li et al. (2023), whose foundational
work outlined causal assumptions (the same as in this work)
to identify the treatment effect and proposed a doubly robust
estimator based on the efficient influence curve. Our work is
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FIGURE 1 A summary of baseline characteristics believed to have an effect on a patient’s (change in) motor functioning measurement (MFM).
While Scoliosis and SMA Type are similarly distributed in both samples, enrollment age and baseline MFM levels have somewhat greater
degrees of discrepancy. Note: noise was added to all data points in this figure (but not in the remainder of the manuscript) to maintain first
release rights for cohort-level summary in a future clinical paper; therefore, these measures should not be interpreted as the exact findings of the

study and are purely for motivational purposes.

complementary: under the same setting, we develop alternative
estimators and establish theory that allows for machine learning-
based estimation of the nuisance functions. Furthermore, our
focus is comparatively on developing a comprehensive causal
framework to guide practitioners and regulators.

Propensity score methods have been proposed to estimate
the conditional probability of an individual receiving the treat-
ment to either match external controls to study participants (Lin
etal, 2018) or inversely weight external controls (Magaret et al.,
2022). Others have focused on estimating the conditional aver-
age treatment effect (CATE) (Zhou and Ji, 2021). An alterna-
tive approach to incorporating external controls forgoes an ex-
plicit causal model, borrowing information from external con-
trols through an adaptive Bayesian prior. The amount of borrow-
ing adapts to heterogeneity between the internal and external
controls, with external controls whose outcome conflicts with
internal controls contributing less to the prior (Schmidli et al,,
2014; Ibrahim et al,, 2015; Liu et al., 2021).

Causal inference challenges in this setting are closely related
to those of generalizability/transportability (Cole and Stuart,
2010; Degtiar and Rose, 2023; Shi et al., 2023). Because both
settings generally necessitate and leverage some degree of com-
parability between multiple populations, they adopt similar as-
sumptions and proposed estimators (Dahabreh et al., 2019a; Shi
et al,, 2023). However, the analysis goals typically differ (effi-
ciency versus target population coverage), and differing target
parameters and data produce distinct estimators.

In this work, we develop a causal framework intended to as-
sist practitioners in conducting the analysis of a randomized

trial incorporating external controls, drawing focus to two pri-
mary themes. (1) Randomization to treatment is no longer
(fully) under investigator control. (2) Adjustment for imbal-
ances due to a lack of randomization can increase dependence
on statistical models. To address (1), we present a causal in-
ference framework for rigorously defining the target parameter,
assessing assumptions via graphical criteria, choosing between
classes of estimators, and checking model assumptions. Leverag-
ing advances in statistical causal inference theory (Hines et al,,
2022), we alleviate (2) by building upon the previously pro-
posed doubly robust estimator (Li et al., 2023) and proving
conditions under which the estimator is efficient and asymp-
totically normal even when machine learning methods are used
for the nuisance functions, an important advance that allows
for valid inference under broader data-generating mechanisms.
The variance reduction and double-robustness are explored
through a simulation study, and the entire causal framework is
demonstrated through a study of patients with spinal muscular
atrophy.

2 SETTING

In a hybrid trial design with external controls, data from two
sources are used to estimate a treatment effect. Precisely defin-
ing this objective requires carefully answering two questions.
(1) What two populations generated the data? Differences be-
tween these populations govern both the capacity to combine
the two data sources and the methods to do so accurately and ef-
ficiently. (2) What definition of treatment effect? Heterogeneity of
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individual treatment effects causes average treatment effects to
vary depending on the population composition.

Denote the outcome of interest by Y, baseline covariates col-
lected both in the trial and for external controls by Z, and a bi-
nary treatment by A (a = 1 is the experimental treatment and
a = 0 is the control treatment, possibly a placebo, active con-
trol, or other intervention). For ease of exposition, we will re-
fer to the dichotomous treatments as treatment and control, re-
spectively. We use D to indicate the source of the data (d = 1
for RCT and d = 0 for external control). Definitions of popula-
tions relevant to inference vary across contexts and disciplines;
we adopt definitions commonly used within the causal inference
literature (Degtiar and Rose, 2023). The study sample consists
of 1,4 iid copies of the random vector (Y, Z, A, D = 1) sam-
pled from the (possibly hypothetical) population from which
the study sample is a simple random sample. Investigators also
have access n,, iid copies of the random vector (Y,Z,A,D =
0) from a second sample of individuals, the external controls.
These external controls might have come from one of several
sources, including previous clinical trials (Darras et al., 2021)
and electronic health record (EHR) systems (Carrigan et al,,
2020), and it is implicitly understood that they have been se-
lected to satisfy the inclusion/exclusion criteria of the trial and
were administered the same control treatment as the internal
controls. These individuals are viewed as a simple random sam-
ple from another population, titled the external control popu-
lation. Presently, no assumptions are made about the relation-
ship between the external control and study populations. For
a € {0, 1}, we posit the existence of potential outcomes Y*
that represent the outcome that would have been observed un-
der the intervention to receive treatment A = a (Rubin, 2005).
We make three assumptions expected to hold in an RCT (Al-
A3) and a fourth (A4) motivated by the discussion in Sec-
tion 3.

(A1) Consistency: Y* = Y if A = afora € {0, 1}.

(A2) Exchangeability: Y* L A|D = 1fora € {0, 1}.

(A3) Positivity of treatment assignment: 0 < Pr(A = 1|D =
1) < 1

(A4) Mean-exchangeability across populations: there ex-
ists X C Z such that E[Y°|D =1,X =x] = E[Y°|D =
0, X = «] for all x with p(x|D = 1) > 0.

2.1 Target parameter
While a number of different parameters might be of scien-
tific interest, in this paper we focus on the ATE in the study
population, a natural choice because it is typical parameter
that would have been estimated in an RCT without external
controls. This treatment effect is defined as the expected dif-
ference between outcomes if the study population were as-
signed the treatment versus if the study population were as-
signed the control: T = E[Y! — Y°|D = 1]. When treatment
effects are heterogeneous and the external control population
differs from the study population, T may differ from E[Y' —
Y°|D = 0] or E[Y! — Y°]. Identification of these two param-
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eters also requires assumptions beyond those for t. Because
D = 0 implies A = 0 and study participants are randomized
to treatment, we can equivalently define 7 as E[Y' — Y°|A =
1], which is the average treatment effect among the treated
(ATT).

3 CAUSAL IDENTIFICATION

Under A1-A3, T =E[Y|[A=1,D=1] —E[Y|[A=0,D =
1] so that the difference of mean outcomes between the treat-
ment and internal control arms is a consistent estimator. Such
identification is possible because, within the RCT (D = 1),
patients are randomized to treatment. However, this iden-
tification (linking of counterfactual parameter with the ob-
servable data distribution) does not incorporate external con-
trols, and thus no efficiency has been gained. Incorporat-
ing of external controls comes at the expense of randomiza-
tion: while Pr(A = 1|D = 1) is under investigator control,
Pr(A=1) =Pr(A=1|D = 1)Pr(D = 1), and D is not ran-
domly assigned. Consequently, there is no justification, with-
out further assumptions, for Y°|D = 1 and Y°|D = 0 being
equal in distribution (or even moments), implying that in-
ternal and external control outcomes may differ systemati-
cally.

To address this, we show how knowledge of the underlying
causal structure generating the data, as formalized through a
causal graph, can identify a sufficient set of variables X C Z
that, when conditioned on, recover exchangeability of Y across
the study and external control populations. As a simple exam-
ple, consider a case where an outcome Y is a causal descen-
dent of a covariate X plus an independent noise term so that
Y = f(X, €). If, across populations, f and the distribution of
€ were fixed but the distribution of X shifted, then the distribu-
tion and expectation of Y (generally) differ across the popula-
tions. Relating this to hybrid trials, discrepancies in the distri-
bution of causes of the outcome between the study and external
control populations are responsible for differing distributions of
YD =1andY°|D = 0.

Graphical conditions for identifying average treatment effects
in the cases of generalizability (Dahabreh et al., 2019b) and
transportability (Bareinboim and Pearl, 2013) have been devel-
oped. However, causal graphs for this external control setting
pose unique challenges. First, whereas a causal graph is typi-
cally defined with respect to a specific population, in the ex-
ternal control setting data is sampled from two, possibly dis-
tinct, populations. Furthermore, while the typical goal of causal
graphs is to verify if {Y°,Y'} 1L A|X, in the external control
setting the objective is instead to verify if Y* Il D|X for some
XCZ

Motivated by these unique characteristics, we propose a vari-
ant of SWIGs (Richardson and Robins, 2013) inspired by selec-
tion diagrams (Bareinboim and Pearl, 2013), which are modi-
fied causal graphs that determine the transportability of causal
relations. Let G denote a causal graph (SWIG), which encodes
the investigator’s knowledge of the causal process and contains
all variables Z (possibly unmeasured) that are direct causes of Y
(i.e. have arrows pointing from Z to Y). A selection SWIG D is
created as follows:
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* Every edge in G is also an edge in D;

* D contains an extra edge, Sz —> Z; whenever
p(zilv,d = 1) # p(zilv, D =0) for some collection
of variables V' C Z\Z;; and

* D containsan extra edge, Sy —> Y, whenever p(y|z, d =

1) # p(ylz,d = 0).

Intuitively, this process adds S variables to pinpoint discrepan-
cies in the study and external control distributions, which are in-
formative for understanding if Y°|D = 1 # Y°|D = 0. The fol-
lowing result, where conditional independence statements are
evaluated on G using the rules of d-separation, formalizes this
by demonstrating how this process identifies which variables are
sufficient so that, after their adjustment, the distribution of Y° is
balanced.

Theorem 1 Let the selection SWIG D be constructed as above and
let X C Z. Then:

(i) IfY° L S|X, then p(Y°|X,D =1) = p(Y°|X,D = 1).

(i) If YO L S|X, then there exists some two distributions
compatible with G such that p(Y°|X,D=1) #
p(Y°|X,D = 1),evenif p(°|z,D = 1) = p(3°|z, D =
0).

To identify E[Y (0)|D = 1] using both internal and external
controls, we leverage the preceding discussion to make an as-
sumption about the comparability of internal and external con-
trols (A4). Assumption 4 states that while Y might systemati-
cally differ between the study and external control population,
once differences in the distribution of X are accounted for, the
expectation of Y? is the same across populations. While inves-
tigators do not randomize individuals to D (and thus treatment
A), once X is conditioned upon, the mean of Y? is independent
of D, mimicking randomization. By Theorem 1, A4 is satisfied if
there exists some set of variables X C Zsuch thatY? 1L §|X on
the selection SWIG D.

Equipped with these causal assumptions, the target parameter
7 canbe identified with the observed data distribution. By condi-
tioning, T can be written as E[Y'|D = 1] — Exp—; [E[Y°|D =
1, X]]. The first term, as noted earlier, is equivalent to E[Y |[A =
1] under A1-A3. The second term can be shown, using A1-A4,
to be equal to Exjp—; [E[Y|A = 0, X]].

Therefore, we have that

T =E[Y|A = 1] — Exjp=1[E(Y|A = 0, X)]. (1)

4 ESTIMATION

In what follows, define m, (x) as E[Y|A = a, X = x], w,(x) as
Pr(A = 11X = x, D = 1) (the treatment propensity score), and
74(x) as Pr(D = 1|X = x) (the study propensity score). Corre-
sponding estimators are denoted as m,(x), 77,(x), and 77,(x),
respectively. From Equation 1, T isidentified as the difference be-
tween U := E[Y|A = l] and,u,o = Ex‘Dzl[E[Y|A = O, X]]
When X is high dimensional or contains continuous covariates,
simple nonparametric estimators of (1 are no longer feasible,
and thus models are needed for the “nuisance” functions g (x)
and 74 (x). Thus, distributional differences between internal and

external controls, from a statistical perspective, heighten model
dependency. In this section, we outline three primary classes of
estimators that will be applied to the SMA example.

4.1 Outcome based models

The quantity (o averages the expected outcome of controls
given baseline covariates X over the distribution of X in the
study. Because it depends on the data only through m(x) and
the marginal distribution of X in the study population, we can
consider a simple plug-in estimator, where a regression model
o («x) is fit on the internal and external control data and its pre-
dictions are averaged over the empirical distribution of X from
the study sample:

n
ﬁO,am = ”;tl ZD,;ﬁo(X,)

i=1

In the causal inference literature, this estimator is frequently
referred to as standardization or g-computation (Hernan and
Robins, 2020). For this estimator, the benefit of incorporating
external controls comes from a more refined estimate of 1 (x).

4.2 Study propensity score-based models (IPDW)

As an alternative to modeling the outcome, 774 (x) can be used to
re-weight the outcomes of the controls so that their distribution
of X in this re-weighted population is the same as the treated.
This idea is analogous to inverse propensity score weighting in
causal inference. The usual propensity score, 77 (x) := Pr(A =
1|x) is equal to 7, (x)ms(x). While 77,(x) is known by trial-
design, 74(x) is unknown, and so the treatment assignment
mechanism across the entire sample is unknown. After esti-
mating 774 (x) and 7, (x), we consider the estimator Lo, ipd, =

1 no oipdw
M D W' Y; where

i _ (1 — A)ma(X:)
’ (1 — 7 (X)]7a(X) + [1 — (X))

Methods that handle extreme weights in ﬁo,ipdw or leverage 7,
for matching instead of weighting are discussed in Section 8 of
the Supporting Information.

4.3 Efhicient estimators

The proposed estimators in the previous sections, which are
plug-in estimators for o based on Equation 1 and its in-
verse propensity weighted analog, incorporate a model for ei-
ther mq(x) or 774 («x). Heuristically, more precise estimators for
mo(x) or 774 (x) can produce a less variable estimator of 7. Since
the goal of incorporating external controls is to increase effi-
ciency in estimating 7, a relevant aim is to construct estimators
that achieve the greatest reduction in variance, for which we turn
to semiparametric efficiency theory.

Any regular and asymptotically linear (RAL) estimator for
7 has an asymptotic variance of at least B, = E[¢(0O; P)?*],
where O = (Y, X, A, D) and ¢(O; P) is the efficient influence
curve (EIC) for t (Kosorok, 2008). The EIC in this setting is
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(Lietal,2023)

$(0: P) = ;{Dm(x) — mo(X) = 7]

DA )
ﬁmmW—MMHJWW—m@w,
(2)
where q= [ 74(x)dP, r(X)=Vvar(Y°|X,D =

1)/Var(Y°|X, D = 1) and where

o _ DA —A)ma(X) + (1 — D)my(X)r(X)
T X[ — (X)) + [1— 7 (0)]r(X)

We consider two types of estimators based upon the form of
¢(0; P), where we write ¢ as a function of a distribution P
to highlight that it depends on the nuisance functions m; (x),
mo(x), w4(x),and r(x) as well as the target parameter 7. If these
functions were known, then (after uncentering) the estimator
n~' 3" ¢(O;, P) would achieve the efficiency bound. There-
fore, the first influence-curve-based estimator, as proposed by Li
etal. (2023) and based upon an estimating equation, plugs in fit-
ted models for the nuisance functions:

n

fape = Y %{Dmxx) — (0] +

i=1

DA
7a(X)

[Y — i (X)]

—W(A, D, X)[Y — mo(x)]},

where g = "7“ and

4 D(1—A)7(X) + (1 — D)7y(X)r(X)
- O =T+ [1 = 7 (X) X))

An alternative strategy is through targeted maximum like-

lihood estimation (TMLE) (Van der Laan and Rose, 2011).
While the two approaches here produce asymptotically equiv-
alent estimators, TMLE is a plug-in estimator and thus respects
the boundaries of the parameter space for all sample sizes, po-
tentially leading to improved performance in small sample sizes.

Instead of using fitted models m; (x) and g (x) to form a sim-
ple plug-in estimator of 7 (as with [Lo ,,), the models are fluctu-
atedsothatn™' Y " ¢(O;, P ) = 0,implying that it, like Ty,
solves the efficient influence curve estimating equation. This is
accomplished through fitting a logistic regression model of the
outcome (scaled to [0,1]) on h(D, A, X) with an offset given
by the logit of m4 (X ), where

h(D,A,X) = 1{
q

D1 -A)7(X)+ (1 -D)(1 —A)ﬁd(X)?(X)}

TN -]+ 1 -mX)FX) )

DA
7a(X)

For each observation, this model produces predictions under
the settings A = 1 and A = 0, which defines our updated mod-
elsm} (x) and mj (x). Because convergence occurs after only one
update iteration, the TMLE estimator, Ty, is just a plug-in es-
timator using the updated models m7} (x) and mj(x): Ty =
nty " D [r’r?f (X)) — my (Xt)] Further details are presented
in Section 9 of the Supporting Information.
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4.4 Inference

For the wide adoption of a method and its regulatory approval,
inferential properties should be established, including condi-
tions under which the estimator is consistent and how measures
of uncertainty can be constructed. The consistency of the first
two approaches is contingent upon their nuisance functions es-
timates: when 1, is consistent for my, [Lo oy is consistent for j4g,
and when 7, (x) is consistent for 7 (x), ﬁo,ipdw is consistent
for f1o. While this seemingly favors flexible, data-adaptive meth-
ods to avoid misspecifying mo (x) and 74 (x ), doing so generally
leads to slow rates of convergence and a poorly understood lim-
iting distribution for T. Therefore, parametric models and confi-
dence intervals constructed via the nonparametric bootstrap are
recommended.

The trade-off between reducing bias through using flexible
models and maintaining valid \/# inference motivates the us-
age of ’ﬁl,-l,w and T, which possess several desirable statisti-
cal properties. First, the models are doubly robust in the sense
that T converges in probability to 7 if either m,(x) converges
in probability to mq(x) and m; (x) converges in probability to
my (x) or if T;(x) converges in probability to 77, (x) (Li et al,,
2023). Furthermore, when cross-fitting is used, fc\m-pw and T,
are both efficient and asymptotically normally distributed, even
when the nuisance functions are estimated at slower rates, allow-
ing for more flexible estimation of these functions using popular
machine learning methods.

Theorem 2 Under certain regularity conditions (Supporting In
formation, Section 10), Ty, meaning either fr\mva OF Tymley Sat-
isfies A/n(Tgyy — 1) —> N(0, E[¢(O, P)]). Therefore, Ty, is
root-n consistent, semiparametric efficient, and asymptotically nor-
mal with asymptotically valid confidence intervals given by Ty,

1.96y/var(¢(0, P))/n.

S MODEL AND ASSUMPTION ASSESSMENTS

The analysis of causal effects in hybrid trials with external con-
trols substantively differs from that of an RCT because addi-
tional assumptions and techniques are needed to identify and es-
timate the average treatment effect. Consequently, as we discuss
now and demonstrate in our SMA example in Section 7, model
and assumption assessments can play a critical role in validating
the trustworthiness of results.

5.1 Covariate imbalance
Covariate imbalance, here the dissimilarity in covariate distribu-
tions of the control arms, plays a critical role in the identification
and estimation of 7. As shown in Section 3, covariate imbalances
in the causes of the outcome are responsible for Y (0) differ-
ing in distribution across control arms. This in turn necessitates
covariate adjustment to identify T as a function of the external
control distribution. Covariate imbalance also has important im-
plications in variance reduction: the efficiency gain attributable
to external controls is proportional to E[ (1 — 774(X))|D = 1],
so that variance gains are largest when there is complete covari-
ance balance. Furthermore, covariate imbalance increases model
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dependency because inferences are extrapolated to regions with
limited common support. Conversely, under complete covariate
balance, the methods discussed in Section 4 are typically still
consistent for T even when the functional form of my is incor-
rectly specified, permitting a degree of model insensitivity.

Due to these factors, numerical assessment is recom-
mended to explicate the degree of covariate balance.
One measure of covariate balance is the normalized dif-
ference, A = y/2(X; — Xo)T(51 + 50) 1 (K — Ko),
where X; and /X\Id are the sample mean and covariance
matrix of X in control arm d. Alternatively, imbalance
can be ]udged using the propenSIty score by calculating

7Td _nrct Zl and(X) Mec 1:1(1 D)ﬂd(X)
When the distribution of X is the same in the study and ex-
ternal control populations, we expect both A, and A, to be
0. Larger values are consistent with less covariate balance, and

Az, > 0.25 has previously been suggested as a threshold in
the context of generalizability (Stuart et al,, 2011). Hypothesis
tests of these statistics are not recommended as departures
from 0 do not invalidate the methods of Section 4. However,
reporting these (or related) summaries is useful because it
provides a difficulty measure for the statistical task of adjusting
for imbalance.

5.2 Assumption 4

The Selection SWIG of Section 3 provides a theoretical jus-
tification for A4 based upon background knowledge of the
causal process. While assumptions within causal inference are
often untestable, A4, when combined with the consistency
assumption, implies that u(X):=E[Y|[A=0,D=1,X] —
E[Y|A=0,D=0,X] =0, a so-called “testable implication”
that can also appear in transportability settings (Degtiar and
Rose, 2023). This is an assumption that two (nonparamet-
ric) regression functions are equal. While some statistical tests
are applicable (Racine et al, 2006; Luedtke et al., 2019),
decisions about whether to incorporate external controls on
the basis of such tests are inadvisable due to their limited
power in sample sizes common to these trials and chal-
lenges posed by post-selection inference. Importantly, a fail-
ure to reject A4 through these tests should not be taken
as proof in its favor. Alternatively, we recommend visual di-
agnostics as supporting information following the incorpora-
tion of external controls. Because E[Y|A =0, D, m4(X)] =
E[Y]|A = 0, m4(X)] under A4, one useful one-dimensional di-
agnostic is plotting the mean outcomes of internal controls
against external controls with similar estimated study propensity
scores.

Instead of scrutinizing A4 in isolation, sensitivity analyses
can directly examine how its violation incurs bias in esti-
mating 7. When the nuisance functions are estimated con-
sistently, the asymptotic bias of the estimators is E[Pr(D =
0|A = 0, X)u(X)|D = 1]. The first term highlights a funda-
mental trade-off: covariate balance and more external con-
trols improve efficiency but heighten sensitivity to bias. When
the terms are independent [non-adversarial u(X )], the bias is
upper-bounded by Pr(D = 0|A = 0)E[u(X)|D = 1], which

can be estimated using either a pre-determined model (possi-
bly a constant B) or an estimator (fitting models for E[Y|A =
0,D =d, X]) for u(x). One criteria for evaluating robust-
ness is to determine the minimum magnitude B required to
shift the confidence interval for T so that the treatment ef-
fect is no longer deemed significant. In Section 11 of the Su
pporting Information, we also provide an upper bound on
E[u(X)|D = 1] that can be useful in settings where the resid-
ual variation in the outcome is small relative to the treatment ef-
fect.

6 SIMULATION STUDY

We perform a simulation study to evaluate the properties of the
proposed estimators, focusing on when the distribution of X dif-
fers between internal and external controls. We evaluate the es-
timators in terms of their bias and variance, whether their confi-
dence intervals achieve their stated coverage (Supporting Info
rmation, Section 13), and whether they achieve higher power
while controlling Type-1 error.

In concordance with our SMA application, we simulate a
trial investigating a continuous endpoint with 150 RCT pa-
tients randomized 2:1 to treatment and 50 external controls. All
simulations are run for 1000 replicates. Full details of the data-
generating mechanism and nuisance function models are avail-
able in the Supporting Information (Section 12); importantly,
74(x) is non-constant so that A £ D. To highlight how cer-
tain settings benefit from the usage of flexible estimators for the
nuisance functions, we evaluate the aforementioned properties
when the nuisance functions have a known functional form, are
incorrectly specified, or are adaptively estimated using machine
learning methods. In Setting 1, all nuisance functions are esti-
mated with correctly specified linear models. In Setting 2, an in-
correctly specified linear model is used for 77 (x) while Random
Forests are used for m, (x). In Setting 3, incorrectly specified lin-
ear models are used for m, (x) while a Random Forest is used for
74(x). In Setting 4, incorrectly specified linear models are used
for both m, (x) and 7 («x). Both m,(x) and 774(x) are modeled
with Random Forests in Setting S.

To estimate T, we compare an RCT-only covariate-adjusted
AIPW estimator (r,ct) with the four proposed estimators (T,, =
/’Ll - /’LO omy Ttpdw = /’Ll - /’LO ipdw) Tatpw; and 7, Ttml e) Both dou-
bly robust approaches correspond to their cross-fit (10-fold)
variants. For T, and %\,-pdw, 95% confidence intervals were con-
structed via the non-parametric bootstrap. Confidence intervals
were generated for ’fa,-pw and T, using the closed-form formula
from Theorem 1.

Bias and variance: With correctly specified parametric mod-
els (Setting 1), all external control approaches are unbiased and
exhibit less variability (Table 1). However, performance gains
are not guaranteed under departures from correctly specified
parametric models. In Settings 2 and 3, where one nuisance func-
tion is incorrectly specified, the singly robust approaches (7,
and T;4,,) are biased. Conversely, the doubly robust approaches
(with one nuisance function estimated flexibly and the other
missecified) have minimal bias but lower MSEs than 7,.. Fur-
thermore, while double robustness offers no protection against
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TABLE 1 Results (bias, mean-squared error, and 95% confidence interval coverage) of the simulation.

fEn‘t am %\ipdw ?ai pw %\tmle
Bias MSE Cov. Bias MSE Cow. Bias MSE Cow. Bias MSE Cow. Bias MSE Cov.
Setting 1 —1.8¢-03 031 096 2.5e-04 022 093 —29e-03 024 093 —42e-04 023 095 6.6e-06 0.22 0.96
Setting 2 3.4e-02 0.31 095 - - — 4.0e-01 038 0.86 2.0e-01 0.25 094 22e-01 0.25 094
Setting 3 3.6e-02 0.34 095 4.1e-01 0.38 0.85 - - - 1.1e-01 0.24 096 6.8e-02 0.24 0.96
Setting 4 2.5e-02 034 096 4.0e-01 0.39 0.85 4.0e-01 039 086 4.2e-01 042 086 4.1e-01 040 0.88
Setting S —4.7e-03 032 095 2.2e-01 024 093 4.8e-02 022 094 5.8e-02 021 096 6.3e-02 021 096

In Setting 1, all nuisance functions are estimated with correctly specified linear models. In Setting 2, an incorrectly specified linear model is used for m, (x). In Setting 3, incorrectly

specified linear models are used for 77,4 (x) while Random Forests are used for m, (x). In Setting 3, incorrectly specified linear models are used for m, (x) while a Random Forest is used
for 774 (x). In Setting 4, incorrectly specified linear models are used for both m, (x) and 774 (x). Both m, (x) and 77 (x) are modeled with Random Forests in Setting .
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FIGURE 2 (A) Power across different treatment effect sizes (points for ’t;ipw and Ty, are jittered due to overlapping values). The dashed line
corresponds to the significance level of 0.05 to demonstrate Type-1 error control under the null hypothesis. (B) Power across different external
control sample sizes (with RCT sample sizes and treatment effect size held fixed). While the SMA application has an external control sample
size ~50, other studies might have access to larger external control groups.

bias when both nuisance functions are incorrectly specified
(Setting 4), the data-adaptive estimation of both functions (Set-
ting 5) leads to estimates with minimal bias and variability, high-
lighting the inferential gains that are possible through flexibly
modeling the nuisance functions.

Power and Type-1 error: To highlight applicability to clin-
ical trials, we simulate power under varying degrees of treat-
ment effect sizes and external control sample sizes (Figure 2).
We replicate Setting S, modeling the (unknown) nuisance func-

tions with Random Forests. Results are only depicted for %\uipw
and T, since constructing theoretically valid confidence in-
tervals in this setting is unclear for T,m and ﬁpdw. When 7 =
0, both external control methods achieve satisfactory Type-
1 error control (< a = 5%). Across treatment effect sizes,
power gains over T,; ranged from 13 to 65%. Furthermore,
while our SMA application only has a pool of S0 external
controls, more power gains are possible with larger sample
sizes.
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FIGURE 3 (A) Selection Diagram for the SMA hybrid trial. MFM, and MFM), correspond to the MFM scores at baseline and 12 months,
respectively. Type refers to the SMA Type and A is the treatment (risdiplam). (B) Diagnostic of Assumption 4. Buckets were created based on
74(«x) in increments of 0.0S. Error bars correspond to 95% confidence intervals.

7 SMA EXAMPLE

We demonstrate an implementation of the outlined causal in-
ference framework using the SUNFISH (NCT02908685) trial.
Further details of the trial are provided in the Supporting Info
rmation (Section 14). After restricting to complete cases with
Type 2 or non-ambulant Type 3 SMA between the ages of 2-
25, the RCT and external control samples contain 159 and 48
observations, respectively. The target parameter of interest is
defined as T = E[A}z,|D = 1] — E[A};,|D = 1]. We are
interested in testing Hy : T = 0 versus H; : T 7 0. Based on
discussions with the study team, we hypothesize the causal
model depicted in Figure 3. The model is conservative in the
sense that no assumptions are made about differences in dis-
tribution of the covariates between the RCT and the exter-
nal control populations. Based upon this selection diagram,
E[AYz0ID, X] = E[AS54,1X], where X = (Age, SMA Type,
Scoliosis, and MFMj). To assess covariate imbalance, we esti-
mate Ay, = 0.02. This result, consistent with minimal covari-
ate imbalance, increases confidence the historical placebo arm is
sufficiently (pre-outcome) comparable to the internal controls.

We estimate 7 with just the RCT data (7, ) using AIPW and
compare results to the four proposed estimators: T,y,, ?ipdw , ?a,-pw .
and T;,,1,. For the doubly robust methods, the nuisance functions
are fit using Random Forests (with cross-fitting using 10 folds)
while linear models are used for 7, and ’fipdw. Confidence in-
tervals are based upon the nonparametric bootstrap for 7, and
ﬁpdw and from the closed-form formula forfr:,,»pw and ;.. All five
methods provide similar estimates for T and reject Hy (Table 2).
Overall, the confidence intervals for the four methods incorpo-
rating external controls have widths between 80% and 93% the
width of the confidence interval using just the RCT data.

To assess A4, we plot (Figure 3) the means of Ay for
controls grouped by D and binning by 77;(x). Under A4, we
expect that E[Aypy|D = 1, A = 0, m4(x)] = E[Appm|D =
0, A =0, y(x)]. We also estimated the asymptotic bias (via a

TABLE 2 Estimates of the causal effect for the SMA application.

Method T 95% CI P-value
Trt 2.33 (0.82,3.85) 0.002
Tom 1.93 (0.71,3.13) <0.001
Tipdw 1.79 (0.54,3.00) 0.002
Taipw 1.92 (0.66,3.18) 0.003
Tomle 1.80 (0.54,3.06) 0.005

plug-in estimate, Section 5.2) to be —0.19, which is small rela-
tive to the treatment effect and has a sign in the conservative di-
rection. Altogether, the empirical evidence provides support that
violations of A4 for this external control arm are not responsible
for the estimated benefit of risdiplman.

8§ DISCUSSION

While it is well understood that deviations in characteristics and
protocols between the RCT and external controls pose signifi-
cant challenges to synthesizing information to estimate causal ef-
fects, the absence of a causal inference framework has hindered
the clear communication of relevant concepts. The (causal) tar-
get parameter is rarely defined (Zhou and Ji, 2021 and Li et al,,
2023 are notable exceptions) and discussions of bias center on
practical heuristics (Pocock, 1976; Viele et al., 2014). Our pro-
posed causal framework gives rise to an easy-to-interpret target
parameter, encourages the embedding of assumptions and inves-
tigator knowledge into a causal graph, and allows bias to be ex-
plicitly defined as a property of the causal model or violation of
the assumptions.

A limitation is the dependency upon A4 to identify the causal
effect, which can only be assessed after data collection and for
which there might be little power to test empirically due to the
small sample sizes commonplace in this setting. Furthermore, a
null hypothesis of no difference might be of less interest than
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developing bounds based on the severity of the violations. While
the methods discussed are applicable to continuous and binary
outcomes, the extension to survival data would be an important
contribution.
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