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s u m m a r y   

Objectives: Human parainfluenza viruses (hPIV) are a common cause of acute respiratory infections, 
especially in children under five years and the elderly. hPIV can be subclassified as types 1–4: these showed 
various seasonality patterns worldwide, and it is unclear how climatic factors might consistently explain 
their global epidemiology. 
Methods: This study collected time-series incidence data from the literature and hPIV surveillance pro
grams worldwide (47 locations). Wavelet analysis and circular statistics were used to detect the seasonality 
and the months of peak incidence for each hPIV type. Relationships between climatic drivers and incidence 
peaks were assessed using a generalized estimating equation. 
Results: The average positive rate of hPIV among patients with respiratory symptoms was 5.6% and ranged 
between 0.69–3.48% for different types. In the northern temperate region, the median peak incidence 
months for hPIV1, hPIV2, and hPIV4 were from September to October, while for hPIV3, it was in late May. 
Seasonal peaks of hPIV3 were associated with higher monthly temperatures and lower diurnal tempera
tures range throughout the year; hPIV4 peaks appeared to correlate with lower monthly temperatures and 
higher precipitation throughout the year. Different hPIV types exhibit different patterns of global epide
miology and transmission. 
Conclusions: Climate drivers may play a role in hPIV transmission. More comprehensive and coherent 
surveillance of hPIV types would enable more in-depth analyses and inform the timing of preventive 
measures. 
© 2025 Published by Elsevier Ltd on behalf of The British Infection Association. This is an open access article 

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).   

Introduction 

Human parainfluenza viruses (hPIV) are enveloped, single- 
stranded RNA viruses of four types (1−4) in the Paramyxoviridae fa
mily. hPIV1 and hPIV3 are from the genus Respirovirus, while hPIV2 
and hPIV4 are from the genus Rubulavirus.1 hPIV is a leading cause of 
respiratory infections, especially among children, the elderly, and 
immunocompromised patients,2–5 and is sometimes found as part of 
co-infections.6 hPIV1–4 account for 2% to 18% of acute respiratory 
infections, with hPIV3 the most often detected type.3,7–11 Clinical 
manifestations of hPIV are similar to other common respiratory 
viruses, and include croup, fever, bronchiolitis, pneumonia, and 
tracheobronchitis.2 It is possible to be reinfected with hPIV in dif
ferent epidemic seasons, as immunity after a previous infection is 
usually incomplete or short-lasting.1 No licensed vaccine to prevent 
hPIV disease is currently available, but several phase I and II trials are 
ongoing. A global systematic review assessed the burden of hPIV in 
children under five years as causing 13% of acute lower respiratory 
infection (ALRI) cases, 4–14% of infant ALRI hospitalizations, and 4% 
of ALRI mortality.12 

The World Health Organization (WHO) initiated the ‘Battle 
against Respiratory Viruses (BRaVe)’ in 2013 to promote further re
search and understanding of the environmental factors and trans
mission mechanisms of respiratory viruses.13 Global and local 
surveillance of influenza and other viruses has provided valuable 
information about the seasonality and circulating strains of influ
enza, RSV, and SARS-CoV-2 to guide vaccination strategies,14 but less 
is known about the seasonality of the different hPIV types. 

Previous work showed a longer duration of hPIV epidemics and 
diverse patterns of seasonality and periodicity,7,15 with the peak 
incidence of hPIV3 occurring in late spring to summer, and those for 
other types from autumn to winter in the United States of America 
(USA), China, the United Kingdom (UK), and Brazil.16–19 hPIV1 and 
hPIV2 can have biennial (24-month) and annual patterns,16,18–20 and 
hPIV3 has shown annual and semi-annual (6-month) cycles.15–19,21 

hPIV4 has circulated annually in the UK, but is less studied because 
of its low incidence rate and inadequate testing in diagnostic la
boratories.18 

Several single-center studies have examined the relationship 
between the seasonality of hPIV1–4 and climatic drivers. A study in 
Edinburgh found that hPIV3 incidence was negatively associated 
with humidity.22 hPIV peaks were associated with temperature, at
mospheric pressure, vapor pressure, precipitation, wind speed, and 

hours of sunlight in China.23 Local seasonal patterns of hPIV have 
usually been reported from sites located in the temperate region of 
the northern hemisphere, and in many places the diagnostics did not 
differentiate between the four hPIV types. The limited amount of 
epidemiological surveillance data has largely restricted our under
standing of the global seasonality and periodicity of the four dif
ferent hPIV types. 

This study aims to provide a global overview of the epidemiology 
of hPIV1–4 based on the incidence rates analyzed from worldwide 
laboratory surveillance data. We identified seasonal patterns of the 
four hPIV types from incidence time series across geographic regions 
in America, Europe, Asia, and Oceania, and investigated the re
lationships between climatic drivers and disease incidence. This 
work can lead to an improved understanding of the populations at 
risk, the temporal and geographical distribution of hPIV, and the 
climatic predictors of virus transmission, which will facilitate the 
prediction and, hopefully, prevention of future hPIV epidemics. 

Methods 

Data collection 

Case data from cross-sectional studies 
Papers published before December 2019 were searched via 

PubMed using the keywords ‘parainfluenza virus’ and ‘parainfluenza 
viruses’ in the title or abstract. Case data were collected from cross- 
sectional studies that reported hPIV test-positive rates from at least 
one hundred samples. Cross-sectional studies sampling from influ
enza-like illness (ILI), acute respiratory infections (ARI), severe acute 
respiratory infections (SARI), or pneumonia cases were included, 
while those from immunocompromised patients were excluded. If 
the study did not clearly report the symptom type (ILI, ARI, SARI, or 
pneumonia), then this was determined using the WHO definition.24 

Surveillance programs sampling from asymptomatic populations 
were also included. Studies were classified as from children if all 
participants were under 18 years of age, and as from adults if sam
ples were from all age groups or adults only. 

Case data from longitudinal studies 

Incidence rates were calculated from surveillance programs that 
reported weekly or monthly data for at least one hPIV type in the 
literature. When these studies reported weekly or monthly detection 
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rates or counts, the raw data, if provided, were recorded or extracted 
from the manuscript figures using the software WebPlotDigitizer- 
4.2.25 The location, time, and duration of sampling, the detection 
rate for hPIV1–4, sample size, sample population age, symptoms, 
sampling method, and detection method were recorded for each 
study, if available. Another data source was the INSPIRE (Interna
tional Network for the Sequencing of Respiratory Viruses) network, 
from which 15 study sites (Turku, Leicester, Cambridge, Rotterdam, 
Vancouver, Ulaanbaatar, Halifax, Sendai, Hong Kong, Singapore, 
Brisbane, Canterbury, Sydney, Kuala Lumpur, and Taipei) reported 
monthly incidence rates of at least one of the hPIV types from Jan
uary 2010 to December 2015.15 

Climatic data 

For sites with incidence rate time series, the monthly average 
temperature (°C), vapor pressure (hPa), precipitation (mm), and 
diurnal temperature range (°C) for each site during the study period 
were obtained from the Climatic Research Unit gridded Time Series 
(CRU TS) v4.03.26 Absolute humidity (AH) and relative humidity (RH) 
were calculated by average temperature and vapor pressure.27 

Data analysis 

Seasonality detection and weighted seasonal peaks 
The positivity of hPIV detection from infection cases showing 

different symptom types were summarized by patient age and virus 
type. Positive rates of subgroups were compared using Kruskal- 
Wallis tests, followed by Dunn’s post hoc test. For data collected 
from longitudinal studies, incidence rate time series were analyzed 
to discover the periodicity and peak months of each hPIV type. 
Morlet wavelet analysis,28 which has been extensively applied to 
modeling the seasonality of infectious diseases,29–32 is particularly 
suited for this purpose due to its ability to handle non-stationary 
time series data and capture both frequency and temporal in
formation simultaneously. This method was used to compute the 
wavelet power spectrum of incidence rates using the R package 
‘WaveletComp’.33 P-values were calculated by comparing the wa
velet power of the original time series, with mean power spectra 
randomly simulated from an autoregression process with the same 
auto-correlation as the original series. 

Incidence time series were standardized by log-transformed, 
subtracted means, and divided by the standard deviation. When a 
significant (p < 0.05) high-power signal was seen at 6, 12, or 24 
months in the power spectrum, seasonality was defined as semi- 
annual, annual, or biennial. A location would be considered seasonal 
for a type if at least one of its time series showed a high-power 
signal. If the hPIV types showed significant seasonality by wavelet 

analyses, the peak months of the cycles would be computed by the 
center of gravity, with months weighted by their average incidence 
rates.32 Circular statistics were calculated using the R package ‘cir
cular’.34 The circular mean month and its 95% confidence interval 
(CI) were estimated by 1000 bootstrap samples. 

Impact of climatic factors on the seasonal peaks 

A generalized estimating equation (GEE) was an extension of the 
generalized linear model to longitudinal data. GEE with a log link 
Poisson distribution family was used to estimate the impacts of 
climatic factors on monthly case numbers.35 For each type of hPIV, 
only the places where seasonality was detected were included in the 
analysis. Spearman’s correlation coefficients were calculated among 
the climatic variables. Coefficients between temperature, vapor 
pressure, and AH were > 0.9, indicating strong multi-collinearity, 
therefore, temperature (°C), precipitation (mm), diurnal temperature 
range (°C), and RH (%) were used as the independent variables in the 
model with autoregressive correlation structure of order 1. All pre
dictors were standardized by subtracting from the mean and di
viding by the standard deviation. Quasi-likelihood under 
Independence Model Criterion (QIC) was used to select the best set 
of variables for the best-fit regression model. The model was fitted 
using the ‘geepack’ package in R (version 4.0.4).36 

Role of the funding source 

The funding sources had no role in the study design, data col
lection, data analysis, data interpretation, or writing for this report, 
nor in the decision to submit it for publication. 

Results 

Positive rates of hPIV1-4 among different populations showing 
respiratory symptoms 

The geographic overview of all samples included in this study is 
shown in Fig. 1 (and detailed in Supplementary Table 1). Among 
these, hPIV detection rates from 421 cross-sectional studies from 77 
countries/regions are summarized in Table 1. The median positive 
hPIV detection rate among symptomatic patients was 5.46% (IQR: 
3.14–8.69%), and the positive rates for types 1–4 were 1.42%, 0.69%, 
3.48%, and 1.19%, respectively (Table 1). The overall positive rate of 
hPIV in children (under 18 years) was 6.45%, which was significantly 
higher than that in adults (4.34%, p < 0.001). No significant difference 
was found between the positive rates in the age groups 0–6 and 
7–18 years (Supplementary Figure 1). Differences in positive rates 
between children and adults were only significant with hPIV1 

Fig. 1. Map of study sites with incidence and sequence data of human parainfluenza viruses. Geographic regions with incidence data are filled in grey. Study sites with incidence 
and sequence sample sites are indicated by red and blue dots, respectively. 
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(p=0.0086) and hPIV3 (p < 0.001). The positive rates of hPIV3 and 
overall hPIV among ARI patients were significantly higher than those 
among ILI patients. Various detection methods did not significantly 
affect the positive rates of hPIV1–4 they reported. For all age sub
groups and severity of symptoms, hPIV3 was the most prevalent 
type, and hPIV2 was the least (p < 0.001) (Table 1). 

Seasonality and peak months of hPIV1-4 by site 

Incidence rate time series from 32 longitudinal studies and 15 
INSPIRE longitudinal surveillance sites were included in the tem
poral analyses. The mean peak months, weighted by incidence rates, 
revealed distinct seasonal patterns of hPIV types (Fig. 2). hPIV1 was 

Table 1 
Positive rates of hPIV1–4 in adults and children showing different symptom severities as extracted from the literature review.          

hPIV Median (IQR, %)a hPIV1 Median (IQR, %) hPIV2 Median (IQR, %) hPIV3 Median (IQR, %) hPIV4 Median (IQR, %) P-value  

All studies (n=421) 5.46 (3.14–8.69) 1.42 (0.67–2.66) 0.69 (0.28–1.66) 3.48 (1.82–5.67) 1.19 (0.63–2.48)  < 0.001b 

Age       
Child (n=247) 6.45 (3.82–9.90) 1.54 (0.76–3.05) 0.72 (0.27–1.95) 4.14 (2.49–6.65) 1.35 (0.88–2.43)  < 0.001c 

Adult (n=174) 4.34 (2.58–6.65) 1.14 (0.54–1.95) 0.63 (0.29–1.28) 2.44 (0.94–4.33) 0.88 (0.52–2.53)  < 0.001d 

P-value  < 0.001 0.0086 0.74  < 0.001 0.067  
Symptom type       

ILI (n=73) 5.14 (3.04–8.08) 1.28 (0.53–2.58) 0.84 (0.36–1.27) 2.92 (1.07–5.13) 1.40 (0.64–3.26)  < 0.001e 

ARI (n=274) 5.59 (3.49–9.31) 1.46 (0.75–2.90) 0.63 (0.29–2.00) 3.56 (2.16–6.07) 1.24 (0.63–2.48)  < 0.001c 

SARI (n=74) 5.00 (2.75–7.69) 1.00 (0.63–1.51) 0.60 (0.21–1.09) 3.52 (2.15–5.48) 1.20 (0.67–2.06)  < 0.001d 

P-value 0.029 0.074 0.32 0.0026 0.81  
Detection method       

Immunoassay (n=73) 4.80 (3.16–6.77) 1.01 (0.62–2.41) 0.50 (0.20–2.22) 3.20 (1.86–4.94) 0.37 (0.37–0.37)  < 0.001e 

PCR-based (n=324) 5.71 (3.27–9.28) 1.43 (0.73–2.70) 0.76 (0.30–1.44) 3.57 (1.82–5.99) 1.23 (0.66–2.64)  < 0.001b 

Culture (n=20) 4.37 (2.36–7.69) 1.85 (1.01–2.39) 0.55 (0.10–1.16) 2.73 (1.47–3.65) 0.54 (0.31–0.77) 0.09 
P-value 0.10 0.51 0.57 0.22 0.22  

Number of total sample size 9,793,630 814,933 784,473 821,971 150,755  

ILI: influenza-like illness, ARI: acute respiratory infections, SARI: severe acute respiratory infections (including pneumonia). 
Statistical significance (p < 0.05) is indicated in bold.  

a Including studies that did and did not distinguish hPIV types in their data.  
b Dunn test adjusted by Bonferroni method indicated a significant difference (p < 0.05) between hPIV1 and hPIV2, hPIV1 and hPIV3, hPIV2 and hPIV3, hPIV2 and hPIV4, hPIV3 

and hPIV4.  
c Dunn test adjusted by Bonferroni method indicated a significant difference (p < 0.05) between hPIV1 and hPIV2, hPIV1 and hPIV3, hPIV2 and hPIV3, hPIV3 and hPIV4.  
d Dunn test adjusted by Bonferroni method indicated a significant difference (p < 0.05) between hPIV1 and hPIV3, hPIV2 and hPIV3, hPIV3 and hPIV4.  
e Dunn test adjusted by Bonferroni method indicated a significant difference (p < 0.05) between hPIV1 and hPIV3, hPIV2 and hPIV3.  

Fig. 2. Weighted mean peak months of hPIV1–4 listed by latitudinal order. The left axis shows the locations and source references. The right axis shows the duration of collection 
years and months. The equator is marked by the red dashed line. Seasons in temperate regions are shaded. * These represent the peak months of biennial (24-month) cycles. # 

These are inferred from overall national data where certain cities/states/provinces of these countries are also available, and are displayed in separate rows. ILI: influenza-like 
illness, ARI: acute respiratory infections, SARI: severe acute respiratory infections. 
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mostly present in annual and biennial cycles, and a semi-annual 
cycle was only seen in Scotland. The median hPIV1 peak month was 
early September (IQR: 7.81–10.79) in the north temperate region, 
and early May (IQR: 4.33–7.04) in the south temperate region. hPIV1 
peaked in late May in Santa Rosa in the tropical region (Table 2). 
hPIV2 circulated semi-annually in Kolkata, biennially in Germany, 
Beijing, Taipei, and Canterbury, and annually in the other sites. The 
median hPIV2 peak month was October (IQR: 9.16–11.25) in the 
north temperate region, and late May (IQR: 5.29–8.29) in the tropical 
region. hPIV2 showed April and May peaks in the south temperate 
region. hPIV3 was presented semi-annually in Germany, Japan, Hong 
Kong, Kolkata, Bangkok, and Chon Buri, and annually in the other 
sites. The median peak month for hPIV3 was late May (IQR: 
4.89–6.35) in the north temperate region, May (IQR: 4.09–9.21) in 
the tropical region, and late September (IQR: 8.37–9.98) in the south 
temperate region. No hPIV4 data was reported from the south 
temperate region. hPIV4 circulated semi-annually in Kolkata, bien
nially in Beijing, and annually in other sites. The median hPIV4 peak 
month was late September (IQR: 9.41–10.64) in the north temperate 
region. The peak month in Kolkata in the tropical region was early 
April and October. 

Effects of climatic factors on the incidence of hPIV 

GEE-based Poisson regression (Table 3) showed that tempera
ture, diurnal temperature range, and RH were related to the in
cidence peaks of hPIV1–4. Increases in hPIV3 incidence were 
associated with higher temperature (OR: 1.234, 95% CI: 1.003–1.518), 
and lower diurnal temperature range (OR: 0.965, 95%CI: 
0.935–0.996), while incidences of hPIV1, hPIV2, and hPIV4 were 
negatively associated with temperature with OR of 0.838 (95%CI: 
0.688–1.020), 0.880 (95%CI: 0.736–1.050), and 0.665 (95%CI: 
0.584–0.759), respectively. The incidence of hPIV4 was also asso
ciated with higher precipitation (OR: 1.064, 95% CI: 1.009–1.121). 

Discussion 

We described the global epidemiology and seasonal patterns of 
the four hPIV types. They showed significant differences in incidence 
rates among age groups and by symptom severity, with hPIV3 being 
the most commonly detected. hPIV1, hPIV2, and hPIV4 showed an
nual or biennial cycles in their incidence peaks, while hPIV3 showed 
semi-annual or annual cycles, possibly supporting its higher overall 
incidence. The months of peak incidence for hPIV1, hPIV2, and hPIV4 
were during autumn in the north and south temperate regions, 
while for hPIV3 this was during late spring to summer in temperate 

regions. The hPIV3 peaks in tropical regions were in early May. The 
positive correlation between temperature and hPIV3, and the ne
gative correlation between temperature and hPIV1, hPIV2, and hPIV4 
supported the observed seasonality. These epidemiological char
acteristics of the hPIV types could be used to guide resource plan
ning for the times when hPIV-related pediatric healthcare burdens 
are likely to be higher. 

Recently reported studies of the circulation of hPIV1–4 in dif
ferent locations that were published after our search in this analysis 
are generally consistent with these results. In Germany from 2015 to 
2019,37 seasonal patterns of hPIV1–4 were similar to our results 
(which included data from a German study from 1996 to 2006).38 

Surveillance in the USA from 2011 to 2019 found hPIV1 and hPIV2 
circulated biennially, and hPIV3 and hPIV4 circulated annually.39 Our 
analyses detected annual and biennial cycles for hPIV1, and annual 
cycles for hPIV2 in different regions of the USA. hPIV1 and 2 com
peted at the peaks in alternative years in the USA. In the non-ad
vantage years, hPIV1 or 2 showed a lower peak in the populations. A 
cohort study in Western Australia found that hPIV1 peaked bien
nially in autumn, and hPIV3 peaked in spring.40 They also reported 
that the hPIV3 peak was slightly decreased in the year when hPIV1 
was in circulation. The alternative peaks by hPIV1 and hPIV2 and the 
weakening effect of hPIV1 circulation on hPIV3 peak were poten
tially attributable to cross-protective immunity and antigenic 
change.41 A systematic analysis of the overall hPIV seasonality at 83 
sites showed that hPIV epidemics occurred mostly in spring and 
early summer in the northern and southern hemispheres, and had a 
longer duration than other examined respiratory viruses.42 As this 
analysis did not consider the individual types, its result largely re
flected the most prevalent type, hPIV3, and is consistent with the 
findings here. 

Climatic factors affect the efficiency of transmission and en
vironmental survival of many respiratory viruses.43 Unlike most 
respiratory viruses, where incidence is increased in winter, the peak 
months of hPIV3 circulation are in spring and summer when tem
peratures are higher. A ten-year surveillance in Wenzhou, China, also 
suggested temperature was positively correlated with hPIV3 ac
tivity.44 Most respiratory viruses circulate less during summer, 
which allows the increasing incidences of hPIV3 under less compe
tition. A contradictory relationship between temperature and hPIV1 
infections was found in Singapore.45 Small seasonal variations of 
temperature in tropical areas may weaken the association, as found 
in influenza that “cold-dry” peaks occurred in temperate regions, 
and “humid-rainy” peaks occurred in the tropical region.46 hPIV1 
and hPIV2 in the tropics did not show significant seasonality com
pared to temperate regions. hPIV3 presented more biannual peaks 

Table 2 
Weighted mean peak months of hPIV1–4 in the tropical region, north temperate region, and south temperate region.        

hPIV1 Median (IQR)/ 
[Min–Max]a 

hPIV2 Median (IQR)/ 
[Min–Max]a 

hPIV3 Median (IQR)/ 
[Min–Max]a 

hPIV4 Median (IQR)/ 
[Min–Max]a  

North temperate region (> 23.5°N) 9.18 (7.81–10.79) 10.48 (9.16–11.25) 5.78 (4.89–6.35) 9.89 (9.41–10.64) 
Tropical region (23.5°S–23.5°N) [5.96–5.96] 5.88 (5.29–8.29) 5.39 (4.09–9.21) [4.19–10.19] 
South temperate region (> 23.5°S) 5.22 (4.33–7.04) [4.17–5.60] 9.64 (8.37–9.98) No data  

a Minimum and maximum values are shown if there are fewer than three data sets in the category.  

Table 3 
The odds ratio of climatic factors on the incidence of hPIV1–4 by generalized estimating equation (GEE) model.        

Temperature (℃) Diurnal temperature range (℃) Precipitation (10 mm) RH (%)  

PIV1 0.838 (0.688–1.020, p=0.08) 1.020 (0.927–1.120, p=0.69)   
PIV2 0.880 (0.736–1.050, p=0.16) 0.918 (0.831–1.010, p=0.091)   
PIV3 1.234 (1.003–1.518, p=0.047) 0.965 (0.935–0.996, p=0.027) 0.982 (0.962–1.002, p=0.071) 0.997 (0.944–1.053, p=0.91) 
PIV4 0.665 (0.584–0.759, p < 0.001)  1.064 (1.009–1.121, p=0.022)  

RH: relative humidity. P-values smaller than 0.05 are highlighted in bold.  
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and longer durations of peaks in the tropical region compared to 
temperate regions. Lack of clear seasonality or longer durations of 
peaks in the tropics were also found in influenza.47 Price et al. 
suggested influenza A virus and respiratory syncytial virus seemed 
to prefer low humidity range,22 which we did not include as a cli
matic factor due to the limitation of the CRU database. They also 
found hPIV3 peaks were negatively associated with RH, while no 
significant correlation was observed in our results.22 hPIV3 appeared 
to be more stable at lower RH and higher temperatures than other 
enveloped RNA viruses.22 In addition, the seasonal peak of hPIV4 is 
positively correlated with precipitation, unlike the other hPIV types. 
hPIV4 showed significant seasonality only when moderate or high 
precipitation in autumn was observed; the other types did not show 
any association with precipitation. The correlation between climatic 
factors and hPIV incidence could be further examined to see if me
teorological factors might enhance prediction models for temporally 
and geographically forecasting hPIV trends. 

There are several limitations to this study. Detection rates from 
surveillance programs do not represent the incidence amongst all 
members of any given population; not all diagnostic laboratories are 
able to screen for hPIV1–4; in places where the seasonal variation of 
climatic factors is small, the relationship between climatic factors 
and viral seasonality may not be significantly detected in the re
gression; studies included were from different time frames without 
considering the overall pattern shift through time; symptomatic 
screening for influenza-like illness may not capture all the hPIV in
cidence, and hPIV disease may be defined differently across age 
groups. Phylodynamic analyses have been useful to study virus 
epidemiology and seasonality.48,49 Although it would be of epide
miological interest to conduct such analyses on hPIV, the relative 
scarcity of sequence availability prior to 2009 is a significant lim
itation. Following the 2009 influenza A (H1N1) pandemic, sys
tematic surveillance on influenza and other respiratory viruses was 
enhanced via more widely available diagnostic and sequencing 
techniques, facilitated by local authorities and global collaborations 
such as the WHO Global Influenza Surveillance and Response System 
(GISRS).50,51 Phylodynamic analyses of viral sequences from a cli
matically more diverse range of countries (both temperate and tro
pical) will improve our understanding of how the seasonal 
epidemiological patterns of the different hPIV types change across 
the world, which can inform health impact assessments. During the 
COVID-19 pandemic, the viral circulation of respiratory viruses, in
cluding hPIV, was largely reduced because of non-pharmaceutical 
interventions (NPIs).52 After lifting the NPIs, the peak timing and 
epidemic duration of respiratory viruses seem to alter.53 Recent 
studies show the shifts of seasonality hPIV1 and hPIV3 in China and 
hPIV in Canada during COVID-19.54,55 Further surveillance following 
up for a sufficient period of time would be required to ascertain how 
the long-term epidemiology of different hPIV types are impacted by 
COVID-19. Furthermore, some climatic factors, such as relative hu
midity range, which are unavailable in the climate database used in 
this study, could be used for their associations with hPIV subtype 
epidemiology in the future. 

In conclusion, this study summarized the worldwide epide
miology and seasonality of hPIV types 1–4 and explored the re
lationship of climatic drivers to their incidence peaks. hPIV3 was the 
most prevalent type and reached peak incidence within spring - 
around late May in the north temperate region, and late September 
in the south. hPIV1, hPIV2, and hPIV4 reached peaks in autumn. The 
increases in hPIV3 incidence correlated with higher temperature and 
lower diurnal temperature range, whereas hPIV4 was associated 
with lower temperature and higher precipitation. Identifying the 
seasonal patterns and climatic drivers affecting the incidence peaks 
enables further understanding of the virus circulation patterns and 
informs the timing for potential vaccination and healthcare man
agement strategies. 
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