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A B S T R A C T

Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.
Traditional neural network methods, such as BiLSTM, could be ineffective due to the lack of lab data for model
training and the overshadowing of crucial features within sequence concatenation. The current work proposes
a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information
inference operator. Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene
sequences, enhancing the model’s capacity to discern and focus on distinctions among input gene pairs. The
model, i.e., DNA Pretrained Cross-Immunity Protection Inference model (DPCIPI), outperforms state-of-the-
art (SOTA) models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.
Improvement in binary cross-immunity prediction is 1.58% in F1, 2.34% in precision, 1.57% in recall, and
1.57% in Accuracy. For multilevel cross-immunity improvements, the improvement is 2.12% in F1, 3.50% in
precision, 2.19% in recall, and 2.19% in Accuracy. Our study showcases the potential of pre-trained gene
models to improve predictions of antigenic variation and cross-immunity. With expanding gene data and
advancements in pre-trained models, this approach promises significant impacts on vaccine development and
public health.
1. Introduction

Seasonal influenza infects up to a billion people worldwide annu-
ally, causing millions of severe cases and up to 650,000 deaths [1].
Vaccination before epidemics remains the most effective prevention
strategy [2,3]. A critical factor in effective vaccination is cross-
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immunity, where immune responses to a vaccine strain provide protec-
tion against other circulating strains [4]. However, influenza viruses
frequently undergo antigenic drift [5,6], enabling them to evade im-
mune detection and limiting the cross-immunity from previous infec-
tions or vaccinations [4]. The efficacy of previous influenza vaccines
to protect against drifting strains depends on the antigenic similarity
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between the vaccine and epidemic strains [7], as well as the level of
ross-immunity [4].

Hemagglutinin (HA), a surface glycoprotein of the influenza virus, is
primarily responsible for triggering the immune response, specifically
its subunit, HA1. The measurement of Hemagglutination Inhibition
(HI) titer, obtained from the assay, evaluates the degree of antigenic
similarity [8,9], and can also indicate the potential for cross-immunity
mong different strains. Traditional HI experiments involve preparing

and diluting antibodies, reacting them with antigens, and testing the
reactions with red blood cells [10]. Given the pairwise nature of
hese reactions and the annual emergence of thousands of influenza
trains—such as the H3N2 subtype alone—conducting millions of HI
ests is labor-intensive and time-consuming. Therefore, it is imperative
o explore computational models that can assess antigenic variation and
redict cross-immunity without relying solely on extensive HI testing.

Genetic alterations, including point mutations or deletions in the
HA1 gene sequence, can modify antigenic epitopes and reduce vac-
cine efficacy [11–14]. These changes affect the ability of antibodies
from one strain to neutralize others, as quantified by HI assays. Ma-
chine learning approaches, particularly neural networks, have been
widely applied to various gene-related tasks. For example, LSTM-based
models demonstrated the capability to forecast mutation probabili-
ties [15], predict DNA-protein binding [16], and produce new reason-
able molecules [17]. CNN-based models [18] exhibited proficiency in
ariant detection [19], cancer type prediction [20], and gene expres-

sion dynamic profiles classification [21]. BiLSTM-based models [22]
howcased the ability to predict viral escape [23], cancer types [24],

and genetic disorders [25]. However, no existing neural network mod-
els are specifically designed to predict HI titers from influenza viral
gene sequences.

Moreover, applying existing models to predict HI titers presents
ignificant challenges [26]. Firstly, these models rely heavily on large
atasets [27], but the labor-intensive and time-consuming nature of HI

assays [28] limits data availability, hindering the models’ ability to
learn complex gene patterns. Secondly, current models [29] typically
concatenate the two input gene sequences, treating them as a single
sequence during training. This approach fails to capture mutual infor-
mation and the unique characteristics of each gene, thereby limiting the
models’ ability to effectively distinguish differences between reference
and test viruses.

To address these challenges, we propose the DNA Pretrained Cross
mmunity Protection Inference Model (DPCIPI), a novel framework
esigned to predict cross-immunity with enhanced accuracy and effi-

ciency. As illustrated in Fig. 1, DPCIPI consists of four key procedures,
ncluding (1) converting influenza gene sequences into 𝑘-mers through

a sequence preprocessing step, (2) encoding these 𝑘-mers using a
pre-trained model-based encoding layer, (3) capturing relationships
between reference and test viruses via a mutual information inference
layer, and (4) inferring cross-immunity labels through a classification
layer.

Our work introduces a novel approach for accurately predicting
ross-immunity between reference and test viruses by integrating adap-
ive pre-trained embeddings and a mutual information inference layer.
pecifically, we leverage DNABERT, a pre-trained model on human
enes, to initialize embeddings for gene sequences converted into k-
ers. For k-mers absent in DNABERT’s vocabulary, we avoid random

nitialization by averaging their neighboring k-mer embeddings, ensur-
ng improved representational quality. Inspired by methods in natural
anguage processing [30], we then incorporate a mutual information

inference operator that performs arithmetic operations on the embed-
dings of the reference and test sequences, thereby capturing subtle
genetic variations and preserving mutual information. Through these
combined strategies, our model—DPCIPI—surpasses current state-of-
the-art methods, delivering more precise and robust predictive perfor-
mance.
116
Fig. 1. The DNA Pretrained Cross-immunity Protection Inference-Model (DPCIPI)
ramework.

The remainder of this study is structured as follows: Section 2 re-
views traditional and neural network models, pre-trained model meth-
ods, and co-expression methods for gene sequence analysis. Section 3
lays out the problem definition, data construction, and metrics. Sec-
tion 4 elaborates on the proposed DPCIPI framework. Section 5 presents
xperimental evaluations. Section 6 concludes and outlines future re-

search directions.

2. Related work

2.1. Traditional and neural network methods

2.1.1. Statistical learning methods
Statistical learning methods are essential in analyzing genetic se-

quences, particularly in elucidating the resemblances between genes
to discern their interconnected functionalities. Hooper et al. [31] in-
roduced a two-stage logistic regression approach to predict genetic

structures within eukaryotic DNA. Yang et al. [32] employed a 𝑘-mer
mixture logistic regression model, delineating the susceptibility of DNA
methylation across diverse cell types. Nevertheless, the intricate regu-
latory interplays among genes often exhibit nonlinear or nonmonotonic
characteristics, thereby posing a challenge for their explication through
linear models. To surmount this challenge, the perceptron models
have been advocated to capture the intricate regulatory relationships
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inherent in genes derived from single-cell RNA-seq data [33]. In a
ifferent vein, decision trees have also been harnessed to prognosticate

the multifaceted functionalities of open reading frames [34]. However,
it is noteworthy that these methodologies tend to impose constrictive
assumptions concerning gene expression dynamics, thereby limiting
their capacity to effectively capture complex gene interactions.

2.1.2. Neural network methods
Various neural network approaches have been proposed to ad-

ress the intricacies of gene sequence analysis, encompassing recurrent
eural networks (RNNs) [35], Long Short-Term Memory (LSTM) net-

works [36], Gated Recurrent Unit (GRU) networks [37], convolutional
neural networks (CNNs) [18], and Bidirectional LSTMs (BiLSTMs) [22].
Notably, the Recurrent Neural Network-based Gene Regulatory Net-
work (RNN-GRN) [38] integrates the generalized extended Kalman
model to introduce non-linear features for gene analysis. A recent ap-
roach EvoLSTM [15] leverages LSTM architecture to simulate gene se-

quence evolution, capturing intricate mutational context dependencies
within genes. In gene variation analysis, the DeepVariant model [19], a
eep CNN-based architecture, has demonstrated proficiency in calling
enetic variations within aligned sequencing gene data. This model
xhibits generalizability across diverse genome builds and mammalian
pecies [19]. This work draws an analogy between mutations and word
lterations in a sentence, both preserving grammaticality while altering
he meaning. To address these mutations, a BiLSTM-based model [23]
as been proposed to identify escape mutations. Nonetheless, it is
mperative to acknowledge the inherent limitations of these method-
logies, primarily due to their sensitivity to the scale of accessible data.
he intricate nature of certain gene patterns continues to present chal-

enges for comprehensive assimilation within the current framework of
these approaches.

2.2. Pre-trained model methods

Pre-trained models such as BERT [39], GPT-2 [40], and RoBERTa
[41] have made significant strides in the field of natural language
processing, showcasing their proficiency in capturing intricate patterns
from training corpora and aptly generalizing to specific tasks. These
strengths have also been recognized and harnessed in genetics to create
specialized models. DNABERT [42], originally designed for pre-training
on human DNA sequences, shows impressive adaptability, allowing it
to be used for various tasks such as gene prediction, variant calling,
and sequence alignment. Particularly noteworthy is DNABERT’s capac-
ity for seamless adaptation to diverse genomes. This adaptability is
highlighted in its outperformance, as observed in a comprehensive eval-
ation involving 78 mouse ENCODE ChIP-seq datasets. Remarkably,
ven when pre-trained on the human genome [43], DNABERT sur-
asses the efficacy of CNN, CNN + LSTM, CNN + GRU, and randomly

initialized DNABERT. This robust and superior performance under-
cores its inherent cross-domain prowess. Expanding its utility fur-

ther, DNABERT demonstrates competence in handling cross-linking and
immunoprecipitation (CLIP-seq) data, thereby facilitating predictions
pertaining to RNA-binding protein (RBP) binding preferences [44]. This

ide-ranging applicability extends its potential usage within the viral
omain.

2.3. Co-expression methods

Co-expression methods represent widely employed techniques in an-
alyzing gene expression data, classifiable into two principal categories:
orrelation coefficients and mutual information measures. Among cor-

relation coefficients, approaches such as Weighted Gene Co-expression
Network Analysis (WGCNA) [45] stand out for their ability to discern
otential biomarkers or therapeutic targets. Pearson correlation [46],

for instance, is leveraged to distill gene features from microarray
gene expression data characterized by high dimensionality and limited
117
samples [47]. However, correlation coefficient methods encounter chal-
lenges rooted in multicollinearity, particularly when variables exhibit
pronounced interdependence. This can complicate the disentanglement
of individual contributions within gene analysis. Conversely, mutual
information measures like Algorithm for the Reconstruction of Accurate
Cellular Networks (ARACNE) [48] possess the capability to capture
non-linear gene expressions. Yet, they grapple with issues encompass-
ing discretization, sample size, and computational intensity during gene
nalysis. Notably, conventional co-expression methodologies encounter

impediments when confronted with high-dimensional vector spaces. An
effective strategy to infer mutual information, drawn from the realm
of natural language processing, pertains to utilizing Natural Language
Inference (NLI) technology [49,50]. This technology can be applied to
delve into the mutual information inherent in gene representation vec-
tors engendered by neural network models. By employing operations
such as multiplication, subtraction, and preservation on sentence-level
vectors, this approach captures intricate non-linear gene expressions.
Given the inherent analogies shared between gene sequences and tex-
tual constructs, the transference of this methodology for the analysis of
influenza genes is poised to yield insights of significance.

3. Preliminaries

3.1. Problem definition

We frame cross-immunity prediction as a machine learning classifi-
cation task using HA1 gene sequences as inputs. Variations in the HA1
region can modify antigenic epitopes, reducing antibody binding and
consequently lowering Hemagglutination Inhibition (HI) titers, which
act as indicators of cross-immunity. By identifying genetic patterns that
correlate with HI titer changes, we can predict the protective effect
(𝐸) of antibodies from a reference virus (𝑆𝑅) on a test virus (𝑆𝑇 ). Our
formulation considers both a binary classification (presence or absence
of 𝐸) and a multi-level classification four discrete levels of 𝐸, ultimately
estimating the probability 𝑃 (𝐸|𝑆𝑅, 𝑆𝑇 ):

𝑃 (𝐸|𝑆𝑅, 𝑆𝑇 ) = 𝑀(𝑆𝑅, 𝑆𝑇 ), (1)

where 𝑀 represents the machine learning model. The DPCIPI model is
ntroduced as a specific instance within the family of models denoted
y 𝑀 , highlighting its role as the primary contribution of this research.

3.2. Dataset construction

In this study, we compile a revised dataset sourced from Smith
t al. [13], subsequently redesignated as the Virus Hemagglutination
nhibition Dataset (VHID).1 This compilation encompasses a total of

2472 hemagglutination inhibition (HI) titer outcomes derived from an
assemblage of 240 reference viruses and 43 test viruses. We retrieved
the gene sequences of the viruses from the GenBank of the NCBI
database using Accession Numbers. Our dataset contains fewer viruses
than reported [13] due to duplicated accessions and missing gene data.
Out of the 10,320 possible reference-test virus combinations (240 × 43),
we identified 2472 valid combinations with HI titer values, leaving
7848 samples without HI titer values.

To classify the samples into positive and negative groups, we used
an HI titer threshold of 40 [51], widely recognized as corresponding to
a 50% reduction in the risk of influenza [52]. As a result, the 2472 valid
samples were divided into 1733 positive and 739 negative samples. For
he multi-level cross-immunity prediction task, we divided the 2472
alid samples into four intervals based on their HI titer values: [0, 40),
40, 100), [100, 1000), and [1000, 10240]. These intervals contained

693, 372, 839, and 568 data examples, respectively. Each interval was

1 https://github.com/Elvin-Yiming-Du/DPCIPI_cross-immunity_prediction/
tree/main/VHID

https://github.com/Elvin-Yiming-Du/DPCIPI_cross-immunity_prediction/tree/main/VHID
https://github.com/Elvin-Yiming-Du/DPCIPI_cross-immunity_prediction/tree/main/VHID
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assigned a label (0, 1, 2, or 3) representing the level of cross-immunity.
In this experiment, we used the cross-entropy loss function instead of
a binary classification approach. We use strains reported prior to 1995
as the training set and those after 1995 as the test set. This approach
ensures that the model considers cross-immunity between historical
strains and strains that may emerge in the future, rather than only
focusing on cross-protection among historical strains.

4. Method

4.1. The DPCIPI model

4.1.1. 𝑘-Mers sequence preprocess
We preprocess the gene sequences in VHID to obtain representations

suitable for the encoding layer, as illustrated in Fig. 2.

Fig. 2. A visual guide to preprocessing gene sequences: Input reference virus 𝑆𝑅
nd test virus 𝑆𝑇 gene sequences, Step 1. Gene Sequence Alignment, Step 2. 𝑘-
er Segmentation, Step 3. 𝑘-mer Sequence Deduplication, output aligned deduplicated

eference and test 𝑘-mer sequences 𝑆𝑅
∗ and 𝑆𝑇

∗.

Step 1. Gene Sequence Alignment. Given the high similarity
among influenza virus gene sequences, we align all functional gene
sequences in VHID to a common template to identify sequence differ-
ences. Using the Sequence Alignment Algorithm (Algorithm 1), we de-
termine the starting alignment positions (𝐷) for each sequence relative
to the leftmost endpoint.

To achieve this, the algorithm first identifies a reference sequence,
𝑚𝑎𝑥, which is the most extensive typical homologous sequence. It then

employs the FindStartPosition function to calculate the start
alignment positions dictionary (𝐷) by identifying common sites among
the sequences.

Step 2. 𝑘-mer segmentation. Subsequently, we extract the refer-
ence virus gene sequence 𝑆𝑅, and the test virus gene sequence 𝑆𝑇 , from

HID. These sequences are then converted into representations known
s 𝑘-mers as depicted in Fig. 2. 𝑘-mers are DNA segments consisting
f consecutive nucleotides, each segment having a length of 𝑘. In our
ractical implementation, we set 𝑘 to 6, a choice validated for its high
erformance by [42]. The resulting 𝑘-mer sequences for the reference
nd test viruses are labeled as 𝑆𝑅

∗ and 𝑆𝑇
∗, respectively, where ’∗’

ignifies the k-mer format used in this paper.
Step 3. 𝑘-mer sequences deduplication. To eliminate the influ-

ence of identical locus 𝑘-mers on the prediction of cross-immunity, we
design a 𝑘-mer Sequences Deduplication Algorithm (Algorithm 2) to
remove duplicate 𝑘-mer from reference virus 𝑆𝑅

∗ and test virus 𝑆𝑇
∗ at

the same locus. The algorithm consists of two main functions:

• DeduplicationPairSequences aligns and fills the pair se-
quences while identifying and recording common positions
118
Algorithm 1 Sequence Alignment Algorithm
Input: 𝑆 (A dictionary of unique gene sequences: key is virus names,

value is sequences.)
utput: 𝐷 (A dictionary of start alignment positions: key is virus

names, value is the distance between the farthest starting
position and the current sequence starting position.)

unction AlignSequences(S):
Find the longest gene sequence 𝑠𝑚𝑎𝑥 and the corresponding length
𝑙 from 𝑆;
Initialize 𝐷 ← {};
for each 𝑣𝑖𝑟𝑢𝑠, 𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒 in 𝑆 do

𝑑 ← FindStartPosition(𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒, 𝑠𝑚𝑎𝑥);
𝐷[𝑣𝑖𝑟𝑢𝑠] ← 𝑑;

return 𝐷;
Function FindStartPosition(𝑠.𝑣𝑎𝑙 𝑢𝑒, 𝑠𝑚𝑎𝑥.𝑣𝑎𝑙 𝑢𝑒):

𝑚𝑎𝑥_𝑐 𝑜𝑚𝑚𝑜𝑛_𝑙 𝑒𝑛𝑔 𝑡ℎ ← 0;
𝑏𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠 ← 0;
𝑠_𝑚𝑎𝑥_𝑙 𝑒𝑛𝑔 𝑡ℎ ← length of 𝑠𝑚𝑎𝑥;
𝑠𝑒𝑞_𝑙 𝑒𝑛𝑔 𝑡ℎ ← length of 𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒;
for 𝑖 ← 0 to 𝑠_𝑚𝑎𝑥_𝑙 𝑒𝑛𝑔 𝑡ℎ − 𝑠𝑒𝑞_𝑙 𝑒𝑛𝑔 𝑡ℎ do

𝑐 𝑜𝑚𝑚𝑜𝑛_𝑙 𝑒𝑛𝑔 𝑡ℎ ← CalculateCommonLength(𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒,
𝑠𝑚𝑎𝑥[𝑖 ∶]);
if 𝑐 𝑜𝑚𝑚𝑜𝑛_𝑙 𝑒𝑛𝑔 𝑡ℎ > 𝑚𝑎𝑥_𝑐 𝑜𝑚𝑚𝑜𝑛_𝑙 𝑒𝑛𝑔 𝑡ℎ then

𝑚𝑎𝑥_𝑐 𝑜𝑚𝑚𝑜𝑛_𝑙 𝑒𝑛𝑔 𝑡ℎ ← 𝑐 𝑜𝑚𝑚𝑜𝑛_𝑙 𝑒𝑛𝑔 𝑡ℎ;
𝑏𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠 ← 𝑖;

return 𝑏𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠;
Function CalculateCommonLength(𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒1, 𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒2):

𝑙 𝑒𝑛𝑔 𝑡ℎ ← 0;
for 𝑗 ← 0 to length of 𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒1 do
if 𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒1[𝑗] == 𝑠𝑒𝑞 𝑢𝑒𝑛𝑐 𝑒2[𝑗] then

𝑙 𝑒𝑛𝑔 𝑡ℎ ← 𝑙 𝑒𝑛𝑔 𝑡ℎ + 1;
return 𝑙 𝑒𝑛𝑔 𝑡ℎ;

between them. It then removes the common 𝑘-mers from both
sequences, resulting in modified sequences (𝑆∗

𝑅𝑑
and 𝑆∗

𝑇𝑑
) without

duplicate 𝑘-mers, where subscript 𝑑 indicates the 𝑘-mers after
deduplicatoin.

• AlignmentAndPadding aligns and fills the sequences with
placeholders, based on the start alignment positions in 𝐷. Finally,
the algorithm outputs the pre-processed reference and test virus
𝑘-mer sequences.

4.1.2. The DNABERT+BiLSTM encoding layer
DNABERT [42], pre-trained on human genomic data, effectively

earns the contextual relationships among 𝑘-mers (subsequences of
length 𝑘). Leveraging this prior knowledge, we initialize the embed-
dings of influenza HA1 𝑘-mers (with 𝑘 = 6) using DNABERT’s pre-
trained weights. This approach alleviates data scarcity issues and en-
hances the model’s ability to capture meaningful genetic patterns.

We define the 𝑘-mer sequences for the reference and test viruses
as:

𝑆∗
𝑅𝑑

= (𝑘1𝑅𝑑
, 𝑘2𝑅𝑑

,… , 𝑘𝑚𝑅𝑑
), (2)

𝑆∗
𝑇𝑑

= (𝑘1𝑇𝑑 , 𝑘
2
𝑇𝑑
,… , 𝑘𝑛𝑇𝑑 ), (3)

where 𝑚 and 𝑛 denote their respective sequence lengths, d denotes the
deduplicated k-mer sequences as shown in Algorithm 2.

We first encode these sequences using DNABERT:

𝑋∗
𝑅𝑑

= DNABERT(𝑆∗
𝑅𝑑

) = (𝑥∗1𝑅𝑑
, 𝑥∗2𝑅𝑑

,… , 𝑥∗𝑚𝑅𝑑
), (4)

𝑋∗
𝑇𝑑

= DNABERT(𝑆∗
𝑇𝑑
) = (𝑥∗1𝑇𝑑 , 𝑥

∗2
𝑇𝑑
,… , 𝑥∗𝑛𝑇𝑑 ). (5)
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Algorithm 2 𝑘-mer Sequences Deduplication Algorithm
Input: 𝑆∗

𝑅 (Reference virus 𝑘-mer sequences), 𝑆∗
𝑇 (Test virus 𝑘-mer

sequences), 𝑅𝑛𝑎𝑚𝑒 (Virus name of 𝑆∗
𝑅), 𝑇𝑛𝑎𝑚𝑒 (Virus name of 𝑆∗

𝑇 ),
𝐷 (Start alignment position dictionary)

Output: 𝑆∗
𝑅𝑑

(Modified 𝑆∗
𝑅 without common 𝑘-mers), 𝑆∗

𝑇𝑑
(Modified 𝑆∗

𝑇
without common 𝑘-mers)

Function DeduplicationPairSequences(𝑆∗
𝑅, 𝑆∗

𝑇 , 𝑅𝑛𝑎𝑚𝑒, 𝑇𝑛𝑎𝑚𝑒,
𝐷):

𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅, 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 ←
AlignmentAndPadding(𝑆∗

𝑅, 𝑆∗
𝑇 , 𝑅𝑛𝑎𝑚𝑒, 𝑇𝑛𝑎𝑚𝑒, 𝐷);

𝑙 ← Min(|𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅|, |𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 |);
𝑂 ← []// Record common positions between 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅 and

𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇
𝑆∗
𝑅𝑑

← [], 𝑆∗
𝑇𝑑

← [];
for 𝑖 ← 0 to 𝑙 do

if 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅[𝑖] == 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 [𝑖] then
𝑂.add(𝑖);

𝑆∗
𝑅𝑑

← delete 𝑚[𝑜] and # from 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅 where 𝑜 ∈ 𝑂;
𝑆∗
𝑇𝑑

← delete 𝑛[𝑜] and # from 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 where 𝑜 ∈ 𝑂;
return 𝑆∗

𝑅𝑑
, 𝑆∗

𝑇𝑑
;

Function AlignmentAndPadding(𝑆∗
𝑅, 𝑆∗

𝑇 , 𝑅𝑛𝑎𝑚𝑒, 𝑇𝑛𝑎𝑚𝑒, 𝐷):
𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅, 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 ← [];
for 𝑖 ← 0 to 𝐷[𝑅𝑛𝑎𝑚𝑒] do

𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅.add(#);
for 𝑗 ← 0 to 𝐷[𝑇𝑛𝑎𝑚𝑒] do

𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 .add(#);
𝑘𝑚𝑒𝑟𝐿𝑖𝑠𝑡𝑅 ← split 𝑆∗

𝑅 into 𝑘-mers;
𝑘𝑚𝑒𝑟𝐿𝑖𝑠𝑡𝑇 ← split 𝑆∗

𝑇 into 𝑘-mers;
𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅 ← 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅 + 𝑘𝑚𝑒𝑟𝐿𝑖𝑠𝑡𝑅;
𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 ← 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 + 𝑘𝑚𝑒𝑟𝐿𝑖𝑠𝑡𝑇 ;
return 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑅, 𝑎𝑙 𝑖𝑔 𝑛𝑒𝑑 𝑇 ;

For any 𝑘-mer not present in DNABERT’s vocabulary, we initialize
its embedding by averaging its neighboring 𝑘-mers:

𝑥unk nown =
𝑥lef t + 𝑥r ight

2
. (6)

After obtaining 𝑋∗
𝑅𝑑

and 𝑋∗
𝑇𝑑

, we feed these sequences into a BiL-
TM to capture contextual dependencies:

𝐸∗
𝑅 = BiL STM(𝑋∗

𝑅𝑑
), (7)

𝐸∗
𝑇 = BiL STM(𝑋∗

𝑇𝑑
). (8)

Here, 𝐸∗
𝑅 and 𝐸∗

𝑇 represent the encoded sequential embeddings for
the reference and test virus sequences, respectively.

4.1.3. The mutual information inference layer
A mutual information inference operator is used to fuse the

information of the two sequence-level embeddings using techniques
from natural language inference [50]. In natural language inference,
he task is to predict whether a hypothesis can be inferred by a premise,

essentially using the inference results labeled in advance to analyze
ome similarity between two sentences. Similarly, we can use annotated
I titer markers to analyze whether the antibody generated by the

eference virus to stimulate the immune system could cross-protect
another test virus.

The mutual information inference operator extracts similar infor-
mation between sequences by performing dot product operations and
subtraction on vectors [53]. Dot product operations help in measur-
ing the similarity between two vectors by computing the sum of the
products of their corresponding components. The splicing vector q is
btained from the mutual information inference operator:

𝐸 = [𝐸∗ ;𝐸∗ ⋅ 𝐸∗ ;𝐸∗ − 𝐸∗ ;𝐸∗ ], (9)
𝑐 𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑅 𝑅 𝑇 𝑅 𝑇 𝑅
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where 𝐸∗
𝑅 ⋅ 𝐸∗

𝑇 represents the multiplication operation, 𝐸∗
𝑅 − 𝐸∗

𝑇 rep-
resents the subtraction operation in the mutual information inference
operator, which have a strong enhancement effect on the salient fea-
ures and difference features in the 𝑘-mer representation vector, and

the original hidden mode information of the two original 𝑘-mers vectors
𝐸∗
𝑅 and 𝐸∗

𝑇 are preserved. The final interaction information will be fed
into the full neural network model to predict cross-protection.

4.1.4. The classification layer
In the hemagglutination inhibition test [51], the highest dilution

of hemagglutinin working fluid at which red blood cells are not com-
letely agglutinated is used as the endpoint of determination. Since
he working solution was used in twofold dilution, the experimen-
al results showed discrete characteristics, so we used classification
achine learning methods to make inferences about the similarity of

cross-immunity. Put the splicing vector 𝐸𝑐 𝑜𝑚𝑏𝑖𝑛𝑒𝑑 obtained by the mixing
layer into a multi-layer perceptron neural network (MLP) to get the
classification result 𝑦′:

𝑃 (𝑦′|𝐸𝑐 𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ) = MLP(𝐸𝑐 𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ). (10)

4.2. 𝑘-Mer embedding initialized with DNABERT

When working with gene sequences, there can be various 𝑘-mers
hat were not encountered during the pre-training of DNABERT. These
nknown 𝑘-mers might correspond to specific genetic variations or

rare sequences not included in the original training data. If these
unknown 𝑘-mers are not appropriately initialized, it can lead to several
problems. Firstly, it may result in incorrect representations, where the
model assigns random or arbitrary embeddings to these 𝑘-mers, leading
to inaccurate representations and difficulty in proper interpretation.
Secondly, there can be a loss of valuable genetic information encoded in
the unknown 𝑘-mers, hindering the model’s ability to capture essential
patterns and relationships in the gene sequences. Additionally, im-
proper initialization may introduce bias in the model predictions since
it lacks sufficient information about these 𝑘-mers, potentially leading
to predictions that do not reflect the true characteristics of the gene
sequences.

To mitigate these problems, DNABERT employs the mean value of
the 𝑘-mer vector at the adjacent position for initializing unknown 𝑘-
mers, providing a reasonable approximation based on the context of
neighboring 𝑘-mers. This strategy enables the model to masterfully
handle previously unseen 𝑘-mers, preserving the integrity of the gene
sequence information. Consequently, proper initialization ensures that
the model can generalize expertly and make more accurate predictions
on a wide range of gene sequences, including those containing new
or rare 𝑘-mers. In summary, the initialization of 𝑘-mers embedding
with DNABERT is crucial in capturing hidden patterns and reducing
predictive performance drops due to sparse data.

4.3. Mutual information inference operators

Drawing inspiration from natural language inference, the mutual
nformation inference operator fuses information from two sequences
y examining their similarity. Similar to how natural language in-
erence predicts the inferability of a hypothesis from a premise, the
utual information inference operator can assess whether the antibody
roduced by a reference virus can cross-protect another test virus using
he annotated HI titer.

The operator employs vector dot production and subtraction to
extract similar information between sequences. The resulting splicing
vector, denoted as 𝐸𝑐 𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , is obtained through a combination of
operations: multiplication (𝐸∗

𝑅 ⋅ 𝐸∗
𝑇 ) and subtraction (𝐸∗

𝑅 − 𝐸∗
𝑇 ). These

operations enhance the salient features and differences in the 𝑘-mer
representation vector while preserving the original hidden-mode infor-
mation of the two original 𝑘-mer vectors (𝐸∗

𝑅 and 𝐸∗
𝑇 ). The interaction

information derived from this process is then fed into a full neural
network model to predict cross-immunity.
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5. Experiments

5.1. Baseline models

Statistical methods use gene sequences (k-mers) for cross-
protective predictions. Logistic Regression (LR) is for categorical clas-
sification and uses similarity scores to predict cross-immunity. The
Perceptron, a classic binary classifier, employs gene sequence simi-
larity for cross-immunity prediction. Decision Tree (DTree) classifies
similarity scores for both binary and multi-label tasks. Changing from
tatistical learning-based similarity to vector-based similarity using

gene sequence embeddings (GSE) can enhance cross-immunity predic-
tion performance. GSE is the cumulative average of k-mer vectors in
the sequence, representing sequence-level features:

𝐸∗
𝑅
′ = 1

𝑛

𝑛
∑

𝑖=1
𝑋𝑅𝑑

∗, (11)

𝐸∗
𝑇
′ = 1

𝑚

𝑚
∑

𝑖=1
𝑋𝑇𝑑

∗. (12)

Neural network methods use gene vectors derived from 𝑘-mers to
redict cross-immunity. We employ classic models: 1-Nearest Neighbor
1NN) [54], Convolutional Neural Network (CNN) [55], and Bidirec-

tional Long Short-Term Memory (BiLSTM). As a baseline model, BiL-
STM directly combines two gene sequences to predict cross-immunity.

5.2. Metrics and implementation

We use Accuracy, Weighted Precision, Weighted Recall, and
eighted F1 [56] for evaluating the classifications. The weighting

mechanism accounts for the varying ratio of HI titer samples under
our classification task settings. All experiments were implemented on
ur server with 512 G memory and 2 Nvidia 3090 graphics cards.
yTorch [57], PyTorch geometric [58], and the DNABERT library are
sed to conduct the experiments. We train DPCIPI for 50 epochs under
he settings batch size = 10 and learning rate = 0.0001.

5.3. Results

5.3.1. Binary cross-immunity prediction
Table 1 presents the binary cross-immunity prediction results ob-

tained from statistical learning methods, neural network models, and
PICPI. The table shows that DPCIPI achieves 90. 40% in the precision
etric, indicating that the model has a high degree of confidence

n predicting cross-immunity. The model has achieved 1.59%, 2.34%,
.57%, and 1.57% improvements in Weighted F1, Weighted Precision,
eighted Recall, and Accuracy, respectively, to the best-performing

aseline model BiLSTM. It also achieves a performance improvement of
2. 92%, 15. 83%, and 7. 76% over statistical learning methods (logistic
egression, perceptron, and decision tree) in the Weighted F1 metric,
espectively.

We also found that when compared to the Eulerian distance-based
similarity score calculation, gene sequence embedding (GSE) achieves
the worse performance in Logistic Regression, Perceptron, and Decision
 e
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tree models. It indicates that the direct use of gene sequence embedding
n the similarity calculation is risky. Differently, the neural network-
ased models, such as DPCIPI, improved tremendously in all metrics
ompared to the conventional methods such as logistic regression and
erceptron. Besides, we also found that using a decision tree with a
ax depth of 5 can achieve comparable performance to NN.

5.3.2. Multi-level cross-immunity classification
Table 1 additionally displays the results of multi-level cross-

immunity prediction obtained through statistical learning methods,
neural network models, and DPICPI. DPCIPI again achieves the best
performance on the metric of Accuracy (64.69%), Weighted F1
64.71%), Weighted Precision (67.25%), and Weighted Recall (64.69%)

which far surpasses other models. Compared to the best-performing
BiLSTM, DPCIPI achieves a 2.12%, 3.50%, 2.19%, and 2.19% improve-
ment in the Weighted F1, Weighted Precision, Weighted Recall, and
Accuracy metrics.

The confusion matrix in Fig. 3 provides a straightforward depiction
of the outcome. The vertical axis signifies the actual HI titer values,
while the horizontal axis denotes the predicted HI titer values. The nu-
merical entries within the heatmap cells reflect the extent of alignment
in the model’s predictions, ranging on a scale from 0 to 1. The outcomes
showcase a notable consistency between the predicted and actual HI
iter values. Unlike LR, LR-GSE, and NN models, which have achieved
oor performance (less than 30% in all metrics), the decision tree
DTree) again achieves comparable performance to the convolutional
eural network model (CNN) (nearly 50%). This indicates that the cut
oints in decision trees perform well for multi-classification tasks.

Fig. 3. The Confusion Matrix of the cross-immunity prediction on DPCIPI.

5.3.3. DNABERT embedding ablation
Pre-trained models, such as DNABERT, have shown significant

rogress in understanding the complex polysemy and semantic rela-
tionship between genes [59,60]. However, DNABERT was trained on
he human genome. To evaluate the validity of DNABERT embed-
ings, we replaced the DNABERT embedding initialization with random
mbedding initialization in the model CNN, BiLSTM, and DPCIPI.
Table 1
Comparison of the performance across statistic learning-based models (LR, Perceptron, DTree), neural network-based models (NN, CNN, BiLSTM), and DPCIPI models. ‘Improvement’
indicates the relative improvement against the best baseline performance.

Task Metric LR LR-GSE Perceptron Perceptron-GSE DTree DTree-GSE NN CNN BiLSTM DPCIPI Improvement

Binary
cross-immunity
prediction

Weighted F1 65.22 60.82 72.31 69.39 80.38 79.08 80.35 81.88 86.56 88.14 +1.58%
Weighted Precision 75.71 71.27 65.39 65.31 81.45 78.64 87.13 81.47 88.06 90.40 +2.34%
Weighted Recall 61.11 56.17 80.86 74.38 79.63 79.63 84.69 82.50 88.12 89.69 +1.57%
Accuracy 61.11 56.17 80.86 74.38 79.63 79.63 84.69 82.50 88.12 89.69 +1.57%

Multi-level
cross-immunity
prediction

Weighted F1 29.32 10.34 – – 50.89 41.41 31.26 42.93 62.59 64.71 +2.12%
Weighted Precision 14.32 18.23 – – 51.75 51.06 24.85 50.07 63.75 67.25 +3.50%
Weighted Recall 29.32 18.23 – – 51.54 43.21 31.26 45.62 62.50 64.69 +2.19%
Accuracy 29.32 18.23 – – 51.54 43.21 31.26 45.62 62.50 64.69 +2.19%
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Table 2 shows that after initialization with DNABERT, CNN, BiL-
STM, and DPCIPI have each demonstrated varying degrees of perfor-
mance enhancement. In particular, the CNN model exhibits the most
significant improvement, achieving an increase in precision of more
than 10% in the prediction of binary cross-immunity. On the contrary,
in the multilevel cross-immunity prediction, the performance of CNN
witnesses a notable decline following initialization with DNABERT but

iLSTM and DPCIPI demonstrate performance enhancements. Overall,
he results demonstrate that DNABERT has captured hidden genetic
atterns of virus strains and can make a significant impact on the
rediction of the model.

5.3.4. Mutual information inference operator ablation
The incorporation of a mutual information inference (MII) operator

ithin the model draws inspiration from the notion of a hybrid layer
n natural language inference. This technique involves the fusion of

two distinct word sequences to ascertain the veracity of a hypothesis
hether it is true (entailment), false (contradiction), or inconclusive

(neutral) in relation to a given premise. To evaluate the efficacy of
the MII operator within CNN, BiLSTM, and DPCIPI models, we con-
ducted comprehensive comparative experiments. These experiments
encompassed scenarios both with and without the MII operator, span-
ning binary cross-immunity prediction and multi-level cross-immunity
prediction tasks.

Table 3 presents the performance of the MII operator across CNN,
iLSTM, and DPCIPI for both binary and multi-level cross-immunity
rediction tasks. The DPCIPI with MII achieves an improvement of
.2%, 2.06%, 1.25%, and 1.25% in the binary classification task, and
.57%, 1.74%, 0.63%, and 0.63% in the multi-level classification task

in the metrics of Weighted F1, Weighted Precision, Weighted Recall,
and Accuracy, compared to DPCIPI without MII. Furthermore, the CNN
model with MII shows a significant increase (more than 10%) in all
four metrics compared to CNN without MII in the binary classification
task. In the multi-level classification task, CNN with MII shows a
ecrease in Weighted Recall score (2.51%) compared to CNN without
II. However, there is a significant increase in precision, resulting in a
ignificant improvement in the Weighted F1 score.
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5.4. Parameter sensitivity analysis

To further evaluate the robustness of DPCIPI, we examined its
sensitivity to the number of training epochs and the learning rate
Fig. 4). Performance metrics improved steadily as training epochs

increased but plateaued around the fifth epoch, indicating diminishing
returns and potentially unnecessary computational costs beyond this
point. Similarly, a learning rate of 0.0001 achieved both stability and
accuracy, while higher rates converged prematurely and lower rates
prolonged training without benefit. These observations highlight the
necessity of prudent hyperparameter selection to ensure robust and
efficient model performance.

Fig. 4. Parameter sensitivity analysis of DPCIPI under different epochs and learning
rates.

6. Conclusion and future work

The study introduces the DNA Pretrained Cross-Immunity Protec-
ion Inference (DPCIPI) model to predict cross-immunity between in-
luenza virus strains using virus gene sequences. DPCIPI outperforms
xisting models in both binary and multi-level cross-immunity predic-
ion tasks. In the binary task, DPCIPI shows significant improvements
ver BiLSTM and traditional statistical learning methods, such as lo-
istic regression, perceptron, and decision tree. The 90.40% precision

indicates a high level of confidence in DPCIPI’s cross-immunity pre-
dictions. In the multilevel cross-immunity classification task, DPCIPI
again achieved the highest Accuracy, Weighted F1, Weighted Preci-

sion, and Weighted Recall. Confusion matrix analysis reveals consistent
Table 2
Comparison of the performance of DNABERT Initialization across CNN, BiLSTM and DPCIPI models. ‘Improvement’ indicates the relative improvement against the model without
DNABERT Initialization. ‘@’ indicates a concatenation operation.

Task Metric CNN BiLSTM DPCIPI

Initialization settings @ - @DNABERT Improvement @ - @DNABERT Improvement @ - @DNABERT Improvement

Binary
cross-immunity
prediction

Weighted F1 72.41 81.88 +9.474% 86.56 86.94 +0.38% 86.97 88.14 +1.17%
Weighted Precision 65.61 81.47 +15.86% 88.06 88.34 +0.28% 88.60 90.40 +1.8%
Weighted Recall 80.94 82.50 +1.56% 88.12 88.44 +0.32% 89.06 89.69 +0.63%
Accuracy 80.94 82.50 +1.56% 88.12 88.44 +0.32% 89.06 89.69 +0.63%

Multi-level
cross-immunity
prediction

Weighted F1 54.38 46.85 −7.53% 62.59 63.14 +0.55% 62.59 64.71 +2.12%
Weighted Precision 54.65 50.07 −4.58% 63.75 65.61 +1.86% 63.75 67.25 +3.5%
Weighted Recall 55.63 45.62 −10.01% 62.50 64.06 +1.56% 62.50 64.69 +2.19%
Accuracy 55.63 45.62 −10.01% 62.50 64.06 +1.56% 62.50 64.69 +2.19%
Table 3
Comparison of the performance of MII operators across CNN, BiLSTM and DPCIPI models. ‘Improvement’ indicates the relative improvement against the model without MII operator.
‘@’ indicates a concatenation operation.

Task Metric CNN BiLSTM DPCIPI

Operator Settings @ - @MII Improvement @ - @MII Improvement @ - @MII Improvement

Binary
cross-immunity
prediction

Weighted-F1 69.54 81.88 +12.34% 86.56 87.12 +0.56% 86.94 88.14 +1.20%
Weighted-Precision 66.82 81.47 +14.65% 88.06 89.26 +1.32% 88.34 90.40 +2.06%
Weighted-Recall 72.81 82.50 +9.69% 88.12 88.75 +0.63% 88.44 89.69 +1.25%
Accuracy 72.81 82.50 +9.69% 88.12 88.75 +0.63% 88.44 89.69 +1.25%

Multi-level
cross-immunity
prediction

Weighted-F1 38.96 42.93 +3.97% 61.61 62.59 +0.98% 63.14 64.71 +1.57%
Weighted-Precision 33.63 50.07 +16.44% 65.45 63.75 +2.3% 65.51 67.25 +1.74%
Weighted-Recall 48.13 45.62 −2.51% 60.94 62.50 +1.56% 64.06 64.69 +0.63%
Accuracy 48.13 45.62 −2.51% 60.94 62.50 +1.56% 64.06 64.69 +0.63%
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predictions with actual types. Additionally, pre-trained models, specifi-
ally DNABERT, proved essential in capturing hidden genetic patterns.
eplacing DNABERT embeddings with random embeddings led to per-

ormance drops in all tested models, highlighting the critical role of
NABERT initialization. Incorporating a mutual information inference

MII) operator consistently improved results, demonstrating its ability
o enhance both binary and multi-level cross-immunity predictions.

However, the study still has some limitations: it did not involve
nimal experiments, relying solely on authoritative datasets (e.g., from
mith et al. and WHO vaccine recommendations). While this approach
educes costs and leverages well-validated data, it does not provide
xperimental verification through controlled biological studies. An-
ther technical limitation arises from DNABERT’s input length con-

straint, leading to fragmented representations rather than complete
ene sequences.

In future work, it is a promise direction to train larger models
that can handle complete gene sequences without fragmentation. We
also aim to integrate additional domain knowledge, conduct controlled
biological validations, and explore diverse genomic data sources. These
efforts can further improve DPCIPI’s interpretability, accuracy, and
real-world impact, ultimately guiding vaccine composition, disease
surveillance, and global public health preparedness.
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