

Prior infections and effectiveness of SARS-CoV-2 vaccine in test-negative studies: a systematic review and meta-analysis

Tim K. Tsang^{*,1,2}, Sheena G. Sullivan³, Xiaotong Huang¹, Can Wang¹, Yifan Wang¹, Joshua Nealon¹, Bingyi Yang¹, Kylie E. C. Ainslie^{1,4}, Benjamin J. Cowling^{*,1,2}

¹WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China

²Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China

³WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Doherty Department, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia

⁴Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands

*Correspondence authors: Tim Tsang, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong (timtsang@connect.hku.hk); Benjamin J Cowling, School of Public Health, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong (bcowling@hku.hk)

Abstract

Prior infection with SARS-CoV-2 can provide protection against infection and severe COVID-19. We aimed to determine the impact of preexisting immunity on vaccine effectiveness (VE) estimates. We systematically reviewed and meta-analyzed 66 test-negative design studies that examined VE against infection or severe disease (hospitalization, intensive care unit admission, or death) for primary vaccination series. Pooled VE among studies that included people with prior COVID-19 infection was lower against infection (77%; 95% CI, 72–81) and severe disease (86%; 95% CI, 83–89) compared with studies that excluded people with prior COVID-19 infection (pooled VE against infection: 87% [95% CI, 85–89]; pooled VE against severe disease: 93% [95% CI, 91–95]). There was a negative correlation between VE estimates against infection and severe disease, and the cumulative incidence of cases before the start of the study or incidence rates during the study period. We found clear empirical evidence that higher levels of preexisting immunity were associated with lower VE estimates. Prior infections should be treated as both a confounder and effect modifiable when the policies target the whole population or are stratified by infection history, respectively.

Key words: COVID-19; SARS-CoV-2; vaccination; vaccine effectiveness; test-negative design; preexisting immunity.

Introduction

COVID-19 vaccines reduce the risk of infection and can also ameliorate disease severity when breakthrough infection occurs.^{1,2} Ongoing evaluation of COVID-19 vaccine effectiveness (VE) has largely been measured through observational studies, particularly test-negative design (TND) studies, which share some similarities with case-control studies.³ However, there has been substantial variation among reported VE estimates,^{4–7} which may be attributable to differences in study design, the vaccines used, disease incidence, and population characteristics. Importantly, preexisting population immunity due to prior infection could explain changes in COVID-19 VE over time and among populations.^{8,9} Among 42 systematic reviews on VE of COVID-19 vaccines, including VE against infection, symptomatic cases, severe diseases, or fatality, none of them examined the impact of preexisting immunity on the VE estimates (Table S1). This suggests that the impact of preexisting immunity on VE estimates is rarely explored.

Infection with SARS-CoV-2 induces an immune response to protect against reinfection.^{10–14} However, reinfection could occur due to waning, naturally induced immunity^{15,16} or virus evolution.^{17,18} Nevertheless, studies have shown that, compared

with persons with no prior infection, vaccination among people with prior infection enhances neutralizing antibody activity as well as cell-mediated responses that can protect against (re)infection,¹⁹ suggesting prior infections may modify the protection from vaccinations. In settings where a large proportion of the population has prior exposure through infection, the unvaccinated will be more protected from infection than in a naïve population, thereby diluting the apparent effectiveness of vaccination. Under these 2 scenarios, prior infection modifies the effect of vaccination (Figure S1).

Prior infection can also alter an individual's decision to be vaccinated and to present for care. For example, vaccination requirements vary for people with recent prior infection in Hong Kong.²⁰ Moreover, individuals with recent infection may choose not to be vaccinated if they believe they have sufficient preexisting immunity to prevent reinfection and ameliorate the severity of any reinfections that do occur.²¹ Additionally, these individuals may also choose not to present for care, believing their COVID-like symptoms are due to another illness, leading to differential under-ascertainment of previously infected COVID-19 cases in surveillance data. Other individual-level factors may also affect the decision to vaccinate and engage in infection-risk behaviors,

Received: March 24, 2023. Accepted: June 17, 2024

© The Author(s) 2024. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

such as perceived risk of severe disease after infection.²²⁻²⁴ Acting in this way, prior infection may create a confounding bias along the lines of vaccination-COVID-19 association (Figure S1).

Here, we systematically review and meta-analyze published data to characterize the potential impact of preexisting population immunity on VE estimates for completed primary vaccination series against COVID-19. We also conducted meta-regression to account for the influence of key design features such as vaccine types and circulating virus strains.

Methods

Search strategy and selection criteria

This systematic review was conducted following the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement.²⁵ The review was not registered. A standardized search was done in PubMed, Embase and Web of Science, using the search terms ("test negative" OR "effectiveness") AND ("vaccine") AND ("COVID-19" OR "SARS-CoV-2"). The search was done on July 11, 2022, with no language restrictions. Additional relevant articles from the reference sections of identified articles were also reviewed. Two authors (X.H. and C.W.) independently screened the titles and full texts, and extracted data from the included studies, with disagreement resolved by consensus together with a third author (T.K.T.). Studies identified from different databases were deduplicated.

Studies that reported using a test-negative approach in which all cases and noncases were tested were included,^{26,27} regardless of whether the studies assessed the role of preexisting immunity on VE estimates. We included published TND studies with participants recruited from the general population and reported VE estimates for completed primary vaccination series (2 doses for most vaccines; 1 dose for the Janssen vaccine) against at least 1 of the following endpoints: (1) positive test result, (2) symptomatic disease, (3) hospitalization, (4) intensive care unit admission, (5) severe COVID-19, and (6) death. We excluded articles if (1) the study participants were recruited from a specific sub-population, such as health care professionals; (2) studies that summarized or reanalyzed already published data; (3) studies that only reported pooled VE estimates for different vaccines; (4) the study was a preprint and, thus, was not peer-reviewed; or (5) the full text was not available.

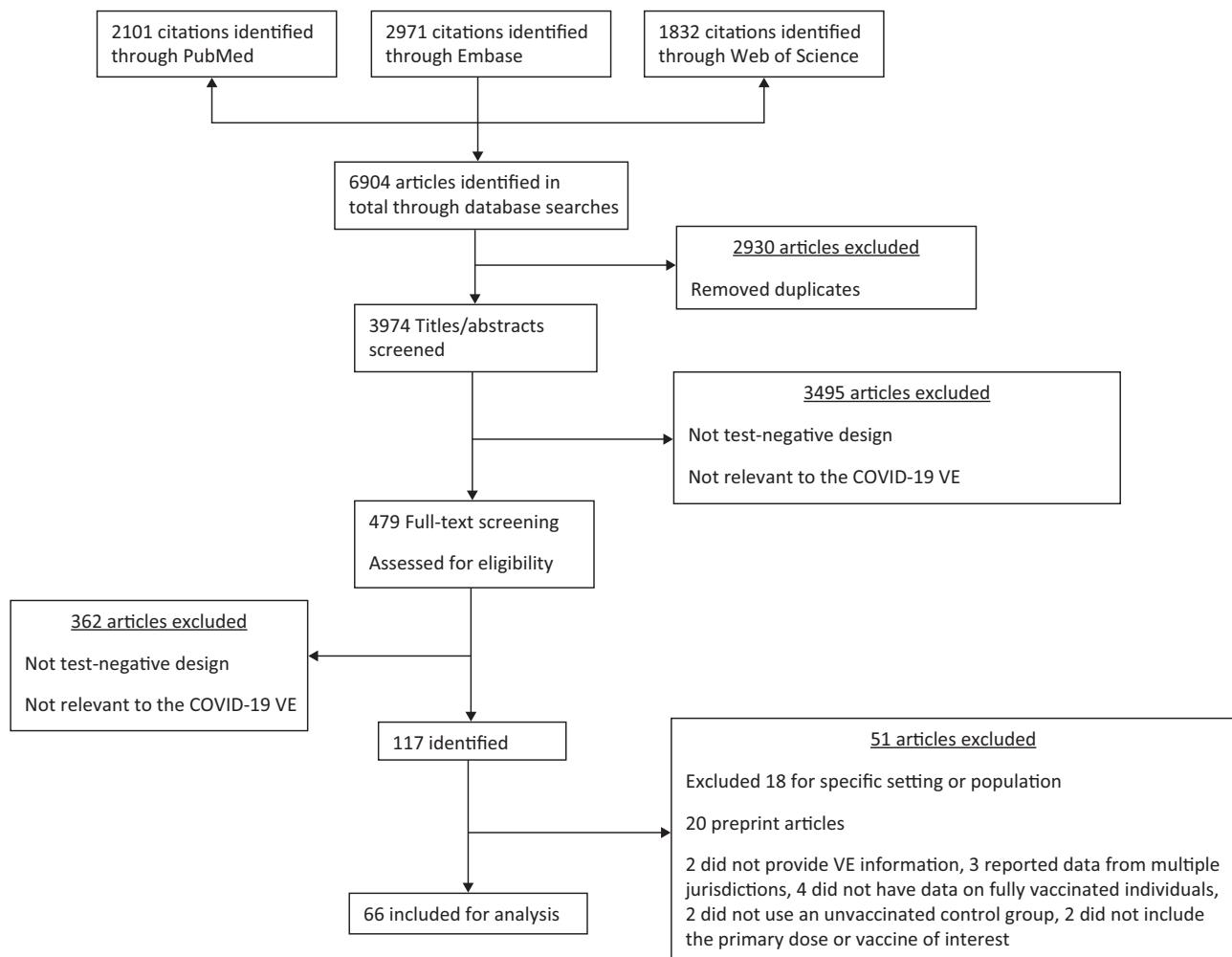
Data were extracted from included studies using a standardized data collection form (Table S2) that collected information about the (1) study period; (2) region(s); (3) population; (4) the use of clinical criteria for enrollment; (5) whether participants with prior SARS-CoV-2 infection were included, and the corresponding proportion of participants with infections if available; and (6) method to determine vaccination status. For each study, confounder-adjusted VE estimates with CIs were extracted separately for each endpoint (eg, infection, hospitalization), vaccine, and the circulating virus. In some studies, VEs specific to time intervals after vaccination were reported. Therefore, we extracted VE estimates for the first available time interval at least 14 days after vaccination (ie, 14-30 days after vaccination), because antibodies have been shown to peak by then in naïve persons.²⁸ For studies that reported multiple estimates, such as by age group or type of vaccine, all subgroup-specific estimates were included, but the overall estimates were excluded.

Study quality was assessed by using the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool.²⁹ The certainty of evidence presented in an article included that the meta-analysis was graded using the Grading of Recommen-

dations Assessment, Development, and Evaluation (GRADE) approach.³⁰

Meta-analysis

In all identified studies, VE was defined as $100\% \times (1 - \text{odds ratio [OR]})$. The extracted VE estimates were meta-analyzed to estimate pooled VE. The VE estimates were transformed to the ORs scale, meta-analyzed, then back-transformed to the VE scale for interpretation. The pooled OR was estimated by random-effects meta-analyses using the inverse variance method and restricted maximum likelihood estimator for heterogeneity.³¹⁻³⁴ Heterogeneity was assessed using Cochran's Q and the I^2 statistic.³⁵ We considered an I^2 value $>75\%$ to be indicative of high heterogeneity.³⁶ We also conducted a sensitivity analysis using fixed-effects meta-analyses.


The main study feature of interest was inclusion or exclusion of participants with prior infection. Severe disease was based on whether the estimate was limited to patients who required hospitalization, who required intensive care unit admission, and those who died. Otherwise, the estimate was classified as VE against infection, which referred to estimates of VE against test-positive or symptomatic infection (without hospitalization).

Pooled estimates were additionally disaggregated by the probable circulating virus and vaccine administered. Most studies did not report variant-specific VE estimates but did report study periods and the general prevalence of variants during that period. If this information was not reported, we used the Nextstrain³⁷ to determine the dominant variant in the study period in the study location. The variant with the highest proportion was considered to be the dominant variant. Therefore, estimates were grouped according to the predominant circulating virus, as follows: (1) Omicron; (2) late-Delta, which was the period with co-circulation of Delta and Omicron; (3) Delta; and (4) pre-Delta, which included ancestral strains and variants preceding Delta. The type of vaccine was categorized as follows: (1) mRNA vaccines, including vaccines produced by Moderna and Pfizer-BioNTech; (2) adenovirus vector vaccines, including vaccines produced by AstraZeneca, Janssen, and Gamaleya; and (3) inactivated virus vaccines, including vaccines produced by Sinovac Biotech and Sinopharm.

Meta-regression

To evaluate the impact of preexisting immunity on VE estimates, we used a meta-regression approach. Three proxies of prior immunity were explored: (1) inclusion vs exclusion of participants with prior infection; (2) cumulative incidence of COVID-19 since December 2019 in each of the study countries or regions before the study; and (3) the incidence rate of COVID-19 in the country or region during the study period. For this, we downloaded population denominator data and daily COVID-19 case data from the World Health Organization website.^{38,39} We first used correlation analysis, including Pearson (r) and Spearman (ρ) correlation coefficients, to determine the association between preexisting immunity and VE estimates. Meta-regression models were adjusted for age group (all ages, child only, adult and elderly, elderly only), types of vaccines used, predominant circulating virus, the use of clinical criteria for enrollment, the time interval after vaccination (14-30 days after vaccination, unrestricted), and the method to determine vaccination status. A sensitivity analysis was conducted to additionally adjust for location and duration of the study.

The fitted meta-regression model estimated the ratio of ORs (ROR) for each of the prior immunity proxies explored. On the

Figure 1. Selection of studies for the systematic review. VE, vaccine effectiveness.

OR scale, values closer to 0 indicated a more effective vaccine, and values closer to 1 indicated a less effective vaccine. This was counter to the VE scale, on which values closer to 0 indicated an ineffective vaccine. Therefore, using inclusion vs exclusion of participants with prior infection as an example, if $ROR > 1$, then the OR estimated from studies including participants with prior infection was higher than that from studies excluding participants with prior infection. On the VE scale, this translates to lower VE for studies that included participants with prior infection than studies that excluded these participants.

We plotted the expected change in VE estimate to visualize the impact of each prior immunity proxy based on the ROR obtained from meta-regression. To illustrate the change in VE scale, we showed the change in estimate based on the ROR assuming VE for the reference group of 80% against infection and 90% against severe disease. Statistical analyses were conducted using R, version 4.0.5 (R Foundation for Statistical Computing), using the *metaphor* for meta-analyses and the *robvis* package for risk-of-bias visualizations.

Results

We identified 6904 studies, among which 2929 were duplicates. Title and abstract screening of the remaining articles identified 479 for full-text review, of which 66 met our inclusion criteria^{4-7,40-101} (Figure 1; Tables S3-S8). Studies were set in 17

countries or regions. Most were from the United States²⁸ and United Kingdom.¹⁰ Fifty-one studies provided 173 VE estimates against infection (Figure 2), and 40 studies provided 91 estimates against severe disease (Figure 3). Among all 66 studies, 40 included and 28 excluded participants with prior COVID-19 infection (including 2 studies that provided VE estimates including and excluding participants with COVID-19 infection^{4,88}). A summary of study characteristics and the corresponding number of estimates, including handling of participants with prior infections, enrollment criteria, vaccine types, and circulating virus are provided in Tables S3-S7.

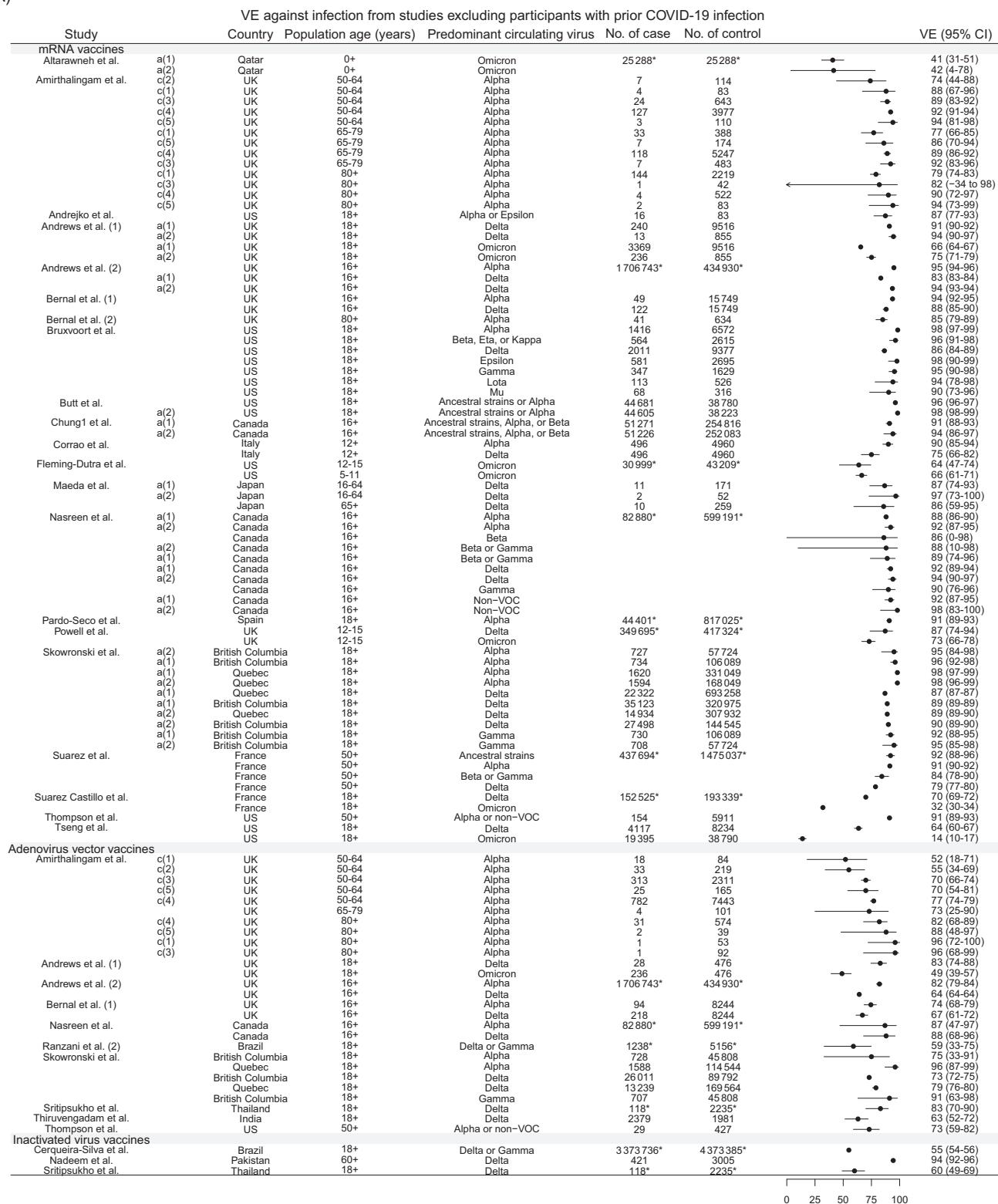
VE against infection and severe disease

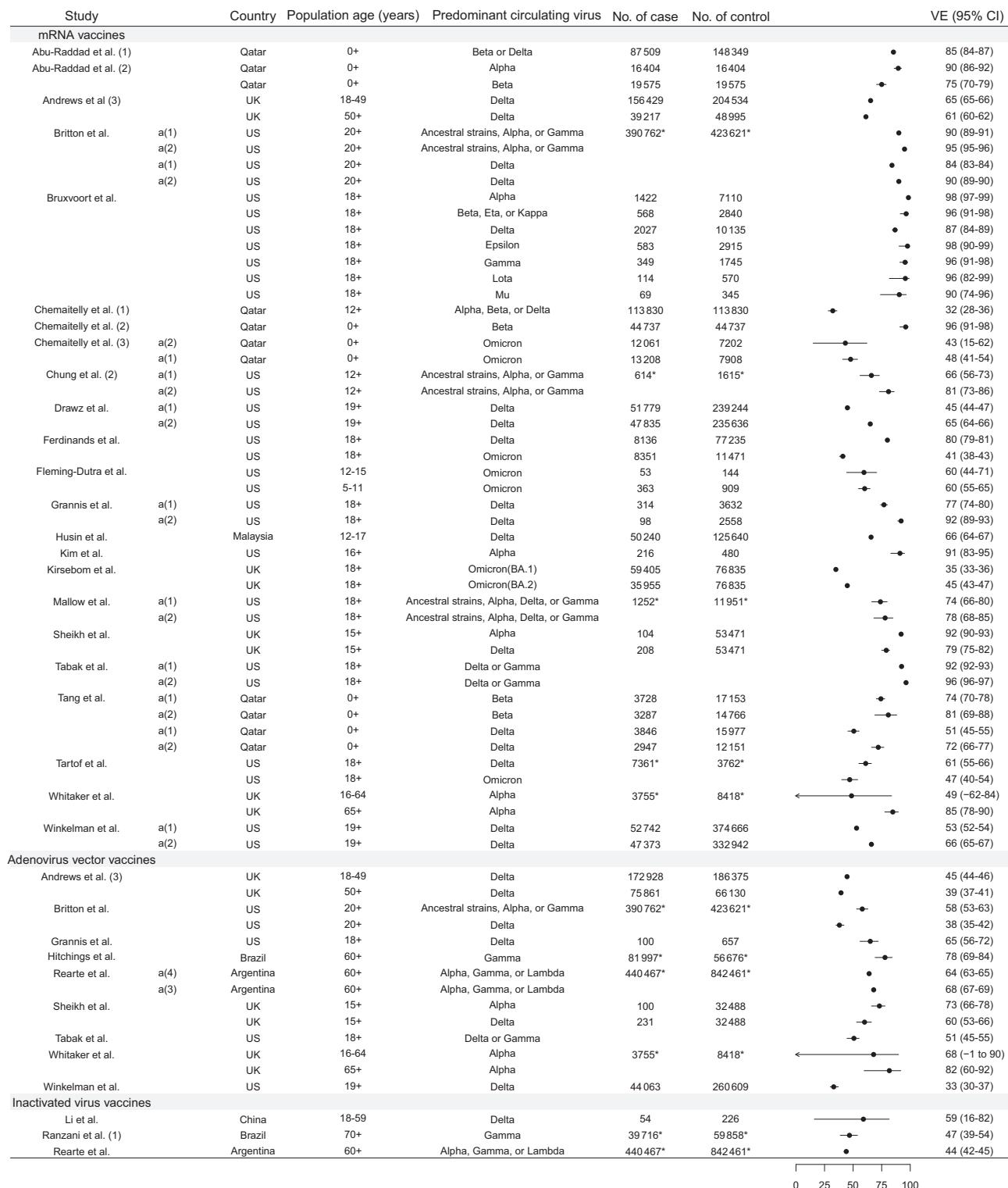
The 173 VE point estimates against infection ranged from 14% to 98%, with $I^2 = 100\%$, indicating considerable heterogeneity (Figures 4 and 5). Ninety-five VE estimates (55%) were higher than 80%. The 91 VE point estimates against severe disease were also considerably heterogeneous ($I^2 > 97\%$), ranging from 20% to 100% (Figures 4 and 5). Among them, 70 (77%) were higher than 80%. For both outcomes, we observed declining VE over time from early 2021 to mid-2022 (Figure S2).

Impact of type of vaccine and circulating viruses

Our meta-analysis (Figure 5) indicated that pooled VE against infection for a primary course of mRNA vaccines was 86% (95% CI, 84-88), compared with 69% (95% CI, 64-73) for adenovirus vector

A)




Figure 2. Continues

vaccines and 67% (95% CI, 34-84) for inactivated virus vaccines. When we examined differences in pooled VE by the circulating virus, we found that VE against infection during the Omicron period was far lower (52%; 95% CI, 45-59) than during the pre-Delta (89%; 95% CI, 87-91), Delta (78%; 95% CI, 58-88), and the late-Delta (79%; 95% CI, 74-92) periods. Similarly, VE against severe

disease during the Omicron period was 64% (95% CI, 52-73), which was lower than for pre-Delta (92%; 95% CI, 89-94), Delta (87%; 95% CI, 76-93), and late-Delta (91%; 95% CI, 88-93) periods. The results were similar when further disaggregated by including or excluding prior infection (Table S9) or using fixed-effects analysis (Figure S3).

B)

VE against infection from studies including participants with prior COVID-19 infection

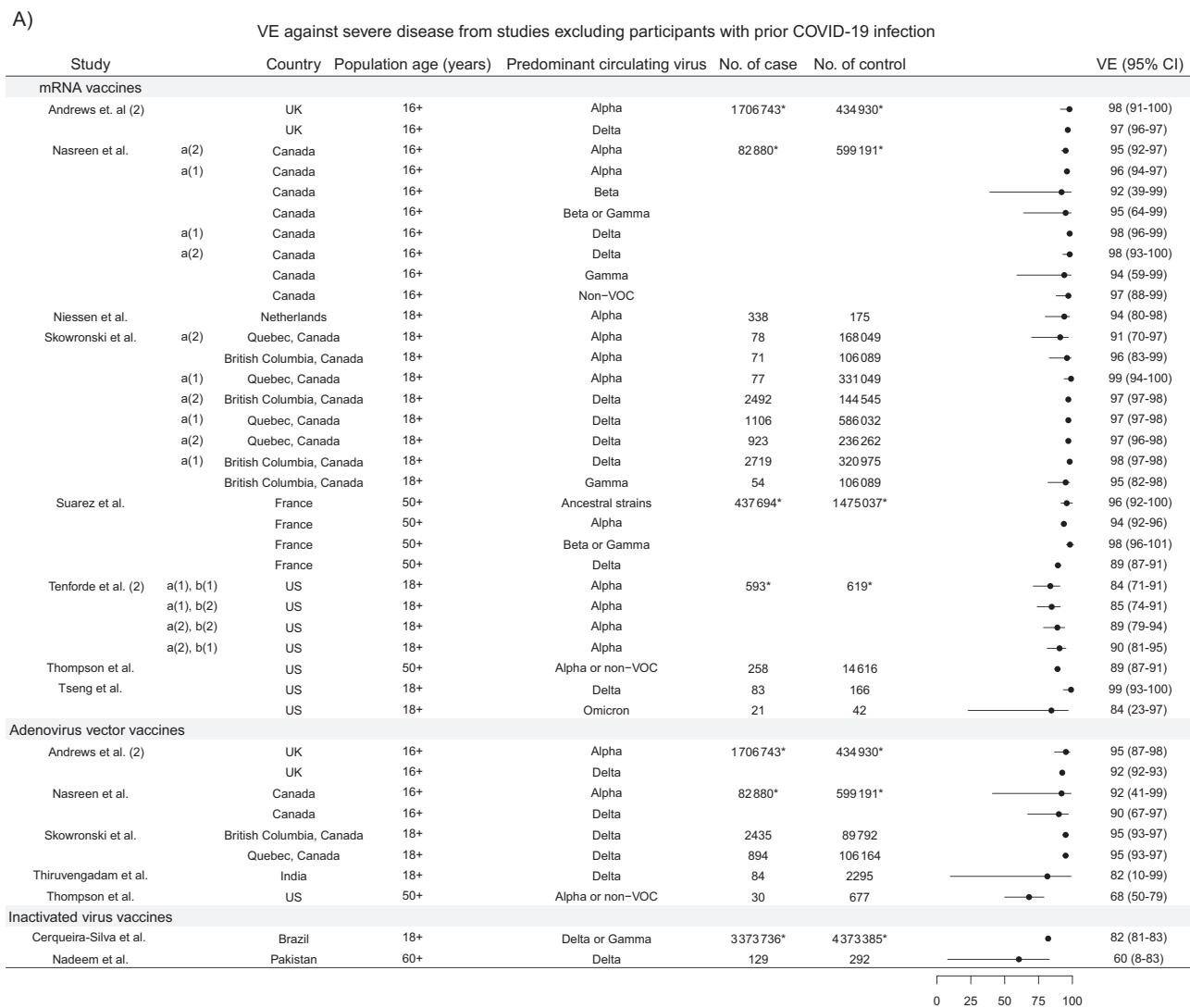


Figure 2. Estimates of vaccine effectiveness (VE) against infection from identified studies that excluded (A) or included (B) participants with COVID-19 infection history. Multiple estimates could be due various factors. These are labeled as follows: for vaccine, a(1) for Pfizer, a(2) for Moderna, a(3) for ChAdOx1, or a(4) for rAd26-rAd5 (Sputnik V); as for the control, b(1) for syndrome-negative), and (b2) for test-negative control; and for different duration between first and second dose: (c1) for 19-29 days, (c2) for 30-44 days, (c3) for 45-64 days, (c4) for 65-84 days, and (c5) for ≥85 days. VOC, variant of concern.

Role of prior infection on VE estimates

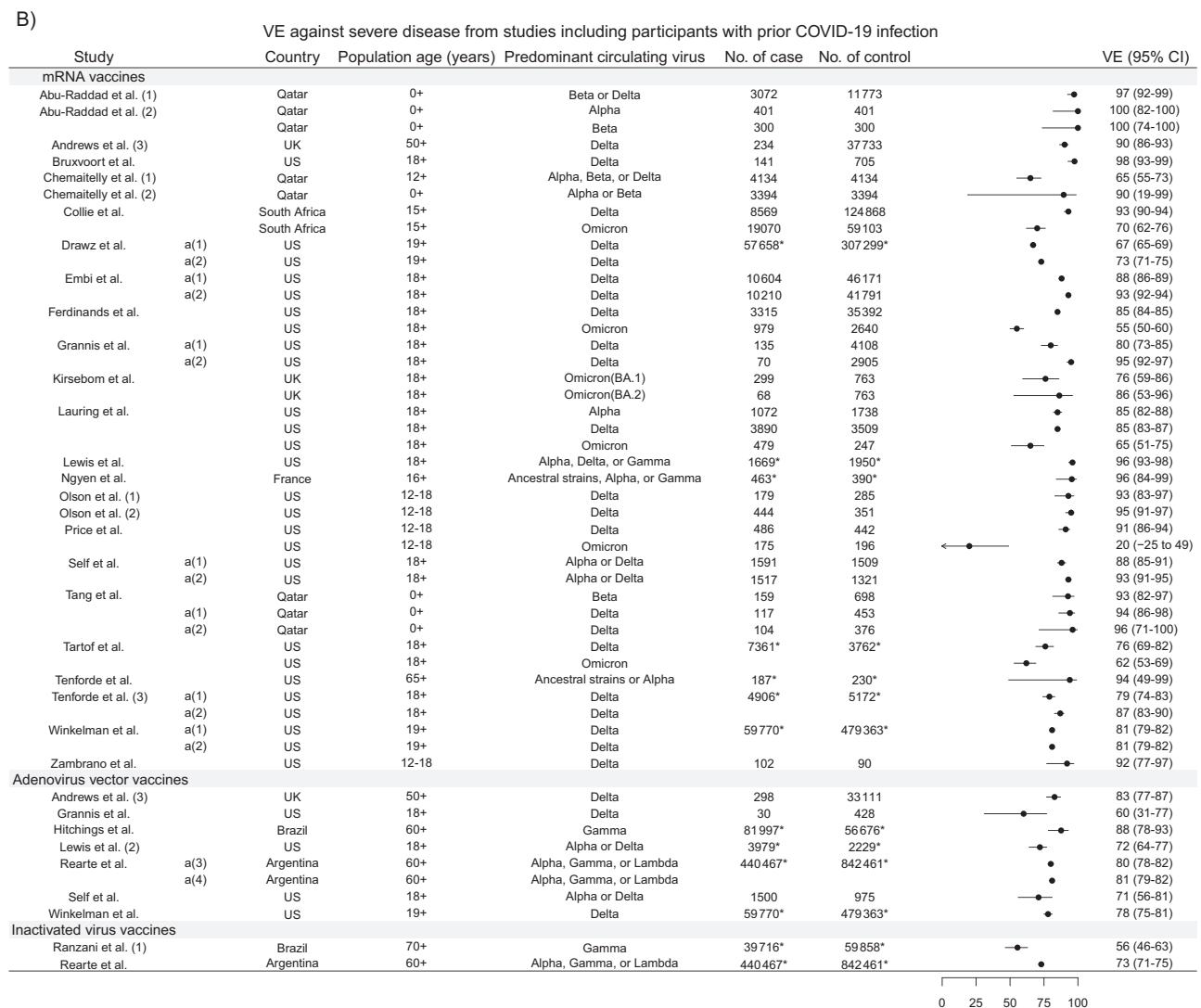
In general, VE estimates derived from study participants with lower preexisting immunity were higher. The pooled VE against

infection for studies that excluded participants with prior COVID-19 infection was higher (87%; 95% CI, 84-89) than from studies that included these participants (76%; 95% CI, 71-81). Similarly, pooled

Figure 3. Continues

VE against severe disease from studies that excluded participants with prior COVID-19 infection (94%; 95% CI, 92-95) was higher than from studies that included these participants (86%; 95% CI, 82-88), with considerable heterogeneity among the estimates ($I^2 > 99\%$).

In meta-regression adjusting for vaccine type, circulating virus, and enrollment criteria (Table S10; Figure 6, Figure S4), the OR against infection from studies that included participants with prior COVID-19 infection was 1.62-fold higher (95% CI, 1.32-1.98) than the OR from studies that excluded these participants (ie, with generally lower preexisting immunity). Therefore, if the VE against infection in a study that originally excluded participants with prior COVID-19 infection was 80%, the expected estimate was 68% (95% CI, 60-74) had they included those participants. Similarly, the OR against severe disease from studies that included participants with prior COVID-19 infection was 2.34-fold higher (95% CI, 1.60-3.40) than from studies that excluded these participants. Assuming a baseline VE against severe disease of 90%, the expected VE when participants with prior infection were included would be 77% (95% CI, 66-84). When using the proportion of individuals with prior infections, the results were similar to those obtained when the variable used was whether or not the study included participants with prior infections (Table S10). The results


were similar with adjustment for location and duration of study (Table S11).

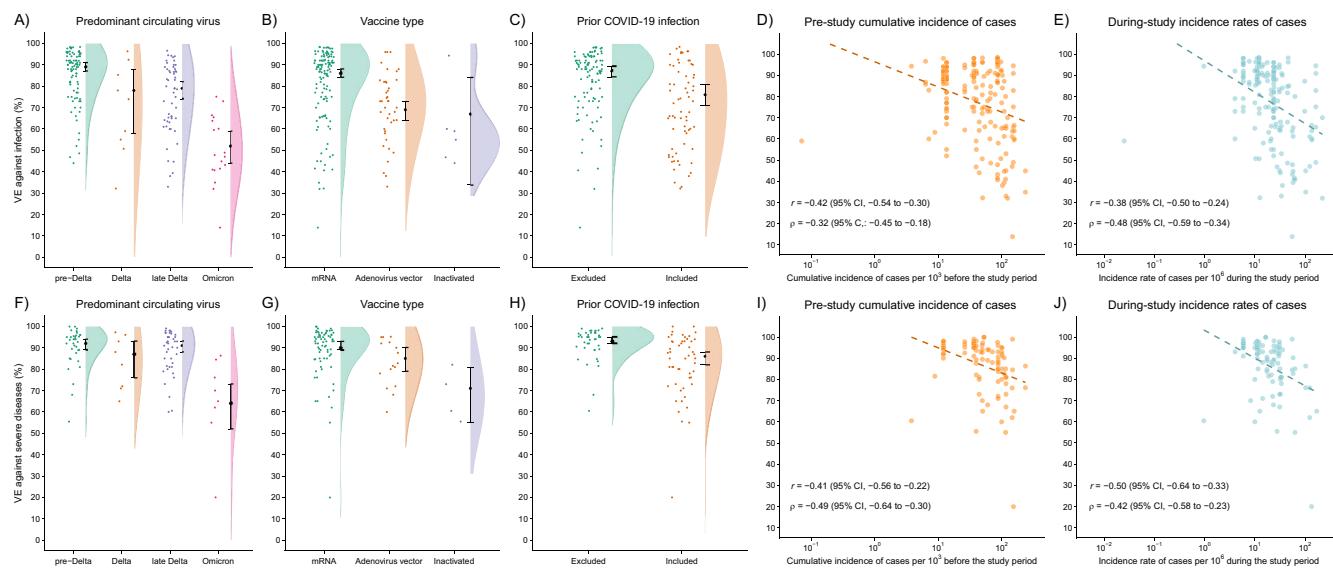
Impact of population incidence in the study locations

There was a modest negative correlation between prestudy cumulative incidence of cases (Figure 4) as a proxy of preexisting population immunity (Figure S5), and VE against infection ($r = -0.42$ [95% CI, -0.54 to -0.30]; $p = -0.32$ [95% CI, -0.45 to -0.18]) and severe disease ($r = -0.41$, 95% CI, -0.56 to -0.22; $p = -0.49$ [95% CI, -0.64 to -0.30]). There was also a modest negative correlation between the during-study incidence rates of cases with VE against infection ($r = -0.38$ [95% CI, -0.50 to -0.24]; $p = -0.48$ [95% CI, -0.59 to -0.34]) and severe disease ($r = -0.50$ [95% CI, -0.64 to -0.33]; $p = -0.42$ [95% CI, -0.58 to -0.23]).

The Pearson and Spearman correlation coefficients were modestly negative between prestudy cumulative incidence of cases (Figure S5), and VE against infection (Figure 4D) and severe disease (Figure 4E). Similarly, we estimated a negative correlation between during-study incidence rates of cases (Figure S5), and VE against infection (Figure 4I) and severe disease (Figure 4J).

In meta-regression, adjusting for vaccine type, circulating virus, and enrollment criteria (Table S10; Figure 6, Figure S4), the ROR against infection associated with twice prestudy cumulative

Figure 3. Estimates of vaccine effectiveness (VE) against severe disease from identified studies that excluded (A) or included (B) participants with COVID-19 infection history. Multiple estimates could be due to various factors. These are labeled as follows: for vaccine, a(1) for Pfizer, a(2) for Moderna, a(3) for ChAdOx1, or a(4) for rAd26-rAd5 (Sputnik V); as for the control, b(1) for syndrome-negative), and (b2) for test-negative control; and for different duration between first and second dose: (c1) for 19-29 days, (c2) for 30-44 days, (c3) for 45-64 days, (c4) for 65-84 days, and (c5) for ≥ 85 days. VOC, variant of concern.

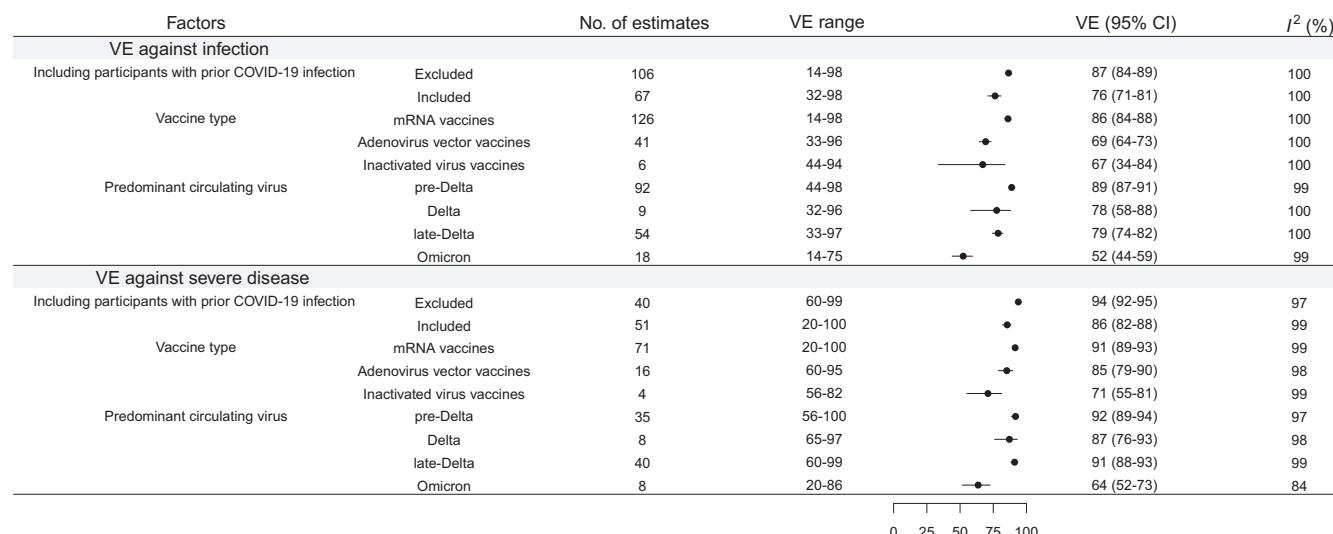

incidence of cases was 1.13 (95% CI, 1.05-1.23). Therefore, if the baseline VE against infection from a study was 80%, then the corresponding VE for a setting with twice prestudy cumulative incidence of cases would represent a 2-percentage point reduction in VE (VE = 77%; 95% CI, 75-79 for the initial doubling). The ROR against severe disease for each doubling of prestudy cumulative incidence of cases (higher preexisting immunity) was 1.53 (95% CI, 1.31-1.77). Assuming a baseline VE against severe diseases of 90%, the corresponding VE for a setting with twice the prestudy cumulative incidence of cases would represent a 5 percentage point drop in VE (VE = 85%; 95% CI, 82-87 for a doubling).

Similarly, we estimated that the ROR against infection for each doubling of during-study incidence rate of cases was 1.16 (95% CI, 1.07-1.26). If the baseline VE against infection from a study was 80%, then the corresponding VE from a study with twice during-study incidence rate of cases would be 77% (95% CI, 75-79). We also estimated that the ROR against severe disease associated with twice during-study incidence rate of cases was

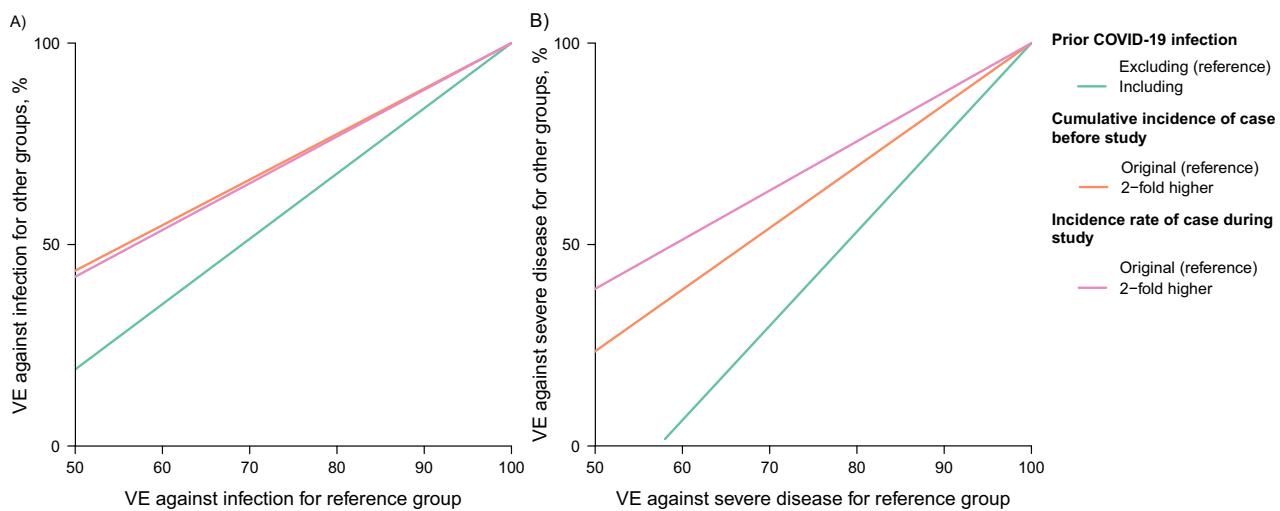
1.22 (95% CI, 1.04-1.43). Therefore, assuming a baseline VE of 90% against severe disease, the corresponding VE for a study with twice during-study incidence rate of cases would be 88% (95% CI, 86-89.6).

Risk of bias

Most studies included in the meta-analysis were judged to be at moderate risk of bias (analyses of VE against infection: 41 [80%] of 51 studies; analyses of VE against severity: 33 [83%] of 40 studies; **Figures S6-S7**). Eight studies (16%) included in the analyses of VE against infection and 5 studies (13%) in analyses of VE against severity were judged to be at a serious risk of bias. The main sources of bias were potential confounding, bias in the classification of interventions due to self-reported vaccination status, and bias due to missing data (**Figures S6-S7**). We conducted a sensitivity analysis that removed estimates from studies classified as having serious or critical bias (**Figure S8; Table S12**), and the impact of prior infections was still similar to one estimated in the main analysis.


Figure 4. Vaccine effectiveness (VE) point estimates from identified studies based on prior infection (A), predominant circulating virus (B) and vaccine type (C). Each point represents the VE point estimate. Estimates are jittered to enable visualization. Black points represent the pooled VE estimate from meta-analysis, with black lines representing the 95% CI around the pooled estimate. The shaded area is the violin plot, showing the smoothed density of the VE point estimates. VE estimates against infection and severity disease (D) vs the cumulative incidence of cases before the study (in log scale) (I) in the study regions are shown; VE estimates against infection and severity disease (E) vs the incidence rate of cases during study (in log scale) (J) in the study regions are shown. Pearson (r) and spearman (p) correlation coefficients are provided.

Discussion


In this study, we summarized VE estimates from TND studies to understand the impact of prior infections on VE estimates. We found that higher preexisting immunity in the source population, indicated by including participants with prior COVID-19 infection, higher prestudy cumulative incidence of cases, and higher during-study incidence rate of cases, was associated with lower VE.

Prior infection could be a confounder, effect modifier, or both. As a confounder, it could affect a person's decision to vaccinate and modify their risk behaviors as well as provide protection against reinfection.^{12,13,21} Hence, the VE obtained from individuals with or without prior infection would be similar if the

influence of the confounding could be controlled in analysis. On the other hand, if prior infection were only an effect modifier (ie, only associated with the risk of (re)infection and not the propensity to be vaccinated), vaccination in settings with higher preexisting immunity would appear to have a relatively modest effect on further increasing protection at the population level, because VE would be lower among previously infected participants, compared with VE among uninfected participants.^{12,13} This scenario differs from hybrid immunity,^{102,103} which refers to the scenario in which a combination of naturally acquired and vaccine-induced immunity provides stronger protection against SARS-CoV-2 infection than vaccine-derived immunity alone (estimated only on the basis of vaccinated participants).

Figure 5. Pooled vaccine effectiveness (VE) estimates against infection and severe disease by circulating virus, vaccine types, and the inclusion or exclusion of participants with prior COVID-19 infection from random-effect meta-analysis.

Figure 6. Predicted vaccine effectiveness (VE) for a group of individuals based on the estimated ratio of odds ratios estimated from meta-regression, and the VE for the individuals in the reference group. Predicted VE against infection (A) and severe disease (B) are shown. Prior COVID-19 infection, cumulative incidence of cases before the study, and the incidence rate of cases during study are considered. Models adjusted for age group, type of vaccine, predominant circulating virus, and enrolment criteria, corresponding to the estimate in model 1.

In reality, prior infection is probably both a confounder and effect modifier and, therefore, studies should consider both an appropriate confounding control, such as through covariate adjustment or stratification, as well as inclusion of interaction terms to explore the potential effect modification. The impact of prior infection could be even larger than observed in our study, because not all prior infections may be documented and, therefore, some participants may have been unknowingly infected and misclassified as infection-naïve. As the pandemic progresses, the proportion of undocumented previous infections could grow. This is likely to be particularly problematic for prior Omicron infections because that variant has lower severity than previous strains.^{104,105}

When VE was estimated on the basis of studies excluding participants with prior infection, these VE estimates should be interpreted as the VE for a hypothetical population with no pre-existing immunity. As of 2023, these estimates have limited practical value because most locations have experienced substantial epidemics. Epidemic forecasting models used to inform public health control policies should separate individuals into different compartments based on infection history to improve the precision of their forecasts. Therefore, groups estimating VE estimates to inform policy should stratify by infection history so their work will be more broadly useful for policy.^{106,107}

Although 55% of VE estimates against infection and 76% of estimates against severe disease were higher than 80%, heterogeneity was considerable, based on high I^2 values. Consistent with previous reviews, high heterogeneity could be attributed to differences in effectiveness among vaccine types or the predominant circulating virus in each study.^{8,108} However, we continued to observe high heterogeneity when estimating pooled VE against specific vaccine types and the predominant virus. Our meta-regression identified some sources of the heterogeneity, such as preexisting immunity. Further investigation is needed to identify other causes to ensure valid VE estimates are available for ongoing optimization of vaccination strategies.¹⁰⁹

Our review focused on VE of primary vaccination series to answer the research question of whether prior infection may have an impact on VE estimates. Further analysis would be required to determine whether similar issues apply to estimation of VE for

booster doses, which are complicated by dosing schedules that mix vaccine types, the number of doses received, greater antigenic differences between the vaccines received and the dominant circulating virus, changes in vaccine formulation including bivalent formulations, and the accumulation of immunity through both vaccination and infection over time.

Our study had some limitations. First, most studies were conducted with adults, so our results may not be generalizable to children. Second, TND studies included in our review were observational. Some confounders were adjusted for in these studies, including age, sex, being a health care worker, or preexisting conditions. Despite our bias assessment to evaluate whether studies adequately addressed confounding and considered other potential sources of bias, such as measurement errors and selection bias, we cannot rule out other unidentified sources of bias. Third, the predominant variant was determined by Nextstrain³⁷ for some studies, which can be inaccurate. Fourth, multiple group-specific estimates reported from studies were included in the analysis (Table S5). If a study reported estimates for multiple factors, such as age group-specific VE estimates and vaccine type-specific estimates, there could be correlations among VE estimates from the same study. Finally, we used incidences of COVID-19 in study countries as a proxy for preexisting immunity. However, we acknowledge that national statistics may not apply to individual study sites.

In conclusion, we observed reduced VE associated with higher preexisting immunity in the population, which is likely to act both as a confounder and effect modifier of the vaccine's effect. Exclusion of participants with prior infection could artificially inflate VE estimates and affect their generalizability to the wider population. If the goal of a study is to inform policy that applies to the whole population, participants with prior infection should be included and their status included as a covariate for confounder control. However, if decision-makers desire different vaccination policies dependent on infection history, then studies need to stratify or include interaction terms, rather than exclude participants with prior infection. In studies in which prior infection cannot be adjusted for, researchers could consider using external adjustment¹¹⁰ to assess the potential effect of this confounder on their estimates. Optimal design of VE studies remains a research

priority. In particular, more work is needed to understand how prior infection influences VE for booster doses and as vaccine formulations change.

Supplementary material

Supplementary material is available at *American Journal of Epidemiology* online.

Funding

This project was supported by the National Institute of General Medical Sciences (grant R01 GM139926), and the Theme-based Research Scheme (project T11-712/19-N) of the Research Grants Council of the Hong Kong SAR Government. B.J.C. is supported by a Research Grants Council Senior Research Fellowship (grant HKU SRFS2021-7S03) and the AIR@innoHK program of the Innovation and Technology Commission of the Hong Kong SAR Government. The WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health and Aged Care.

Conflict of interest

B.J.C. reports honoraria from AstraZeneca, Fosun Pharma, GSK, Haleon, Moderna, Pfizer, Roche, and Sanofi Pasteur. J.N. was previously employed by and owns stocks in Sanofi. S.G.S. reports honoraria from CSL Seqirus, Novavax, and Pfizer. The other authors declare no conflicts.

References

- Bergwerk M, Gonon T, Lustig Y, et al. Covid-19 breakthrough infections in vaccinated health care workers. *N Engl J Med*. 2021; 385(16):1474-1484. <https://doi.org/10.1056/NEJMoa2109072>
- Lipsitch M, Krammer F, Regev-Yochay G, et al. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. *Nat Rev Immunol*. 2022;22(1):57-65. <https://doi.org/10.1038/s41577-021-00662-4>
- Belongia EA, Simpson MD, King JP, et al. Variable influenza vaccine effectiveness by subtype: a systematic review and meta-analysis of test-negative design studies. *Lancet Infect Dis*. 2016;16(8):942-951. [https://doi.org/10.1016/S1473-3099\(16\)00129-8](https://doi.org/10.1016/S1473-3099(16)00129-8)
- Bruxvoort KJ, Sy LS, Qian L, et al. Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. *BMJ*. 2021;375:e068848. <https://doi.org/10.1136/bmj-2021-068848>
- Andrews N, Stowe J, Kirsebom F, et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. *N Engl J Med*. 2022;386(16):1532-1546. <https://doi.org/10.1056/NEJMoa2119451>
- Tseng HF, Ackerson BK, Luo Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and Delta variants. *Nat Med*. 2022;28(5):1063-1071. <https://doi.org/10.1038/s41591-022-01753-y>
- Chemaitelly H, Yassine HM, Benslimane FM, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. *Nat Med*. 2021; 27(9):1614-1621. <https://doi.org/10.1038/s41591-021-01446-y>
- Higdon MM, Wahl B, Jones CB, et al. A systematic review of coronavirus disease 2019 vaccine efficacy and effectiveness against severe acute respiratory syndrome coronavirus 2 infection and disease. *Open Forum Infect Dis*. 2022;9(6):ofac138. <https://doi.org/10.1093/ofid/ofac138>
- Lewnard JA, Patel MM, Jewell NP, et al. Theoretical framework for retrospective studies of the effectiveness of SARS-CoV-2 vaccines. *Epidemiology*. 2021;32(4):508-517. <https://doi.org/10.1093/ede.0000000000001366>
- Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. *J Med Virol*. 2020;92(4):424-432. <https://doi.org/10.1002/jmv.25685>
- Suryadevara N, Shrihari S, Gilchuk P, et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. *Cell*. 2021; 184(9):2316-2331.e15. <https://doi.org/10.1016/j.cell.2021.03.029>
- Kojima N, Shrestha NK, Klausner JD. A systematic review of the protective effect of prior SARS-CoV-2 infection on repeat infection. *Eval Health Prof*. 2021;44(4):327-332. <https://doi.org/10.1177/01632787211047932>
- Leidi A, Koegler F, Dumont R, et al. Risk of reinfection after seroconversion to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a population-based propensity-score matched cohort study. *Clin Infect Dis*. 2022;74(4):622-629. <https://doi.org/10.1093/cid/ciab495>
- Hansen CH, Michlmayr D, Gubbels SM, et al. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. *Lancet*. 2021;397(10280):1204-1212. [https://doi.org/10.1016/S0140-6736\(21\)00575-4](https://doi.org/10.1016/S0140-6736(21)00575-4)
- Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. *Nat Med*. 2020;26(6):845-848. <https://doi.org/10.1038/s41591-020-0897-1>
- Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. *Science*. 2021;371(6529):eabf4063. <https://doi.org/10.1126/science.abf4063>
- Pulliam JRC, van Schalkwyk C, Govender N, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of omicron in South Africa. *Science*. 2022;376(6593):eabn4947. <https://doi.org/10.1126/science.abn4947>
- Townsend JP, Hassler HB, Wang Z, et al. The durability of immunity against reinfection by SARS-CoV-2: a comparative evolutionary study. *Lancet Microbe*. 2021;2(12):e666-e675. [https://doi.org/10.1016/S2666-5247\(21\)00219-6](https://doi.org/10.1016/S2666-5247(21)00219-6)
- Reynolds CJ, Pade C, Gibbons JM, et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. *Science*. 2021;372(6549):1418-1423. <https://doi.org/10.1126/science.abh1282>
- The Government of the Hong Kong Special Administrative Region. Vaccine pass. accessed August 26, 2022, <https://www.coronavirus.gov.hk/eng/vaccine-pass.html>
- Troiano G, Nardi A. Vaccine hesitancy in the era of COVID-19. *Public Health*. 2021;194:245-251. <https://doi.org/10.1016/j.puhe.2021.02.025>
- Robinson E, Jones A, Lesser I, et al. International estimates of intended uptake and refusal of COVID-19 vaccines: a rapid systematic review and meta-analysis of large nationally representative samples. *Vaccine*. 2021;39(15):2024-2034. <https://doi.org/10.1016/j.vaccine.2021.02.005>
- Parker DM, Bruckner T, Vieira VM, et al. Predictors of test positivity, mortality, and seropositivity during the early coronavirus disease epidemic, Orange County, California, USA. *Emerg Infect Dis*. 2021;27(10):2604-2618. <https://doi.org/10.3201/eid2710.210103>

24. Jara A, Undurraga EA, González C, et al. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. *N Engl J Med.* 2021;385(10):875-884. <https://doi.org/10.1056/NEJMoa2107715>

25. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6(7):e1000097. <https://doi.org/10.1371/journal.pmed.1000097>

26. Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical basis of the test-negative study design for assessment of influenza vaccine effectiveness. *Am J Epidemiol.* 2016;184(5):345-353. <https://doi.org/10.1093/aje/kww064>

27. Jackson ML, Nelson JC. The test-negative design for estimating influenza vaccine effectiveness. *Vaccine.* 2013;31(17):2165-2168. <https://doi.org/10.1016/j.vaccine.2013.02.053>

28. Yang B, Huang X, Gao H, et al. Immunogenicity, efficacy, and safety of SARS-CoV-2 vaccine dose fractionation: a systematic review and meta-analysis. *BMC Med.* 2022;20(1):409. <https://doi.org/10.1186/s12916-022-02600-0>

29. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ.* 2016;355:i4919. <https://doi.org/10.1136/bmj.i4919>

30. Schünemann H, Guyatt G, Oxman A. GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations. Updated October 2013. The GRADE Working Group. Accessed June 1, 2022. Available from: <https://gdt.gradepro.org/app/handbook/handbook.html>

31. Hedges LV, Vevea JL. Fixed- and random-effects models in meta-analysis. *Psychol Methods.* 1998;3(4):486-504. <https://doi.org/10.1037/1082-989X.3.4.486>

32. Langan D, Higgins JPT, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. *Res Synth Methods.* 2019;10(1):83-98. <https://doi.org/10.1002/jrsm.1316>

33. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. *Stat Med.* 1999;18(20):2693-2708. [https://doi.org/10.1002/\(SICI\)1097-0258\(19991030\)18:20<2693::AID-SIM235>3.0.CO;2-V](https://doi.org/10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V)

34. Veroniki AA, Jackson D, Bender R, et al. Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis. *Res Synth Methods.* 2019;10(1):23-43. <https://doi.org/10.1002/jrsm.1319>

35. Cochran WG. The combination of estimates from different experiments. *Biometrics.* 1954;10(1):101-129. <https://doi.org/10.2307/3001666>

36. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ.* 2003;327(7414):557-560. <https://doi.org/10.1136/bmj.327.7414.557>

37. Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evolution. *Bioinformatics.* 2018;34(23):4121-4123. <https://doi.org/10.1093/bioinformatics/bty407>

38. World Health Organization. Daily cases and deaths by date reported to WHO. (2020) Available from: <https://covid19.who.int/WHO-COVID-19-global-data.csv>

39. World Health Organization. COVID-19 Explorer (2020). Available from: <https://worldhealthorg.shinyapps.io/covid/>

40. Abu-Raddad LJ, Chemaitelly H, Ayoub HH, et al. Waning of mRNA-1273 vaccine effectiveness against SARS-CoV-2 infection in Qatar. *N Engl J Med.* 2022;386(11):1091-1093. <https://doi.org/10.1056/NEJM2119432>

41. Abu-Raddad LJ, Chemaitelly H, Butt AA, et al. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. *N Engl J Med.* 2021;385(2):187-189. <https://doi.org/10.1056/NEJM2104974>

42. Amirthalingam G, Bernal JL, Andrews NJ, et al. Serological responses and vaccine effectiveness for extended COVID-19 vaccine schedules in England. *Nat Commun.* 2021;12(1):7217. <https://doi.org/10.1038/s41467-021-27410-5>

43. Andrejko KL, Pry J, Myers JF, et al. Prevention of COVID-19 by mRNA-based vaccines within the general population of California. *Clin Infect Dis.* 2021;74(8):1382-1389. <https://doi.org/10.1093/cid/ciab640>

44. Andrews N, Tessier E, Stowe J, et al. Duration of protection against mild and severe disease by Covid-19 vaccines. *N Engl J Med.* 2022;386(4):340-350. <https://doi.org/10.1056/NEJMoa2115481>

45. Bernal JL, Andrews N, Gower C, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. *N Engl J Med.* 2021;385(7):585-594. <https://doi.org/10.1056/NEJMoa2108891>

46. Bernal JL, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. *BMJ.* 2021;373:n1088. <https://doi.org/10.1136/bmj.n1088>

47. Britton A, Fleming-Dutra KE, Shang N, et al. Association of COVID-19 vaccination with symptomatic SARS-CoV-2 infection by time since vaccination and Delta variant predominance. *JAMA.* 2022;327(11):1032-1041. <https://doi.org/10.1001/jama.2022.2068>

48. Butt AA, Omer SB, Yan P, et al. SARS-CoV-2 vaccine effectiveness in a high-risk national population in a real-world setting. *Ann Intern Med.* 2021;174(10):1404-1408. <https://doi.org/10.7326/M21-1577>

49. Cerqueira-Silva T, Katikireddi SV, de Araujo OV, et al. Vaccine effectiveness of heterologous CoronaVac plus BNT162b2 in Brazil. *Nat Med.* 2022;28(4):838-843. <https://doi.org/10.1038/s41591-022-01701-w>

50. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. *N Engl J Med.* 2021;385(24):e83. <https://doi.org/10.1056/NEJMoa2114114>

51. Chung H, He S, Nasreen S, et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. *BMJ.* 2021;374:n1943. <https://doi.org/10.1136/bmj.n1943>

52. Chung JR, Kim SS, Belongia EA, et al. Vaccine effectiveness against COVID-19 among symptomatic persons aged ≥ 12 years with reported contact with COVID-19 cases, February-September 2021. *Influenza Other Respi Viruses.* 2022;16(4):673-679. <https://doi.org/10.1111/irv.12973>

53. Collie S, Champion J, Moultrie H, et al. Effectiveness of BNT162b2 vaccine against omicron variant in South Africa. *N Engl J Med.* 2022;386(5):494-496. <https://doi.org/10.1056/NEJM2119270>

54. Corrao G, Franchi M, Rea F, et al. Protective action of natural and induced immunization against the occurrence of delta or alpha variants of SARS-CoV-2 infection: a test-negative case-control study. *BMC Med.* 2022;20(1):52. <https://doi.org/10.1186/s12916-022-02262-y>

55. Drawz PE, DeSilva M, Bodurtha P, et al. Effectiveness of BNT162b2 and mRNA-1273 second doses and boosters for SARS-CoV-2 infection and SARS-CoV-2 related hospitalizations: a statewide report from the Minnesota Electronic Health

Record Consortium. *Clin Infect Dis*. 2022;75(5):890-892. <https://doi.org/10.1093/cid/ciac110>

56. Embi PJ, Levy ME, Naleway AL, et al. Effectiveness of 2-dose vaccination with mRNA COVID-19 vaccines against COVID-19-associated hospitalizations among immunocompromised adults - nine states, January-September 2021. *MMWR Morb Mortal Wkly Rep*. 2021;70(44):1553-1559. <https://doi.org/10.15585/mmwr.mm7044e3>

57. Ferdinand JM, Rao S, Dixon BE, et al. Waning 2-dose and 3-dose effectiveness of mRNA vaccines against COVID-19-associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance - VISION network, 10 states, August 2021-January 2022. *MMWR Morb Mortal Wkly Rep*. 2022;71(7):255-263. <https://doi.org/10.15585/mmwr.mm7107e2>

58. Grannis SJ, Rowley EA, Ong TC, et al. Interim estimates of COVID-19 vaccine effectiveness against COVID-19-associated emergency department or urgent care clinic encounters and hospitalizations among adults during SARS-CoV-2 B.1.617.2 (Delta) variant predominance - nine states, June-August 2021. *MMWR Morb Mortal Wkly Rep*. 2021;70(37):1291-1293. <https://doi.org/10.15585/mmwr.mm7037e2>

59. Hitchings MDT, Ranzani OT, Dorion M, et al. Effectiveness of ChAdOx1 vaccine in older adults during SARS-CoV-2 gamma variant circulation in São Paulo. *Nat Commun*. 2021;12(1):6220. <https://doi.org/10.1038/s41467-021-26459-6>

60. Kim SS, Chung JR, Belongia EA, et al. Messenger RNA vaccine effectiveness against COVID-19 among symptomatic outpatients aged ≥ 16 years in the United States, February-May 2021. *J Infect Dis*. 2021;224(10):1694-1698. <https://doi.org/10.1101/2021.07.20.21260647>

61. Lauring AS, Tenforde MW, Chappell JD, et al. Clinical severity of, and effectiveness of mRNA vaccines against, COVID-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study. *BMJ*. 2022;376:e069761. <https://doi.org/10.1136/bmj-2021-069761>

62. Lewis NM, Naioti EA, Self WH, et al. Effectiveness of mRNA vaccines in preventing COVID-19 hospitalization by age and burden of chronic medical conditions among immunocompetent US adults, March-August 2021. *J Infect Dis*. 2022;225(10):1694-1700. <https://doi.org/10.1093/infdis/jiab619>

63. Li XN, Huang Y, Wang W, et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: a test-negative case-control real-world study. *Emerg Microbes Infect*. 2021;10(1):1751-1759. <https://doi.org/10.1080/22221751.2021.1969291>

64. Maeda H, Saito N, Igarashi A, et al. Effectiveness of mRNA COVID-19 vaccines against symptomatic SARS-CoV-2 infections during the Delta variant epidemic in Japan: Vaccine Effectiveness Real-Time Surveillance for SARS-CoV-2 (VERSUS). *Clin Infect Dis*. 2022;75(11):1971-1979. <https://doi.org/10.1093/cid/ciac292>

65. Mallow C, Ferreira T, Shukla B, et al. Real world SARS-CoV-2 vaccine effectiveness in a Miami academic institution. *Am J Emerg Med*. 2022;54:97-101. <https://doi.org/10.1016/j.ajem.2022.01.066>

66. Nasreen S, Chung H, He S, et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. *Nat Microbiol*. 2022;7(3):379-385. <https://doi.org/10.1038/s41564-021-01053-0>

67. Ngyen LBL, Bauer R, Lesieur Z, et al. Vaccine effectiveness against COVID-19 hospitalization in adults in France: a test negative case control study. *Infectious Diseases Now*. 2022;52(1):40-43. <https://doi.org/10.1016/j.idnow.2021.12.002>

68. Olson SM, Newhams MM, Halasa NB, et al. Effectiveness of Pfizer-BioNTech mRNA vaccination against COVID-19 hospitalization among persons aged 12-18 years - United States, June-September 2021. *MMWR Morb Mortal Wkly Rep*. 2021;70(42):1483-1488. <https://doi.org/10.15585/mmwr.mm7042e1>

69. Olson SM, Newhams MM, Halasa NB, et al. Effectiveness of BNT162b2 vaccine against critical Covid-19 in adolescents. *N Engl J Med*. 2022;386(8):713-723. <https://doi.org/10.1056/NEJMoa2117995>

70. Pardo-Seco J, Mallah N, López-Pérez LR, et al. Evaluation of BNT162b2 vaccine effectiveness in Galicia, Northwest Spain. *Int J Environ Res Public Health*. 2022;19(7):4039. <https://doi.org/10.3390/ijerph19074039>

71. Price AM, Olson SM, Newhams MM, et al. BNT162b2 protection against the omicron variant in children and adolescents. *N Engl J Med*. 2022;386(20):1899-1909. <https://doi.org/10.1056/NEJMoa2202826>

72. Ranzani O, Hitchings MDT, Dorion M, et al. Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of covid-19 in Brazil: test negative case-control study. *BMJ*. 2021;374:n2015. <https://doi.org/10.1136/bmj.n2015>

73. Ranzani OT, Silva AAB, Peres IT, et al. Vaccine effectiveness of ChAdOx1 nCoV-19 against COVID-19 in a socially vulnerable community in Rio de Janeiro, Brazil: a test-negative design study. *Clin Microbiol Infect*. 2022;28(8):1166-1167. <https://doi.org/10.1016/j.cmi.2022.03.037>

74. Rearte A, Castelli JM, Rearte R, et al. Effectiveness of rAd26-rAd5, ChAdOx1 nCoV-19, and BBIBP-CorV vaccines for risk of infection with SARS-CoV-2 and death due to COVID-19 in people older than 60 years in Argentina: a test-negative, case-control, and retrospective longitudinal study. *Lancet*. 2022;399(10331):1254-1264. [https://doi.org/10.1016/S0140-6736\(22\)00011-3](https://doi.org/10.1016/S0140-6736(22)00011-3)

75. Self WH, Tenforde MW, Rhoads JP, et al. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions - United States, March-August 2021. *MMWR Morb Mortal Wkly Rep*. 2021;70(38):1337-1343. <https://doi.org/10.15585/mmwr.mm7038e1>

76. Sheikh A, McMenamin J, Taylor B, et al. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. *Lancet*. 2021;397(10293):2461-2462. [https://doi.org/10.1016/S0140-6736\(21\)01358-1](https://doi.org/10.1016/S0140-6736(21)01358-1)

77. Sritipsukho P, Khawcharoenporn T, Siribumrungwong B, et al. Comparing real-life effectiveness of various COVID-19 vaccine regimens during the delta variant-dominant pandemic: a test-negative case-control study. *Emerg Microbes Infect*. 2022;11(1):585-592. <https://doi.org/10.1080/22221751.2022.2037398>

78. Tabak YP, Sun X, Brennan TA, et al. Incidence and estimated vaccine effectiveness against symptomatic SARS-CoV-2 infection among persons tested in US retail locations, May 1 to August 7, 2021. *JAMA Netw Open*. 2021;4(12):e2143346. <https://doi.org/10.1001/jamanetworkopen.2021.43346>

79. Tang P, Hasan MR, Chemaitelly H, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. *Nat Med*. 2021;27(12):2136-2143. <https://doi.org/10.1038/s41591-021-01583-4>

80. Tenforde MW, Olson SM, Self WH, et al. Effectiveness of Pfizer-BioNTech and Moderna vaccines against COVID-19 among hospitalized adults aged ≥ 65 years - United States, January-March 2021. *MMWR Morb Mortal Wkly Rep.* 2021;70(18):674-679. <https://doi.org/10.15585/mmwr.mm7018e1>

81. Thiruvengadam R, Awasthi A, Medigeshi G, et al. Effectiveness of ChAdOx1 nCov-19 vaccine against SARS-CoV-2 infection during the delta (B.1.617.2) variant surge in India: a test-negative, case-control study and a mechanistic study of post-vaccination immune responses. *Lancet Infect Dis.* 2022;22(4): 473-482. [https://doi.org/10.1016/S1473-3099\(21\)00680-0](https://doi.org/10.1016/S1473-3099(21)00680-0)

82. Thompson MG, Stenehjem E, Grannis S, et al. Effectiveness of Covid-19 vaccines in ambulatory and inpatient care settings. *N Engl J Med.* 2021;385(15):1355-1371. <https://doi.org/10.1056/NEJMoa2110362>

83. Winkelman TNA, Rai NK, Bodurtha PJ, et al. Trends in COVID-19 vaccine administration and effectiveness through October 2021. *JAMA Netw Open.* 2022;5(3):e225018. <https://doi.org/10.1001/jamanetworkopen.2022.5018>

84. Zambrano LD, Newhams MM, Olson SM, et al. Effectiveness of BNT162b2 (Pfizer-BioNTech) mRNA vaccination against multisystem inflammatory syndrome in children among persons aged 12-18 years - United States, July-December 2021. *MMWR Morb Mortal Wkly Rep.* 2022;71(2):52-58. <https://doi.org/10.15585/mmwr.mm7102e1>

85. Altarawneh HN, Chemaitley H, Ayoub HH, et al. Effects of previous infection and vaccination on symptomatic omicron infections. *N Engl J Med.* 2022;387(1):21-34. <https://doi.org/10.1056/NEJMoa2203965>

86. Andrews N, Stowe J, Kirsebom F, et al. Effectiveness of COVID-19 booster vaccines against COVID-19-related symptoms, hospitalization and death in England. *Nat Med.* 2022;28(4):831-837. <https://doi.org/10.1038/s41591-022-01699-1>

87. Chemaitley H, Ayoub HH, Almukdad S, et al. Duration of mRNA vaccine protection against SARS-CoV-2 omicron BA.1 and BA.2 subvariants in Qatar. *Nat Commun.* 2022;13(1):3082. <https://doi.org/10.1038/s41467-022-30895-3>

88. Fleming-Dutra KE, Britton A, Shang N, et al. Association of Prior BNT162b2 COVID-19 vaccination with symptomatic SARS-CoV-2 infection in children and adolescents during omicron predominance. *JAMA.* 2022;327(22):2210-2219. <https://doi.org/10.1001/jama.2022.7493>

89. Husin M, Tok PSK, Suah JL, et al. Real-world effectiveness of BNT162b2 vaccine against SARS-CoV-2 infection among adolescents (12 to 17-year-olds) in Malaysia. *Int J Infect Dis.* 2022;121:55-57. <https://doi.org/10.1016/j.ijid.2022.04.053>

90. Kirsebom FCM, Andrews N, Stowe J, et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. *Lancet Infect Dis.* 2022;22(7):931-933. [https://doi.org/10.1016/S1473-3099\(22\)00309-7](https://doi.org/10.1016/S1473-3099(22)00309-7)

91. Lewis NM, Self WH, Gaglani M, et al. Effectiveness of the Ad26.COV2.S (Johnson & Johnson) COVID-19 vaccine for preventing COVID-19 hospitalizations and progression to high disease severity in the United States. *Clin Infect Dis.* 2022;75(Suppl 2):S159-S166. <https://doi.org/10.1093/cid/ciac439>

92. Ul NI, Munamm SA, Rasool MU, et al. Safety and efficacy of Sinopharm vaccine (BBIBP-CorV) in elderly population of Faisalabad district of Pakistan. *Postgrad Med J.* 2023;99(1171):463-469. <https://doi.org/10.1136/postgradmed-2022-141649>

93. Niessen FA, Knol MJ, Hahne SJM, et al. Vaccine effectiveness against COVID-19 related hospital admission in the Nether-

lands: a test-negative case-control study. *Vaccine.* 2022;40(34): 5044-5049. <https://doi.org/10.1016/j.vaccine.2022.06.011>

94. Powell AA, Kirsebom F, Stowe J, et al. Effectiveness of BNT162b2 against COVID-19 in adolescents. *Lancet Infect Dis.* 2022;22(5): 581-583. [https://doi.org/10.1016/S1473-3099\(22\)00177-3](https://doi.org/10.1016/S1473-3099(22)00177-3)

95. Skowronski DM, Febriani Y, Ouakki M, et al. Two-dose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec Canada. *Clin Infect Dis.* 2022;63(9):1265-1266. <https://doi.org/10.1093/cid/ciac290>

96. Suarez Castillo M, Khaoua H, Courtejoie N. Vaccine effectiveness and duration of protection against symptomatic infections and severe Covid-19 outcomes in adults aged 50 years and over, France, January to mid-December 2021. *Glob Epidemiol.* 2022;4:100076. <https://doi.org/10.1016/j.gloepi.2022.100076>

97. Suarez Castillo M, Khaoua H, Courtejoie N. Vaccine-induced and naturally-acquired protection against omicron and Delta symptomatic infection and severe COVID-19 outcomes, France, December 2021 to January 2022. *Euro Surveill.* 2022; 27(16):2200250. <https://doi.org/10.2807/1560-7917.ES.2022.27.16.2200250>

98. Tartof SY, Slezak JM, Puzniak L, et al. Durability of BNT162b2 vaccine against hospital and emergency department admissions due to the omicron and delta variants in a large health system in the USA: a test-negative case-control study. *Lancet Respir Med.* 2022;10(7):689-699. [https://doi.org/10.1016/S2213-2600\(22\)00101-1](https://doi.org/10.1016/S2213-2600(22)00101-1)

99. Tenforde MW, Patel MM, Ginde AA, et al. Effectiveness of severe acute respiratory syndrome coronavirus 2 messenger RNA vaccines for preventing coronavirus disease 2019 hospitalizations in the United States. *Clin Infect Dis.* 2022;74(9): 1515-1524. <https://doi.org/10.1093/cid/ciab687>

100. Tenforde MW, Self WH, Zhu Y, et al. Protection of mRNA vaccines against hospitalized COVID-19 in adults over the first year following authorization in the United States. *Clin Infect Dis.* 2023;76(3):e460-e468. <https://doi.org/10.1093/cid/ciac381>

101. Whitaker HJ, Tsang RSM, Byford R, et al. Pfizer-BioNTech and Oxford AstraZeneca COVID-19 vaccine effectiveness and immune response amongst individuals in clinical risk groups. *J Infect.* 2022;84(5):675-683. <https://doi.org/10.1016/j.jinf.2021.12.044>

102. Huang L, Lai FTT, Yan VKC, et al. Comparing hybrid and regular COVID-19 vaccine-induced immunity against the omicron epidemic. *NPJ Vaccines.* 2022;7(1):162. <https://doi.org/10.1038/s41541-022-00594-7>

103. Bobrovitz N, Ware H, Ma X, et al. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression. *Lancet Infect Dis.* 2023;23(5):556-567. [https://doi.org/10.1016/S1473-3099\(22\)00801-5](https://doi.org/10.1016/S1473-3099(22)00801-5)

104. Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. *Lancet.* 2022;399(10323):437-446. [https://doi.org/10.1016/S0140-6736\(22\)00017-4](https://doi.org/10.1016/S0140-6736(22)00017-4)

105. Ulloa AC, Buchan SA, Daneman N, et al. Estimates of SARS-CoV-2 omicron variant severity in Ontario Canada. *JAMA.* 2022; 327(13):1286-1288. <https://doi.org/10.1001/jama.2022.2274>

106. Bubar KM, Reinholt K, Kissler SM, et al. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. *Science.* 2021;371(6532):916-921. <https://doi.org/10.1126/science.abe6959>

107. Cai J, Deng X, Yang J, et al. Modeling transmission of SARS-CoV-2 omicron in China. *Nat Med*. 2022;28(7):1468-1475. <https://doi.org/10.1038/s41591-022-01855-7>

108. Khandker SS, Godman B, Jawad MI, et al. A systematic review on COVID-19 vaccine strategies, their effectiveness, and issues. *Vaccines (Basel)*. 2021;9(12):1387. <https://doi.org/10.3390/vaccines9121387>

109. Singh JA, Upshur REG. The granting of emergency use designation to COVID-19 candidate vaccines: implications for COVID-19 vaccine trials. *Lancet Infect Dis*. 2021;21(4):e103-e109. [https://doi.org/10.1016/S1473-3099\(20\)30923-3](https://doi.org/10.1016/S1473-3099(20)30923-3)

110. Greenland S. Basic methods for sensitivity analysis of biases. *Int J Epidemiol*. 1996;25(6):1107-1116. <https://doi.org/10.1093/ije/25.6.1107>