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Analog of Topological Entanglement Entropy for Mixed States
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We propose the convex-roof extension of quantum conditional mutual information (“co(QCMI)”) as a
diagnostic of topological order in a mixed state. We focus primarily on topological states subjected to local
decoherence, and employ the Levin-Wen scheme to define co(QCMI), so that for a pure state, co(QCMI)
equals topological entanglement entropy (TEE). By construction, co(QCMI) is zero if and only if a mixed
state can be decomposed as a convex sum of pure states with zero TEE. We show that co(QCMI) is
nonincreasing with increasing decoherence when Kraus operators are proportional to the product of onsite
unitaries. This implies that unlike a pure-state transition between a topologically trivial and a nontrivial
phase, the long-range entanglement at a decoherence-induced topological phase transition as quantified
by co(QCMI) is less than or equal to that in the proximate topological phase. For the two-dimensional
toric code decohered by onsite bit- and phase-flip noise, we show that co(QCMI) is nonzero below the
error-recovery threshold and zero above it. Relatedly, the decohered state cannot be written as a convex
sum of short-range entangled pure states below the threshold. We conjecture and provide evidence that
in this example, co(QCMI) equals TEE of a recently introduced pure state. In particular, we develop a
tensor-assisted Monte Carlo (TMC) computation method to efficiently evaluate the Rényi TEE for the
aforementioned pure state and provide nontrivial consistency checks for our conjecture. We use TMC to
also calculate the universal scaling dimension of the anyon-condensation order parameter at this transition.
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I. INTRODUCTION

The entanglement structure of the ground states of local
Hamiltonians has played a key role in our understanding of
quantum phases of matter [1]. Many-body entanglement
not only characterizes the universal features of ground
states such as the central charge of a conformal field the-
ory or the topological entanglement entropy (TEE) of a
gapped ground state [2–6], it also constrains which phases
of matter or critical points can be in the vicinity of each
other [7–12]. Moreover, a coarse classification of gapped
phases of matter can be argued for based on whether a
ground state is short-range entangled (SRE) or long-range
entangled (LRE), i.e., whether it can or cannot be obtained
from a product state via a low-depth local unitary circuit
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[13–16]. In contrast to the ground states of local Hamil-
tonians, our understanding of the entanglement structure
of physically realizable mixed states is relatively limited.
Recent progress in defining the equivalence class of mixed
states has provided a concrete definition of mixed-state
phases of matter [17–19]. It is reasonable to ask whether
constraints on the entanglement structure of mixed states
or their phase diagrams can be obtained based on such a
definition. In this paper we propose a diagnostic of long-
range entanglement in mixed states that is a close analog
of TEE. We discuss constraints imposed on this diagnostic
by general considerations such as locality and renormal-
ization group. Although the diagnostic we introduce can
be defined for any mixed state, we will primarily focus
on mixed states obtained by subjecting topological states
such as the toric code to local decoherence [18–34]. For
the decohered toric code, we will relate the aforemen-
tioned diagnostic to the TEE of a pure state and support
our analytical arguments by calculating the TEE using
a new tensor-assisted Monte Carlo (TMC) method that
integrates tensor networks with recently developed Monte
Carlo algorithms for the efficient sampling of entanglement
entropy [35,36].
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A fundamental concept in quantum information theory
is that of “entanglement monotones” [37–41]. Good mea-
sures of entanglement are nonincreasing under local oper-
ations, and classical communication (LOCC) operations.
One may anticipate that the decrease of entanglement
under LOCC operations conforms with the naive intu-
ition that an LRE state (e.g., a topologically ordered state)
perhaps cannot be obtained from an SRE state (e.g., a triv-
ial paramagnet without topological order) via small-depth
quantum channels made out of LOCC operations. How-
ever, this is not the case. The main obstacle in making such
a connection is that LOCC operations only constrain the
total entanglement, which includes short-distance entan-
glement. An LRE state can certainly be less entangled
than an SRE state when short-distance entanglement is
included. Indeed, by now several concrete protocols exist,
which allow one to prepare LRE states from SRE states
via LOCC constant-depth channels [42–50]. A key idea
in these protocols is to employ nonlocal classical com-
munication, which is allowed within LOCC. In particular,
the local unitaries in these protocols are contingent on
the global measurement outcomes, which is tantamount to
nonlocal classical communication. It is therefore natural to
ask what states can be obtained from a given state if only
local operations are allowed. One might anticipate that in
this setting an LRE state cannot be obtained from an SRE
state. If so, it is natural to ask if one can define analogs of
entanglement monotones in such a setting that are sensi-
tive only to long-range entanglement, and in a sense more
universal.

Let us recall that for a bipartite Hilbert space HA ⊗
HB, a mixed state has zero bipartite entanglement (“sep-
arable”) if it admits a representation of the form ρ =∑

i pi|ψi〉〈ψi|, where each of the pure states |ψi〉 is bipar-
tite unentangled, i.e., takes the form |ψi〉 = |φA

i 〉 ⊗ |φB
i 〉

[51]. Clearly, the von Neumann entanglement SA equals
zero for each |ψi〉. One entanglement measure that directly
captures bipartite separability of a mixed state is entan-
glement of formation EF [37], which is defined as EF =
inf{∑i pi SA(|ψi〉)}, where the infimum is taken over all
possible pure-state decompositions of the density matrix ρ
as ρ = ∑

i pi|ψi〉〈ψi|, where pi ≥ 0, and
∑

i pi = 1. More
generally, given a function f from pure states to real num-
bers, the convex-roof extension of f , denoted as co(f ), is
a function from density matrices to real numbers, and is
defined as [37,40,52,53]

co(f )[ρ] =

inf

(
∑

i

pi f (|ψi〉)
∣
∣
∣ ρ=

∑

i

pi|ψi〉〈ψi|, pi ≥ 0,
∑

i

pi =1

)

.

Therefore, in this nomenclature, EF is the convex-roof
extension of von Neumann entanglement [37]. Our aim
is to find a measure that detects whether a mixed state

is SRE or not, i.e., if it admits a decomposition of the
form

∑
i pi|ξi〉〈ξi|, where {|ξi〉} are SRE pure states [54].

One way to achieve this is by considering the convex-
roof extension of any pure-state entanglement measure that
captures long-range entanglement. This is the approach
we will follow. Note that EF itself is not well suited
for this purpose since it will generically receive contri-
butions from short-range entanglement (e.g., nonuniversal
area-law contribution).

For arbitrary pure states, we are unaware of a diag-
nostic that is nonzero if and only if the state is LRE
(i.e., not obtainable from a product state via a low-depth
local unitary). However, there are at least two distinct
ways a pure state can be LRE, which are relatively well
understood. Firstly, a state may have mutual information
between distant regions that does not decay exponen-
tially with the distance between the regions—such LRE
is archetypical for systems with spontaneous symmetry
breaking (SSB), as well as ground states of gapless Hamil-
tonians. An example is a Greenberger-Horne-Zeilinger
(GHZ) state, which is representative of a system with long-
range order due to SSB of Z2 symmetry. A different, and
perhaps more profound way an LRE state can arise is
due to topological order, and this kind of entanglement
will be our primary focus. In a topologically ordered sys-
tem, the mutual information between distant contractible
regions decays exponentially, despite the fact that such
states are LRE. One way to characterize such entangle-
ment is via topological entanglement entropy (TEE) [4–6].
TEE was originally argued to equal log(D) where D is
the total quantum dimension for the underlying topolog-
ical order. However, exceptions exist [55–57] (“spurious
TEE”) whereby an SRE state can have nonzero Levin-
Wen QCMI even when the size of the regions involved
is much larger than the underlying correlation length (say,
defined using connected correlators of local operators). It
was shown in Ref. [58] that nevertheless the TEE pro-
vides a rigorous upper bound on log(D). Furthermore, in
addition to the fixed-point Hamiltonians of gapped topo-
logical phases [5,6], TEE equals log(D) in a variety of
local Hamiltonians and variational states (see, e.g., Refs.
[59–64]).

Since a mixed state is considered short-ranged entan-
gled if it admits a decomposition as a convex sum of
short-range entangled pure states [54], one way to partially
characterize long-range entanglement of a mixed state is
to consider a measure that is zero if and only if the den-
sity matrix admits a decomposition as a convex sum of
pure states with zero TEE. This motivates us to define the
convex-roof extension of TEE as an analog of pure-state
TEE (Sec. II). We will define pure-state TEE using Levin-
Wen scheme, whereby TEE equals the quantum condi-
tional mutual information (QCMI) for a specific choice of
regions, and we will refer to the convex-roof extension of
TEE as co(QCMI). By construction, if co(QCMI) is zero,
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then the density matrix admits a decomposition in terms
of pure states with zero Levin-Wen TEE. As already men-
tioned, zero co(QCMI) does not rule out that the mixed
state is a convex combination of pure states with GHZ-type
LRE. Therefore, given a mixed state with zero(QCMI), one
may in addition also calculate its co(MI)—the convex roof
extension of mutual information—to check whether it can
be represented as a convex sum of pure states with expo-
nentially decaying mutual information. We will summarize
some of the salient features of co(QCMI), and discuss them
in detail in Sec. III. One notable feature is that for quantum
channels where local Kraus operators are onsite and pro-
portional to a unitary matrix, co(QCMI) as well as co(MI)
is nonincreasing. This is consistent with the expectation
that an LRE mixed state cannot be obtained from an SRE
mixed state via a low-depth local channel. We will also dis-
cuss a generalization of this statement to channels where
Kraus operators are constant-depth local unitaries but are
not required to be product of onsite unitaries. As an aside,
we note that one may also define the long-range part of
a mixed state using convex-roof extension of pure-state
measures introduced in Refs. [65,66] that do not suffer
from spurious TEE. We leave such explorations to the
future.

As mentioned above, one of our motivations in defin-
ing co(QCMI) is to put constraints on the phase diagrams
of mixed states from mixed-state entanglement, and vice
versa. Therefore, as a testing ground, it is natural to con-
sider co(QCMI) in models where there exist at least two
different mixed-state phases as a function of some tuning
parameter. A paradigmatic example is two-dimensional
(2D) or three-dimensional (3D) toric code subjected to
phase-flip and/or bit-flip noise [18–33]. To setup the nota-
tion, let us consider 2D toric code whose Hamiltonian
[67] is H2D toric = −∑v(

∏
e∈v Ze)−∑

p(
∏

e∈p Xe). The
ground state ρ0 of H2D toric is subjected to the phase-flip
noise acting on an edge e as Ee[ρ0] = pZeρ0Ze + (1 −
p)ρ0. The resulting phase diagram as a function of p con-
sists of two phases: for p < pc, the quantum topological
order survives, while for p > pc, one obtains a phase with
only classical topological order. One of our main results
(Sec. III) is that co(QCMI) must be nonzero for p < pc,
and relatedly, that the density matrix cannot be written as
a convex sum of SRE pure states for p < pc. This result
supplements our understanding of this transition in terms
of separability: as argued in Ref. [26], for p > pc, the
density matrix can be written as a convex sum of pure
states that are not topologically ordered, which implies that
co(QCMI) vanishes for p > pc. Combined with our result,
then one may view the decoherence-induced transition
as a transition between a phase with nonzero co(QCMI)
and a phase with zero co(QCMI). Our arguments for
nonzero co(QCMI) for p < pc apply not just to 2D toric
code under local decoherence, but to essentially any topo-
logically ordered phase subjected to local decoherence.

The only assumption is that the topological phase is stable
for p < pc using the definition of mixed-state phase equiv-
alence [18,19], i.e., there exists a low-depth local channel
that connects the decohered state to a pure topologically
ordered state.

Formulating decoherence-induced transitions in terms
of co(QCMI) illustrates a rather unique feature of these
transitions that is not shared by quantum phase transi-
tions in pure ground states (see Fig. 1). To highlight this,
consider toric code perturbed by a magnetic field: H =
H2D toric − h

∑
e Xe [61,68–73]. As a function of h, the

ground state of H undergoes a phase transition from Z2
topologically ordered phase to a trivial paramagnet. Let
us consider the bipartite entanglement entropy SA for a
smooth bipartition of the total system into A and A (i.e.,
the boundary of A has no sharp corners). Let us write
SA = α�− γ + O(1/�), where α is a nonuniversal num-
ber and � is the characteristic linear size of region A. In
the topologically ordered phase, γ = log(2), while in the
trivial phase, γ = 0. Right at the critical point between
these two phases, γ = log(2)+ γ3D Ising, where γ3D Ising is
the subleading term in entanglement for a system described
by the 2+1-D critical Ising CFT [74,75]. Therefore, in a
sense, the critical point is more long-range entangled than
either of the two phases. Indeed, due to the divergence of
correlation length, the critical point is not connected to
the gapped, topological phase via a low-depth local uni-
tary. One may restate this result in terms of the behavior of
the subleading term in entanglement as a function of �/ξ ,
where ξ is the correlation length that diverges at the critical
point. Approaching the critical point from the topologi-
cal side, when � � ξ , one finds γ = log(2). On the other
hand, when a � � � ξ , where a is the lattice spacing, one
finds γ = log(2)+ γ3D Ising. One may similarly consider
QCMI for a Levin-Wen partition in this problem, and using
the positivity of QCMI and arguments in Ref. [74], one
then concludes that QCMI in the critical regime will equal
log(2)+	γCFT, where 	γCFT is the contribution from to
CFT degrees of freedom, as indicated in Fig. 1(a) (the mag-
nitude of 	γCFT will depend on the shape of the regions
involved in defining QCMI). The fact that the critical point
is more long-range entangled than the adjacent phases is a
generic feature of Lorentz-invariant field theories, where
one can rigorously show that the universal part of entan-
glement for a circle decreases under renormalization group
flow [7–11].

Now let us contrast this situation with the behavior
of co(QCMI) in decoherence-induced transition in toric
code [see Fig. 1(b)]. As already mentioned above, we will
find that co(QCMI) is a nonincreasing function decoher-
ence rate, and therefore, at the critical point separating
the topologically ordered mixed state to the trivial mixed
state, co(QCMI) cannot be larger than log(2). Therefore,
in this problem, in contrast to the pure-state transition, the
critical point is not more entangled than the topological
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(a) (b)

FIG. 1. Contrast in entanglement scaling between pure-state transition [driven by a transverse field of strength h, panel (a)], and
mixed-state transition [driven by decoherence at rate p , panel (b)] in the 2D toric code. The bottom of panel (a) schematically shows
the scaling of QCMI S(A : B|C) in the perturbed toric-code ground state close to the topological transition when approaching the
critical point from the topological side. The diverging correlation length is denoted as ξ , and the linear length of all regions A, B, C that
define QCMI is proportional to �. When �/ξ � 1, QCMI probes the topological phase, and therefore approaches TEE, i.e., log(2). On
the other hand, when �/ξ � 1, i.e., when QCMI probes the critical regime, one receives an additional positive contribution	γCFT from
the critical degrees of freedom. In contrast, when the topological order is destroyed by onsite phase-flip and bit-flip decoherence [panel
(b)], on general grounds the mixed-state entanglement captured by co(QCMI) [Eq. (1)] cannot exceed TEE (=log(2)) in the critical
regime (�/ξ � 1) as discussed in Sec. III and schematically shown at the bottom of panel (b). The geometry used to define co(QCMI)
is the same as the one for QCMI shown in panel (a). In fact, numerically, we find evidence that the value γ ′ for the co(QCMI) in the
critical regime is zero within the error bar of our numerical simulations (Sec. IV, Fig. 6).

phase, at least if one uses co(QCMI) as a measure of
long-range entanglement. This statement applies not just
to 2D toric code under onsite decoherence, but to any
onsite decoherence-driven phase transition in any dimen-
sion, e.g., 3D toric code or 3D fracton models subjected
to onsite phase-flip or bit-flip noise. In parallel with afore-
mentioned discussion about pure state, let us then approach
the critical point from the topological side, and probe
co(QCMI) as a function of �/ξ , where � is the character-
istic size of the subsystem that defines co(QCMI) and ξ
is the correlation length that diverges at the critical point
(defined via, say, QCMI of the corresponding mixed state
[19]). When � � ξ , co(QCMI) is upper bounded by log(2).
However, when a � � � ξ , in strong contrast to the pure
state, our quantum many-body numerics in Sec. IV indi-
cates that co(QCMI) in fact equals zero! That is, at the
critical point long-range entanglement as quantified via
co(QCMI) is not just smaller than that in the topological
phase, it actually seems to vanish. It is important to note
that our result relies on the onsite nature of the decoher-
ence, and we do not prove the monotonicity of co(QCMI)
for general channels. Indeed, for general quantum chan-
nels of arbitrary depth, the entanglement of a mixed state

can certainly increase (since unitaries are a subset of quan-
tum channels, and pure states are a subset of mixed states).
Nevertheless, in Sec. III we will also discuss a general-
ization of our result to constant-depth local mixed-unitary
channels (i.e., channels where Kraus operators are propor-
tional to constant-depth local unitaries) that are not neces-
sarily onsite. Another point worth noting is that although
there clearly exists a low-depth local channel that takes the
pure toric code to the critical point (indeed, the transition
is being driven by applying such a channel), there exists no
low-depth local channel in the opposite direction [18,19].
Intuitively, the monotonicity of the co(QCMI) originates
due to the irreversible loss of quantum information to the
environment. This is in contrast to the pure-state transition
discussed above, where there exists no low-depth local uni-
tary connecting the topological phase to the critical point,
and vice versa, because unitary transformations are always
invertible.

The separability-based view on the decoherence-
induced phase transition in toric code naturally leads to
the decomposition of the decohered toric code into a
specific set of pure states that are all related to the fol-
lowing pure state via a local unitary transformation [26]:
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|ψ〉 = ∑
xe

√
Zxe |xe〉 where Zxe = ∑

zv
eβ

∑
e xe

∏
v∈e zv is

the partition function of Ising model given bond config-
uration xe. Reference [26] provided analytical arguments
that the pure state |ψ〉 has zero topological entanglement
entropy (TEE) for p > pc, which implies that co(QCMI) is
zero for p > pc. The fact that the pure state |ψ〉 correctly
captures the decoherence-induced phase transition, at least
as far as the location and universality of the transition is
considered, leads us to conjecture that the decomposition
of the density matrix proposed in Ref. [26] is optimal for
co(QCMI). If this conjecture is true, then the TEE for the
state |ψ〉 equals co(QCMI) of the decohered toric code,
and should therefore be a monotonically nonincreasing
function of the decoherence rate. The underlying statisti-
cal mechanics model that enters the calculation of TEE of
|ψ〉 is not exactly solvable, and the analytical arguments
in Ref. [26] do not provide information about the behav-
ior of TEE in the vicinity of the transition. In Sec. IV, we
will calculate the Rényi TEE of the state |ψ〉 directly using
state-of-the-art quantum many-body numerical method-
ology. To this end, we develop a tensor-assisted Monte
Carlo (TMC) computational scheme to efficiently evalu-
ate the TEE across the separability transition. The TMC
method is designed to significantly mitigate the exponen-
tial complexity associated with numerical evaluation of
TEE [35,36], and allows us to study the behavior of TEE
close to the transition.

Let us summarize our main results:

(1) We show that the co(QCMI) for local decoherence
where Kraus operators are proportional to a unitary
is monotonically nonincreasing as a function of the
decoherence rate. Therefore, if such Kraus operators
lead to a decoherence-induced phase transition out
of a topological phase, the co(QCMI) at the critical
point cannot be larger than the TEE of the topologi-
cal phase (see Fig. 1 for an illustration in the context
of 2D toric code).

(2) We show that for the 2D toric code under local
phase-flip or bit-flip decoherence in any dimension,
the co(QCMI) must be nonzero in the regime where
error correction is feasible. Under certain assump-
tions, we also argue that the value of co(QCMI)
equals the TEE of the pure toric code. We also
briefly discuss generalization to other topological
orders.

(3) We conjecture that the decomposition of the deco-
hered toric code introduced in Ref. [26] is opti-
mal for co(QCMI), and to test this conjecture, we
develop a novel TMC numerical technique to com-
pute the average TEE of this decomposition (which
equals the TEE of the aforementioned state |ψ〉). We
numerically show that the TEE of this pure state is
log(2) for p < pc, and zero for p > pc, and that it
is monotonically nonincreasing as a function of the

decoherence rate. These observations support our
conjecture that the TEE of the state |ψ〉 equals the
co(QCMI) of the decohered toric code.

(4) With our TMC technique, we also study the anyon
condensation order parameter with respect to the
aforementioned pure state |ψ〉. We find that the
location of the transition, as well as the critical expo-
nents match very well with the Nishimori critical
point of the random bond Ising model [20–23,76].

II. CONVEX-ROOF EXTENSION OF QUANTUM
CONDITIONAL MUTUAL INFORMATION

A. Brief overview of topological entanglement entropy

For a gapped, pure, ground state of a local Hamiltonian,
topological entanglement entropy (TEE) was introduced in
Refs. [5,6] as a diagnostic of topological order. Heuristi-
cally, for a 2D gapped ground state |ψ〉, it is defined as
the subleading term γ in the bipartite entanglement SA
of a subregion A of linear size LA with its complement:
SA = αLA − γ , where α is a nonuniversal constant. In 2D
topologically ordered phases, the ground state consists of
closed-loop configurations, and intuitively, a nonzero γ
corrects for the overcounting of the entanglement between
A and its complement due to the closed-loop constraint on
the configuration space.

Since γ is a subleading term, and is supposed to capture
the universal, long-distance physics of the gapped phase,
it is important to define it so that it is manifestly inde-
pendent of the leading, nonuniversal contribution αLA. To
that end, Refs. [5,6] introduced “subtraction schemes” to
recover γ via a combination of terms that are designed to
cancel out dependence on short-distance physics. Kitaev-
Preskill (KP) subtraction scheme [5] involves three regions
A, B, C that pairwise meet in a line segment, and whose
intersection A ∩ B ∩ C is a point. The TEE is obtained
as γKP = ∑

i S(Xi)−∑
i,j S(Xi ∪ Xj )+∑

i,j ,k S(Xi ∪ Xj ∪
Xk), where {Xi} = {A, B, C} and S(X ) = − tr (ρX log(ρX ))

is the von Neumann entropy for the density matrix ρX =
trX |ψ〉〈ψ |. The Levin-Wen (LW) scheme [6] in contrast
involves the geometry “with a hole” shown in Fig. 1,
and the TEE is simply γLW = 1

2 S(A : B|C), where S(A :
B|C) = (S(AC)+ S(BC)− S(C)− S(ABC)) is the quan-
tum conditional mutual information (QCMI) between A
and B conditioned on C [see Fig. 5(b)]. For our purposes,
Levin-Wen scheme will be more useful.

We note one subtlety about TEE. One can construct fine-
tuned examples of nontopologically ordered states that
have a nonzero γ [55–58] (often called “spurious TEE”).
Despite this, TEE has been useful as a practical tool to
detect topological order in a variety of generic models and
variational wave functions [59–64]. In the absence of spu-
rious TEE, γ = log(D), where D = √∑

a d2
a is the total

quantum dimension for the underlying topological order
with anyonic quantum dimensions da [5,6,58]. One can
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define QCMI for any pure state, not necessarily a gapped
ground state, and heuristically (assuming there is no spu-
rious TEE), it captures one kind of “long-range entangle-
ment” in a state since the combination of entropies defining
it tends to cancel out the short-distance entanglement. For
example, in a gapless system such as the ground state of a
conformal field theory or for a system with a Fermi surface,
S(A : B|C) will be generically nonzero, and can be used to
obtain universal data (see, e.g., Ref. [77]). Levin-Wen TEE
however is oblivious to GHZ-type LRE as already noted in
the Introduction.

B. Convex room extension of TEE

Our aim is to define a quantity that is an analog of
TEE for mixed states. Unlike pure states, for which von
Neumann entanglement is essentially a unique measure
of bipartite entanglement, there exist several different
entanglement measures for mixed states. One proposal
is to define a combination analogous to S(A : B|C) in
the aforementioned Levin-Wen scheme by replacing each
of the terms S(AC), S(BC), S(C), S(ABC) with a measure
of bipartite mixed-state entanglement such as negativity
[23,78–82]. One potential issue with negativity is that it is
not a faithful measure of mixed-state entanglement: there
exist states that are entangled but have zero negativity.
Here, we will follow a different approach by introducing
a measure that is closer in spirit to TEE. We will construct
a measure that is zero if and only if the mixed state admits
a decomposition in terms of pure states that have zero TEE.
Consider a mixed state ρ over a tetrapartite Hilbert space
A ⊗ B ⊗ C ⊗ D, where A, B, C have the same geometry as
the one used to define Levin-Wen TEE, and D denotes the
complement of ABC.

Definition 1. Given a tetra-partite density matrix ρABCD,
we define co(QCMI)[ρABCD] = inf{∑i pi γ (|ψi〉ABCD)}
where γ (|ψi〉ABCD) = 1

2 S(A : B|C) and the infimum is
taken over all possible pure-state decompositions of the
mixed state ρ as ρ = ∑

i pi|ψi〉〈ψi|.

Thus, co(QCMI) is the convex-roof extension of γ to
mixed states, just as the entanglement of formation is the
convex-roof extension of von Neumann entanglement for
bipartite states [37,40,41]. Due to strong subadditivity,
co(QCMI)[ρ] ≥ 0. It is worth noting that unlike entan-
glement of formation, co(QCMI) is generically not an
entanglement monotone under LOCC operations. This is
because QCMI is neither a concave nor a convex func-
tion of density matrices [40,83]. Indeed, LOCC operations
allow one to obtain LRE states from SRE states, via
constant-depth channels due to the possibility of nonlocal
classical communication [42–50]. However, a mixed-state
phase of matter is defined via the equivalence class of
states related to each other via low-depth local channels

[17–19], and therefore, it is desirable to seek a measure of
long-range entanglement that is monotonic when only low-
depth local operations are allowed. As we will discuss in
the next section, co(QCMI) is monotonic under at least a
class of local low-depth channels that are of our interest.

One may also define a Rényi version of co(QCMI), by
replacing γ = 1

2 S(A : B|C) in Eq. (1) by its Rényi version,
namely, γn = 1

2 Sn(A : B|C)= 1
2 (Sn(AC)+ Sn(BC)−Sn(C)

−Sn(ABC)), where Sn(X ) = −1/(n − 1) log
(
tr
(
ρn

X

))
is

the Rényi entropy for the density matrix ρX in the state
|ψi〉. This quantity shares several features with co(QCMI)
as discussed in Sec. III and is potentially more amenable
to numerical simulations. We will employ it in the tensor-
assisted Monte Carlo computation in Sec. IV.

III. CONSTRAINTS ON CO(QCMI) FOR
DECOHERENCE-DRIVEN TOPOLOGICAL

TRANSITIONS

In this section, we will discuss some of the salient prop-
erties of co(QCMI) (Definition 1). Our focus will primarily
be pure topologically ordered states that are being sub-
jected to local decoherence [18–33]. A paradigmatic exam-
ple is 2D toric code in the presence of phase-flip or bit-flip
noise. For concreteness, we will focus on this exam-
ple, and discuss along the way which features generalize.
We write 2D toric code as H2D toric = −∑v(

∏
e∈v Ze)−∑

p(
∏

e∈p Xe). We subject a (pure) ground state ρ0 of
H2D toric to phase-flip channel acting on an edge e as
Ee[ρ0] = pZeρ0Ze + (1 − p)ρ0 where p ≥ 0 is the deco-
herence strength. The full dynamics corresponds to the
composition of the map Ee[·] on all edges, and we will
denote its action simply as E[·]. It is well known that this
system undergoes a phase transition as a function of the
decoherence rate p [20–24]. For p < pc ≈ 0.11, the system
retains quantum memory of the undecohered toric-code
ground state while the quantum memory is lost for p > pc
and one enters a “classical memory” phase. The nontrivial-
ity of the p < pc phase can be argued from a variety of per-
spectives, e.g., using coherent information [23,25,29] or
via mixed-state phase equivalence [18,19], and the related
idea of emergent anomalous one-form strong symmetries
[32]. Since we are interested in quantifying the long-range
entanglement, central to our discussion will be the sepa-
rability aspects of the mixed state. On that note, Ref. [26]
argued that for p ≥ pc, the density matrix can be expressed
as a convex sum of states that have zero TEE, which would
imply that co(QCMI) is zero for p > pc. It was also conjec-
tured that such a decomposition is not possible for p < pc,
although a proof so far is lacking. Motivated by these
considerations, let us ask a few questions:

(1) Can co(QCMI) increase as the decoherence rate
increases? [Scenario (b) in Fig. 2.]
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FIG. 2. Possible scenarios of co(QCMI) across the decoher-
ence transition in 2D noisy toric code. We discuss the sce-
narios (a)–(e) in addressing questions 1–4 below, and provide
arguments that rule out scenarios (b),(c),(d),(e).

(2) Can co(QCMI) be zero for p < pc? [Scenario (c) in
Fig. 2.]

(3) If the answer to question #2 is “no”, does co(QCMI)
remain quantized at log(2) for p < pc? [Scenario (a)
in Fig. 2.] Or can it be less than log(2)? [Scenario (e)
in Fig. 2.]

(4) Can co(QCMI) be nonzero for p > pc? [Scenario (d)
in Fig. 2.]

We will consider these questions in turn.

A. Can co(QCMI) increase under local decoherence?

We will start with a definition and a theorem.

Definition 2. Let f be a real-valued function defined on
the space of all pure states, i.e., |ψ〉 
→ f (|ψi〉). For any
density matrix ρ, we define

co(f )[ρ] = inf{
∑

i

pi f (|ψi〉)| ρ =
∑

i

pi|ψi〉〈ψi|}. (1)

We will call co(f ) the convex roof of f .

Theorem 1. Consider convex-roof co(f ) of any quan-
tity f that is invariant under onsite unitary transforma-
tions, i.e., f (|ψ〉) = f (U|ψ〉), where U = ∏

i Ui is a prod-
uct of onsite unitaries. Consider a density matrix that is
subjected to a quantum channel E where are all Kraus
operators are onsite and proportional to unitaries. Then
co(f )[ρ] ≥ co(f )[E[ρ]]. In particular, under, such a chan-
nel, co(QCMI)[ρ] ≥ co(QCMI)[E[ρ]], i.e., co(QCMI) is
nonincreasing under the action of such a channel.

Proof. Let the optimal decomposition for ρ vis-à-vis
Definition 2 be ρ be ρ = ∑

i pi|φi〉〈φi|. This implies that

E[ρ] = ∑
i
∑

α qαU†
α

(∑
i pi|φi〉〈φi|

)
Uα , where the Kraus

operators are denoted as
√

qαUα with qα ≥ 0. There-
fore, E[ρ] = ∑

iα piqα|φ̃i,α〉〈φ̃i,α|, where |φ̃i,α〉 = Uα|φi〉.
This expansion provides one decomposition for the den-
sity matrix E[ρ], which may or may not be opti-
mal. By definition, co(f )[E[ρ]] ≤ ∑

i,α piqαf (|φ̃i,α〉) =∑
i,α pif (|φi〉) = co(f )[ρ] where we have used the fact that

f is invariant under onsite unitary transformations. There-
fore, the convex roof of any quantity f that is invariant
under onsite unitary transformations cannot increase under
such local decoherence. Since bipartite von Neumann
entropy is invariant under onsite unitary transformations,
and QCMI can be expressed as a linear combination of
von Neumann entropies, this implies that co(QCMI)[ρ] ≥
co(QCMI)[E[ρ]] under such a channel. �

Corollary 1. Consider a density matrix obtained by
subjecting a pure state to onsite bit-flip or phase-flip deco-
herence with strength p . Let us denote the density matrix
as ρ(p) where ρ(p = 0) is the aforementioned pure state.
If p2 > p1, then co(QCMI)[ρ(p1)] ≥ co(QCMI)[ρ(p2)].

Proof. Bit-flip and phase-flip channels are closed under
composition. Therefore, if p2 > p1, there exists a bit-
flip and phase-flip channel E such that ρ(p2) = E[ρ(p1)].
Since von Neumann entropy is invariant under onsite
unitary transformations, and QCMI is just a linear com-
bination of von Neumann entropies of different subre-
gions, it is also invariant under onsite unitary transfor-
mations. Theorem 1 then implies that co(QCMI)[ρ(p1)] ≥
co(QCMI)[ρ(p2)]. �

This rules out scenario (b) in Fig. 2. In addition to
co(QCMI), Theorem 1 also applies to several other quanti-
ties of interest such as Rényi versions of co(QCMI), or the
convex-roof extension of bipartite Rényi, von Neumann
entropies, and mutual information. In strong contrast, the
QCMI of the decohered density matrix is nonmonotonic
under local decoherence as explicitly demonstrated in
Ref. [19]. Perhaps more interestingly, this is also in con-
trast to pure ground-state transitions out of topological
states where the subleading universal part of von Neu-
mann entanglement is generically larger at the quantum
phase transition compared to the TEE of the proximate
topological phase (as contrasted in Fig. 1).

The most restrictive assumption in Theorem 1 is the con-
dition on Kraus operators being onsite unitaries. Therefore,
it is worth seeking potential generalizations. Clearly, there
cannot be a vast generalization that allows for evolution
under arbitrary quantum channels, since long-range entan-
glement can of course increase under long-depth unitary
evolution (i.e., unitaries whose depth d scales as d ∼ L,
where L is the system’s linear size). A natural generaliza-
tion one might seek is evolution under Kraus operators that
are all proportional to finite-depth local unitary circuits, but
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are not restricted to be onsite (here finite depth is a syn-
onym for constant depth, i.e., depth that does not scale with
L. If we assume that QCMI of a state is invariant under the
action of a finite-depth local unitary circuit, then following
the same argument as in the proof of Theorem 1, it follows
that co(QCMI) is monotonically nonincreasing if Kraus
operators that are all proportional to finite-depth local uni-
tary circuits. However, there exist examples of “spurious
TEE” [55–57], which show that QCMI can change under
the action of a finite-depth local unitary. Although all
known examples of spurious TEE are nongeneric and fine
tuned, motivated from Ref. [58], let us define a modified
version of QCMI for a pure state |ψ〉:

QCMI’(|ψ〉) = infU (γ (U|ψi〉)), (2)

where γ (U|ψi〉) is the Levin-Wen QCMI of the state
U|ψi〉 and infimum is taken over all possible finite-depth
local unitaries U. It is easy to see that QCMI’(|ψ1〉) =
QCMI’(|ψ2〉) if |ψ1〉 is related to |ψ2〉 by a finite depth
unitary. It is then natural to define

co(QCMI’)[ρ] = inf{
∑

i

piQCMI’(|ψ〉) } (3)

where the infimum as usual denotes minimization over all
pure-state decompositions of ρ as ρ = ∑

i pi|ψi〉〈ψi| [84].
Based on this, we can now state the following proposition.

Theorem 2. Consider a density matrix that is sub-
jected to a quantum channel E where are all Kraus
operators are proportional to finite-depth local unitaries.
Then co(QCMI’)[ρ] ≥ co(QCMI’)[E[ρ]], i.e., co(QCMI’)
is nonincreasing under the action of such a channel.

Proof. The proof is essentially identical to the one for
Theorem 1. Let us denote the action of the channel E
as E[ρ] = ∑

α qαUαρU†
α where Uα are finite-depth local

unitaries. If the optimal decomposition for co(QCMI’)[ρ]
is ρ = ∑

i pi|ψi〉〈ψi|, then under evolution by E , ρ →
E[ρ] = ∑

i,α piqαUα|ψi〉〈ψi|U†
α . This provides one decom-

position for E[ρ]. Therefore, by definition of co(QCMI’),

co(QCMI’)[E[ρ]] ≤
∑

i,α

piqαQCMI’(Uα|ψi〉) }

=
∑

i,α

piqαQCMI’(|ψi〉) }

=
∑

i

piQCMI’(|ψi〉) }

= co(QCMI’)[ρ], (4)

where in the second equation we have used the invariance
of QCMI’ under a finite-depth local unitary. �

We anticipate that in practice, QCMI’ = QCMI for
generic systems, since all known examples of spurious
TEE are nongeneric. This expectation is also supported
by the calculation of QCMI in a large variety of lattice
models and field theories [59–64]. Therefore, we antici-
pate that the monotonicity result Theorem 2 will hold even
for co(QCMI) and not just co(QCMI’).

As an aside, we note that in a gapped phase, the
co(QCMI) and TEE takes its universal value only when
the subsystem size � that defines Levin-Wen partition sat-
isfies � � ξ , where ξ is the correlation length. However,
the above monotonicity results hold true for any subsystem
size irrespective of whether the condition � � ξ is satisfied
or not.

B. Can co(QCMI) be zero for p < pc?

Zero co(QCMI) for the Levin-Wen partition would
imply that the density matrix admits a decomposition
in terms of pure states with zero TEE, i.e., in Eq. (1)
γ (|ψ〉i) = 0 ∀i. Intuitively, one might think this is equiv-
alent to the statement that the density matrix admits a
decomposition in terms of SRE states. Indeed, zero TEE
for 2D pure state implies that if the pure state under
consideration was the ground state of a gapped Hamil-
tonian, then the topological ground-state degeneracy is
zero [58,85], but it need not imply that the state is SRE
since the state may have long-range entanglement despite
zero Levin-Wen QCMI. One such example is the GHZ
state whose Levin-Wen QCMI vanishes, but the long-
range entanglement captured via Kitaev-Preskill tripartite
entropy [5] does not vanish. Another possibility is that
the state may have zero Levin-Wen QCMI, as well as
zero Kitaev-Preskill tripartite entropy, but it may not be
a ground state of a gapped Hamiltonian [86]. Below, we
will first focus on whether the density matrix can be writ-
ten as a convex sum of SRE pure states for p < pc, and
then consider whether co(QCMI) can be zero for p < pc.

As shown in Ref. [18,19], for p < pc there exists a
constant time quasilocal Lindblad evolution L(τ ) that
approximately converts the mixed state ρ(p) to the pure
toric-code ground state ρ(p = 0). That is,

∣
∣T e

∫ 1
0 dtL(t)ρ(p)− ρ(p = 0)

∣
∣
1 ≤ ε, (5)

where T denotes time ordering, | · ∣∣1 denotes the trace
norm and ε � 1 is the tolerance [as discussed in Ref. [19],
for a given ε, the Lindblad evolution L corresponds to an
r-local quantum channel where r scales as log(poly(L)/ε)].

Definition 3. (Motivated from Ref. [18,19].) A unitary
circuit is “low-depth” if it consists of local gates state
where the product of the maximal range of a gate times the
depth of the circuit scales at most as polylog(L) where L is
the system’s linear size. Further, a pure state is short-range
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entangled (SRE) if it can be prepared via a low-depth local
unitary circuit starting from a product state.

Before proceeding, we recall that a CSS (Calderbank-
Shor-Steane) topological code [67,87–89] is the ground-
state subspace of a topologically ordered system whose
Hamiltonian can be written in the form H = HX + HZ
where HX = ∑

i hi,X , and HZ = ∑
i hi,Z satisfy the follow-

ing properties. All local terms {hi,X } only involve Pauli-X
operators, and similarly all local terms {hi,Z} involve only
Pauli-Z operators. Further, all local terms {hi,X , hi,Z} mutu-
ally commute. In such a code, the topological degeneracy
of 2N on a torus arises from pairs of logical operators
{Zα , X α} (α ranges from 1 to N where N depends on the
code) with ZαX α = −X αZα (logical operators belonging
to distinct α commute). A few examples of CSS topologi-
cal codes are toric code [90] in any dimension, topological
color codes [91,92], and the X -cube fracton model [93].

Theorem 3. Consider any CSS topological code in any
spatial dimension subjected to local decoherence at rate p .
Let us denote the corresponding density matrix as ρ(p). If
ρ(p) is a convex sum of SRE pure states, then a quasilocal
Lindbladian L that satisfies

∣
∣T e

∫ 1
0 dtL(t)ρ(p)− ρ(p = 0)

∣
∣
1 ≤ ε̃ (6)

must also satisfy

ε̃ ≥ (3 −
√

5)/2 ≈ 0.38. (7)

Proof. We will sketch the main elements of the proof
here, and refer the reader to Appendix A for details. Let
us assume that condition (a) above is indeed satisfied.
Therefore, we write

ρ(p) =
∑

a

pa|ξa〉〈ξa|, (8)

where |ξa〉 are SRE states. The main idea we employ is that
the pure state ρ(p = 0) has long-range correlations of log-
ical Z operators (see, e.g., Ref. [94]), which we denote as
ZA and ZB with the minimal distance between the operators
ZA, ZB O(L) where L is the total system’s linear size. In a
nontrivial topological CSS code, there always exists a log-
ical operator X that anticommutes and intersects with both
ZA, ZB (see Fig. 3). We chose ρ(p = 0) to be an eigenstate
of X . The second result that we employ is that a low-depth
local channel acting on a pure SRE state results in a density
matrix whose connected correlations continue to be short
ranged [95,96] for operators that are separated by distance
of O(L). That is, the connected correlations with respect
to any of the mixed states ρa = T e

∫ 1
0 dtL(t) (|ξa〉〈ξa|) must

be short ranged. Let us decompose the states ρa into
some set of pure states as ρa = ∑

m qa,m|φa,m〉〈φa,m| (this

ZA ZBO(L)

X

FIG. 3. Geometry used in the main text to show that the den-
sity matrix of a decohered CSS code cannot be expressed as a
convex sum of SRE pure states when p < pc. Noncontractible
logical operators ZA and ZB both anticommute with the noncon-
tractible logical operator X (this figure is drawn for a 2D CSS
code so that the logical operators are one dimensional).

decomposition is not unique, and it does not matter for
our purposes what particular decomposition is chosen).
Using Eq. (6), we then arrive at the following set of
equations:

∑

a,m

paqa,mxa,m ≥ 1 − ε̃

∑

a,m,m′
paqa,mqa,m′zA

a,mzB
a,m′ ≥ 1 − ε̃

(9)

where xa,m = 〈φa,m|X |φa,m〉, zA
a,m = 〈φa,m|ZA|φa,m〉 and

zB
a,m = 〈φa,m|ZB|φa,m〉. In addition, one has the following

identity for any a, m:
(
xa,m

)2 + (
zA

a,m

)2 ≤ 1, and
(
xa,m

)2 +
(
zB

a,m

)2 ≤ 1 due to the anticommutation relations between
X and ZA, ZB [97]. As discussed in detail in Appendix A,
a series of Cauchy-Schwarz inequalities then imply that
for aforementioned constraints to hold simultaneously, the
tolerance ε̃ in Eq. (5) must satisfy ε̃ ≥ (3 − √

5)/2 ≈ 0.38.
�

Corollary 2. The density matrix of a CSS code sub-
jected to local decoherence cannot be a convex sum of SRE
pure states for p < pc, where the threshold pc is defined via
Eq. (5).

Proof. As shown in Ref. [19] the threshold ε in Eq. (5)
can be made arbitrarily small as system size increases. In
particular, ε can be chosen to satisfy ε ∼ 1/poly(L), while
keeping the recovery channel L to be poly(log(L))-local.
Theorem 3 then implies that ρ cannot be a convex sum of
SRE pure states for p < pc. �
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The above proof employed the fact that the pure state
ρ(p = 0) has long-range correlations between the logi-
cal operators ZA, ZB (Fig. 3). Therefore, it also implies
that ρ(p) p < pc cannot be a convex sum of states where
the two-point correlations of logical operators are short
ranged in each of the pure states |ψi〉 that enter the convex
decomposition of ρ(p). This shows that co(QCMI) must
be nonzero for p < pc [thereby ruling out scenario (c) in
Fig. 2] since nonvanishing connected correlator of logical
operators is a distinctive feature of topological order [94],
and topologically ordered phases have nonzero Levin-Wen
QCMI.

C. Does co(QCMI) equal log(2) for p < pc?

Above we ruled out the possibility that the density
matrix ρ(p) can be written as a convex sum of SRE
states for p < pc. It is natural to ask how does the
argument change if one allows for a nonzero weight of
topologically ordered state(s) in the convex decomposi-
tion of ρ(p) for p < pc. A natural possibility is to con-
sider ρ(p) = ∑

a pa|ξa〉〈ξa| + (1 −∑
a pa)ρ(p = 0), i.e.,

we allow a nonzero weight 1 −∑
a pa ≡ 1 − wξ of topo-

logical ordered state in ρ(p). As shown in Appendix A,
such a decomposition is not allowed if ε/wξ < (3 −√

5)/2 ≈ 0.38 and therefore, as the tolerance ε → 0, the
total weight of the SRE states in such a decomposition
vanishes. This strongly suggests that co(QCMI) is not just
nonzero for p < pc, but equals log(2). This would then
rule out scenario (e) as well in Fig. 2. Indeed, given any
decomposition ρ(p) = ∑

a pa|ψa〉〈ψa|, ε = 0 implies that
for all a, T e

∫ 1
0 dtL(t)|ψa〉〈ψa| = ρ(p = 0), since ρ(p = 0)

is a pure state. Following the same argument as above, then
|ψa〉 cannot be an SRE state since it is related to the toric-
code ground state via a low-depth local channel. This again
strongly suggests that co(QCMI) equals log(2) for p < pc.

We now briefly discuss an alternative approach to
co(QCMI) that exploits the average 1-form symmetry of
the decohered toric code. This symmetry is generated by
the operators gx = ∏

e∈� Xe that are product of Pauli opera-
tors Xe along any closed-loop � (including noncontractible
ones). In Refs. [98,99] Terhal, Vollbrecht, and Werner
developed an interesting scheme to calculate the convex
roof of any function f of a density matrix ρ that is symmet-
ric under some group G, i.e., g†

i ρgi = ρ, where gi are the
group elements of the group G. The basic idea is to exploit
this symmetry to recast the problem of calculating the con-
vex roof into a different problem. First, one considers all
possible pure states |ψα〉, such that

∑
i g†

i |ψα〉〈ψα|gi = ρ

(one says that the pure state |ψα〉 “twirls” to the mixed
state ρ). Next, one minimizes the function f over this set
of pure states. Let us denote this minimum as ε(ρ). One
can then show that the desired convex-roof co(f )[ρ] equals
the convex hull of ε(ρ), which is defined as the largest
convex function on the set of all symmetric mixed states

that nowhere exceeds ε. This second step requires calcu-
lating the function ε(ρm) for all symmetric states ρm in the
neighborhood of the target state ρ. At least for a class of
problems [98–100], the function ε(ρ) is already convex,
so this second step is redundant, and one only needs to
minimize f over pure states that twirl to ρ.

Following this idea and exploiting the average 1-form
symmetry of the decohered toric-code density matrix, the
first step is to minimize TEE over all pure states that
twirl to ρ, i.e., minimize TEE over all states |φ〉 such that∑

x gx|φ〉〈φ|gx = ρ where gx are the aforementioned oper-
ators that form closed loops. Following the same argument
as above, any such pure state |φ〉 cannot be SRE for p < pc
since gx can be thought of as Kraus operators correspond-
ing to a finite-depth channel. Furthermore, again following
the same argument as above, |φ〉 should inherit the long-
range order associated with noncontractible logical string
operators from ρ. Therefore, it is reasonable to expect that
the minimal TEE for any such state |φ〉 is the one corre-
sponding to the pure toric code, i.e., log(2). Remarkably,
the decomposition of ρ discussed in Ref. [26] that captures
the separability transition already takes the desired form,
namely, ρ(p) = ∑

gx
|ψgx (p)〉〈ψgx (p)|, where |ψgx (p)〉 =

gx|ψ(p)〉, where the pure state |ψ(p)〉 was argued to have
TEE of log(2) for p < pc [we will discuss the pure state
|ψ(p)〉 in detail in Sec. IV and verify that it is indeed Z2
topologically ordered for p < pc]. Since the mixed state is
topologically ordered for p < pc, and topological order is
expected to be robust to small perturbations, it is reason-
able to expect that the minimum TEE of a pure state that
twirls to any symmetric mixed state in the neighborhood
of ρ is also log(2). This again suggests that co(QCMI) of
ρ equals log(2) for p < pc. Admittedly, this argument is
heuristic, and it will be worthwhile to pursue it further.

D. Is co(QCMI) zero for p > pc?

Reference [26] provided an explicit decomposition of
the decohered toric-code density matrix that was argued
to consist of states with zero TEE for p > pc. Since the
statistical mechanics model involved in the correspond-
ing argument is not exactly solvable to our knowledge,
it is desirable to supplement the analytical treatment of
Ref. [26] with a direct numerical simulation. In Sec. IV,
we will perform a tensor-assisted Monte Carlo (TMC)
simulation to extract the Rényi co(QCMI) for the decom-
position in Ref. [26], and provide direct evidence that
Rényi co(QCMI) indeed vanishes for p > pc.

Combining all the arguments in this section, we there-
fore conclude that co(QCMI) is non-zero for p < pc, and
zero for p > pc. Further, we expect that in fact it equals
log(2) for p < pc [scenario (a) in Fig. 2]. We now turn
to a specific decomposition of the density matrix that we
will conjecture is optimal for co(QCMI), i.e., it achieves
the minimum in Eq. (1). As we will see, this conjecture
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is equivalent to the statement that the co(QCMI) of the
decohered toric code equals the TEE of a specific pure
state |ψ〉. To this end, we develop a tensor-assisted Monte
Carlo (TMC) computational scheme to efficiently evaluate
the Rényi TEE of the aforementioned pure state. The TMC
method is designed to significantly mitigate the exponen-
tial complexity associated with numerical evaluation of
Rényi TEE [35,36], and allows us to study the behavior
of Rényi TEE close to the transition.

IV. TESTING THE CONJECTURED “OPTIMAL
DECOMPOSITION” FOR CO(QCMI) USING

MANY-BODY SIMULATIONS

In this section, we adopt the convention in Ref. [26],
where bold font e in xe denotes the collection of bond on
all edges, while xe denotes the bond on a specific edge e.

A. Conjectured optimal decomposition

Reference [26] proposed a specific decomposition of the
decohered 2D toric code density matrix ρ(p), arguing it
correctly captures the location and the universality class of
the transition. Concretely, this decomposition is given as

ρ(p) =
∑

gx

|ψgx (β)〉〈ψgx (β)|, (10)

where |ψgx (β)〉 = gx|ψ(β)〉, gx is a product of single-
site Pauli-X operators that form closed loops, and the
(unnormalized) pure state |ψ(β)〉 is given by

|ψ(β)〉 ∝
∑

xe

√
Zxe(β) |xe〉 , (11)

where Zxe(β) = ∑
zv

eβ
∑

e xe
∏
v∈e zv is the partition func-

tion of the 2D Ising model with bond strengths given by
Ising variables xe. The relation between the inverse tem-
perature β and the decoherence rate p is tanh(β) = 1 − 2p .
Notably, this wave function precisely corresponds to the
toric-code ground state at β = ∞ and to the product state
in the Z basis at β = 0.

Since states |ψgx (β)〉 are all related to the state |ψ(β)〉
via onsite unitaries, the decomposition in Eq. (10) implies
that co(QCMI)[ρ(p)] ≤ TEE(|ψ(β)〉). We conjecture that
the decomposition in Eq. (10) is optimal for co(QCMI),
i.e., it achieves the minimum of average TEE over all pos-
sible decompositions of the density matrix [see Eq. (1)].
This conjecture is equivalent to the statement that

co(QCMI)[ρ(p)] ?= TEE(|ψ(β)〉). (12)

In this section, we will test this conjecture by subjecting
the right-hand side of the above equation to the constraints
derived in the last section. The main motivation for our

conjecture comes from Ref. [26], which argued that the
TEE for the state |ψ(β)〉 jumps from log(2) to zero at
p = pc, in line with our expectation for the co(QCMI) of
ρ(p) (Sec. III). However, the results in Ref. [26] were not
strong enough to test whether the Rényi TEE of |ψ(β)〉 is
monotonic as a function of p , especially in the vicinity of
pc. Therefore, we will develop unbiased quantum many-
body numerical techniques to calculate the Rényi TEE of
|ψ(β)〉.

B. Anyon condensation order parameter

Before we discuss the Rényi TEE of the state |ψ(β)〉,
we compute and verify the universal properties of the
decoherence-induced transition in noisy toric code from
the single pure state |ψ(β)〉.

The universal aspects of the decoherence-induced tran-
sition in toric code are known to be related to the Nishimori
multicritical point [20–23,76]. One calculation that is sug-
gested by the results in Ref. [26] is that of the anyon
condensation order parameter with respect to the state
|ψ(β)〉. Concretely, one considers a path l, and calculates
the expectation value of the operator Tl = ∏

e∈l Ze that flips
the bonds on path l [when the wave function is expressed in
the X basis, as in Eq. (11)]. This expectation value captures
the tunneling amplitude between different logical sectors of
the toric code. In the topological phase (i.e., p < pc), one
expects that this tunneling amplitude vanishes, while in
the nontopological phase (i.e., p > pc), one expects that it
will be nonzero [26]. If the wave function |ψ(β)〉 correctly
captures the universal aspects of the Nishimori multicriti-
cal point, then using Wegner duality [68] one expects the
following behavior in the vicinity of the critical point:

〈ψ(β)|Tl|ψ(β)〉 ∼ f (L/ξ)/Lη, (13)

where η will turn out to be the anomalous dimension
associated with a specific moment of the disorder opera-
tor correlator at the random bond Ising model’s (RBIM)
Nishimori multicritical point (as discussed below), ξ ∼
(p − pc)

−ν is the corresponding diverging correlation
length, and we have chosen the length of the path l
to be proportional to the total system’s linear size L
[as depicted in the inset of Fig. 4(a)]. It is worth not-
ing that the expectation value of Tl with respect to the
decohered density matrix ρ(p) itself, i.e., tr(ρ(p)Tl) =∑

gx
〈ψgx (β)|Tl|ψgx (β)〉, will not see any singularity across

the transition. This is because the transition is not visi-
ble in any quantity linear in the density matrix [23]. The
object of our study, namely 〈ψ(β)|Tl|ψ(β)〉, equals (upto
a sign)

∑
gx

|〈ψgx (β)|Tl|ψgx (β)〉|, and cannot be expressed
as a linear function of the density matrix.

Next, we discuss the details of the numerical evalua-
tion of 〈ψ(β)|Tl|ψ(β)〉 ≡ 〈Tl〉. We consider a system with
open boundaries and chose the path l as a line segment
on the dual lattice, as shown by the red dashed line in
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(a)

(b)

FIG. 4. Anyon condensation operator. (a) Average value of the
anyon condensation order parameter 〈Tl〉 with respect to the state
|ψ(β)〉 [Eq. (11)] as a function of the temperature T (= β−1).
The operator Tl is depicted by the red dashed segment of length
l. (b) Data collapse of 〈Tl〉. The two panels share the same legend
as the one shown in (b).

Fig. 4(a). Its expectation value can then be computed as
[26]

Tl |ψ〉 ∝
∑

xe

√
Zxe |xel〉 , and

〈Tl〉 =
∑

xe

√
ZxeZxel

∑
xe
Zxe

=
∑

xe
Zxe

√
Zxel
Zxe

∑
xe
Zxe

,

=
⎡

⎣

√
Zxel

Zxe

⎤

⎦ (14)

where the extra subscript in xel represents the flipped
bond configuration on line segment l, and [ · ] denotes
the weighted average over bond configurations with
probability proportional to the corresponding partition
function Zxe , i.e., W(xe) ∝ Zxe(β) = ∑

zv
eβ

∑
e xe

∏
v∈e zv .

〈Tl〉 precisely corresponds to the two-point correlator
[〈μ(0)μ(r)〉1/2] of the disorder operator μ in the RBIM
studied in Ref. [101], where 〈 · 〉 denotes the average
with respect to a fixed disorder configuration, and [ · ]
again denotes disorder averaging. 0 and r are the two
endpoints of Tl. The generation of bonds according to
the probability distribution Zxe can be greatly simplified
using the Nishimori condition tanh(β) = 1 − 2p . In par-
ticular, one simply proposes an updated bond configuration
according to the binomial distribution with probability
p at each MC step, followed by the gauge transforma-
tion xe → xe

∏
v∈e σv with σv = ±1 on every site. By

doing so, one generates a bond configuration according to

(a) (b)

FIG. 5. Tensor formalism for the Ising model partition func-
tion. (a) A tensor network for 5 × 5 system, with (L + 1)2 = 36
local tensors. Each tensor encodes the interaction between four
Ising spins, with each leg containing the local spin degree of free-
dom (d = 2). The dashed lines represent the original lattice. (b)
The Levin-Wen scheme in the tilted square lattice. Here L is a
multiple of 5, and we divide the system into a 5 × 5 grid, and
choose the subregions as depicted, similar to Ref. [109].

the distribution W′(xe) ∝ ∑
[xe]
∏

e pδAFM(xe)(1 − p)δFM(xe),
where [xe] denotes an equivalence class of 2N bond
configurations related to xe by aforementioned gauge
transformations, and δAFM(FM)(xe) = 1 if bond xe is
AFM(FM), otherwise 0. Summing up all 2N terms
related to each other via gauge transformation gives
W′(xe) = ∑

σv

∏
e pδAFM(xe

∏
v∈e σv) (1 − p)δFM(xe

∏
v∈e σv) ∝

∑
σv

eβ
∑

e xe
∏
v∈e σv = Zxe , where we have used the Nishi-

mori relation tanh(β) = 1 − 2p .
To calculate the partition function Zxe for a given bond

configuration xe, we performed the matrix-product-state-
(MPS) assisted sampling with bond dimension χ = 8 (we
will provide details of this method in Sec. IV C). Such
a small bond dimension is sufficient to capture the Ising
partition function, with relative error of order 10−20. For
simplicity in the MPS calculation, we chose our system to
be the tilted square lattice with open boundary condition
(OBC), as shown in Fig. 5 and the inset of Fig. 4(a).

Figure 4(a) shows the result of the anyon condensation
operator. It approaches zero in the topological phase and
gradually increases as a function of T = β−1. Perform-
ing finite-size scaling following Eq. (13) leads to a rather
accurate data collapse with Tc = 0.951(5), ν = 1.44(12)
and η = 0.16(2), see Appendix B for details of the data
collapse procedure. This set of numbers agrees well with
the previous studies on RBIM along the Nishimori line
(see Table I) suggesting that the conjectured optimal
decomposition of the decohered density matrix [Eq. (10)]
indeed correctly captures the decoherence induced transi-
tion. With such verification at hand, we now turn to the
discussion of the TEE for the state |ψ(β)〉.
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TABLE I. Critical exponents for the random bond Ising model
at the Nishimori critical point.

Tc ν η Reference

0.9538(9) 1.33(3) · · · [102]
0.9533(9) 1.50(3) · · · [103]
0.9533(9) 1.48(3) · · · [104]
0.9528(4) 1.52(3) · · · [105]
· · · · · · 0.17(3) [101]
0.951(5) 1.44(12) 0.16(2) This work

C. Tensor-assisted Monte Carlo method for Rényi
entanglement entropy

As discussed above, our aim is to numerically calculate
the TEE of the state |ψ(β)〉 to test Eq. (12). Numerically,
calculating the von Neumann entanglement − tr(ρ log ρ)
for a density matrix ρ is rather challenging for generic 2D
systems. Instead, we will focus on the numerical evalua-
tion of the Rényi TEE, which can be argued to equal von
Neumann TEE for topologically ordered pure states, using
field-theoretic and lattice-based arguments [106–108]. Per-
haps more pertinently, the Rényi version of the co(QCMI)
also satisfies the monotonicity discussed in Sec. III, and
therefore, provides as good a test for monotonicity as the
von Neumann based co(QCMI).

Since we develop a new technique, namely tensor-
assisted Monte Carlo (TMC) method for calculating the
Rényi TEE, in this subsection we will describe the method
in detail, and discuss the results in the next subsection.

The second-order Rényi entropy for a density matrix ρA
is defined as S2 = − ln tr ρ2

A. Defining S2 requires divid-
ing the total system into subregions A and B. Let us label
the bond configuration xe for the whole system as xe ≡
(xA, xB), where xA, xB denote the configurations in sub-
region A and B, respectively. For the wave function in
Eq. (11) one finds,

tr ρ2
A =

∑
xex′

e

(
ZxA,xBZx′

A,x′
B
Zx′

A,xBZxA,x′
B

)1/2

∑
xex′

e
ZxA,xBZx′

A,x′
B

=
⎡

⎣

√
√
√
√

Zx′
A,xBZxA,x′

B

ZxA,xBZx′
A,x′

B

⎤

⎦ , (15)

where the sum
∑

xex′
e

runs over two replicas of the sys-
tem, and [ · ] denotes the weighted average over bond
configurations with the joint probability proportional to
ZxeZx′

e . Note that Zxe ≡ ZxA,xB and Zx′
e ≡ Zx′

A,x′
B
, while

Zx′
A,xBZxA,x′

B
denotes the partition function of the two

copies where the bond configuration in region A has been
swapped between the two copies.

Our goal is to perform the averaging in Eq. (15) using
Monte Carlo sampling. At low temperatures, the direct
sampling becomes exponentially hard. This is because the

quantity being sampled in Eq. (15) is around 1 for only
an exponentially small set of the total configurations, and
approximately zero otherwise. This is the typical problem
of sampling an exponential observable that plagues other
EE computations [35,36,110,111], and is related to the log-
normal distribution of the quantity being sampled. If EE
for a subregion A follows the area law (SA ∝ LA in 2D),
naive Monte Carlo sampling results in an exponentially
increasing relative error in measuring e−S2 , rendering any
quantitative estimate of EE extremely difficult. To over-
come such a problem of exponential observables, many
incremental methods, with the hope to mitigate the expo-
nentially computational complexity [61,112–118], have
been put forward over the years. It has been argued that
at least for the 2D Hubbard and the Heisenberg models,
there is a systematic procedure to convert the exponen-
tial complexity to a polynomial one as discussed in Refs.
[35,36,111]. In the TMC method, we adopt a similar strat-
egy and combine it with a tensor-network approach to
speed up calculations. In particular, for each bond con-
figuration {xe, x′

e}, the corresponding 2D Ising partition
functions can be quickly evaluated via the contraction of a
2D tensor network. We can then sample the bond configu-
rations {xe, x′

e} using the standard Monte Carlo procedure.
The TMC method hence combines the contraction of the
MPS for any fixed random bond configuration and the
nonequilibrium Monte Carlo sampling [61,115,116] of the
random bond configurations.

The details of the algorithm are as follows. First, con-
sider the following object Q(λ):

Q(λ) =
∑

xex′
e

ZxA,xBZx′
A,x′

B

(
Zx′

A,xBZxA,x′
B

ZxA,xBZx′
A,x′

B

)λ/2

=
∑

xex′
e

ZxA,xBZx′
A,x′

B
g
(
xe, x′

e, λ
)

, (16)

where g
(
xe, x′

e, λ
) =

(
Zx′

A,xBZxA,x′
B
/ZxA,xBZx′

A,x′
B

)λ/2
. The

second Renyi entropy, Eq. (15) is then given by e−S2 =
Q(1)/Q(0). The advantage of this formulation is that we
can now use the Jarzynski equality [115,116,119], namely,
the exponential of the free energy difference equals the
weighted average of the exponential of the work done over
all realizations bringing the system from Q(0) to Q(1):

e−S2 = Q(1)
Q(0)

= e	F = 〈eW〉, with

W =
∫ 1

0
dλ
∂ln g

(
xe, x′

e, λ
)

∂λ
. (17)

Since all partition functions Z can be computed by con-
tracting corresponding tensor network, using the updating
scheme from Sec. IV B, one can propose configurations
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from the joint probability ZxA,xBZx′
A,x′

B
. By additionally

choosing acceptance probability as ratio of g
(
xe, x′

e, λ
)

(Eq. (16)) between the new and old bond configura-
tions, one can sample under the distribution Q(λ). For
each TMC calculation, one gradually increases λ from
0 to 1, updates bond configurations {xe, x′

e} accord-
ing to Q(λ) and measures the infinitesimal work done
dW = ln

√
(Zx′

A,xBZxA,x′
B
)/(ZxA,xBZx′

A,x′
B
)dλ accumulated in

each step (Eq. (16)). The final EE is simply S2 =
− ln(〈eW〉). Previous works argued that scaling the num-
ber of discretization steps with system size leads to a
polynomial-time algorithm for calculating EE while keep-
ing the relative error fixed [35,36,111]. In this work how-
ever, we use a fixed but sufficiently large number of
discretization steps (= 2 × 105), independent of the sys-
tem size. This choice gives a satisfactory relative error for
TEE close to the critical point for the system sizes studied,
as we now discuss.

D. Results for Rényi TEE

We now discuss the numerical results for the Rényi
TEE of the state |ψ(β)〉 obtained using the aforementioned
TMC method. The Levin-Wen partition to define TEE is
shown in Fig. 5 with Rényi TEE given by γ = 1

2 S2(A :
B|C) = 1

2 (S2(AC)+ S2(BC)− S2(C)− S2(ABC)). To per-
form finite-size scaling, we maintain the shapes of the
regions A, B, C and scale the total system size so that
each of the regions A, B, C scale with L. We simulated
the linear system sizes L = 5, 10, 15 and the temperature
T ∈ [0.2, 1.2] with data points that lie on the either side of
the critical point Tc = 0.954(6), which is determined from
the anyon condensation operator in Fig. 4.

Figure 6 shows the numerically obtained Rényi TEE γ .
Again recall that the temperature T is related to the deco-
herence rate p via tanh(1/T) = 1 − 2p . The overall trends
are as follows. γ ≈ ln 2 at low temperatures for all sys-
tem sizes, γ is monotonically nonincreasing as p increases,
and it tends towards zero as T → Tc. Further, as the sys-
tem size is increased, γ tends towards log(2) at a relatively
higher temperature and is also nonzero up till a relatively
higher temperature (i.e., the range of decoherence rate over
which the topological phase is visible in a finite system
increases). These numerical results rule out scenarios (b)
and (d) in Fig. 2 for the Rényi co(QCMI), which is con-
sistent with the analytical arguments in Sec. III and Ref.
[26]. Perhaps more interestingly, they strongly suggest
that as one approaches the critical point, so that L � ξ ,
Rényi co(QCMI) approaches zero. Assuming that the von
Neumann TEE has the same qualitative behavior as the
Rényi TEE [106–108], this indicates that the von Neu-
mann co(QCMI) also approaches zero as p → pc [recall
that the TEE of the state |ψ(β)〉 puts an upper bound on

FIG. 6. Result for Rényi TEE γ using Levin-Wen scheme.
Rényi TEE γ for the state |ψ(β)〉 [Eq. (11)] against tempera-
ture T (= β−1) and the rescaled temperature (T − Tc)L1/ν̃ (inset)
with Tc = 0.951 and ν̃ ≈ 3.2.

the co(QCMI), and the von Neumann TEE is necessar-
ily non-negative due to strong subadditivity]. This is in
strong contrast to (pure) ground-state phase transition in
toric code that is driven by a magnetic field, where in the
critical regime, QCMI exceeds the TEE of the topological
phase. See Fig. 1 for a contrast between the pure-state tran-
sition and the decoherence-induced transition. Overall, our
results are consistent with the scenario (a) in Fig. 2 in the
thermodynamic limit, in line with the analytical arguments
in Sec. III and our conjecture relating TEE of |ψ(β)〉 to the
co(QCMI) of the decohered state [Eq. (12)].

We also attempted finite-size scaling for TEE with the
scaling form γ (T, L) = f

(
(T − Tc)L1/ν̃

)
. We found that γ

obtained for different system sizes collapses well when we
choose ν̃ ≈ 3.2, see the inset of Fig. 6. This value is much
larger than the critical exponent ν for the Nishimori critical
point (namely ν ≈ 1.5, which agrees well with the expo-
nent obtained from anyon condensation order parameter
from the same wave function, as discussed in Sec. IV B).
We suspect this discrepancy is partly because the system
sizes for which we can access TEE is still limited, and
perhaps the finite-size effects for TEE are also relatively
larger compared to those for the anyon condensation order
parameter. Furthermore, in the critical regime (L/ξ � 1),
we only have a few data points. Nonetheless, the data col-
lapse is suggestive that TEE is a function only of L/ξ ,
where ξ is the diverging correlation length. Although we
do not have an analytical understanding of TEE close to
the transition, arguments in Ref. [26] imply that the TEE
is related to the domain-wall free energy in the RBIM
along the Nishimori line, which scales as (L/ξ)1/ν close
to the transition [102]. This motivates a scaling ansatz
in the critical regime (L � ξ ) of the form γ (L/ξ) =
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FIG. 7. Second-order Rényi entanglement entropy S2. Rényi
entanglement entropy S2 for the state |ψ(β)〉 [Eq. (11)] against
temperature T for the four subregions depicted in Fig. 5. S2 for
all of these regions is monotonically nonincreasing as a function
of increasing temperature and decoherence rate.

log(2)
(

1 − (log(1 + ae−b(L/ξ)1/ν ))/(log(1 + a))
)

where
a, b are some numbers. Such a scaling form is also sug-
gested from previous works on topological entanglement
negativity in thermal or decoherence driven topological
transitions [33,82]. Taylor expanding such an expression
would then imply γ ∼ (L/ξ)1/ν ∼ L1/ν(Tc − T), which at
least qualitatively captures the features of our numerical
results. For example, at a fixed p � pc, γ is an increasing
function of L.

Let us also briefly discuss the behavior of the bipar-
tite Rényi entropy in the pure state |ψ(β)〉. As shown in
Fig. 7, for all subregions we looked at, S2 is a monoton-
ically decreasing function of the decoherence rate. Recall
that the results in Sec. III imply that co(Rényi entropy) is a
monotonically nonincreasing function of the decoherence
rate. Given our numerical observations, it is then natural to
wonder if the decomposition in Eq. (10) is perhaps optimal
also for other quantities, including co(Rényi entropy) and
co(von Neumann entropy) (= entanglement of formation),
so that the bipartite co(Rényi entropy) of the decohered
mixed state equals the bipartite Rényi entropy of the pure
state |ψ(β)〉 depicted in Fig. 7.

V. DISCUSSION

In this paper, we introduced a measure of long-range
entanglement in mixed states [abbreviated as co(QCMI)],
given by the minimum value of the average TEE of the
density matrix over all possible pure-state decomposi-
tions [Eq. (1)]. By construction, it is zero if and only if
the density matrix admits a decomposition in terms of
pure states with zero TEE. Furthermore, whenever a den-
sity matrix ρ2 is obtained from a density matrix ρ1 via
a quantum channel that has a representation in terms of

Kraus operators that are products of onsite unitaries, then
co(QCMI)[ρ2] ≤ co(QCMI)[ρ1]. We focused on salient
features of co(QCMI) in the context of decohered topo-
logical states, especially toric code subjected to bit-flip or
phase-flip noise. We showed that below the error-recovery
threshold, the density matrix cannot be written as a con-
vex sum of SRE states, and relatedly, that co(QCMI) goes
from nonzero to zero across the transition. These argu-
ments apply more broadly to other topological ordered in
general dimensions. For the 2D toric code, we then pro-
vided analytical and numerical support for the conjecture
that the co(QCMI) equals TEE of a specific pure state
that was recently introduced in Ref. [26]. In particular, we
developed a tensor-assisted Monte Carlo (TMC) algorithm
to study the second Rényi TEE of the aforementioned pure
state and found it satisfies the constraints that co(QCMI)
must satisfy, thereby providing a nontrivial consistency
check for our conjecture. We also numerically studied the
scaling of the anyon condensation order parameter close to
the transition, and found that the results match quite well
with the known exponents of the RBIM along the Nishi-
mori line. We anticipate that an analogous relation between
co(QCMI) and TEE of a pure state [Eq. (12)] will hold true
also for other examples discussed in Ref. [26], e.g., 3D
toric code or fracton states subjected to bit-flip or phase-
flip noise. Our main results are also summarized in the last
paragraph of Sec. I.

There are currently several perspectives on mixed-state
phase transitions in topological systems [18–34]. Our work
connects at least two of these: one based on mixed-state
phase equivalence using local, finite-time Lindbladian evo-
lution [17–19], and another focused on long-range entan-
glement and separability [26,120]. Specifically, we showed
that if the density matrix admits a decomposition in terms
of short-range entangled pure states (in other words, if the
density matrix is short-range entangled [51,54]), then the
mixed state cannot be connected to the pure topological
state via a low-depth local channel (Sec. III). It will be
interesting to relate separability and entanglement to other
perspectives such as coherent information [23,29].

Let us discuss potential challenges with the practical
utility of co(QCMI). Perhaps the most formidable one is
that calculating co(QCMI) for generic density matrices is
rather difficult since it requires optimization over all possi-
ble decompositions of the density matrix in terms of pure
states. One perspective one may take is that even if one
cannot calculate co(QCMI) for a given density matrix,
one may be able to put bounds on it by considering suit-
able decompositions of the density matrix. Combined with
the general properties of the co(QCMI) (e.g., positivity
and monotonicity), one may then use these bounds to
constrain global aspects of the phase diagrams. This is
indeed the route we took in this paper for mixed states
obtained by locally decohering a topological state. Similar
ideas may also be helpful for characterizing topological
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order in Gibbs states of topologically ordered systems.
For example, the Gibbs state of 2D and 3D toric code
at any nonzero temperature may be explicitly written as
a convex sum of states that are SRE [81], and therefore
one expects that co(QCMI) vanishes at any nonzero T.
For 4D toric code [20], on the other hand, one obtains a
bound that co(QCMI) ≤ log(2) below the finite-T quan-
tum memory phase transition. Using similar arguments
to those for the 2D toric code under local decoherence,
one may argue that this bound is saturated. One may also
consider a more ambitious approach of using numerical
optimization methods to estimate co(QCMI), similar to
the ones that have been used to estimate entanglement of
formation (see, e.g., Ref. [121]). Finally, as discussed in
Sec. III, sometimes one may be able to exploit symmetries
to calculate the co(QCMI) (or at least make an educated
guess).

The second potential issue with co(QCMI) is that akin
to pure-state TEE, zero co(QCMI) is neither a sufficient
nor a necessary condition for a state to be SRE [recall
we define an SRE state is one that can be created via
poly(log) depth circuit]. It is not a sufficient condition
because the mixed state may admit a decomposition in
terms of GHZ-entangled pure states that have zero Levin-
Wen TEE, but nonzero mutual information between distant
subregions. One way to characterize such states is to also
calculate their co(MI) between distant subregions, which,
unlike co(QCMI), will be sensitive to long-range entan-
glement encoded in GHZ-type states (and more generally,
entanglement that can be captured by few point corre-
lation functions). A more interesting possibility is that
the mixed-state admits a decomposition in terms of pure
states that all have zero Levin-Wen TEE as well as expo-
nentially decaying mutual information, but which are not
ground states of a gapped, local Hamiltonian. Such pure
states are not guaranteed to be SRE [86] (or at least we
do not know of a proof that shows to the contrary). Zero
co(QCMI) is not a necessary condition for a state to be
SRE due to the possibility of spurious TEE [55–57,122].
As discussed in Sec. III, this can be remedied by introduc-
ing a modified version of co(QCMI), see Eq. (3). Despite
these potential drawbacks, it seems fair to say that QCMI
(i.e., Levin-Wen TEE) in a pure state captures at least one
kind of multipartite entanglement that is a hallmark of
known topologically ordered phases, and it is also nonzero
for known generic, gapless ground states such as those
corresponding to CFTs or compressible matter such as
Fermi liquids. Therefore, if QCMI in a pure state van-
ishes, it is not unreasonable to say that the state has less
long-range entanglement in a literal sense compared to
a state with nonzero QCMI, even if the state with zero
QCMI happens to have a large circuit complexity (see, e.g.,
recent discussion, Ref. [123], distinguishing long-range
entanglement in a GHZ state from that in a topologi-
cally ordered state, using maximum overlap between the

state under consideration and a short-ranged entangled
state).

On a related note, one may also define “co(complexity)”
of a mixed state:

co(complexity)[ρ] = inf{
∑

i

pi C(|ψi〉)}, (18)

where C(|ψi〉) is the circuit complexity of the pure state
|ψi〉, and the infimum is again taken over all possible
decompositions of the mixed state ρ as ρ = ∑

i pi|ψi〉〈ψi|.
Recall that a circuit complexity of a pure state is the mini-
mum depth of the circuit (which is assumed to be made of
geometrically local, finite range gates) required to prepare
it. co(complexity) was originally introduced in Ref. [124]
where it was called “ensemble complexity.” Let us con-
sider a mixed state ρ2 that is obtained from a mixed state
ρ1 via a low-depth local channel that can be represented
in terms of unitary Kraus operators. Following the same
argument as in Sec. III, then the asymptotic scaling of the
co(complexity) of a mixed state (with respect to the total
system size) cannot increase under such a channel. For
example, if the original mixed state has a co(complexity)
of order Lα , then the co(complexity) of the postchannel
mixed state cannot scale faster than Lα . One advantage of
co(complexity) is that there is no analog of “spurious com-
plexity” for obvious reasons, and hence, in this sense, it is
a more robust quantity than TEE or co(QCMI). The chal-
lenge of course is that it seems extremely hard to calculate,
since it requires two levels of optimizations, one over all
pure-state decompositions, and the other over all possible
circuits for each |ψi〉 in a specific decomposition.

Another aspect that needs more thought is the choice
of the tetra partition used to define the co(QCMI). To
obtain co(QCMI), one needs to minimize the average TEE
over all possible pure-state decompositions of the den-
sity matrix, including the ones that are not translationally
invariant. It is then not obvious if co(QCMI) is indepen-
dent of the partition used to define it. Should one average
it over all possible tetra partitions, or take the minimum
over all possible tetra partitions? Similar questions can also
be raised for the entanglement of formation as a measure
of bipartite mixed-state entanglement, or even pure-state
TEE in a nontranslationally invariant system. We are not
aware of any detailed discussion of such questions in the
literature.

Finally, we note that the TMC method developed in
this work is likely to have several more applications in
the context of 2D mixed states. Local decoherence of 2D
quantum systems naturally leads to wave functions whose
amplitudes are related to 2D classical statistical mechan-
ics models, and therefore, it will be expedient to apply the
TMC method to these problems, such as calculating the
Rényi negativity across mixed-state phase transitions, or
the study of critical pure states that are related to decohered
mixed states. It will be also worthwhile to improve the
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TMC method along the lines for other models [35,36,111]
so that the Rényi TEE can be calculated with polynomial
complexity in system size for a fixed relative error.

Note added. Recently, we became aware of an upcoming
work, Ref. [125], whose authors have also independently
studied mixed-state entanglement defined via the convex-
roof construction of QCMI, and its general properties that
overlap with our work.
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APPENDIX A: PROOF THAT MIXED STATE FOR
p < pc IS NOT A CONVEX SUM OF SRE PURE

STATES

In this Appendix we will prove Theorem 3 and asso-
ciated Corollary 2. In particular, we will show that the
density matrix of a CSS topological code under the action
of local decoherence cannot be written as a convex sum
of SRE pure states for p < pc, i.e., the density matrix
is long-range entangled in the mixed-state phase where
error-correction works. The main idea is to combine the
following four constraints:

(1) If two mixed states are in the same phase of matter,
then there exists a low-depth local quantum channel
that connects them in either direction Refs. [17–19].

(2) A low-depth local channel acting on a pure SRE
state results in a density matrix whose connected
correlations are short ranged. This follows from
Lieb-Robinson bound [95,96]. To see this explicitly,
we recall that a low-depth local quantum chan-
nel acting on a pure state |ξ〉 of the system is
equivalent to applying a low-depth local unitary U
on |ξ〉 ⊗ |0〉a where |0〉a denotes the product state
of ancillae, followed by tracing out ancillae. Con-
sider the connected correlation function C(x, y) =
〈O1(x)O2(y)〉 − 〈O1(x)〉〈O2(y)〉 with respect to the
state U|ξ〉 ⊗ |0〉a, where O1, O2 are operators that
live in the Hilbert space of the system. C(x, y)
also equals the connected correlation function
〈Õ1(x)Õ2(y)〉 − 〈Õ1(x)〉〈Õ2(y)〉 with respect to the
SRE state |ξ〉 ⊗ |0〉a, where Õ = U†OU. As long as
|x − y| is much bigger than the depth of the uni-
tary U, operators Õ1(x) and Õ2(y) do not overlap,
and therefore C(x, y) decays exponentially, since
|ξ〉 ⊗ |0〉a is SRE.

(3) Topological ordered pure states have long-range
correlations for logical operators supported on non-
contractible regions [94].

(4) If two Hermitian operators O1, O2 that satisfy O2
1 =

O2
2 = 1 mutually anticommute, then their expecta-

tion value with respect to any pure state |ψ〉 satisfies
〈ψ |O1|ψ〉2 + 〈ψ |O2|ψ〉2 ≤ 1 (see, e.g., Ref. [97]).

Let us assume that for p < pc, the density matrix ρ(p)
admits a decomposition in terms of SRE pure states, i.e.,
ρ(p) = ∑

a pa|ξa〉〈ξa| where pa (not to be confused with
p , the decoherence rate) is the probability for the state
|ξa〉. The first constraint listed above implies [17–19] that
for p < pc there exists a constant time quasilocal Lindblad
evolutionL(τ ) that approximately converts the mixed state
ρ(p) to the pure toric-code ground state ρ(p = 0). That is,

∣
∣T e

∫ 1
0 dtL(t)ρ(p)− ρ(p = 0)

∣
∣
1 ≤ ε, (A1)

where T denotes time ordering, | · ∣∣1 denotes the trace
norm and ε is the tolerance that can be taken to vanish as
1/poly(L) where L is the total system’s linear length. We
will now show that the constraint ρ(p) = ∑

a pa|ξa〉〈ξa|
implies that ε ≥ (3 − √

5)/2 ≈ 0.38, which is a contra-
diction with the requirement that ε can be taken arbitrar-
ily small for p < pc [18,19]. Therefore, the assumption
ρ(p) = ∑

a pa|ξa〉〈ξa| must be incorrect.
Let us write the action of Lindblad evolution on a par-

ticular pure state |ξa〉 that enters the convex decomposition
of ρ(p) as

T e
∫ 1

0 dtL(t) (|ξa〉〈ξa|) =
∑

m

qa,m|φa,m〉〈φa,m|. (A2)
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Note that the decomposition on the right-hand side in the
above equation is not unique, and the following discus-
sion is independent of which particular decomposition is
chosen.

To obtain the aforementioned bound on ε, we will con-
sider expectation values of operators made out of three
distinct logical operators X , Z

A
, Z

B
(see Fig. 3) in the

underlying CSS topological code. The logical operator
X is conjugate to both Z

A
, Z

B
(i.e., it has a nonzero

intersection number with Z
A
, Z

B
), and therefore satis-

fies X Z
A = −Z

A
X , and X Z

B = −Z
B
X . We will choose

ρ(p = 0) as the toric-code ground state that is an eigen-
state of X with eigenvalue 1. This implies that tr(ρ(p =
0)X ) = 1, tr(ρ(p = 0)Z

A
Z

B
) = 1, and tr(ρ(p = 0)Z

A
) =

tr(ρ(p = 0)Z
B
) = 0.

Using the second constraint above, the connected cor-
relation function 〈ZA

Z
B〉 − 〈ZA〉〈ZB〉 with respect to the

state T e
∫ 1

0 dtL(t) (|ξa〉〈ξa|) decays exponentially. Therefore,
upto exponentially small corrections in the total system
size that we can safely neglect (we are interested in the
thermodynamic limit), one finds, for each “a” separately,

∑

m

qa,m〈φa,m|ZA
Z

B|φa,m〉

=
∑

m,m′
qa,mqa,m′ 〈φa,m|ZA|φa,m〉〈φa,m′ |ZB|φa,m′ 〉

=
∑

m,m′
qa,mqa,m′zA

a,mzB
a,m′ , (A3)

where zA
a,m = 〈φa,m|ZA|φa,m〉 and similarly zB

a,m = 〈φa,m|ZB|
φa,m〉.

Let us consider the consequence of Eq. (A1) for the den-
sity matrix T e

∫ 1
0 dtL(t)ρ(p) = ∑

a paqa,m|φa,m〉〈φa,m|. The
trace-norm distance between two density matrices bounds
the difference in expectation value of all operators whose
eigenvalues lie between 0 and 1. Equation (A1), along with
Eq. (A3), then implies

∑

a,m

paqa,mxa,m ≥ 1 − ε

∑

a,m,m′
paqa,mqa,m′zA

a,mzB
a,m′ ≥ 1 − ε

(A4)

where xa,m = 〈φa,m|X |φa,m〉. The first of these equations
follows from comparing the expectation value of X with
respect to the states T e

∫ 1
0 dtL(t)ρ(p) and ρ(p = 0), while

the second one follows from comparing the expectation
value of Z

A
Z

B
with respect to these two states [supple-

mented by Eq. (A3)].

Finally, since X Z
A = −Z

A
X , and X Z

B = −Z
B
X , and

all three operators X , Z
A
, Z

B
square to identity, the fourth

constraint above implies that

(
xa,m

)2 + (
zA

a,m

)2 ≤ 1
(
xa,m

)2 + (
zB

a,m

)2 ≤ 1
(A5)

for any a, m. It is easy to see that Eqs. (A4) and (A5)
are inconsistent with each other when ε � 1. Indeed,
when ε exactly equals zero, Eq. (A4) imply that

(
xa,m

)2 =
(
zA

a,m

)2 = 1, which is in clear contradiction with Eq. (A5)
(recall that pa and qa,m are normalized probabilities, i.e.,∑

a pa = 1 and for any a,
∑

m qa,m = 1). To obtain a bound
on ε, we start with Eq. (A4) and apply Cauchy-Schwarz
inequality while using Eq. (A5):

(1 − ε) ≤
∑

a,m,m′
paqa,mqa,m′zA

a,mzB
a,m′

≤
∑

a,m,m′
paqa,mqa,m′

√
1 − x2

a,m

√
1 − x2

a,m′

=
∑

a

pa

(
∑

m

qa,m

√
1 − x2

a,m

)2

≤
∑

a

paqa,m(1 − x2
a,m)

≤ 1 − (1 − ε)2, (A6)

where in the last sentence we have used Eq. (A4) as
∑

a,m paqa,mx2
a,m ≥ (∑

a,m paqa,mxa,m
)2 ≥ (1 − ε)2. There-

fore, one obtains (1 − ε)+ (1 − ε)2 ≤ 1, which can be
satisfied only if ε ≥ (3 − √

5)/2 ≈ 0.38. This is incompat-
ible with the requirement that error recovery is possible for
p < pc, i.e., there exists a low-depth local channel that can
take the mixed state back to the undecohered toric-code
ground state [18,19].

As mentioned in the main text, one may strengthen
the above argument by allowing for a nonzero topolog-
ical ordered component in the density matrix ρ(p). In
particular, let us consider the possibility that

ρ(p) =
∑

a

p ′
a|ξa〉〈ξa| + (1 −

∑

a

p ′
a)ρ(p = 0), (A7)

where ρ(p = 0) is of course the pure toric-code ground
state (note that

∑
a p ′

a < 1, and therefore {p ′
a} is not a

normalized probability probability distribution). Repeating
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the same argument as above, the analog of Eq. (A4) is

∑

a,m

p ′
aqa,mxa,m + (1 −

∑

a

p ′
a) ≥ 1 − ε

∑

a,m,m′
p ′

aqa,mqa,m′zA
a,mzB

a,m′ + (1 −
∑

a

p ′
a) ≥ 1 − ε,

where we have used the fact that the maximum value
of the expectation values tr

(
T e

∫ 1
0 dtL(t)ρ(p = 0)X

)
and

tr
(
T e

∫ 1
0 dtL(t)ρ(p = 0)Z

A
Z

B
)

is unity. The above equa-
tions may be rewritten as

∑

a,m

paqa,mxa,m ≥ 1 − ε

wSRE

∑

a,m,m′
paqa,mqa,m′zA

a,mzB
a,m′ ≥ 1 − ε

wSRE
,

(A8)

where pa = p ′
a/
∑

b p ′
b is the normalized probability dis-

tribution function, and wSRE = ∑
a p ′

a is the total weight
of SRE states in the density matrix ρ(p). Equation (A5)
remains unchanged. Therefore, the structure of the new
equations is identical to the old ones, with the replacement
ε → ε/wSRE. Therefore, using the same set of inequalities
as before [Eq. (A6)], one obtains the constraint

ε

wSRE
≥ (3 −

√
5)/2 ≈ 0.38. (A9)

Therefore, as ε → 0, the total weight of the SRE states,
wSRE, also goes to zero.

APPENDIX B: ANALYSIS OF THE CRITICAL
EXPONENTS

We first try to find the crossing points of the rescaled
average 〈Tl〉Lη between data obtain from L and 2L, and see
their trend against 1/L. And the x (y) axis of the crossing
point is denoted as T∗ (〈Tl〉∗Lη).

As shown in Fig. 8, both x and y coordinates stay nearly
at constants when one choose η = 0.16. Indeed, the cross-
ing point need not to be stay constant exactly, instead they
can converge algebraically with power determined by the
next scaling dimension in line. However, for cases with
η out of the range 0.16 ± 0.02, the y coordinate do not
converge up to the largest system size, which suggests the
anomalous dimension η = 0.16(2).

With one exponent and its error bar determined, we then
try to collapse the data by scaling also the horizontal axis
to μ = (T − Tc)Lν , and minimizing the loss function χ2

(a)

(b)

FIG. 8. Crossing-point analysis. Scaling of the x and y coor-
dinate of the crossing points against 1/L. Each of them is the
interception of the rescaled curves of L and 2L.

by varying Tc and ν. The loss function is defined as

χ2 = Sres

Stot
=
∑

i(yi − ŷi)
2

∑
i(yi − ȳ)2

, (B1)

where yi is the rescaled data 〈Tl〉Lη, ŷi is corresponding
function value of a polynomial function fitted using μ and
yi from all system sizes, and ȳ is the mean value of yi. A
good set of critical point and exponents should be able to
collapse all data points to a smooth curve, thus minimizes
Sres and χ2.

(a)

(b)

0.950

×10–4

FIG. 9. Quality of data collapse. Result of 104 number of min-
imization processes. The two panels show the final ν and Tc with
corresponding input η, and the value of the loss function χ2. Blue
(yellow) dots indicate a collapse with a smaller (larger) χ2.
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We repeat the minimization process for 104 times by
inputting η choosing from the range 0.16 ± 0.02, and the
numerical result 〈Tl〉 with perturbation within its error bar
to include also the statistical error.

Figure 9 shows the result of the minimization. With this
window of η chosen, the correlation length exponent varies
within 1.44 ± 0.12, and Tc within 0.951 ± 0.005. There are
more blue dots (indicating lower χ2) and less yellow dots
(indicating higher χ2) in the middle region, which indi-
cates a good estimation on the critical point and exponents.

[1] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quan-
tum Information Meets Quantum Matter–From Quantum
Entanglement to Topological Phase in Many-Body Sys-
tems (Springer New York, 2019).

[2] C. Holzhey, F. Larsen, and F. Wilczek, Geometric and
renormalized entropy in conformal field theory, Nucl.
Phys. B 424, 443 (1994).

[3] P. Calabrese and J. Cardy, Entanglement entropy and
quantum field theory, J. Stat. Mech.: Theory Exp. 2004,
P06002 (2004).

[4] A. Hamma, R. Ionicioiu, and P. Zanardi, Bipartite entan-
glement and entropic boundary law in lattice spin systems,
Phys. Rev. A 71, 022315 (2005).

[5] A. Kitaev and J. Preskill, Topological entanglement
entropy, Phys. Rev. Lett. 96, 110404 (2006).

[6] M. Levin and X.-G. Wen, Detecting topological order in
a ground state wave function, Phys. Rev. Lett. 96, 110405
(2006).

[7] H. Casini and M. Huerta, A c-theorem for entanglement
entropy, J. Phys. A: Math. Theor. 40, 7031 (2007).

[8] H. Casini and M. Huerta, Renormalization group running
of the entanglement entropy of a circle, Phys. Rev. D 85,
125016 (2012).

[9] R. C. Myers and A. Sinha, Seeing a c-theorem with
holography, Phys. Rev. D 82, 046006 (2010).

[10] D. L. Jafferis, I. R. Klebanov, S. S. Pufu, and B. R. Safdi,
Towards the F-theorem: N = 2 field theories on the three-
sphere, J. High Energy Phys. 2011, 1 (2011).

[11] I. R. Klebanov, S. S. Pufu, and B. R. Safdi, F-theorem
without supersymmetry, J. High Energy Phys. 2011, 1
(2011).

[12] T. Grover, Entanglement monotonicity and the stability of
gauge theories in three spacetime dimensions, Phys. Rev.
Lett. 112, 151601 (2014).

[13] F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico, and M. M.
Wolf, Renormalization-group transformations on quantum
states, Phys. Rev. Lett. 94, 140601 (2005).

[14] X. Chen, Z.-C. Gu, and X.-G. Wen, Local unitary transfor-
mation, long-range quantum entanglement, wave function
renormalization, and topological order, Phys. Rev. B 82,
155138 (2010).

[15] M. B. Hastings and X.-G. Wen, Quasiadiabatic contin-
uation of quantum states: The stability of topological
ground-state degeneracy and emergent gauge invariance,
Phys. Rev. B 72, 045141 (2005).

[16] S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-
Robinson bounds and the generation of correlations and
topological quantum order, Phys. Rev. Lett. 97, 050401
(2006).

[17] A. Coser and D. Pérez-García, Classification of phases
for mixed states via fast dissipative evolution, Quantum
3, 174 (2019).

[18] S. Sang, Y. Zou, and T. H. Hsieh, Mixed-state quantum
phases: Renormalization and quantum error correction,
Phys. Rev. X 14, 031044 (2024).

[19] S. Sang and T. H. Hsieh, Stability of mixed-state quantum
phases via finite Markov length, arXiv:2404.07251.

[20] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topo-
logical quantum memory, J. Math. Phys. 43, 4452 (2002).

[21] C. Wang, J. Harrington, and J. Preskill, Confinement-
Higgs transition in a disordered gauge theory and the
accuracy threshold for quantum memory, Ann. Phys. (N.
Y) 303, 31 (2003).

[22] J. Y. Lee, C.-M. Jian, and C. Xu, Quantum criticality
under decoherence or weak measurement, PRX Quantum
4, 030317 (2023).

[23] R. Fan, Y. Bao, E. Altman, and A. Vishwanath, Diagnos-
tics of mixed-state topological order and breakdown of
quantum memory, arXiv:2301.05689.

[24] Y. Bao, R. Fan, A. Vishwanath, and E. Altman,
Mixed-state topological order and the errorfield dou-
ble formulation of decoherence-induced transitions,
arXiv:2301.05687.

[25] Z. Wang, Z. Wu, and Z. Wang, Intrinsic mixed-state
topological order without quantum memory, arXiv:2307.
13758.

[26] Y.-H. Chen and T. Grover, Separability transitions in topo-
logical states induced by local decoherence, Phys. Rev.
Lett. 132, 170602 (2024).

[27] Z. Li and R. S. Mong, Replica topological order in
quantum mixed states and quantum error correction,
arXiv:2402.09516.

[28] K. Su, Z. Yang, and C.-M. Jian, Tapestry of dual-
ities in decohered quantum error correction codes,
arXiv:2401.17359.

[29] J. Y. Lee, Exact calculations of coherent information for
toric codes under decoherence: Identifying the fundamen-
tal error threshold, arXiv:2402.16937.

[30] A. Lyons, Understanding stabilizer codes under local
decoherence through a general statistical mechanics map-
ping, arXiv:2403.03955.

[31] R. Sohal and A. Prem, A noisy approach to intrinsically
mixed-state topological order, arXiv:2403.13879.

[32] T. Ellison and M. Cheng, Towards a classification
of mixed-state topological orders in two dimensions,
arXiv:2405.02390.

[33] T.-C. Lu, Disentangling transitions in topological order
induced by boundary decoherence, arXiv:2404.06514.

[34] K. Kikuchi, K.-S. Kam, and F.-H. Huang, Anyon conden-
sation in mixed-state topological order, arXiv:2406.14320.

[35] X. Zhang, G. Pan, B.-B. Chen, K. Sun, and Z. Y. Meng,
Integral algorithm of exponential observables for interact-
ing fermions in quantum Monte Carlo simulations, Phys.
Rev. B 109, 205147 (2024).

[36] X. Zhou, Z. Y. Meng, Y. Qi, and Y. Da Liao, Incremental
SWAP operator for entanglement entropy: Application for

010358-20

https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1103/PhysRevA.71.022315
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1088/1751-8113/40/25/S57
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1103/PhysRevD.82.046006
https://doi.org/10.1007/JHEP0628201129102
https://doi.org/10.1007/JHEP1028201129038
https://doi.org/10.1103/PhysRevLett.112.151601
https://doi.org/10.1103/PhysRevLett.94.140601
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevB.72.045141
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.22331/q-2019-08-12-174
https://doi.org/10.1103/PhysRevX.14.031044
https://arxiv.org/abs/2404.07251
https://doi.org/10.1063/1.1499754
https://doi.org/10.10162Fs0003-491628022900019-2
https://doi.org/10.1103/PRXQuantum.4.030317
https://arxiv.org/abs/2301.05689
https://arxiv.org/abs/2301.05687
https://arxiv.org/abs/2307.13758
https://doi.org/10.1103/PhysRevLett.132.170602
https://arxiv.org/abs/2402.09516
https://arxiv.org/abs/2401.17359
https://arxiv.org/abs/2402.16937
https://arxiv.org/abs/2403.03955
https://arxiv.org/abs/2403.13879
https://arxiv.org/abs/2405.02390
https://arxiv.org/abs/2404.06514
https://arxiv.org/abs/2406.14320
https://doi.org/10.1103/PhysRevB.109.205147


ANALOG OF TOPOLOGICAL ENTANGLEMENT ENTROPY. . . PRX QUANTUM 6, 010358 (2025)

exponential observables in quantum Monte Carlo simula-
tion, Phys. Rev. B 109, 165106 (2024).

[37] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W.
K. Wootters, Mixed-state entanglement and quantum error
correction, Phys. Rev. A 54, 3824 (1996).

[38] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight,
Quantifying entanglement, Phys. Rev. Lett. 78, 2275
(1997).

[39] V. Vedral and M. B. Plenio, Entanglement measures and
purification procedures, Phys. Rev. A 57, 1619 (1998).

[40] G. Vidal, Entanglement monotones, J. Mod. Opt. 47, 355
(2000).

[41] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[42] H. J. Briegel and R. Raussendorf, Persistent entanglement
in arrays of interacting particles, Phys. Rev. Lett. 86, 910
(2001).

[43] R. Raussendorf, S. Bravyi, and J. Harrington, Long-range
quantum entanglement in noisy cluster states, Phys. Rev.
A 71, 062313 (2005).

[44] M. Aguado, G. K. Brennen, F. Verstraete, and J. I. Cirac,
Creation, manipulation, and detection of Abelian and non-
Abelian anyons in optical lattices, Phys. Rev. Lett. 101,
260501 (2008).

[45] L. Piroli, G. Styliaris, and J. I. Cirac, Quantum circuits
assisted by local operations and classical communication:
Transformations and phases of matter, Phys. Rev. Lett.
127, 220503 (2021).

[46] R. Verresen, N. Tantivasadakarn, and A. Vishwanath,
Efficiently preparing Schrödinger’s cat, fractons and
non-Abelian topological order in quantum devices,
arXiv:2112.03061.

[47] N. Tantivasadakarn, R. Thorngren, A. Vishwanath, and
R. Verresen, Long-range entanglement from measur-
ing symmetry-protected topological phases, arXiv:2112.
01519.

[48] S. Bravyi, I. Kim, A. Kliesch, and R. Koenig, Adap-
tive constant-depth circuits for manipulating non-Abelian
anyons, arXiv:2205.01933.

[49] T.-C. Lu, L. A. Lessa, I. H. Kim, and T. H. Hsieh, Mea-
surement as a shortcut to long-range entangled quantum
matter, PRX Quantum 3, 040337 (2022).

[50] T.-C. Lu, Z. Zhang, S. Vijay, and T. H. Hsieh, Mixed-
state long-range order and criticality from measurement
and feedback, PRX Quantum 4, 030318 (2023).

[51] R. F. Werner, Quantum states with Einstein-Podolsky-
Rosen correlations admitting a hidden-variable model,
Phys. Rev. A 40, 4277 (1989).

[52] F. Benatti, H. Narnhofer, and A. Uhlmann, Optimal
decompositions of quantum states with respect to entropy,
Rep. Math. Phys. 38, 123 (1996).

[53] M. B. Plenio and S. Virmani, An introduction to entangle-
ment measures, arXiv:quant-ph/0504163.

[54] M. B. Hastings, Topological order at nonzero temperature,
Phys. Rev. Lett. 107, 210501 (2011).

[55] S. Bravyi, 2008, Unpublished.
[56] J. Cano, T. L. Hughes, and M. Mulligan, Interactions

along an entanglement cut in 2 + 1D Abelian topological
phases, Phys. Rev. B 92, 075104 (2015).

[57] L. Zou and J. Haah, Spurious long-range entanglement
and replica correlation length, Phys. Rev. B 94, 075151
(2016).

[58] I. H. Kim, M. Levin, T.-C. Lin, D. Ranard, and B.
Shi, Universal lower bound on topological entanglement
entropy, Phys. Rev. Lett. 131, 166601 (2023).

[59] S. V. Isakov, M. B. Hastings, and R. G. Melko, Topologi-
cal entanglement entropy of a Bose–Hubbard spin liquid,
Nat. Phys. 7, 772 (2011).

[60] H.-C. Jiang, Z. Wang, and L. Balents, Identifying topo-
logical order by entanglement entropy, Nat. Phys. 8, 902
(2012).

[61] J. Zhao, B.-B. Chen, Y.-C. Wang, Z. Yan, M. Cheng, and
Z. Y. Meng, Measuring Rényi entanglement entropy with
high efficiency and precision in quantum Monte Carlo
simulations, Npj Quantum Mater. 7, 69 (2022).

[62] Y. Zhang, T. Grover, and A. Vishwanath, Topological
entanglement entropy of Z2 spin liquids and lattice Laugh-
lin states, Phys. Rev. B 84, 075128 (2011).

[63] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Laughlin
spin-liquid states on lattices obtained from conformal field
theory, Phys. Rev. Lett. 108, 257206 (2012).

[64] N. Laflorencie, Quantum entanglement in condensed mat-
ter systems, Phys. Rep. 646, 1 (2016), quantum entangle-
ment in condensed matter systems.

[65] J. Haah, An invariant of topologically ordered states under
local unitary transformations, Commun. Math. Phys. 342,
771 (2016).

[66] K. Kato and P. Naaijkens, An entropic invariant for 2D
gapped quantum phases, J. Phys. A: Math. Theor. 53,
085302 (2020).

[67] A. Y. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. (N. Y) 303, 2 (2003).

[68] F. J. Wegner, Duality in generalized Ising models and
phase transitions without local order parameters, J. Math.
Phys. 12, 2259 (1971).

[69] E. Fradkin and S. H. Shenker, Phase diagrams of lattice
gauge theories with Higgs fields, Phys. Rev. D 19, 3682
(1979).

[70] G. A. Jongeward, J. D. Stack, and C. Jayaprakash, Monte
Carlo calculations on Z2 gauge-Higgs theories, Phys. Rev.
D 21, 3360 (1980).

[71] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev, and P. C.
E. Stamp, Topological multicritical point in the phase
diagram of the toric code model and three-dimensional
lattice gauge Higgs model, Phys. Rev. B 82, 085114
(2010).

[72] J. Vidal, S. Dusuel, and K. P. Schmidt, Low-energy effec-
tive theory of the toric code model in a parallel magnetic
field, Phys. Rev. B 79, 033109 (2009).

[73] F. Wu, Y. Deng, and N. Prokof’ev, Phase diagram of the
toric code model in a parallel magnetic field, Phys. Rev. B
85, 195104 (2012).

[74] B. Swingle and T. Senthil, Structure of entanglement
at deconfined quantum critical points, Phys. Rev. B 86,
155131 (2012).

[75] I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R.
Safdi, Entanglement entropy of 3-d conformal gauge the-
ories with many flavors, J. High Energy Phys. 2012, 1
(2012).

010358-21

https://doi.org/10.1103/PhysRevB.109.165106
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevA.57.1619
https://doi.org/10.1080/09500340008244048
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevA.71.062313
https://doi.org/10.1103/PhysRevLett.101.260501
https://doi.org/10.1103/PhysRevLett.127.220503
https://arxiv.org/abs/2112.03061
https://arxiv.org/abs/2112.01519
https://arxiv.org/abs/2205.01933
https://doi.org/10.1103/PRXQuantum.3.040337
https://doi.org/10.1103/PRXQuantum.4.030318
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1016/0034-4877(96)87681-6
https://arxiv.org/abs/quant-ph/0504163
https://doi.org/10.11032Fphysrevlett.107.210501
https://doi.org/10.1103/PhysRevB.92.075104
https://doi.org/10.1103/PhysRevB.94.075151
https://doi.org/10.1103/PhysRevLett.131.166601
https://doi.org/10.1038/nphys2036
https://doi.org/10.1038/nphys2465
https://doi.org/10.1038/s41535-022-00476-0
https://doi.org/10.1103/PhysRevB.84.075128
https://doi.org/10.1103/PhysRevLett.108.257206
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1007/s00220-016-2594-y
https://doi.org/10.1088/1751-8121/ab63a5
https://doi.org/10.10162Fs0003-491628022900018-0
https://doi.org/10.1063/1.1665530
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.21.3360
https://doi.org/10.1103/PhysRevB.82.085114
https://doi.org/10.1103/PhysRevB.79.033109
https://doi.org/10.1103/PhysRevB.85.195104
https://doi.org/10.1103/PhysRevB.86.155131
https://doi.org/10.1007/JHEP05(2012)036


WANG, SONG, MENG, and GROVER PRX QUANTUM 6, 010358 (2025)

[76] H. Nishimori, Internal energy, specific heat and correlation
function of the bond-random Ising model, Prog. Theor.
Phys. 66, 1169 (1981).

[77] T. Faulkner, R. G. Leigh, and O. Parrikar, Shape depen-
dence of entanglement entropy in conformal field theories,
J. High Energy Phys. 2016, 1 (2016).

[78] J. Eisert and M. B. Plenio, A comparison of entanglement
measures, J. Mod. Opt. 46, 145 (1999).

[79] G. Vidal and R. F. Werner, Computable measure of entan-
glement, Phys. Rev. A 65, 032314 (2002).

[80] M. B. Plenio, Logarithmic negativity: A full entanglement
monotone that is not convex, Phys. Rev. Lett. 95, 090503
(2005).

[81] T.-C. Lu, T. H. Hsieh, and T. Grover, Detecting topological
order at finite temperature using entanglement negativity,
Phys. Rev. Lett. 125, 116801 (2020).

[82] T.-C. Lu and S. Vijay, Characterizing long-range entan-
glement in a mixed state through an emergent order
on the entangling surface, Phys. Rev. Res. 5, 033031
(2023).

[83] M. E. Shirokov, Tight uniform continuity bounds for the
quantum conditional mutual information, for the Holevo
quantity, and for capacities of quantum channels, J. Math.
Phys. 58, 102202 (2017).

[84] We thank Chao-Ming Jian for a discussion on this point.
[85] I. H. Kim, Long-range entanglement is necessary for a

topological storage of quantum information, Phys. Rev.
Lett. 111, 080503 (2013).

[86] R. Sahay, C. Zhang, and R. Verressen, (Unpublished), see
KITP seminar, “Protected gaplessness in a deformed ising
model” (2024).

[87] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[88] A. M. Steane, Error correcting codes in quantum theory,
Phys. Rev. Lett. 77, 793 (1996).

[89] M. A. Nielsen and I. Chuang, Quantum computation and
quantum information (AAPT, 2002).

[90] A. Y. Kitaev, Unpaired Majorana fermions in quantum
wires, Physics-Uspekhi 44, 131 (2001).

[91] H. Bombin and M. A. Martin-Delgado, Topological quan-
tum distillation, Phys. Rev. Lett. 97, 180501 (2006).

[92] H. Bombin and M. Martin-Delgado, Exact topological
quantum order in D = 3 and beyond: Branyons and brane-
net condensates, Phys. Rev. B–Condens. Matter Mater.
Phys. 75, 075103 (2007).

[93] S. Vijay, J. Haah, and L. Fu, Fracton topological order,
generalized lattice gauge theory, and duality, Phys. Rev. B
94, 235157 (2016).

[94] C.-M. Jian, I. H. Kim, and X.-L. Qi, Long-range
mutual information and topological uncertainty principle,
arXiv:1508.07006.

[95] E. H. Lieb and D. W. Robinson, The finite group velocity
of quantum spin systems, Commun. Math. Phys. 28, 251
(1972).

[96] D. Poulin, Lieb-Robinson bound and locality for gen-
eral Markovian quantum dynamics, Phys. Rev. Lett. 104,
190401 (2010).

[97] G. Tóth and O. Gühne, Entanglement detection in the
stabilizer formalism, Phys. Rev. A 72, 022340 (2005).

[98] B. M. Terhal and K. G. H. Vollbrecht, Entanglement of
formation for isotropic states, Phys. Rev. Lett. 85, 2625
(2000).

[99] K. G. H. Vollbrecht and R. F. Werner, Entanglement mea-
sures under symmetry, Phys. Rev. A 64, 062307 (2001).

[100] K. K. Manne and C. M. Caves, Entanglement of formation
of rotationally symmetric states, arXiv:quant-ph/0506151.

[101] F. Merz and J. T. Chalker, Negative scaling dimensions
and conformal invariance at the Nishimori point in the
±J random-bond Ising model, Phys. Rev. B 66, 054413
(2002).

[102] A. Honecker, M. Picco, and P. Pujol, Universality class
of the Nishimori point in the 2D ±J random-bond Ising
model, Phys. Rev. Lett. 87, 047201 (2001).

[103] F. Merz and J. T. Chalker, Two-dimensional random-bond
Ising model, free fermions, and the network model, Phys.
Rev. B 65, 054425 (2002).

[104] M. Picco, A. Honecker, and P. Pujol, Strong disorder fixed
points in the two-dimensional random-bond Ising model,
J. Stat. Mech.: Theory Exp. 2006, P09006 (2006).

[105] M. Hasenbusch, F. P. Toldin, A. Pelissetto, and E. Vicari,
Multicritical Nishimori point in the phase diagram of the
±J Ising model on a square lattice, Phys. Rev. E 77,
051115 (2008).

[106] S. Dong, E. Fradkin, R. G. Leigh, and S. Nowling, Topo-
logical entanglement entropy in Chern-Simons theories
and quantum Hall fluids, J. High Energy Phys. 2008, 016
(2008).

[107] S. T. Flammia, A. Hamma, T. L. Hughes, and X.-G. Wen,
Topological entanglement Rényi entropy and reduced
density matrix structure, Phys. Rev. Lett. 103, 261601
(2009).

[108] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A.
Vishwanath, Quasiparticle statistics and braiding from
ground-state entanglement, Phys. Rev. B 85, 235151
(2012).

[109] K.-H. Wu, T.-C. Lu, C.-M. Chung, Y.-J. Kao, and T.
Grover, Entanglement Renyi negativity across a finite
temperature transition: A Monte Carlo study, Phys. Rev.
Lett. 125, 140603 (2020).

[110] G. Pan, Y. Da Liao, W. Jiang, J. D’Emidio, Y. Qi, and Z.
Y. Meng, Stable computation of entanglement entropy for
two-dimensional interacting fermion systems, Phys. Rev.
B 108, L081123 (2023).

[111] Y. Da Liao, Controllable incremental algorithm for entan-
glement entropy in quantum Monte Carlo simulations,
arXiv:2307.10602.

[112] A. B. Kallin, M. B. Hastings, R. G. Melko, and R. R. P.
Singh, Anomalies in the entanglement properties of the
square-lattice Heisenberg model, Phys. Rev. B 84, 165134
(2011).

[113] J. E. Drut and W. J. Porter, Hybrid Monte Carlo approach
to the entanglement entropy of interacting fermions, Phys.
Rev. B 92, 125126 (2015).

[114] J. E. Drut and W. J. Porter, Entanglement, noise, and the
cumulant expansion, Phys. Rev. E 93, 043301 (2016).

[115] V. Alba, Out-of-equilibrium protocol for Rényi entropies
via the Jarzynski equality, Phys. Rev. E 95, 062132
(2017).

010358-22

https://doi.org/10.1143/PTP.66.1169
https://doi.org/10.1007/JHEP0428201629088
https://doi.org/10.1080/09500349908231260
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/PhysRevLett.125.116801
https://doi.org/10.1103/PhysRevResearch.5.033031
https://doi.org/10.1063/1.4987135
https://doi.org/10.1103/PhysRevLett.111.080503
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevB.75.075103
https://doi.org/10.1103/PhysRevB.94.235157
https://arxiv.org/abs/1508.07006
https://doi.org/10.1007/BF01645779
https://doi.org/10.1103/PhysRevLett.104.190401
https://doi.org/10.1103/PhysRevA.72.022340
https://doi.org/10.1103/PhysRevLett.85.2625
https://doi.org/10.1103/PhysRevA.64.062307
https://arxiv.org/abs/quant-ph/0506151
https://doi.org/10.1103/PhysRevB.66.054413
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevB.65.054425
https://doi.org/10.1088/1742-5468/2006/09/P09006
https://doi.org/10.1103/PhysRevE.77.051115
https://doi.org/10.1088/1126-6708/2008/05/016z
https://doi.org/10.1103/PhysRevLett.103.261601
https://doi.org/10.1103/PhysRevB.85.235151
https://doi.org/10.1103/PhysRevLett.125.140603
https://doi.org/10.1103/PhysRevB.108.L081123
https://arxiv.org/abs/2307.10602
https://doi.org/10.1103/PhysRevB.84.165134
https://doi.org/10.1103/PhysRevB.92.125126
https://doi.org/10.1103/PhysRevE.93.043301
https://doi.org/10.1103/PhysRevE.95.062132


ANALOG OF TOPOLOGICAL ENTANGLEMENT ENTROPY. . . PRX QUANTUM 6, 010358 (2025)

[116] J. D’Emidio, Entanglement entropy from nonequilibrium
work, Phys. Rev. Lett. 124, 110602 (2020).

[117] J. Zhao, Y.-C. Wang, Z. Yan, M. Cheng, and Z. Y. Meng,
Scaling of entanglement entropy at deconfined quantum
criticality, Phys. Rev. Lett. 128, 010601 (2022).

[118] M. Song, J. Zhao, Z. Y. Meng, C. Xu, and M. Cheng,
Extracting subleading corrections in entanglement entropy
at quantum phase transitions, SciPost Phys. 17, 010
(2024).

[119] C. Jarzynski, Nonequilibrium equality for free energy
differences, Phys. Rev. Lett. 78, 2690 (1997).

[120] Y.-H. Chen and T. Grover, Symmetry-enforced many-
body separability transitions, PRX Quantum 5, 030310
(2024).

[121] K. Audenaert, F. Verstraete, and B. De Moor, Varia-
tional characterizations of separability and entanglement
of formation, Phys. Rev. A 64, 052304 (2001).

[122] D. J. Williamson, A. Dua, and M. Cheng, Spurious topo-
logical entanglement entropy from subsystem symmetries,
Phys. Rev. Lett. 122, 140506 (2019).

[123] Z. Li, D. Lee, and B. Yoshida, How much entangle-
ment is needed for emergent anyons and fermions?,
arXiv:2405.07970.

[124] C. A. Agón, M. Headrick, and B. Swingle, Subsystem
complexity and holography, J. High Energy Phys. 2019,
1 (2019).

[125] L. A. Lessa, S. Sang, T.-C. Lu, T. H. Hsieh, and C. Wang,
2024, unpublished.

010358-23

https://doi.org/10.1103/PhysRevLett.124.110602
https://doi.org/10.1103/PhysRevLett.128.010601
https://doi.org/10.21468/SciPostPhys.17.1.010
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PRXQuantum.5.030310
https://doi.org/10.1103/PhysRevA.64.052304
https://doi.org/10.1103/PhysRevLett.122.140506
https://arxiv.org/abs/2405.07970
https://doi.org/10.1007/JHEP02(2019)145

	I.. INTRODUCTION
	II.. CONVEX-ROOF EXTENSION OF QUANTUM CONDITIONAL MUTUAL INFORMATION
	A.. Brief overview of topological entanglement entropy
	B.. Convex room extension of TEE

	III.. CONSTRAINTS ON CO(QCMI) FOR DECOHERENCE-DRIVEN TOPOLOGICAL TRANSITIONS
	A.. Can co(QCMI) increase under local decoherence?
	B.. Can co(QCMI) be zero for p < pc?
	C.. Does co(QCMI) equal log(2) for p < pc?
	D.. Is co(QCMI) zero for p > pc?

	IV.. TESTING THE CONJECTURED “OPTIMAL DECOMPOSITION” FOR CO(QCMI) USING MANY-BODY SIMULATIONS
	A.. Conjectured optimal decomposition
	B.. Anyon condensation order parameter
	C.. Tensor-assisted Monte Carlo method for Rényi entanglement entropy
	D.. Results for Rényi TEE

	V.. DISCUSSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: PROOF THAT MIXED STATE FOR p<pc IS NOT A CONVEX SUM OF SRE PURE STATES
	. APPENDIX B: ANALYSIS OF THE CRITICAL EXPONENTS
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <>
    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


