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Shortcuts to adiabatic non-Abelian braiding on silicon

photonic chips

Wange Song1’21', Xuanyu Liu't, Jiacheng Sun't, Oubo You?, Shengjie Wu', Chen Chen’,

Shining Zhu', Tao Li'*, Shuang Zhang®>"**

Non-Abelian braiding describes the exchange behavior of anyons, useful for encoding qubits for quantum com-
puting. Recently, this concept has been realized in classical photonic and acoustic systems. However, these imple-
mentations are constrained by adiabatic conditions, necessitating long operation distances and hindering
practical applications. Here, we conceive and demonstrate shortcut to adiabatic (STA) braiding of light in three-
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dimensional silicon photonic chips. Our device comprises trilayer silicon waveguides embedded in the SU-8 poly-
mer, using an STA strategy to expedite the braiding operations, resulting in compact devices that function as
photonic quantum X, Y, and Z gates. We further experimentally observed non-Abelian braiding behaviors based
on this STA-braiding scheme. Our work represents a compact braiding apparatus with a size reduction of nearly
three orders of magnitude compared to previous works. This work presents a feasible approach to accelerating
adiabatic braiding evolutions, paving the way for compact, CMOS-compatible non-Abelian photonic devices.

INTRODUCTION
Non-Abelian phenomena are pervasive and have been extensively
explored across various fields of physics, including high-energy
physics, condensed matter physics, and classical wave systems such
as light and sound (I, 2). Despite their diversity, noncommutativity
lies at the heart of non-Abelian phenomena, rendering the physics
of non-Abelian systems more complex and diverse than that of their
Abelian counterparts. Examples include the non-Abelian gauge field
(3-7), non-Abelian anyons and their statistics for describing the cel-
ebrated fractional quantum Hall effect (8-12), and the non-Abelian
topological charges in braiding topological structures with multiple
entangled bandgaps (13-18). Notably, the presence of non-Abelian
anyons in two-dimensional condensed matter systems has garnered
increasing interest (8-10, 19-21). When non-Abelian anyons are
swapped by intertwining them along world lines, their wave func-
tion exchange behavior is represented by a unitary matrix funda-
mentally different from that of exchanging fermions or bosons (22).
These anyons can be encoded with qubits to achieve quantum logic
and fault-tolerant topological quantum computing. However, their
implementation in quantum systems often depends on the dynamic
winding of anyons, which can be challenging to achieve (23-26).
The non-Abelian braiding of degenerate zero modes has been
extended to classical wave systems using light and sound as plat-
forms (27-31), emerging as a multimode geometric effect known as
the Berry-Wilczek-Zee phase (32, 33), a matrix generalization of the
well-known scalar Berry phase. The braiding of multiple states with
non-Abelian characteristics, such as the Thouless pumping of flat-
band modes, has also been successfully realized in photonics and
acoustics (34-36). While the associated noncommutative operations
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hold promises for applications involving unitary matrices, such as
photonic quantum logic, these braiding operations are fundamen-
tally restricted to adiabatic conditions, which require a sufficiently
long distance and thus hinder practical applications. Consequently,
compact photonic non-Abelian systems are highly sought after for
investigating more intricate non-Abelian phenomena and develop-
ing practical applications in photon and light manipulations. Fortu-
nately, there are schemes known as shortcuts to adiabaticity (STA)
(37-44) that emulate the same dynamics within a shorter finite time
or distance. Initially proposed for nondegenerate systems, these
schemes were later generalized to degenerate manifolds (44).

In this work, we theoretically propose and experimentally dem-
onstrate a STA non-Abelian braiding of photonic modes in three-
dimensional (3D) silicon photonic chips. The braiding is achieved
by imposing cyclic modulation of the hopping amplitudes among
integrated silicon waveguides arranged in a trilayer configuration.
An STA strategy (37-44) is proposed to identify an evolution path-
way in the parameter space of braiding, enabling fast braiding op-
erations and compact devices functioning as Pauli X, Y, and Z gates.
Furthermore, by varying the sequence of two distinct STA braiding
processes involving three modes, we experimentally observed dif-
ferent outcomes from identical initial states—a hallmark of non-
Abelian braiding. Notably, the STA scheme enables the braiding of
telecommunication light within a miniaturized footprint of 1.7 X
24 pm’ per device unit, nearly three orders of magnitude shorter com-
pared to the state-of-the-art laser-written photonic waveguide sys-
tem (millimeter scale) (29, 31). This work illustrates the potential to
explore non-Abelian physics using a fully integrated complemen-
tary metal-oxide semiconductor (CMOS)-compatible silicon plat-
form, ensuring versatile on-chip light manipulations and paving the
way for compact non-Abelian photonic integrated devices.

RESULTS

Model

We first illustrate the photonic braiding model with two degenerate
zero modes. Figure 1A presents the schematics of the STA braiding
structure in a trilayered silicon photonic chip, which comprises
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Fig. 1. Braiding on trilayer silicon photonic chips. (A) A schematic of the braiding structure consisting of four waveguides implemented in trilayered silicon photonics
platform. (B) The cross section of the setup in a tight-binding model, including coupling between waveguide X to waveguides A, B, and S, respectively. (C) The system
sustains two degenerate zero modes, whose parallel transport on the two-sphere exchanges the two modes. The blue trajectory indicates the STA braiding path in the
parameter spaces. This process realizes the Y gate, whose braiding diagram is shown in (D). (E) The zero modes can be mapped onto Bloch spheres of different subspaces
for three braiding steps, respectively. The red and blue dashed paths indicate the zero mode evolutions on the Bloch sphere as performing the braiding operations.

three main waveguides (A, B, and S) and an auxiliary waveguide
X. The bottom layer includes waveguides A and B (red waveguides)
positioned on a sapphire substrate, while the top layer consists of
waveguide S (blue waveguide). Waveguide X consists of three dis-
joint sections as required by the braiding process (to be detailed be-
low). The first and third sections are in the middle layer (green
waveguides), whereas the second section (red waveguide) is located
in the bottom layer. Waveguides A, B, and S are coupled to wave-
guide X through evanescent wave coupling k;x (i = A, B, and S), as
indicated by the dashed lines in the cross-sectional view shown in
Fig. 1B. The dynamics of photon propagation in the waveguide
structure can be described by the following Hamiltonian (29, 30)

Bx  kax(2) xpx(2) Ksx(2)
H(z) = Kax(®) - Pa 0 0 (1)
kpx(z) 0 Br 0
Kex(2) 0 0 Ps

where Bx aps = Po represents the propagation constant of wave-
guides, and the coupling coeflicient k;x is set to be real and is a spe-
cific function of parameter z (the propagation distance along the
waveguides, i.e., the braiding direction, the waveguide length is L).
Since all other waveguides must couple through waveguide X, the
system can be divided into two groups: one consisting of waveguide
X and the other comprising waveguides A, B, and S. Consequently,

0 T
the Hamiltonian Eq. 1 can be simplified as H = < 1 ¥ >, where 0;

k 0
is an 3 X 3 zero matrix and ¥k = (Kax, Kpx, and st)T répresents the
vector space of the three coupling parameters. This Hamiltonian
clearly exhibits sublattice symmetry, which ensures the presence of
|3-1| = 2 degenerate zero modes in this case (note that there are also
two splitting modes, which are not the focus of this work). These
two zero modes reside within the group of waveguides A, B, and §,
forming the braiding subspace. As illustrated in Fig. 1C, the unit
hopping vector K = k/ | k| defines a unit two-sphere, with the two
zero modes spanning a tangent plane on this two-sphere (marked by
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the red and blue arrows in Fig. 1C). The braiding process consists of
three steps (step 0-1, 1-2, and 2-3) and forms a cyclic modulation of
z, driving the tangent vectors of zero modes in a holonomic parallel
transport. This process encloses a solid angle of 7/2 on the two-

-1

sphere and realizes the Y gate Y = ( 0 >, a fundamental quan-

tum logic components [U(2) operatioln] (ghat swaps the two modes
as |\P1> g |\P2> and |lP2> i —|\P1>.

Specifically, the system’s initial configuration (z = 0) is located at
the north pole of the parameter space, and it contains two zero
modes, occupying waveguides A and B, respectively, i.e., |¥1(0)) =
(0,1,0,0)%, |¥2(0)) = (0,0,1,0)". Here, |W;) represents a state vector
with its elements indicating the wave function in waveguides X, A,
B, and S, respectively, i.e., |¥;) = (@xi» Pai. PBi. (ps,-)T. The braiding
process consists of three steps, each traversing a distance of L/3, as
shown in Fig. 1C. In step 0-1 represented by the black arc connect-
ing points 0 and 1, ksx (kax) decreases (increases) from its maxi-
mum (zero) to zero (its maximum), while kpx is kept at zero. The
initial state |¥(0)) = (0,1,0,0)" becomes |¥;(L/3)) = (0,0,0,—1)". The
zero mode evolutions can be mapped onto a Bloch sphere, where the
eigenstates evolve from the north pole to the south pole of the Bloch
sphere formed by the subspace (pa. @s), acquiring a 7 phase during
the evolution (Fig. 1E, left). On the other hand, the initial state in
waveguide B |¥»(0)) remains the same, |¥5(L/3)) = [P2(0)) =
(O,O,I,O)T, as kpx = 0 during the step 0-1. In step 1-2, the state in
waveguide B is transferred to site A with a geometric phase 7, i.e.,
from |¥,(L/3)) = (0,0,1,0)" to [¥,(2 L/3)) = (0,—1,0,0)". This cor-
responds to the zero mode evolution from the south pole to the
north pole of the Bloch sphere formed by subspace (pa. ¢p) (Fig. 1E,
middle). In contrast, the state in waveguide S remains unchanged
[W1(2 L/3)) = |¥1(L/3)) = (0,0,0,—1)" as ksx = 0. In step 2-3, the
state in waveguide S transfers to the waveguide B and also acquires
the & phase |¥1(L)) = (0,0,1,0)T. Accordingly, the eigenstates evolve
from the north pole to the south pole of the Bloch sphere formed by
the subspace (@s. @p) (Fig. 1E, right). On the contrary, the state in
waveguide A remains unchanged, i.e., |¥2(L)) = |¥2(2 L/3)) =
(0,—1,0,0)" as ksx = 0. Overall, the initial states |¥,(0)) = (0,1,0,0)"
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and |¥,(0)) = (0,0,1,0)" lastly become |¥;(L)) = (0,0,1,0)" and
|¥,(L)) = (0,—1,0,0)" (marked by the two pentagrams in Fig. 1E),
completing the braiding operations and functioning as quantum
Y gates.

Notably, the braiding process typically requires adiabatic condi-
tions (27-31, 34-36), which necessitate a long operation distance. If
the evolutionary distance is simply reduced, then the system param-
eters will vary rapidly, leading to instantaneous eigenmode coupling
and consequently undermining the braiding function. To address this
issue, we propose to use STA braiding strategy to accelerate the adi-
abatic process, thus ensuring the desired state evolutions with a sig-
nificantly reduced system length, as will be elaborated below.

STA braiding

Transitionless driving, a well-known STA method proposed by Berry
(37), can inhibit immediate eigenmode coupling caused by rapid pa-
rameter variations by incorporating counterdiabatic driving terms
(38-44). Since the fundamental component of the braiding process is
the adiabatic zero-mode evolution within a triplet subsystem, we ap-
ply the STA strategy to this basic process and then extend it to the
entire braiding procedure. Specifically, we consider the first step (0-
1) of the braiding process as a subsystem, as indicated by the dashed
box in Fig. 2A, which only involves waveguides A, X, and S. The trip-
let unit supports a zero mode |@o) and two split modes |¢..), with the
corresponding Hamiltonian [in the subspace of (@4, ®x, @s)]

Pa xax(®) O
H@) =| kx(2) By xsx(2) 2
0 xex(2) Ps
A — Kex — Kpx — Kax € ——loa — losP — loxP
Max < = 1.0
E . 05
T 0: E 0.0
£ 20
2 02 s 10
- ,
ol 77 05
0.0 eenees STA 0.0 STA
0 1 2 3 0 1
Braiding direction Braiding direction
B 1.0 ¢ # D 1.0
g 05 S 05 N
Conventional o —— Conventional
——STA ——STA
0.0 0.0
0 20 40 60 80 100120140 0 1
Length (um) Braiding direction

Fig. 2. Design of STA braiding. (A) The original modulation profiles of the cou-
pling coefficients (top). The coupling coefficients in STA braiding process (bottom)
at the working wavelength A = 1550 nm. (B) The transferred light intensity |(p5|2 as
a function of the length of the subsystem (waveguides A, X, and S). The STA braid-
ing allows complete energy transfer within a short system length 24 pm (marked
by red arrow), while the conventional process requires at least 92 um to allow com-
plete transfer (black arrow). (C) Evolution of the light intensity in the subsystem
along the braiding direction (step 0-1) during the conventional (top) and STA (bot-
tom) process. (D) Zero-mode occupancy |<‘I’|<po)|2 during the braiding process. The
evolution length is 24 um for (C) and (D).
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Before applying the STA operation to Eq. 2, we note that this
Hamiltonian satisfies the one-photon resonance condition (i.e., fa =
Bx = Bs), allowing us to map H(z) to an effective two-level system

Ho(z) = [KSX(Z)/Z Kax(2)/2

Kax(2)/2 —kgx(2)/2
vents the generation of complex or long-range couplings during the
STA operations (39), thereby enabling a feasible STA braiding system.

Following Berry’s protocol (37), the counterdiabatic driving term
Hef cp(z) of the mapped system has the form

He cp(@ =i ). )

n m#n

] (39, 42, 43). This premapping pre-

|m(2)) (m(z)| ZHg(2) | n(2)) (n(2)]
E,(z) - E,(2)

where |m > and |n > respectively denote eigenstates of the two-level
systems with eigenvalues E,, and E,. Then, the STA Hamiltonian of the
effective system can be obtained by adding Hes cp(2) to Hew(2), i.e.,
Rx(2)/2 Ryx(2)/2

% (2)/2 —Rex(2)/2
Hefr cp(2) can inhibit the diabatic eigenmode transfer caused by rap-
idly changing Hes(z). Last, the STA version of the original triplet
Hgra(z) is obtained by mapping Her sta(2) back to the triplet subsystem

Hg 514(2) = Heg(2) + Hegp op(2) = [ , where

Ba Kax(® O
Rax(@) By Ksx(2)
0  Rex(® P

We see that the STA strategy modifies the coupling coefficients in the
braiding process, which consequently alters the loop path along the
braiding direction on the two-sphere (see blue path in Fig. 1C). This
STA Hamiltonian can be achieved by varying waveguides A, S, and X
along the propagation direction (see schematics in Fig. 1A). The de-
tailed procedure for performing STA braiding can be found in section S1.

The coupling strength of the conventional adiabatic design [fol-
lowing the stimulated Raman adiabatic passage (45-47)] and the STA
braiding process are shown in the top and bottom of Fig. 2A, respec-
tively. For the light input from waveguide A, the transferred light in-
tensity to waveguide S |s|* as a function of the length of the subsystem
(step 0-1) is shown in Fig. 2B. It is evident that the STA design offers
the capability to complete the braiding process within a significantly
reduced evolution distance; the minimum length required for the
conventional pumping process to achieve complete transfer is 92 pm,
while it could be shortened to 24 pm (approximately 3.8 times small-
er) for the STA braiding. Specifically, the light evolutions in the STA
device and conventional case are shown in Fig. 2C. The STA braiding
enables the zero mode to transfer from waveguide A to S within this
short distance (24 pm, see Fig. 2C, bottom), while the conventional
process only leads to partial transfer at the same distance (see Fig. 2C,
top). Further analysis of the zero-mode occupancy during the pump-
ing process reveals that the conventional braiding path results in sig-
nificant cross-talk between the pumped zero mode and other modes
(black curve, Fig. 2D). In contrast, the STA path maintains the domi-
nance of the zero mode, ensuring that even in the presence of cross-
talk, it ultimately returns to the zero-energy level (red curve, Fig. 2D),
thus successfully fulfilling the braiding operation.

Figure 3 shows the simulated light evolutions during the STA
braiding process. The system’s initial states (z = 0) are two zero

Hgrp(2) = (4)
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Fig. 3. Numerical study of STA braiding in trilayer silicon waveguides. (A) For input from waveguide A. Left: Evolution of E, field at the input and output ends. Right:
Evolution of light intensity in the STA braiding process. The red boxes in the input and output ends mark the position of the waveguides. (B) Corresponding results for

waveguide B input.

modes occupying waveguides A and B, respectively, i.e., |¥1(0)) =
(0,1,0,0), |¥,(0)) = (0,0,1,0)". After the braiding process, both |¥;)
and |¥,) undergo energy exchange between waveguides A and
B. However, |¥) follows the A-S-B path without geometric phase
inversion (see Fig. 3A, where the input and output have the same
phase indicated by the red color), while |¥,) undergoes a single
pumping process from B to A (Fig. 3B, where the input and output
fields are in red and blue, indicating a phase difference of x). There-
fore, the output geometric phase of |¥,) differs from the initial
phase by « (the accumulated dynamical phases are both $oL), which
is the expected outcome of the Y gate. Following the same STA-
braiding principle, the Pauli X and Z gates can also be designed and
realized in the trilayer silicon photonic platform (see section S2).

Experimental observations

We fabricated the trilayer-integrated waveguide samples using E-
beam lithography with AR-N 7520 resists and an inductively cou-
pled plasma etching process (48). The bottom layer waveguides are
fabricated in a silicon wafer on a sapphire substrate. A layer of SU-8
with a thickness of 530 nm covering the bottom waveguides is pre-
pared, followed by the coating of a second silicon film with a thick-
ness of about 220 nm, which is further processed to form the second
layer waveguides. The third layer of silicon is fabricated following the
same procedures (see Materials and Methods for fabrication details).

To clearly observe the fabricated trilayer waveguide structure, we
used a focused ion beam to cut holes into the surface of the sample,
allowing the cross section of the waveguide sample to be viewed
through a scanning electron microscope (SEM), as shown in Fig. 4.
Here, Fig. 4 (A to C) illustrates the cross section of the braiding steps
0-1, 1-2, and 2-3, respectively, and the corresponding top panels
show the schematics of each cross section. In optical measurements,
a laser light (A = 1550 nm) was focused into the waveguide lattice
through an input grating coupler. The transmitted light, scattered
from the extended output ports, can be collected for analysis. Both
the coupling-in and coupling-out processes were captured using a
near-infrared charge-coupled device (CCD) camera.

Figure 4 (D and E) demonstrates that the two zero modes can
switch the light dwelling (A-B and B-A), as required by the braiding
process of the Y gate. To further confirm the geometric = phase dif-
ference of the two outcomes, two identical Y gate braiding struc-
tures (e.g., Y1 and Y;) were excited with different input ports (e.g.,

Song et al,, Sci. Adv. 11, eadt7224 (2025) 14 February 2025

A;B,, which means inputs from waveguide A in the Y; device and
waveguide B in the Y, device) or the same ports (e.g., A;A;), and
their outputs were combined to interfere with each other. As shown
in Fig. 4F, the experimental observations confirm that outputs from
different input waveguides (A;B;) had opposite phases (no light
comes from the central port), while outputs from the same input
waveguides (A;A;) had identical phases (the intensity of the central
output is observed to be enhanced), confirming that the braiding
device achieved the ® geometric phase difference of the Y gate.

Non-Abelian STA braiding
The successful demonstration of the Y gate shows that our STA de-
sign and the integrated photonic platform can be extended to obtain
the non-Abelian braiding of (N) modes. As a proof of concept, we
realized the three-mode non-Abelian braiding operations, repre-
senting the minimalist non-Abelian braiding process described by a
braid group (Bs) (29, 30), as shown in the schematics in Fig. 5 (A and C).
The three-mode STA non-Abelian braiding structure comprises
seven waveguides. The three primary waveguides, labeled A, B, and
C, are positioned sufficiently far from one another, necessitating
coupling through auxiliary waveguides X; and X;, which are in-
dividually cut into three parts similar to the two-mode braid-
ing process.

The Hamiltonian of the system supports three degenerate zero
modes that constitute the braiding subspace. In this case, exchang-

Y
0 ), and the
01

). Here, |¥;) rep-

ing |¥) and |¥;) is captured by the matrix G, = <

exchange of |¥5) and |¥,) is given by G, = < 1o
0

resents a state vector with its three elements indicating the wave
function in waveguides A, B, and C, respectively. It is easy to check
that GG, # G,Gj, which is a fundamental characteristic that classi-
fies B; as a non-Abelian group. The simulation results in Fig. 5 (B
and D) shows the evolution of the light field during the three-mode
braiding process. When the braiding sequence is G,Gj, the output
light signal sequentially shifts one site to the right. Conversely, the
output sequentially shifts one site to the left with the G;G; sequence.
The different braiding sequences result in opposite outcomes, veri-
fying the non-Abelian nature of the braiding process. Notably, the
STA non-Abelian braiding process is accomplished within 144 pm,
nearly three orders of magnitude shorter than the state-of-the-art
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Fig. 4. Experimental implementation of Y gate. (A to C) Schematics for different stages of the trilayer waveguide systems (top) and SEM images for fabricated samples
(bottom). (D to F) CCD recorded light couple-in and couple-out processes in the braiding samples of (D) waveguide B input, (E) waveguide A input, and (F) double Y gate
interference results. The top shows the experimentally captured zoom-in pictures of the output ports. In (F), two identical Y gate structures (Y; and Y) were input simul-
taneously, and the interference of their output states reveals the geometric phase. Specifically, the upper output result corresponds to A;B; inputs (i.e., inputs from
waveguide A in the Y; device and waveguide B in the Y device); while the lower output result corresponds to A;A; inputs.

laser-written photonic waveguide systems, which operate on a mil-
limeter scale (29, 31). It is also ~3.8 times smaller compared to the
conventional design on the same silicon platform. This miniaturiza-
tion could enhance the integration density of non-Abelian photonic
chips and minimize the impact of dimensional uncertainties due to
nanofabrication, thereby enabling scaling to larger circuits with more
complex non-Abelian photonic device networks.

DISCUSSION

In summary, we have achieved STA braiding of photonic modes
within 3D silicon photonic chips. Using a trilayer waveguide con-
figuration and applying the STA strategy to the hopping amplitudes,
we successfully executed fast zero-mode braiding operations func-
tioning as Pauli X, Y, and Z gates. Further experimental observation
of non-Abelian braiding at telecommunication wavelengths under-
scores the practical applicability of the STA braiding scheme. Com-
pared to previous works (28-31, 34-36), our results demonstrate the
feasibility of realizing non-Abelian devices with significantly re-
duced sizes, facilitating the construction of quantum logic gates in
CMOS-compatible silicon photonics chips. In bosonic systems, a
unique feature is that the holonomic dimension scales with the

Song et al,, Sci. Adv. 11, eadt7224 (2025) 14 February 2025

excitation level (31). While the STA braiding demonstrated here
uses classical light, it is anticipated that using two-photon inputs in
STA braiding schemes would result in higher-dimensional holono-
mies, enabling more complex non-Abelian optical operations for
manipulating photons and light at the micro- and nanoscale.

MATERIALS AND METHODS

Fabrication of the trilayer silicon waveguide samples

The waveguide arrays and grating nanostructures are fabricated us-
ing the method of electron-beam lithography and inductively cou-
pled plasma (ICP) etching process. The substrate used herein is
220-nm silicon deposition on an alumina substrate, and the sub-
strates are cleaned in ultrasound bath in acetone and deionized wa-
ter for 10 min respectively and dried under clean nitrogen flow.
Then, a layer of MA-N2405 photoresist film is spin-coated onto the
substrate and baked at 90°C for 3 min. After that, the sample is ex-
posed to electron beam in E-beam writer (Elionix, ELS-F125) and
developed to form the MA-N2405 nanostructures. Then, the sample
is transferred into HSE Series Plasma Etcher 200 and etched with
C4Fg and SF [the flow rates of these two types of gases are 75 stan-
dard cubic centimeter per minute (sccm):30 sccm]. After the ICP
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Fig. 5. Experimental observation of STA non-Abelian braiding. (A) A schematic of the G,G; braiding structure. (B) Simulation (bottom) and experimental (top) results
of the GG, braiding, showing propagation (simulation) and output light field distribution (experiment) from waveguides A, B, and C inputs. The red boxes in the input
and output end mark the position of the waveguides. (C and D) Corresponding results of the G;G; braiding.

etching, the remaining MA-N2405 is removed by using an O, plas-
ma for 5 min. Before the fabrication of the second layer of nano-
structures, 530-nm SU-8 resist is spin-coated onto the sample and
baked at 200°C for 30 min for protection. Then, another a-Si layer
was deposited on the SU-8 using the plasma-enhanced chemical va-
por deposition to a final thickness of 220 nm. Repeat the above pro-
cess twice to fabricate the second and third layers afterward (see fig.
S3 for the fabrication flow).
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