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O P T I C S

Shortcuts to adiabatic non-Abelian braiding on silicon 
photonic chips
Wange Song1,2†, Xuanyu Liu1†, Jiacheng Sun1†, Oubo You2, Shengjie Wu1, Chen Chen1,  
Shining Zhu1, Tao Li1*, Shuang Zhang2,3,4*

Non-Abelian braiding describes the exchange behavior of anyons, useful for encoding qubits for quantum com-
puting. Recently, this concept has been realized in classical photonic and acoustic systems. However, these imple-
mentations are constrained by adiabatic conditions, necessitating long operation distances and hindering 
practical applications. Here, we conceive and demonstrate shortcut to adiabatic (STA) braiding of light in three-
dimensional silicon photonic chips. Our device comprises trilayer silicon waveguides embedded in the SU-8 poly-
mer, using an STA strategy to expedite the braiding operations, resulting in compact devices that function as 
photonic quantum X, Y, and Z gates. We further experimentally observed non-Abelian braiding behaviors based 
on this STA-braiding scheme. Our work represents a compact braiding apparatus with a size reduction of nearly 
three orders of magnitude compared to previous works. This work presents a feasible approach to accelerating 
adiabatic braiding evolutions, paving the way for compact, CMOS-compatible non-Abelian photonic devices.

INTRODUCTION
Non-Abelian phenomena are pervasive and have been extensively 
explored across various fields of physics, including high-energy 
physics, condensed matter physics, and classical wave systems such 
as light and sound (1, 2). Despite their diversity, noncommutativity 
lies at the heart of non-Abelian phenomena, rendering the physics 
of non-Abelian systems more complex and diverse than that of their 
Abelian counterparts. Examples include the non-Abelian gauge field 
(3–7), non-Abelian anyons and their statistics for describing the cel-
ebrated fractional quantum Hall effect (8–12), and the non-Abelian 
topological charges in braiding topological structures with multiple 
entangled bandgaps (13–18). Notably, the presence of non-Abelian 
anyons in two-dimensional condensed matter systems has garnered 
increasing interest (8–10,  19–21). When non-Abelian anyons are 
swapped by intertwining them along world lines, their wave func-
tion exchange behavior is represented by a unitary matrix funda-
mentally different from that of exchanging fermions or bosons (22). 
These anyons can be encoded with qubits to achieve quantum logic 
and fault-tolerant topological quantum computing. However, their 
implementation in quantum systems often depends on the dynamic 
winding of anyons, which can be challenging to achieve (23–26).

The non-Abelian braiding of degenerate zero modes has been 
extended to classical wave systems using light and sound as plat-
forms (27–31), emerging as a multimode geometric effect known as 
the Berry-Wilczek-Zee phase (32, 33), a matrix generalization of the 
well-known scalar Berry phase. The braiding of multiple states with 
non-Abelian characteristics, such as the Thouless pumping of flat-
band modes, has also been successfully realized in photonics and 
acoustics (34–36). While the associated noncommutative operations 

hold promises for applications involving unitary matrices, such as 
photonic quantum logic, these braiding operations are fundamen-
tally restricted to adiabatic conditions, which require a sufficiently 
long distance and thus hinder practical applications. Consequently, 
compact photonic non-Abelian systems are highly sought after for 
investigating more intricate non-Abelian phenomena and develop-
ing practical applications in photon and light manipulations. Fortu-
nately, there are schemes known as shortcuts to adiabaticity (STA) 
(37–44) that emulate the same dynamics within a shorter finite time 
or distance. Initially proposed for nondegenerate systems, these 
schemes were later generalized to degenerate manifolds (44).

In this work, we theoretically propose and experimentally dem-
onstrate a STA non-Abelian braiding of photonic modes in three-
dimensional (3D) silicon photonic chips. The braiding is achieved 
by imposing cyclic modulation of the hopping amplitudes among 
integrated silicon waveguides arranged in a trilayer configuration. 
An STA strategy (37–44) is proposed to identify an evolution path-
way in the parameter space of braiding, enabling fast braiding op-
erations and compact devices functioning as Pauli X, Y, and Z gates. 
Furthermore, by varying the sequence of two distinct STA braiding 
processes involving three modes, we experimentally observed dif-
ferent outcomes from identical initial states—a hallmark of non-
Abelian braiding. Notably, the STA scheme enables the braiding of 
telecommunication light within a miniaturized footprint of 1.7 × 
24 μm2 per device unit, nearly three orders of magnitude shorter com-
pared to the state-of-the-art laser-written photonic waveguide sys-
tem (millimeter scale) (29, 31). This work illustrates the potential to 
explore non-Abelian physics using a fully integrated complemen-
tary metal-oxide semiconductor (CMOS)–compatible silicon plat-
form, ensuring versatile on-chip light manipulations and paving the 
way for compact non-Abelian photonic integrated devices.

RESULTS
Model
We first illustrate the photonic braiding model with two degenerate 
zero modes. Figure 1A presents the schematics of the STA braiding 
structure in a trilayered silicon photonic chip, which comprises 
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three main waveguides (A, B, and S) and an auxiliary waveguide 
X. The bottom layer includes waveguides A and B (red waveguides) 
positioned on a sapphire substrate, while the top layer consists of 
waveguide S (blue waveguide). Waveguide X consists of three dis-
joint sections as required by the braiding process (to be detailed be-
low). The first and third sections are in the middle layer (green 
waveguides), whereas the second section (red waveguide) is located 
in the bottom layer. Waveguides A, B, and S are coupled to wave-
guide X through evanescent wave coupling κiX (i = A, B, and S), as 
indicated by the dashed lines in the cross-sectional view shown in 
Fig. 1B. The dynamics of photon propagation in the waveguide 
structure can be described by the following Hamiltonian (29, 30)

where βX,A,B,S = β0 represents the propagation constant of wave-
guides, and the coupling coefficient κiX is set to be real and is a spe-
cific function of parameter z (the propagation distance along the 
waveguides, i.e., the braiding direction, the waveguide length is L). 
Since all other waveguides must couple through waveguide X, the 
system can be divided into two groups: one consisting of waveguide 
X and the other comprising waveguides A, B, and S. Consequently, 

the Hamiltonian Eq. 1 can be simplified as H =

(
01 κT

κ 03

)
, where 𝟎3 

is an 3 × 3 zero matrix and κ = (κAX, κBX, and κSX)T represents the 
vector space of the three coupling parameters. This Hamiltonian 
clearly exhibits sublattice symmetry, which ensures the presence of 
|3–1| = 2 degenerate zero modes in this case (note that there are also 
two splitting modes, which are not the focus of this work). These 
two zero modes reside within the group of waveguides A, B, and S, 
forming the braiding subspace. As illustrated in Fig. 1C, the unit 
hopping vector �̂ = �∕ ∣� ∣ defines a unit two-sphere, with the two 
zero modes spanning a tangent plane on this two-sphere (marked by 

the red and blue arrows in Fig. 1C). The braiding process consists of 
three steps (step 0-1, 1-2, and 2-3) and forms a cyclic modulation of 
z, driving the tangent vectors of zero modes in a holonomic parallel 
transport. This process encloses a solid angle of π/2 on the two-

sphere and realizes the Y gate Y =

(
0 −1

1 0

)
, a fundamental quan-

tum logic components [U(2) operation] that swaps the two modes 
as |Ψ1〉 → |Ψ2〉 and |Ψ2〉 → –|Ψ1〉.

Specifically, the system’s initial configuration (z = 0) is located at 
the north pole of the parameter space, and it contains two zero 
modes, occupying waveguides A and B, respectively, i.e., |Ψ1(0)〉 = 
(0,1,0,0)T, |Ψ2(0)〉 = (0,0,1,0)T. Here, |Ψi〉 represents a state vector 
with its elements indicating the wave function in waveguides X, A, 
B, and S, respectively, i.e., |Ψi〉 = (φXi, φAi. φBi. φSi)T. The braiding 
process consists of three steps, each traversing a distance of L/3, as 
shown in Fig. 1C. In step 0-1 represented by the black arc connect-
ing points 0 and 1, κSX (κAX) decreases (increases) from its maxi-
mum (zero) to zero (its maximum), while κBX is kept at zero. The 
initial state |Ψ1(0)〉 = (0,1,0,0)T becomes |Ψ1(L/3)〉 = (0,0,0,−1)T. The 
zero mode evolutions can be mapped onto a Bloch sphere, where the 
eigenstates evolve from the north pole to the south pole of the Bloch 
sphere formed by the subspace (φA. φS), acquiring a π phase during 
the evolution (Fig. 1E, left). On the other hand, the initial state in 
waveguide B |Ψ2(0)〉 remains the same, |Ψ2(L/3)〉 = |Ψ2(0)〉 = 
(0,0,1,0)T, as κBX = 0 during the step 0-1. In step 1-2, the state in 
waveguide B is transferred to site A with a geometric phase π, i.e., 
from |Ψ2(L/3)〉 = (0,0,1,0)T to |Ψ2(2 L/3)〉 = (0,−1,0,0)T. This cor-
responds to the zero mode evolution from the south pole to the 
north pole of the Bloch sphere formed by subspace (φA. φB) (Fig. 1E, 
middle). In contrast, the state in waveguide S remains unchanged 
|Ψ1(2 L/3)〉 = |Ψ1(L/3)〉 = (0,0,0,−1)T as κSX = 0. In step 2-3, the 
state in waveguide S transfers to the waveguide B and also acquires 
the π phase |Ψ1(L)〉 = (0,0,1,0)T. Accordingly, the eigenstates evolve 
from the north pole to the south pole of the Bloch sphere formed by 
the subspace (φS. φB) (Fig. 1E, right). On the contrary, the state in 
waveguide A remains unchanged, i.e., |Ψ2(L)〉 = |Ψ2(2 L/3)〉 = 
(0,−1,0,0)T as κAX = 0. Overall, the initial states |Ψ1(0)〉 = (0,1,0,0)T 

H(z) =

⎡⎢⎢⎢⎢⎣

βX κAX(z) κBX(z) κSX(z)

κAX(z) βA 0 0

κBX(z) 0 βB 0

κSX(z) 0 0 βS

⎤⎥⎥⎥⎥⎦
(1)

Fig. 1. Braiding on trilayer silicon photonic chips. (A) A schematic of the braiding structure consisting of four waveguides implemented in trilayered silicon photonics 
platform. (B) The cross section of the setup in a tight-binding model, including coupling between waveguide X to waveguides A, B, and S, respectively. (C) The system 
sustains two degenerate zero modes, whose parallel transport on the two-sphere exchanges the two modes. The blue trajectory indicates the STA braiding path in the 
parameter spaces. This process realizes the Y gate, whose braiding diagram is shown in (D). (E) The zero modes can be mapped onto Bloch spheres of different subspaces 
for three braiding steps, respectively. The red and blue dashed paths indicate the zero mode evolutions on the Bloch sphere as performing the braiding operations.
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and |Ψ2(0)〉 = (0,0,1,0)T lastly become |Ψ1(L)〉 = (0,0,1,0)T and 
|Ψ2(L)〉 = (0,−1,0,0)T (marked by the two pentagrams in Fig. 1E), 
completing the braiding operations and functioning as quantum 
Y gates.

Notably, the braiding process typically requires adiabatic condi-
tions (27–31, 34–36), which necessitate a long operation distance. If 
the evolutionary distance is simply reduced, then the system param-
eters will vary rapidly, leading to instantaneous eigenmode coupling 
and consequently undermining the braiding function. To address this 
issue, we propose to use STA braiding strategy to accelerate the adi-
abatic process, thus ensuring the desired state evolutions with a sig-
nificantly reduced system length, as will be elaborated below.

STA braiding
Transitionless driving, a well-known STA method proposed by Berry 
(37), can inhibit immediate eigenmode coupling caused by rapid pa-
rameter variations by incorporating counterdiabatic driving terms 
(38–44). Since the fundamental component of the braiding process is 
the adiabatic zero-mode evolution within a triplet subsystem, we ap-
ply the STA strategy to this basic process and then extend it to the 
entire braiding procedure. Specifically, we consider the first step (0-
1) of the braiding process as a subsystem, as indicated by the dashed 
box in Fig. 2A, which only involves waveguides A, X, and S. The trip-
let unit supports a zero mode |φ0〉 and two split modes |φ±〉, with the 
corresponding Hamiltonian [in the subspace of (φA, φX, φS)]

Before applying the STA operation to Eq. 2, we note that this 
Hamiltonian satisfies the one-photon resonance condition (i.e., βA = 
βX = βS), allowing us to map H(z) to an effective two-level system 

Heff(z) =

[
κSX(z)∕2 κAX(z)∕2

κAX(z)∕2 −κSX(z)∕2

]
 (39, 42, 43). This premapping pre-

vents the generation of complex or long-range couplings during the 
STA operations (39), thereby enabling a feasible STA braiding system.

Following Berry’s protocol (37), the counterdiabatic driving term 
Heff_CD(z) of the mapped system has the form

where |m > and |n > respectively denote eigenstates of the two-level 
systems with eigenvalues Em and En. Then, the STA Hamiltonian of the 
effective system can be obtained by adding Heff_CD(z) to Heff(z), i.e., 

Heff_STA(z) = Heff(z) +Heff_CD(z) =

[
κ̃SX(z)∕2 κ̃AX(z)∕2

κ̃AX(z)∕2 −κ̃SX(z)∕2

]
, where 

Heff_CD(z) can inhibit the diabatic eigenmode transfer caused by rap-
idly changing Heff(z). Last, the STA version of the original triplet 
HSTA(z) is obtained by mapping Heff_STA(z) back to the triplet subsystem

We see that the STA strategy modifies the coupling coefficients in the 
braiding process, which consequently alters the loop path along the 
braiding direction on the two-sphere (see blue path in Fig. 1C). This 
STA Hamiltonian can be achieved by varying waveguides A, S, and X 
along the propagation direction (see schematics in Fig. 1A). The de-
tailed procedure for performing STA braiding can be found in section S1.

The coupling strength of the conventional adiabatic design [fol-
lowing the stimulated Raman adiabatic passage (45–47)] and the STA 
braiding process are shown in the top and bottom of Fig. 2A, respec-
tively. For the light input from waveguide A, the transferred light in-
tensity to waveguide S |φS|2 as a function of the length of the subsystem 
(step 0-1) is shown in Fig. 2B. It is evident that the STA design offers 
the capability to complete the braiding process within a significantly 
reduced evolution distance; the minimum length required for the 
conventional pumping process to achieve complete transfer is 92 μm, 
while it could be shortened to 24 μm (approximately 3.8 times small-
er) for the STA braiding. Specifically, the light evolutions in the STA 
device and conventional case are shown in Fig. 2C. The STA braiding 
enables the zero mode to transfer from waveguide A to S within this 
short distance (24 μm, see Fig. 2C, bottom), while the conventional 
process only leads to partial transfer at the same distance (see Fig. 2C, 
top). Further analysis of the zero-mode occupancy during the pump-
ing process reveals that the conventional braiding path results in sig-
nificant cross-talk between the pumped zero mode and other modes 
(black curve, Fig. 2D). In contrast, the STA path maintains the domi-
nance of the zero mode, ensuring that even in the presence of cross-
talk, it ultimately returns to the zero-energy level (red curve, Fig. 2D), 
thus successfully fulfilling the braiding operation.

Figure 3 shows the simulated light evolutions during the STA 
braiding process. The system’s initial states (z = 0) are two zero 

H(z) =

⎡
⎢⎢⎢⎣

βA κAX(z) 0

κAX(z) βX κSX(z)

0 κSX(z) βS

⎤
⎥⎥⎥⎦

(2)

Heff_CD(z) = i

�
n

�
m≠n

∣m(z)⟩ ⟨m(z) ∣
�

�z
Heff(z) ∣n(z)⟩ ⟨n(z) ∣

En(z) − Em(z)
(3)

HSTA(z) =

⎡
⎢⎢⎢⎣

βA κ̃AX(z) 0

κ̃AX(z) βX κ̃SX(z)

0 κ̃SX(z) βS

⎤
⎥⎥⎥⎦

(4)

Fig. 2. Design of STA braiding. (A) The original modulation profiles of the cou-
pling coefficients (top). The coupling coefficients in STA braiding process (bottom) 
at the working wavelength λ = 1550 nm. (B) The transferred light intensity |φS|2 as 
a function of the length of the subsystem (waveguides A, X, and S). The STA braid-
ing allows complete energy transfer within a short system length 24 μm (marked 
by red arrow), while the conventional process requires at least 92 μm to allow com-
plete transfer (black arrow). (C) Evolution of the light intensity in the subsystem 
along the braiding direction (step 0-1) during the conventional (top) and STA (bot-
tom) process. (D) Zero-mode occupancy |⟨Ψ|φ0〉|2 during the braiding process. The 
evolution length is 24 μm for (C) and (D).
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modes occupying waveguides A and B, respectively, i.e., |Ψ1(0)〉 = 
(0,1,0,0)T, |Ψ2(0)〉 = (0,0,1,0)T. After the braiding process, both |Ψ1〉 
and |Ψ2〉 undergo energy exchange between waveguides A and 
B. However, |Ψ1〉 follows the A-S-B path without geometric phase 
inversion (see Fig. 3A, where the input and output have the same 
phase indicated by the red color), while |Ψ2〉 undergoes a single 
pumping process from B to A (Fig. 3B, where the input and output 
fields are in red and blue, indicating a phase difference of π). There-
fore, the output geometric phase of |Ψ2〉 differs from the initial 
phase by π (the accumulated dynamical phases are both β₀L), which 
is the expected outcome of the Y gate. Following the same STA-
braiding principle, the Pauli X and Z gates can also be designed and 
realized in the trilayer silicon photonic platform (see section S2).

Experimental observations
We fabricated the trilayer-integrated waveguide samples using E-
beam lithography with AR-N 7520 resists and an inductively cou-
pled plasma etching process (48). The bottom layer waveguides are 
fabricated in a silicon wafer on a sapphire substrate. A layer of SU-8 
with a thickness of 530 nm covering the bottom waveguides is pre-
pared, followed by the coating of a second silicon film with a thick-
ness of about 220 nm, which is further processed to form the second 
layer waveguides. The third layer of silicon is fabricated following the 
same procedures (see Materials and Methods for fabrication details).

To clearly observe the fabricated trilayer waveguide structure, we 
used a focused ion beam to cut holes into the surface of the sample, 
allowing the cross section of the waveguide sample to be viewed 
through a scanning electron microscope (SEM), as shown in Fig. 4. 
Here, Fig. 4 (A to C) illustrates the cross section of the braiding steps 
0-1, 1-2, and 2-3, respectively, and the corresponding top panels 
show the schematics of each cross section. In optical measurements, 
a laser light (λ = 1550 nm) was focused into the waveguide lattice 
through an input grating coupler. The transmitted light, scattered 
from the extended output ports, can be collected for analysis. Both 
the coupling-in and coupling-out processes were captured using a 
near-infrared charge-coupled device (CCD) camera.

Figure 4 (D and E) demonstrates that the two zero modes can 
switch the light dwelling (A-B and B-A), as required by the braiding 
process of the Y gate. To further confirm the geometric π phase dif-
ference of the two outcomes, two identical Y gate braiding struc-
tures (e.g., Y1 and Y2) were excited with different input ports (e.g., 

A1B2, which means inputs from waveguide A in the Y1 device and 
waveguide B in the Y2 device) or the same ports (e.g., A1A2), and 
their outputs were combined to interfere with each other. As shown 
in Fig. 4F, the experimental observations confirm that outputs from 
different input waveguides (A1B2) had opposite phases (no light 
comes from the central port), while outputs from the same input 
waveguides (A1A2) had identical phases (the intensity of the central 
output is observed to be enhanced), confirming that the braiding 
device achieved the π geometric phase difference of the Y gate.

Non-Abelian STA braiding
The successful demonstration of the Y gate shows that our STA de-
sign and the integrated photonic platform can be extended to obtain 
the non-Abelian braiding of (N) modes. As a proof of concept, we 
realized the three-mode non-Abelian braiding operations, repre-
senting the minimalist non-Abelian braiding process described by a 
braid group (B3) (29, 30), as shown in the schematics in Fig. 5 (A and C). 
The three-mode STA non-Abelian braiding structure comprises 
seven waveguides. The three primary waveguides, labeled A, B, and 
C, are positioned sufficiently far from one another, necessitating 
coupling through auxiliary waveguides X1 and X2, which are in-
dividually cut into three parts similar to the two-mode braid-
ing process.

The Hamiltonian of the system supports three degenerate zero 
modes that constitute the braiding subspace. In this case, exchang-

ing |Ψ2〉 and |Ψ1〉 is captured by the matrix G1 =

(
Y 0

0 1

)
, and the 

exchange of |Ψ3〉 and |Ψ2〉 is given by G2 =

(
1 0

0 Y

)
. Here, |Ψi〉 rep-

resents a state vector with its three elements indicating the wave 
function in waveguides A, B, and C, respectively. It is easy to check 
that G1G2 ≠ G2G1, which is a fundamental characteristic that classi-
fies B3 as a non-Abelian group. The simulation results in Fig. 5 (B 
and D) shows the evolution of the light field during the three-mode 
braiding process. When the braiding sequence is G2G1, the output 
light signal sequentially shifts one site to the right. Conversely, the 
output sequentially shifts one site to the left with the G1G2 sequence. 
The different braiding sequences result in opposite outcomes, veri-
fying the non-Abelian nature of the braiding process. Notably, the 
STA non-Abelian braiding process is accomplished within 144 μm, 
nearly three orders of magnitude shorter than the state-of-the-art 

Fig. 3. Numerical study of STA braiding in trilayer silicon waveguides. (A) For input from waveguide A. Left: Evolution of Ex field at the input and output ends. Right: 
Evolution of light intensity in the STA braiding process. The red boxes in the input and output ends mark the position of the waveguides. (B) Corresponding results for 
waveguide B input.
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laser-written photonic waveguide systems, which operate on a mil-
limeter scale (29, 31). It is also ~3.8 times smaller compared to the 
conventional design on the same silicon platform. This miniaturiza-
tion could enhance the integration density of non-Abelian photonic 
chips and minimize the impact of dimensional uncertainties due to 
nanofabrication, thereby enabling scaling to larger circuits with more 
complex non-Abelian photonic device networks.

DISCUSSION
In summary, we have achieved STA braiding of photonic modes 
within 3D silicon photonic chips. Using a trilayer waveguide con-
figuration and applying the STA strategy to the hopping amplitudes, 
we successfully executed fast zero-mode braiding operations func-
tioning as Pauli X, Y, and Z gates. Further experimental observation 
of non-Abelian braiding at telecommunication wavelengths under-
scores the practical applicability of the STA braiding scheme. Com-
pared to previous works (28–31, 34–36), our results demonstrate the 
feasibility of realizing non-Abelian devices with significantly re-
duced sizes, facilitating the construction of quantum logic gates in 
CMOS-compatible silicon photonics chips. In bosonic systems, a 
unique feature is that the holonomic dimension scales with the 

excitation level (31). While the STA braiding demonstrated here 
uses classical light, it is anticipated that using two-photon inputs in 
STA braiding schemes would result in higher-dimensional holono-
mies, enabling more complex non-Abelian optical operations for 
manipulating photons and light at the micro- and nanoscale.

MATERIALS AND METHODS
Fabrication of the trilayer silicon waveguide samples
The waveguide arrays and grating nanostructures are fabricated us-
ing the method of electron-beam lithography and inductively cou-
pled plasma (ICP) etching process. The substrate used herein is 
220-nm silicon deposition on an alumina substrate, and the sub-
strates are cleaned in ultrasound bath in acetone and deionized wa-
ter for 10 min respectively and dried under clean nitrogen flow. 
Then, a layer of MA-N2405 photoresist film is spin-coated onto the 
substrate and baked at 90°C for 3 min. After that, the sample is ex-
posed to electron beam in E-beam writer (Elionix, ELS-F125) and 
developed to form the MA-N2405 nanostructures. Then, the sample 
is transferred into HSE Series Plasma Etcher 200 and etched with 
C4F8 and SF6 [the flow rates of these two types of gases are 75 stan-
dard cubic centimeter per minute (sccm):30 sccm]. After the ICP 

Fig. 4. Experimental implementation of Y gate. (A to C) Schematics for different stages of the trilayer waveguide systems (top) and SEM images for fabricated samples 
(bottom). (D to F) CCD recorded light couple-in and couple-out processes in the braiding samples of (D) waveguide B input, (E) waveguide A input, and (F) double Y gate 
interference results. The top shows the experimentally captured zoom-in pictures of the output ports. In (F), two identical Y gate structures (Y1 and Y2) were input simul-
taneously, and the interference of their output states reveals the geometric phase. Specifically, the upper output result corresponds to A1B2 inputs (i.e., inputs from 
waveguide A in the Y1 device and waveguide B in the Y2 device); while the lower output result corresponds to A1A2 inputs.
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etching, the remaining MA-N2405 is removed by using an O2 plas-
ma for 5 min. Before the fabrication of the second layer of nano-
structures, 530-nm SU-8 resist is spin-coated onto the sample and 
baked at 200°C for 30 min for protection. Then, another α-Si layer 
was deposited on the SU-8 using the plasma-enhanced chemical va-
por deposition to a final thickness of 220 nm. Repeat the above pro-
cess twice to fabricate the second and third layers afterward (see fig. 
S3 for the fabrication flow).
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