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SUMMARY

We propose a functional accelerated failure time model to characterize the effects of both
functional and scalar covariates on the time to event of interest, and provide regularity con-
ditions to guarantee model identifiability. For efficient estimation of model parameters, we
develop a sieve maximum likelihood approach where parametric and nonparametric coeffi-
cients are bundled with an unknown baseline hazard function in the likelihood function. Not
only do the bundled parameters cause immense numerical difficulties, but they also result in
new challenges in theoretical development. By developing a general theoretical framework,
we overcome the challenges arising from the bundled parameters and derive the conver-
gence rate of the proposed estimator. Additionally, we prove that the finite-dimensional
estimator is root-n consistent, asymptotically normal and achieves the semiparametric
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information bound. Furthermore, we demonstrate the nonparametric optimality of the
functional estimator and construct the asymptotic simultaneous confidence band. The pro-
posed inference procedures are evaluated by extensive simulation studies and illustrated with
an application to the National Health and Nutrition Examination Survey data.

Some key words: Functional accelerated failure time model; Model identifiability; Right-censored data; Semi-
parametric information bound; Sieve maximum likelihood.

1. Introduction

Functional data are typically regarded as a realization of an underlying stochastic
process; that is, Z(·) : I0 → R is a stochastic process indexed with a compact set I0. Tech-
nological advancement has drastically increased the capability of capturing and storing
functional data, which have become increasingly important in many fields such as medicine,
economics, engineering and chemometrics. With growing awareness of its importance, a
vast amount of literature has been devoted to the development of functional data analy-
sis, of which functional regression analysis has received the most attention in application
and methodology development (Morris, 2015). The functional linear model was first intro-
duced by Ramsay & Dalzell (1991), and later extended to various nonlinear functional
models, including the generalized functional linear model (Marx & Eilers, 1999), the func-
tional polynomial model (Yao & Müller, 2010) and the functional generalized additive
model (McLean et al., 2014). For prediction and estimation, the approaches based on
the functional principal component analysis have been popularized (Cardot et al., 1999;
Müller & Stadtmüller, 2005; Yao et al., 2005; Crainiceanu et al., 2009). Moreover, other
methods including different basis functions and regularization approaches have also been
well developed. Additional details and insights of functional data analysis are discussed in
the monographs by Ramsay & Silverman (2005) and Ferraty & Vieu (2006), as well as the
reviews by Morris (2015) and Wang et al. (2016).

Recently, functional data have received a substantial amount of attention in the realm
of survival analysis. Chen et al. (2011) proposed the functional Cox model and Kong
et al. (2018) extended this model to the functional principal component analysis approach.
Qu et al. (2016) studied the model estimation under a more general reproducing kernel
Hilbert space framework, where they derived the asymptotic properties of the maximum
partial likelihood estimator and established the asymptotic normality and efficiency for the
finite-dimensional estimator. Furthermore, Hao et al. (2021) derived the asymptotic joint
distribution of finite- and infinite-dimensional estimators. Cui et al. (2021) proposed the
additive functional Cox model. Jiang et al. (2020) studied a functional censored quan-
tile regression model to characterize the time-varying relationship between time-to-event
outcomes and functional covariates. Yang et al. (2020) considered the functional linear
regression for right-censored data and developed a penalized least-squares method for
model estimation, while the theoretical properties of the proposed estimator have not been
studied yet.

Among various survival models, the Cox proportional hazard model (Cox, 1972) has
gained the most popularity in applications. However, when the proportional hazard
assumption is violated, as commonly encountered in practice, the accelerated failure time
(AFT) model provides a convenient and attractive alternative (Buckley & James, 1979;
Miller & Halpern, 1982; Ritov, 1990; Tsiatis, 1990; Lai & Ying, 1991a,b; Ying, 1993; Jin
et al., 2003, 2006; Zeng & Lin, 2007; Ding & Nan, 2011; Lin & Chen, 2013). With the
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Functional accelerated failure time model 3

transformed failure time directly regressed on the covariates, the AFT model has the
advantage of straightforward interpretation inherited from the typical linear regression.
To accommodate for both functional and scalar data, we consider a functional accelerated
failure time (FAFT) model,

T = αT
0X +

∫
I0

β0(s)Z(s) ds + ε, (1)

where T is a failure time after a known monotone transformation, X is a p-dimensional
vector of covariates, Z(·) is a functional covariate, α0 is a p-dimensional parameter, β0(·) is
a functional parameter and ε is an error with an unknown distribution.

We develop a sieve maximum likelihood approach for the FAFT model with right-
censored data. To investigate the asymptotic property of the sieve estimator, we need to
overcome two main challenges. First, the parameters are bundled together in the loglike-
lihood function such that the theoretical analysis is much more difficult than the usual
situations with separate parameters in objective functions. Second, the overall convergence
rate of the proposed estimator is shown to be lower than the standard rate n−1/2, which
incurs considerable difficulties in deriving the asymptotic distribution of the estimator.

The main contributions are as follows.

(i) We rigorously discuss the model identifiability and provide sufficient conditions.
Even for the AFT model with an unspecified error distribution, the existing statistical
inference procedures are typically made by assuming the model to be identifiable.

(ii) Overcoming the challenges from bundled parameters, we establish the convergence
rate of the bundled parameters, as well as separate parameters. Our theoretical devel-
opment is highly nontrivial and general enough to be applicable to other bundled
parameter situations.

(iii) We obtain the information bound for the finite-dimensional parameters in the semi-
parametric FAFT model and demonstrate the efficiency of our estimation procedure.
We derive the asymptotic normality for the finite-dimensional estimator and show
that it achieves the information bound asymptotically.

(iv) We establish the minimax lower bound for estimating the functional parameter and
demonstrate that our functional estimator achieves it. Additionally, we introduce
asymptotic simultaneous confidence bands to facilitate inference.

2. Estimation method

Let U = {X , Z(·)} denote the covariates and θ = {α,β(·)} denote the parameters. Define
µ(U , θ) = αTX +

∫
I0
β(s)Z(s) ds. The FAFT model in (1) can be rewritten as

T = µ(U , θ0)+ ε,

where θ0 = {α0,β0(·)} is the true parameter. Let R denote the censoring time after the same
transformation as the failure time T . The observed survival time is Y = min{T , R} with
censoring indicator 1 = I(T ⩽ R). Under a standard assumption that ε is independent
of U and R, we subsequently have T and R being independent conditional on covariate U .
Hence, the joint density function of (Y ,1, U) is

fY ,1,U(y, δ, u) = λδ0{y − µ(u, θ0)} exp[−30{y − µ(u, θ0)}]H(y, δ, u),
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where λ0(·) and 30(·) are the hazard function and the cumulative hazard function of the
error term ε, respectively, and H(y, δ, u) is a function that depends only on the distribution
of U and the conditional distribution of R given U . To alleviate the positivity constraint
for the hazard function, we set g(·) = log λ(·) and formulate the loglikelihood function as a
function of (θ , g).

Suppose that the observations (Yi,1i, Ui), i = 1, . . . , n, are independently sampled based
on the FAFT model. The loglikelihood function for parameter ξ = (α,β, g) is

ln(ξ) =
1
n

n∑
i=1

[
1ig{Yi − µ(Ui, θ)} −

∫
exp{g(t)}I{Yi − µ(Ui, θ) ⩾ t} dt

]
,

where the parts independent of ξ are omitted. We consider estimating ξ by maximizing the
loglikelihood function, for which direct estimation is infeasible. Zeng & Lin (2007) showed
that the maximum of ln(ξ) does not exist even when all the covariates are scalar (i.e., no
functional component). To overcome this difficulty, Zeng & Lin (2007) proposed a kernel-
smoothed profile likelihood function for the estimation of regression parameters. Ding &
Nan (2011) investigated the model by applying the spline method. However, neither of these
approaches is applicable to the FAFT model due to the inclusion of a functional component.
This inclusion introduces significant numerical challenges, particularly in the estimation of
the functional parameter and its asymptotic simultaneous confidence band. Additionally,
there are substantial theoretical difficulties, as establishing the convergence properties of the
functional estimator and developing its asymptotic properties for inference require novel
analytical approaches.

We propose an estimation approach for the FAFT model by maximizing the loglikelihood
function in a sieve space. Specifically, we focus on the spline-based sieve space, where both
scalar and functional parameters are estimated simultaneously as bundled together. The
advantages of this spline-based sieve space are demonstrated both theoretically and numer-
ically. The choice of sieve space is general as long as the assumptions for the theorems are
satisfied.

Without loss of generality, we assume that I0 = [0, 1] and that the log-hazard function g0
is supported on [a, b], as an interval of interest, where a = infy,u{y−µ(u, θ0)} and b = τ <∞.
To propose the spline-based sieve space, we first introduce some notation. For a closed inter-
val [c, d], let Tn(c, d) = {ti, i = 0, . . . , mn + 1} denote a sequence of knots that partition
[c, d] into mn + 1 subintervals, where c ≡ t0 < t1 < · · · < tmn < tmn+1 ≡ d. Let Sℓ{Tn(c, d)}
denote the space of splines of order ℓ ⩾ 1 with knot sequence Tn(c, d), and let qn = mn + ℓ.
According to Corollary 4.10 of Schumaker (1981), for any function φ ∈ Sℓ{Tn(c, d)}, there
exists a qn-dimensional vector γ such that φ = BT

nγ , where Bn = (b1, . . . , bqn)
T is a vector

of B-spline basis functions. Following Shen & Wong (1994), we consider the space

8n(ℓ, c, d) = {BT
nγ : ∥γ ∥∞ ⩽ cn},

where cn grows with n slowly enough. Define Fω
n = 8n(⌈ω⌉ + 1, 0, 1) and Gκn = 8n(⌈κ⌉ + 1,

a, b), where ⌈x⌉ is the ceiling function, ω and κ respectively represent the smoothness of β0
and g0 in Condition 4 given in the next section. The sieve space is defined as

4n = B × Fω
n × Gκn = {ξ = (α,β, g) : α ∈ B, β ∈ Fω

n , g ∈ Gκn },

where B is a known compact set. We study the sieve maximum likelihood estimator (MLE)

ξ̂n = (α̂n, β̂n, ĝn) = arg max
ξ∈4n

ln(ξ).
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Functional accelerated failure time model 5

Under Condition 5 in the next section, this is equivalent to finding a (p + mω
n + sκn)-

dimensional vector (αT, γ βT, γ gT)T that maximizes the loglikelihood function by taking
β = γ βTBβn and g = γ gTBg

n, where Bβn and Bg
n are the vectors of B-spline basis functions

of Fω
n and Gκn , respectively. Therefore, for the sieve MLE ξ̂n, there exists an mω

n -dimensional
vector γ̂ βn and an sκn -dimensional vector γ̂ g

n such that β̂n = γ̂
βT
n Bβn and ĝn = γ̂

gT
n Bg

n. The
estimate of (αT, γ βT, γ gT)T is obtained by maximizing the loglikelihood function,

ln(ξ) =
1
n

n∑
i=1

[
1iγ

gTBg
n
(
Yi − µ(Ui, θ)

)
−

∫
exp{γ gTBg

n(t)}I {Yi − µ(Ui, θ) ⩾ t} dt
]

,

where µ(Ui, θ) = αTXi +
∫
I0
γ βTBβn (s)Zi(s) ds. We apply an iterative estimation procedure

that utilizes multiple randomly selected initial values to ensure the numerical convergence of
the sieve MLE, addressing the local concavity of the sieve loglikelihood function. A detailed
description of the numerical implementation is provided in the Supplementary Material.

3. Theoretical results

Let r1 be a positive integer and r2 ∈ (0, 1] such that r = r1 + r2. Define Fr(I) as a class of
functions on I whose r1th derivative exists and satisfies the Lipschitz condition of order r2:

Fr(I) = {f : I → R | f has bounded derivatives f (j), j = 1, . . . , r1,

and |f (r1)(s)− f (r1)(t)| ⩽ L|s − t|r2 for s, t ∈ I}

with L a positive constant. Define rθ = Y − µ(U , θ) and rθ0 = Y − µ(U , θ0). To establish
the asymptotic properties of the proposed estimator, we need the following conditions.

Condition 1. The true parameter α0 belongs to the interior of a compact set B ⊆ Rp.

Condition 2.

(i) The covariate X takes values in a bounded subset X ⊆ Rp and satisfies
E(X) = 0, and E(XX T) is nonsingular.

(ii) The functional covariate Z takes values in the L2(I0) space. The L2 norm of Z is
bounded almost surely and E(Z) = 0.

Condition 3. There is a truncation time τ < ∞ such that, for some constant δ, P(rθ0 > τ |

U) ⩾ δ > 0 almost surely with respect to the probability measure of U . This implies that
30(τ ) ⩽ − log δ < ∞.

Condition 4. The true functional parameter β0 belongs to Fω
≡ Fω([0, 1]), where ω ⩾ 1,

and the closed support set of β0 belongs to (0, 1). The true log-hazard function g0 belongs
to Gκ ≡ Fκ([a, b]), where κ ⩾ 3, and g0 is a nonconstant and nonperiodic function.

Condition 5.

(i) For Fω
n , let Tn(0, 1) = {ti, i = 0, . . . , mn+1} denote the corresponding knot sequence.

The maximum spacing of the knots satisfies max1⩽i⩽mn+1 |ti − ti−1| = O(n−ν) and
mn = O(nν) for ν ∈ (0, 0.5). Define mω

n = mn + ⌈ω⌉ + 1.
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(ii) For Gκn , let Tn(a, b) = {ti, i = 0, . . . , sn + 1} denote the corresponding knot sequence.
The maximum spacing of the knots satisfies max1⩽i⩽sn+1 |ti − ti−1| = O(n−q) and
sn = O(nq) for q ∈ (0, 0.5). Define sκn = sn + ⌈κ⌉ + 1.

Condition 6. For some η ∈ (0, 1), var{µ(U , θ) | rθ0} ⩾ ηE{µ(U , θ)2 | rθ0} holds almost
surely for any θ ∈ B × Fω.

Condition 7. Conditional on 1 = 1 and ε = t, the conditional densities of X and Z(s)
have bounded jth derivatives with respect to t for j = 1, . . . , ⌊κ⌋.

Condition 8. There exists a nonnegative integer ϱ and a signed measure ζ with bounded
variation such that, for any φ with a continuous (ϱ+1)th derivative and φ(j)(1) = φ(j)(0) = 0
for j = 0, . . . , ϱ, it holds that

∫ 1
0

∫ 1
0 φ

(ϱ+1)(s)φ(ϱ+1)(t)C(s, t) ds dt =
∫ 1

0

∫ 1
0 φ(s)φ(t) dζ(s, t),

where C(s, t) = E{Z(s)Z(t)}.

Conditions 1 and 4 place restrictions on the parameter space, which require α0 not to be
on the boundary of the parameter space as well as g0 and β0 satisfying certain smoothness
conditions. Such a smoothness assumption is often adopted in nonparametric estimation
and can be easily satisfied. Similar regularity conditions are commonly imposed in the
literature (Huang, 1999; Zeng & Lin, 2007; Ding & Nan, 2011). Condition 2 places a bound-
edness restriction on the covariates, which is also assumed by Qu et al. (2016). Condition 3
is the same as that in Ding & Nan (2011). Condition 5 is a regularity condition about the
spline-based sieve space. Condition 6 guarantees that the convergence rate of each parame-
ter can be derived from the result of the bundled parameter g(rθ ). Furthermore, it is feasible
to impose this condition within a small neighbourhood of θ0, while maintaining the valid-
ity of the main results. Condition 7 is required to show that the score functions in the least
favourable direction are nearly zero, which is a key step in the derivation of the asymptotic
normality of the scalar estimator. Condition 8 is essential in establishing the convergence
rate of the functional estimator. Let C(k,l)(s, t) = ∂k+lC(s, t)/(∂sk∂tl). Condition 8 requires
a level of smoothness in C(s, t), which is satisfied when C(ϱ+1,ϱ+1)(s, t) exists. Importantly,
Condition 8 is less restrictive than differentiability, encompassing cases where C(s, t) can
be a generalized function. For more information on generalized functions and signed mea-
sures, we refer the reader to Stein & Shakarchi (2011) and Folland (1999, Ch. 3), respectively.
Furthermore, it is worth noting that Condition 8 is less stringent than the Sacks–Ylvisaker
condition of order ϱ, which is commonly assumed in the functional regression literature
(Yuan & Cai, 2010). The Sacks–Ylvisaker condition is stated in the Supplementary Material
for completeness.

Define the parameter space as

4 = B × Fω
× Gκ = {ξ = (α,β, g) : α ∈ B, β ∈ Fω, g ∈ Gκ}.

The sequence of spaces {4n}n⩾1 approximates to 4 and is called a sieve. For notational
simplicity, we also denote ξ = (α,β, g) by ξ = (θ , g) with θ = (α,β). For the parameter
space 4, we define the pseudometric d(·, ·) as

d(ξ1, ξ2) = P{µ(U , θ1 − θ2)
2
}
1/2

+ ∥g1 − g2∥G ,

where P denotes the probability measure with Pf =
∫

f dP and ∥g∥
2
G = P(1g{rθ0}

2).
A pseudometric is a distance function that is weaker than a metric and may assign a value
of zero to nonidentical points. As shown in Theorem 2 below, based on this pseudometric,
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Functional accelerated failure time model 7

the accuracy of α̂n can be measured by the Euclidean norm |α̂n − α0|, and the accuracy of
β̂n can be measured by ∥β̂n − β0∥C , where

∥β∥
2
C =

∫∫
β(s)C(s, t)β(t) ds dt with C(s, t) = E{Z(s)Z(t)}.

This measurement has been widely used for functional linear models (Cai & Yuan, 2012)
and has also been investigated in the functional Cox model (Qu et al., 2016).

Direct investigation of the estimator under d(·, ·) is challenging because parameters g
and θ are bundled together, which makes the information of separate parameters difficult
to derive. To overcome this difficulty, we propose first investigating the space for bundled
parameters, and then applying the results to study the parameters separately. Furthermore,
Proposition 2 below provides sufficient conditions to ensure parameter identifiability under
d(·, ·). This pseudometric-based analysis method is specifically tailored for the FAFT model,
effectively addressing the complexities associated with bundled parameters and the inclusion
of a functional parameter. Specifically, we define the space of bundled parameters as follows.
For any given θ , let rθ (·) be a mapping from R × X × L2(I0) to R defined by rθ (y, u) =

y−µ(u, θ) for any y ∈ R and u ∈ X ×L2(I0). The space of bundled parameters is defined by

A = {g[rθ (·)] : R × X × L2(I0) 7→ R | (θ , g) ∈ 4}.

For notational simplicity, we denote g{rθ (·)} by g(rθ ). As g(rθ ) can also represent a random
variable, the meaning of g(rθ ) is according to the context. To measure the difference between
any two elements in A, we consider the pseudometric

∥g1(rθ1)− g2(rθ2)∥A = P[1{g1(rθ1)− g2(rθ2)}
2
]
1/2.

We first derive the efficient score function and the information bound.

PROPOSITION 1. Under Conditions 1–4 and 6, the efficient score function for estimating α0
in the FAFT model is

l̇⋆α0
=

∫ {
− ġ0(t)X + ġ0(t)

∫ 1

0
b⋆(s)Z(s) ds − φ⋆(t)

}
dM(t),

where M(t) = 1I(rθ0 ⩽ t)−
∫ t
−∞

I(rθ0 ⩾ u)λ0(u) du, ġ0 denotes the first derivative of g0 and
(b⋆,φ⋆) is a solution that minimizes

E
[
1

∣∣∣∣ − ġ0(rθ0)X + ġ0(rθ0)

∫ 1

0
b(s)Z(s) ds − φ(rθ0)

∣∣∣∣2]
.

The information bound for estimation of α0 is

I(α0) = E[l̇⋆⊗2
α0

] = E
[
1

{
− ġ0(rθ0)X + ġ0(rθ0)

∫ 1

0
b⋆(s)Z(s) ds − φ⋆(rθ0)

}⊗2]
,

where x⊗2
= xxT for any vector x ∈ Rp.

Remark 1. Detailed discussions on the explicit forms of b⋆ and φ⋆ in the efficient score
function can be found in § 1.3 of the Supplementary Material.
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PROPOSITION 2. For any ξ ⋆ = (θ⋆, g⋆) that maximizes Eln(ξ), it holds that ∥g⋆(rθ⋆) −

g0(rθ0)∥A = 0. Under Conditions 1–4, if I(α0) is nonsingular, we further establish g⋆ = g0,
α⋆ = α0 and ∥β⋆ − β0∥C = 0. Moreover, β⋆ = β0 holds when the covariance function
C(s, t) satisfies the Sacks–Ylvisaker conditions of order k, with integer 1 ⩽ k < ⌈ω⌉ − 1,
C(0,i)(·, 0) = 0 for i = 0, 1, . . . , k − 1 and the jth derivative of β⋆ equals 0 at points 0 and 1 for
j = 0, . . . , ⌈ω⌉ − 1.

Remark 2. The result of Proposition 2 provides sufficient conditions to guarantee the
identifiability of model (1). These conditions entail specific smoothness requirements for
C(s, t) and β0 and require that g0 is nonconstant and nonperiodic. Such identifiability is
the key to statistical inference. However, in the AFT model, the accelerated hazard regres-
sion model and the longitudinal data model, statistical inference is often based on a direct
assumption of model identifiability (Zeng & Lin, 2007; Zhao et al., 2017; Kong et al., 2018).

We next give the convergence rate of the bundled estimator ĝn(rθ̂n
).

THEOREM 1. Under Conditions 1–5 and 8, we have

∥ĝn(rθ̂n
)− g0(rθ0)∥A = Op(n−c),

where c = min[ν(ω + ϱ + 1), κq, (1 − max{ν, q})/2].

Next, the consistency of each estimator is derived separately. For ĝn, we first show that the
sequence {ĝn}n⩾1 is precompact and then apply the Arzelà–Ascoli theorem. Let ˙̂gn denote
the first derivative of ĝn. The result indicates that both ĝn and ˙̂gn converge in probability
under the supremum norm ∥ · ∥∞. Similar approaches were studied by Murphy et al. (1999)
and Kuchibhotla & Patra (2020); however, they were rarely applied to survival analysis.
Next, to derive the consistency of β̂n, we define an integral operator of C(s, t) and derive
the consistency based on the compactness of the operator. When I(α0) is nonsingular, the
accuracy of α̂n and β̂n can be measured by | · | and ∥ · ∥C , respectively.

THEOREM 2. Suppose that Conditions 1–6 and 8 hold. If I(α0) is nonsingular then the
following statements hold.

(i) (Consistency.) We have ∥ĝn − g0∥∞ + ∥˙̂gn − ġ0∥∞ = op(1), |α̂n − α0| = op(1) and
∥β̂n − β0∥C = op(1).

(ii) (Convergence rate.) Let c = min[ν(ω + ϱ + 1), κq, (1 − max{ν, q})/2]. We have

d(ξ̂n, ξ0) = Op(n−c).

(iii) We have |α̂n − α0| + ∥β̂n − β0∥C + ∥ĝn − g0∥G = Op(n−c).

When ν = 1/(2ω+2ϱ+3) and q = 1/(1+2κ), Theorem 2(ii) implies that the convergence
rate of the sieve estimator ξ̂n could reach the slower rate between n−(ω+ϱ+1)/(2ω+2ϱ+3) and
n−κ/(1+2κ). Combining the derivation with Theorem 2(iii), it can be shown that, when g0 has
a weaker smoothness property, ĝn could reach the optimal rate in nonparametric regression,
as given by Stone (1982), and when β0 and C(s, t) have weaker smoothness properties, β̂n
could reach the optimal rate, as shown in Theorem 4 below. Next, we derive the convergence
rate of scalar estimator α̂n and show that it could reach n−1/2.
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THEOREM 3. Suppose that Conditions 1–8 hold and that the information bound I(α0) is
nonsingular. Let c1 = min[νω, κq, (1 − max{ν, q})/2]. When c1 − q > 1/4, we have

√
n(α̂n − α0)

d
−→ N(0,6),

where 6 = I(α0)
−1 and ‘

d
−→’ denotes convergence in distribution.

The above result shows that α̂n achieves the information bound. Therefore, it is asymp-
totically efficient among all the regular estimators. In Theorem 3, the condition on ν and q is
relatively mild and can be conveniently satisfied in most cases. For example, when ν = q and
ω = κ, the condition is satisfied if 1/(2(1 + κ)) < q < 1/(2κ) for κ ⩾ 3. We also establish
the minimax lower bound of the convergence rate for estimating β0 and show that it reaches
n−(ω+ϱ+1)/(2ω+2ϱ+3).

THEOREM 4. Under the conditions of Theorem 2, there is a positive number a such that

lim
n→∞

inf
β̂

sup
ξ∈4

Pξ {∥β̂ − β∥C ⩾ an−(ω+ϱ+1)/(2ω+2ϱ+3)
} = 1,

where the infimum is taken over all possible estimators β̂ based on the observed data.

We then develop asymptotic simultaneous confidence bands (ASCBs) for β̂n. Let ξn(s) be
a Gaussian process with E[ξn(s)] ≡ 0, var[ξn(s)] ≡ 1 and covariance matrix

cov{ξn(s), ξn(s′)} =
Bn(s)TD−1

n Bn(s′)

{Bn(s)TD−1
n Bn(s)}1/2{Bn(s′)TD−1

n Bn(s′)}1/2
for any s, s′

∈ [0, 1].

Here Bn = (b1, . . . , bmω
n )

T is the vector of B-spline basis functions for Fω
n and Dn = (d̄ij) is

an mω
n ×mω

n matrix. Specifically, d̄ij takes the value of the expected negative second derivative
of the loglikelihood function at directions (h̃1i, bi, h̃3i) and (h̃1j, bj, h̃3j). Here h̃1i and h̃3i for
i = 1, . . . , mω

n are obtained through the minimization problem

min
h1∈B, h3∈Gκn

P
[
1

∣∣∣∣ − ġ0(rθ0)

∫ 1

0
bi(s)Z(s) ds + ġ0(rθ0)X

Th1 − h3(rθ0)

∣∣∣∣2]
.

We define the 100(1−α)th percentile of the absolute maxima distribution of ξn(s) as Qn(α),
which satisfies

P
{

sup
s∈[0,1]

|ξn(s)| ⩽ Qn(α)
}

= 1 − α.

We now present the theorem that establishes the ASCBs. Let K(s) = P{Z(s) | X} and
K(s, t) = P[{Z(s)− K(s)}{Z(t)− K(t)}]. Define K(k,l)(s, t) = ∂k+lK(s, t)/(∂sk∂tl).

THEOREM 5. Assume that K(s, t) satisfies the Sacks–Ylvisaker conditions of order k, with
the integer 1 ⩽ k < ⌈ω⌉−1, and K(0,i)(·, 0) = 0 for i = 0, 1, . . . , k−1. Under Conditions 1–8,
1/2 + ν − min{ν(ω + ϱ + 1), κq} < 0, 0 < ν < 1/6 and c > ν + q + 1/4, we have

lim
n→∞

P
{

sup
s∈[0,1]

∣∣∣∣ √
n{β̂n(s)− β0(s)}

{Bn(s)TD−1
n Bn(s)}1/2

∣∣∣∣ ⩽ Qn(α)

}
= 1 − α.
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4. Simulation studies

We conducted simulation studies to evaluate the finite-sample performance of the pro-
posed method. For generating the functional covariate, we considered a similar set-up as
Qu et al. (2016), defining Z(·) as Z(s) =

∑50
k=1 ξkUkφk(s), where the Uk are independently

sampled from Un[−1, 1], ξk = (−1)k+1k−1/2, φ1 ≡ 1 and φk+1(s) =
√

2 cos(kπs) for k ⩾ 1.
Then, the covariance function is C(s, t) =

∑50
k=1 φk(s)φk(t)/(3k). The functional parameter

β0 is defined as β0(s) =
∑50

k=1(−1)kk−3/2φk(s). The scalar covariates X1 followed Ber(0.5)
and X2 followed N(0, 0.5) truncated at ±2. The transformed failure time T was generated
from the FAFT model

T = X1 + X2 +

∫
I0

β0(s)Z(s) ds + ε.

We considered three error term cases: (a) exp(ε) ∼ Ex(0.6); (b) ε ∼ 0.8N(0, 1)+ 0.2N(0, 9)
and (c) the extreme-value distribution with location and scale parameters equal to 0 and 2,
respectively. We generated censoring time R from Un[0, τ ], where τ was chosen to produce
desired censoring rates. The transformed observation time was Y = min{T , log(R)}. We
considered censoring rates of 25%, 40% and 75% and sample sizes n = 400, 600 and 800.

To estimate the functional parameters β0(·) and g0(·), we used B-spline functions with
equally spaced interior knots and qn = ⌊n1/4

⌋, resulting in four basis functions for n = 400
and 600 and five basis functions for n = 800. Let {ψk(·), k = 1, …, qn} and {ηk(·), k =

1, …, qn} be the spline basis functions with support on I0 = [0, 1] and [a, b], respectively.
The functional parameters β0(·) and g0(·) were approximated by β(·) =

∑qn
k=1 βkψk(·) and

g(·) =
∑qn

k=1 gkηk(·), respectively. Parameter ξ = (α1,α2,β, g) was estimated based on the
loglikelihood function

ln(ξ) =
1
n

n∑
i=1

[
1i

qn∑
k=1

gkηk{Yi − µ(Ui, θ)} −

∫
exp

{ qn∑
k=1

gkηk(t)
}

I{Yi − µ(Ui, θ) ⩾ t} dt
]

,

where µ(U , θ) = α1X1 + α2X2 +
∫
I0

∑qn
k=1 βkψk(s)Z(s) ds. The chosen support [a, b] was

wide enough such that it covered all residual terms, Yi − µ(Ui, θ) for i = 1, …, n. Denote
the estimator by ξ̂ = (α̂1, α̂2, β̂, ĝ). The standard errors of α̂1 and α̂2 were obtained from the
first two diagonal entries of (H−1/n)1/2, where H was the Hessian matrix of ln. The esti-
mation of D−1

n for the ASCBs followed a similar method. The details and validation of this
variance estimation method are provided in the Supplementary Material. For each combi-
nation of error distribution, censoring rate and sample size, the simulation was repeated
1000 times.

Table 1 reports the performance of the proposed estimates of α1 and α2, including the
average bias, the sample standard error, the estimated standard error and the coverage prob-
ability. Evidently, both the sample standard error and estimated standard error decrease
with larger sample sizes and lower censoring rates. Moreover, the bias is small and the cov-
erage probability approximates the theoretical level of 95% across all simulation scenarios.
Table 2 shows the performances of β̂(·) and the bundled estimator ĝ(rθ̂ ). The performance
is reasonable for all simulation scenarios, which obviously improves as the sample size
increases. Figure 1 shows the pointwise averages of β̂(·), where the estimates are within
close proximity of the true values for all simulation scenarios. Table 3 reports the perfor-
mance of the ASCBs for β̂(·)with a confidence level of 95% and s ∈ [0.2, 0.8]. The coverage
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Table 1. The performance of the proposed estimates of α1 and α2 with different error
distributions: (a) exponential, (b) Gaussian mixture, (c) extreme value

Error Censoring α̂1 α̂2

distribution n rate (%) BIAS SSE ESE CP BIAS SSE ESE CP

(a) 400 25 −0.012 0.210 0.198 0.957 −0.009 0.206 0.200 0.966
40 −0.010 0.194 0.215 0.955 −0.006 0.187 0.217 0.963
75 −0.016 0.338 0.351 0.953 0.009 0.342 0.352 0.954

600 25 −0.002 0.175 0.161 0.939 0.002 0.176 0.162 0.946
40 −0.003 0.163 0.175 0.943 0.003 0.163 0.176 0.951
75 −0.012 0.281 0.283 0.940 0.001 0.283 0.283 0.950

800 25 0.004 0.152 0.140 0.954 0.001 0.154 0.141 0.951
40 0.009 0.139 0.153 0.956 0.008 0.141 0.154 0.947
75 −0.001 0.258 0.242 0.901 −0.007 0.247 0.243 0.912

(b) 400 25 0.007 0.165 0.154 0.958 0.010 0.163 0.155 0.953
40 0.007 0.149 0.164 0.947 0.014 0.151 0.165 0.948
75 0.012 0.245 0.246 0.950 0.025 0.237 0.245 0.948

600 25 −0.004 0.115 0.119 0.963 0.007 0.115 0.119 0.965
40 0.003 0.124 0.126 0.956 0.013 0.124 0.127 0.961
75 0.019 0.196 0.198 0.954 0.019 0.197 0.198 0.948

800 25 0.008 0.103 0.105 0.967 0.005 0.114 0.106 0.959
40 0.012 0.098 0.112 0.971 0.008 0.104 0.113 0.948
75 0.019 0.161 0.173 0.923 0.025 0.167 0.173 0.902

(c) 400 25 −0.020 0.220 0.226 0.949 −0.020 0.216 0.228 0.956
40 −0.014 0.218 0.231 0.953 −0.021 0.219 0.233 0.964
75 0.001 0.268 0.288 0.957 −0.008 0.280 0.291 0.959

600 25 −0.031 0.182 0.184 0.948 −0.029 0.186 0.185 0.946
40 −0.020 0.185 0.188 0.938 −0.022 0.188 0.189 0.946
75 0.001 0.232 0.236 0.948 0.001 0.228 0.237 0.965

800 25 −0.017 0.154 0.154 0.946 −0.015 0.159 0.155 0.943
40 −0.016 0.157 0.159 0.956 −0.015 0.161 0.160 0.947
75 −0.001 0.193 0.203 0.937 −0.002 0.196 0.204 0.937

BIAS, bias; SSE, sample standard error; ESE, estimated standard error; CP, coverage probability.

Table 2. The performance of the proposed estimates of β0(·) and g0(rθ0) with different error
distributions: (a) exponential, (b) Gaussian mixture, (c) extreme value

Error Censoring rate = 25% Censoring rate = 40% Censoring rate = 75%
distribution n ∥β̂ − β0∥C ∥ĝ(rθ̂ )− g0(rθ0)∥A ∥β̂ − β0∥C ∥ĝ(rθ̂ )− g0(rθ0)∥A ∥β̂ − β0∥C ∥ĝ(rθ̂ )− g0(rθ0)∥A

(a) 400 0.204 0.159 0.222 0.158 0.378 0.158
600 0.176 0.135 0.191 0.134 0.305 0.129
800 0.166 0.139 0.179 0.137 0.295 0.133

(b) 400 0.166 0.318 0.183 0.300 0.296 0.210
600 0.128 0.250 0.137 0.236 0.255 0.193
800 0.120 0.246 0.130 0.233 0.234 0.173

(c) 400 0.222 0.218 0.226 0.194 0.330 0.169
600 0.185 0.203 0.187 0.177 0.283 0.149
800 0.173 0.163 0.177 0.152 0.248 0.133

probabilities under all simulation scenarios approach the target confidence level. Overall,
simulation results validate that both the scalar and functional parameter estimators are
consistent, and the proposed variance estimation procedure provides reasonable estimates.
Furthermore, the empirical coverage probabilities are close to the theoretical level of
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Fig. 1. Graphical displays of the pointwise averages β̂(·) for censoring rates of (a) 25%, (b) 40% and (c) 75%.
The dashed lines represent β0(·), whereas the solid lines represent the pointwise averages of β̂(·).
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Table 3. The performance of the asymptotic simultaneous confidence bands for β̂(·) at a con-
fidence level of 95% and s ∈ [0.2, 0.8] with different error distributions: (a) exponential,

(b) Gaussian mixture; (c) extreme value

Error distribution n Censoring rate = 25% Censoring rate = 40% Censoring rate = 75%

(a) 400 0.959 0.957 0.966
600 0.930 0.937 0.970
800 0.962 0.965 0.971

(b) 400 0.919 0.907 0.956
600 0.932 0.928 0.933
800 0.960 0.950 0.964

(c) 400 0.963 0.967 0.927
600 0.965 0.972 0.909
800 0.955 0.963 0.954

95%, verifying the validity of normal approximation and the established ASCBs. Additional
numerical comparisons between the FAFT and functional Cox models are presented in the
Supplementary Material.

5. Application

As an illustration, we applied the proposed FAFT model to analyse data from the
National Health and Nutrition Examination Survey (NHANES) (Mirel et al., 2013).
NHANES was a study conducted by the Centers for Disease Control to assess the health
and nutritional status of individuals in the United States, and the dataset is available in
the R package rnhanesdata (Leroux et al., 2018; R Development Core Team, 2025).
A distinct feature of the dataset was the inclusion of high-resolution physical activity and
time-to-death data. The physical activity was measured using hip-worn accelerometers by
participants for seven consecutive days. The recorded data were represented as minute-
level log-transformed activity counts (LACs), a measure commonly adopted in the physical
activity research literature (Varma et al., 2017, 2018).

The NHANES accelerometry data were collected from a total of 14 631 study partic-
ipants. We excluded data that had missing mortality information, resulting in a dataset
of 9590 participants, with a censoring rate of 84.8%. A common approach to include the
physical activity in classical survival models was to calculate a daily average of LACs and
treat the mean of these averages as a scalar covariate. However, much information would
be lost during such an aggregation process. The proposed FAFT model provided a more
effective alternative by averaging the LACs at each time-point over available days, smooth-
ing the data using the procedure described by Cui et al. (2021) and treating the resulting
smoothed, averaged LACs as a functional covariate. The transformed event time was the
natural logarithm of the number of months until death since the day the accelerators were
worn. We incorporated all available scalar covariates in the model: age, body mass index,
gender, various health conditions (mobility problems, coronary heart disease, congestive
heart failure, stroke, cancer, diabetes), self-reported overall health (poor or not poor), smok-
ing status (never, former or current smoker), alcohol consumption (heavy drinker or not
heavy drinker), employment status, educational attainment (less than high school, high
school or more than high school), poverty-income ratio (< 1 or ⩾ 1) and race (White,
Black, Mexican American, other Hispanic or other). Among the 9590 participants, 2507
had covariates with missing values. We imputed these missing values using the modes for
qualitative variables and the means for quantitative variables, where the qualitative vari-
ables are binary, taking the value 1 for yes and 0 for no. In the analysis, we standardized
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Table 4. Estimation results of regression coefficients for scalar covariates in the NHANES
data analysis, where participants with missing mortality information were excluded and missing

covariates were imputed (n = 9590, censoring rate = 84.8%)

Covariates α̂ SE t-statistic p-value

Age −0.432 0.030 −14.502 < 0.001
Body mass index 0.050 0.035 1.421 0.155

Gender (female = 1, male = 0) 0.390 0.049 7.911 < 0.001
Mobility problem −0.568 0.050 −11.362 < 0.001

Diabetes −0.156 0.060 −2.587 0.010
Coronary heart disease −0.075 0.080 −0.934 0.350
Congestive heart failure −0.581 0.088 −6.604 < 0.001

Stroke −0.347 0.080 −4.327 < 0.001
Cancer −0.482 0.062 −7.783 < 0.001

Overall health is poor −0.220 0.089 −2.468 0.014
Former/current smoker −0.083 0.046 −1.783 0.075

Heavy drinker −0.120 0.094 −1.272 0.204
Employed 0.655 0.062 10.563 < 0.001

High school 0.162 0.058 2.787 0.005
More than high school 0.302 0.055 5.444 < 0.001

Poverty-income ratio ⩾ 1 −0.066 0.049 −1.343 0.179
White −0.217 0.137 −1.587 0.112
Black 0.058 0.143 0.407 0.684

Mexican American −0.069 0.144 −0.474 0.635
Other Hispanic 0.155 0.220 0.706 0.480

continuous variables for numerical stability and utilized absolute values of the standard-
ized body mass index, as deviations from the average body mass index may influence
mortality. We centred the functional covariate by subtracting the LACs from the point-
wise averages. We adopted cubic spline functions to estimate the functional coefficient with
qn = ⌊n1/4

⌋ = 7 basis functions using equally spaced knots.
Table 4 presents a summary of the estimated regression coefficients for the scalar covari-

ates, where the t-statistic is defined as the ratio of the estimate to the corresponding estimated
standard error. It reveals that patients’ existing health status (such as mobility problems,
diabetes, congestive heart failure, stroke and cancer) was negatively associated with mortal-
ity, while educational attainment was positively associated with mortality. Figure 2 shows
the estimated functional coefficient β̂(·) and the corresponding 95% asymptotic simulta-
neous confidence band, which indicates a functional association between physical activity
and patient mortality. In particular, regular physical activity from 11:30 am to 9 pm was
associated with a lower risk of death.

We also experimented with two additional data-processing methods: excluding
participants with either missing mortality information or missing scalar covariates (n =

7083, censoring rate = 85.9%), and excluding those with either missing information or fewer
than seven days of accelerometer wear time (n = 979, censoring rate = 73.4%). Additionally,
we performed a goodness-of-fit evaluation to validate the suitability of the FAFT model for
the data application under all three data-processing methods. The results of these analyses
are provided in the Supplementary Material.

Acknowledgement

The authors would like to thank the editor, the associate editor and the three reviewers
for their constructive and insightful comments and suggestions that greatly improved the
paper. This research was supported in part by the Research Grant Council of Hong Kong
and The Hong Kong Polytechnic University.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf011/8063618 by U
niversity of H

ong Kong user on 16 Septem
ber 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf011#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf011#supplementary-data


Functional accelerated failure time model 15

−20

−10

0

10

20

0 5 10 15 20 25

s (time of day in 24-hr format)

b^
(s
)

Fig. 2. Estimated functional coefficient β̂(·) for the NHANES data, where participants with missing mortality
information were excluded and missing covariates were imputed (n = 9590, censoring rate = 84.8%).

Supplementary material

The Supplementary Material provides all technical details and proofs, as well as a
detailed description of the numerical implementation procedure. It also includes additional
numerical simulations and results from the data application.
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