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SUMMARY

We propose a functional accelerated failure time model to characterize the effects of both
functional and scalar covariates on the time to event of interest, and provide regularity con-
ditions to guarantee model identifiability. For efficient estimation of model parameters, we
develop a sieve maximum likelihood approach where parametric and nonparametric coeffi-
cients are bundled with an unknown baseline hazard function in the likelihood function. Not
only do the bundled parameters cause immense numerical difficulties, but they also result in
new challenges in theoretical development. By developing a general theoretical framework,
we overcome the challenges arising from the bundled parameters and derive the conver-
gence rate of the proposed estimator. Additionally, we prove that the finite-dimensional
estimator is root-n consistent, asymptotically normal and achieves the semiparametric
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information bound. Furthermore, we demonstrate the nonparametric optimality of the
functional estimator and construct the asymptotic simultaneous confidence band. The pro-
posed inference procedures are evaluated by extensive simulation studies and illustrated with
an application to the National Health and Nutrition Examination Survey data.

Some key words: Functional accelerated failure time model; Model identifiability; Right-censored data; Semi-
parametric information bound; Sieve maximum likelihood.

1. INTRODUCTION

Functional data are typically regarded as a realization of an underlying stochastic
process; that is, Z(-): Iy — R is a stochastic process indexed with a compact set Iy. Tech-
nological advancement has drastically increased the capability of capturing and storing
functional data, which have become increasingly important in many fields such as medicine,
economics, engineering and chemometrics. With growing awareness of its importance, a
vast amount of literature has been devoted to the development of functional data analy-
sis, of which functional regression analysis has received the most attention in application
and methodology development (Morris, 2015). The functional linear model was first intro-
duced by Ramsay & Dalzell (1991), and later extended to various nonlinear functional
models, including the generalized functional linear model (Marx & FEilers, 1999), the func-
tional polynomial model (Yao & Miiller, 2010) and the functional generalized additive
model (McLean et al., 2014). For prediction and estimation, the approaches based on
the functional principal component analysis have been popularized (Cardot et al., 1999;
Muiiller & Stadtmiiller, 2005; Yao et al., 2005; Crainiceanu et al., 2009). Moreover, other
methods including different basis functions and regularization approaches have also been
well developed. Additional details and insights of functional data analysis are discussed in
the monographs by Ramsay & Silverman (2005) and Ferraty & Vieu (2006), as well as the
reviews by Morris (2015) and Wang et al. (2016).

Recently, functional data have received a substantial amount of attention in the realm
of survival analysis. Chen et al. (2011) proposed the functional Cox model and Kong
et al. (2018) extended this model to the functional principal component analysis approach.
Qu et al. (2016) studied the model estimation under a more general reproducing kernel
Hilbert space framework, where they derived the asymptotic properties of the maximum
partial likelihood estimator and established the asymptotic normality and efficiency for the
finite-dimensional estimator. Furthermore, Hao et al. (2021) derived the asymptotic joint
distribution of finite- and infinite-dimensional estimators. Cui et al. (2021) proposed the
additive functional Cox model. Jiang et al. (2020) studied a functional censored quan-
tile regression model to characterize the time-varying relationship between time-to-event
outcomes and functional covariates. Yang et al. (2020) considered the functional linear
regression for right-censored data and developed a penalized least-squares method for
model estimation, while the theoretical properties of the proposed estimator have not been
studied yet.

Among various survival models, the Cox proportional hazard model (Cox, 1972) has
gained the most popularity in applications. However, when the proportional hazard
assumption is violated, as commonly encountered in practice, the accelerated failure time
(AFT) model provides a convenient and attractive alternative (Buckley & James, 1979;
Miller & Halpern, 1982; Ritov, 1990; Tsiatis, 1990; Lai & Ying, 1991a,b; Ying, 1993; Jin
et al., 2003, 2006; Zeng & Lin, 2007; Ding & Nan, 2011; Lin & Chen, 2013). With the
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transformed failure time directly regressed on the covariates, the AFT model has the
advantage of straightforward interpretation inherited from the typical linear regression.
To accommodate for both functional and scalar data, we consider a functional accelerated
failure time (FAFT) model,

T=och—|-/]I Bo(s)Z(s)ds + &, (1)

where T is a failure time after a known monotone transformation, X is a p-dimensional
vector of covariates, Z(-) is a functional covariate, o is a p-dimensional parameter, fo(-) is
a functional parameter and ¢ is an error with an unknown distribution.

We develop a sieve maximum likelihood approach for the FAFT model with right-
censored data. To investigate the asymptotic property of the sieve estimator, we need to
overcome two main challenges. First, the parameters are bundled together in the loglike-
lihood function such that the theoretical analysis is much more difficult than the usual
situations with separate parameters in objective functions. Second, the overall convergence
rate of the proposed estimator is shown to be lower than the standard rate n~!'/2, which
incurs considerable difficulties in deriving the asymptotic distribution of the estimator.

The main contributions are as follows.

(1) We rigorously discuss the model identifiability and provide sufficient conditions.
Even for the AFT model with an unspecified error distribution, the existing statistical
inference procedures are typically made by assuming the model to be identifiable.

(i1)) Overcoming the challenges from bundled parameters, we establish the convergence
rate of the bundled parameters, as well as separate parameters. Our theoretical devel-
opment is highly nontrivial and general enough to be applicable to other bundled
parameter situations.

(iii) We obtain the information bound for the finite-dimensional parameters in the semi-
parametric FAFT model and demonstrate the efficiency of our estimation procedure.
We derive the asymptotic normality for the finite-dimensional estimator and show
that it achieves the information bound asymptotically.

(iv) We establish the minimax lower bound for estimating the functional parameter and
demonstrate that our functional estimator achieves it. Additionally, we introduce
asymptotic simultaneous confidence bands to facilitate inference.

2. ESTIMATION METHOD

Let U = {X, Z(-)} denote the covariates and 8 = {a, f(-)} denote the parameters. Define
w(U,0)=a"X + fllo B(s)Z(s) ds. The FAFT model in (1) can be rewritten as

T=uU,b) +e,

where 6y = {00, fo(-)} is the true parameter. Let R denote the censoring time after the same
transformation as the failure time 7'. The observed survival time is ¥ = min{7, R} with
censoring indicator A = I(T < R). Under a standard assumption that ¢ is independent
of U and R, we subsequently have 7" and R being independent conditional on covariate U.
Hence, the joint density function of (Y, A, U) is

Fr.av,o,u) = 231y — pu, 00)}y expl—Aoly — u(u, 00)}1H (v, J,u),
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where 19(-) and Ag(-) are the hazard function and the cumulative hazard function of the
error term ¢, respectively, and H(y, d, u) is a function that depends only on the distribution
of U and the conditional distribution of R given U. To alleviate the positivity constraint
for the hazard function, we set g(-) = log A(-) and formulate the loglikelihood function as a
function of (4, g).

Suppose that the observations (Y;, A;, U;), i = 1,...,n, are independently sampled based
on the FAFT model. The loglikelihood function for parameter & = (a, £, g) is

n

1
AGEEDY [A,-g{ Y; — u(Ur.0)) - / explg(NY; — u(Un6) > 1) dz},

i=1

where the parts independent of ¢ are omitted. We consider estimating ¢ by maximizing the
loglikelihood function, for which direct estimation is infeasible. Zeng & Lin (2007) showed
that the maximum of /,(¢) does not exist even when all the covariates are scalar (i.e., no
functional component). To overcome this difficulty, Zeng & Lin (2007) proposed a kernel-
smoothed profile likelihood function for the estimation of regression parameters. Ding &
Nan (2011) investigated the model by applying the spline method. However, neither of these
approaches is applicable to the FAFT model due to the inclusion of a functional component.
This inclusion introduces significant numerical challenges, particularly in the estimation of
the functional parameter and its asymptotic simultaneous confidence band. Additionally,
there are substantial theoretical difficulties, as establishing the convergence properties of the
functional estimator and developing its asymptotic properties for inference require novel
analytical approaches.

We propose an estimation approach for the FAFT model by maximizing the loglikelihood
function in a sieve space. Specifically, we focus on the spline-based sieve space, where both
scalar and functional parameters are estimated simultaneously as bundled together. The
advantages of this spline-based sieve space are demonstrated both theoretically and numer-
ically. The choice of sieve space is general as long as the assumptions for the theorems are
satisfied.

Without loss of generality, we assume that Iy = [0, 1] and that the log-hazard function g
is supported on [a, b], as an interval of interest, where a = inf ), ,{y—p(u,0p)} and b =17 < oo.
To propose the spline-based sieve space, we first introduce some notation. For a closed inter-
val [c,d], let T,(c,d) = {t;, i = 0,...,m, + 1} denote a sequence of knots that partition
[c,d] into m, + 1 subintervals, where c = 19 < 1 < -+ < ty, < ty,+1 =d. Let S¢{Tu(c,d)}
denote the space of splines of order £ > 1 with knot sequence 7,(c, d), and let g, = m,, + €.
According to Corollary 4.10 of Schumaker (1981), for any function ¢ € S¢{7,(c, d)}, there
exists a ¢,-dimensional vector y such that ¢ = B)y, where B, = (b1,...,b,,)" is a vector
of B-spline basis functions. Following Shen & Wong (1994), we consider the space

(Dn(f, ¢, d) = {B};V . ”V ”oo < Cn}s

where ¢, grows with n slowly enough. Define F;? = ®,([w]+1,0,1) and G = @, ([x] + 1,
a, b), where [x] is the ceiling function, w and x respectively represent the smoothness of Sy
and go in Condition 4 given in the next section. The sieve space is defined as

En=BxFyxGy={{=(a,p.8):aeB, peF geg
where 5 is a known compact set. We study the sieve maximum likelihood estimator (MLE)

én = (On, ﬁna gn) = argmax [,(¢).

CEE,
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Under Condition 5 in the next section, this is equivalent to finding a (p + m$ + s7)-
dimensional vector (a”,y#T,y¢")T that maximizes the loglikelihood function by taking
p = y/”TBg and g = y£TBS, where Bﬁ and Bj are the vectors of B-spline basis functions
of F¥ and G, respectively. Therefore, for the sieve MLE &,, there exists an m¢;-dimensional
vector j?,,ﬁ and an s<-dimensional vector § such that ﬁn = )?nﬂ TBg and g, = j?ngTBﬁ . The
estimate of (a”,y#T, y€T)T is obtained by maximizing the loglikelihood function,

n

1
(&) = p Z [AngTBﬁ(Yi — u(U;,0)) — / exp{y "B (DM (Y; — (U, 0) > 1} dt],

i=1

where 1 (U;,0) = o™ X; + fﬂo y 'BTBg (5)Zi(s) ds. We apply an iterative estimation procedure
that utilizes multiple randomly selected initial values to ensure the numerical convergence of
the sieve MLE, addressing the local concavity of the sieve loglikelihood function. A detailed
description of the numerical implementation is provided in the Supplementary Material.

3. THEORETICAL RESULTS

Let rq be a positive integer and r» € (0, 1] such that r = r| + r,. Define F,(I) as a class of
functions on I whose r th derivative exists and satisfies the Lipschitz condition of order r:

F(I) = {f: I — R | f has bounded derivatives /9, j = 1,...,r,
and |/ (s) — £V ()] < Lis — 1] for 5,1 € T}

with L a positive constant. Define rp = ¥ — u(U,0) and rg, = Y — u(U, 6)). To establish
the asymptotic properties of the proposed estimator, we need the following conditions.

Condition 1. The true parameter a belongs to the interior of a compact set B € R”.

Condition 2.

(i) The covariate X takes values in a bounded subset X C R” and satisfies
E(X) =0, and E(XXT") is nonsingular.

(i1)) The functional covariate Z takes values in the L,(Iy) space. The L, norm of Z is
bounded almost surely and E(Z) = 0.

Condition 3. There 1s a truncation time 7 < oo such that, for some constant J, P(rg, > 7 |
U) > 0 > 0 almost surely with respect to the probability measure of U. This implies that
Ap(r) < —logd < oo.

Condition 4. The true functional parameter Sy belongs to 7* = F,([0, 1]), where v > 1,
and the closed support set of Sy belongs to (0, 1). The true log-hazard function gy belongs
to G = Fi([a, b]), where k > 3, and g¢ is a nonconstant and nonperiodic function.

Condition 5.

(1) For 7?,1et7,(0,1) = {¢;, i =0,...,m,+1} denote the corresponding knot sequence.
The maximum spacing of the knots satisfies maxi<j<m,+1 |ti — ti—1] = O(n™") and
my, = O(n’) forv € (0,0.5). Define m§ = m,, + [w] + 1.
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(i) For g%, let T,(a,b) = {t;, i =0,...,s, + 1} denote the corresponding knot sequence.

n
The maximum spacing of the knots satisfies maxj<;<s,+1 [t — ti—1| = O(m~9) and

sp = O(n?) for g € (0,0.5). Define s = s, + [x] + 1.

Condition 6. For some 5 € (0,1), var{u(U,0) | rg,} = nE{u(U, 0)? | rg,} holds almost
surely for any § € B x F®.

Condition 7. Conditional on A = 1 and & = ¢, the conditional densities of X and Z(s)
have bounded jth derivatives with respect to ¢ forj =1,..., |x].

Condition 8. There exists a nonnegative integer ¢ and a signed measure ¢ with bounded
variation such that, for any ¢ with a continuous (p+ 1)th derivative and ¢ (1) = ¢ (0) = 0

forj=0,...,0, it holds that [ [} @D (5)3@ D ()C(s,rydsdr = [ [ p(s)¢p(1) (s, 1),
where C(s, t) = E{Z(s)Z(1)}.

Conditions 1 and 4 place restrictions on the parameter space, which require ag not to be
on the boundary of the parameter space as well as gg and fy satisfying certain smoothness
conditions. Such a smoothness assumption is often adopted in nonparametric estimation
and can be easily satisfied. Similar regularity conditions are commonly imposed in the
literature (Huang, 1999; Zeng & Lin, 2007; Ding & Nan, 2011). Condition 2 places a bound-
edness restriction on the covariates, which is also assumed by Qu et al. (2016). Condition 3
is the same as that in Ding & Nan (2011). Condition 5 is a regularity condition about the
spline-based sieve space. Condition 6 guarantees that the convergence rate of each parame-
ter can be derived from the result of the bundled parameter g(rg). Furthermore, it is feasible
to impose this condition within a small neighbourhood of 6y, while maintaining the valid-
ity of the main results. Condition 7 is required to show that the score functions in the least
favourable direction are nearly zero, which is a key step in the derivation of the asymptotic
normality of the scalar estimator. Condition 8 is essential in establishing the convergence
rate of the functional estimator. Let C*0 (s, 1) = 8%+ C(s, 1)/ (65*81¢"). Condition 8 requires
a level of smoothness in C(s, ), which is satisfied when C@t1.e+D (s 7) exists. Importantly,
Condition 8 is less restrictive than differentiability, encompassing cases where C(s, f) can
be a generalized function. For more information on generalized functions and signed mea-
sures, we refer the reader to Stein & Shakarchi (2011) and Folland (1999, Ch. 3), respectively.
Furthermore, it is worth noting that Condition 8 is less stringent than the Sacks—Ylvisaker
condition of order g, which is commonly assumed in the functional regression literature
(Yuan & Cai, 2010). The Sacks—Ylvisaker condition is stated in the Supplementary Material
for completeness.
Define the parameter space as

E=BxF’xG"={=(a,B,2):0€B, pecF? geg}

S}

1]

The sequence of spaces {Z,},>1 approximates to Z and is called a sieve. For notational
simplicity, we also denote ¢ = (a, f,2) by & = (4, g) with 8 = (a, p). For the parameter
space =, we define the pseudometric d(-, -) as

d(&1,8) = Plu(U,0 —0)*)% + g1 — 22llg,

where P denotes the probability measure with P/ = [fdP and | gllé = P(Ag{r,go}z).
A pseudometric is a distance function that is weaker than a metric and may assign a value
of zero to nonidentical points. As shown in Theorem 2 below, based on this pseudometric,
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the accuracy of &, can be measured by the Euclidean norm |a,, — ag|, and the accuracy of
fn can be measured by || 5, — foll ¢, where

||ﬂ||2C = f/ﬂ(s)C(s, np(t)dsde with C(s, 1) = E{Z(s)Z(1)}.

This measurement has been widely used for functional linear models (Cai & Yuan, 2012)
and has also been investigated in the functional Cox model (Qu et al., 2016).

Direct investigation of the estimator under d(-, ) is challenging because parameters g
and 0 are bundled together, which makes the information of separate parameters difficult
to derive. To overcome this difficulty, we propose first investigating the space for bundled
parameters, and then applying the results to study the parameters separately. Furthermore,
Proposition 2 below provides sufficient conditions to ensure parameter identifiability under
d(-, ). This pseudometric-based analysis method is specifically tailored for the FAFT model,
effectively addressing the complexities associated with bundled parameters and the inclusion
of a functional parameter. Specifically, we define the space of bundled parameters as follows.
For any given 6, let rg(-) be a mapping from R x X x Ly(Ip) to R defined by ry(y,u) =
y—u(u,0) forany y € Rand u € X x L,(Ilp). The space of bundled parameters is defined by

A =1{glrg()]: R x X x Ly(Ip) > R | (0, 2) € Z).

For notational simplicity, we denote g{rg(-)} by g(rp). As g(rp) can also represent a random
variable, the meaning of g(rp) is according to the context. To measure the difference between
any two elements in A, we consider the pseudometric

lg1(ra,) — g2(ro,) 4 = PLA{g1(rg,) — g2(re,)}*1">.
We first derive the efficient score function and the information bound.

PROPOSITION 1. Under Conditions 1-4 and 6, the efficient score function for estimating o
in the FAFT model is

. 1
Iy = / { —go(l)X+go(l)/o b*(s)Z(s) ds — gb*(t)} dM (1),

where M(t) = Al(rg, < t) — fioo I(rg, = u)Ao(u) du, go denotes the first derivative of go and
(b*, @) is a solution that minimizes
]

. 1 ®2
I(ap) = E[I:2%) = E[A{ — &0(ra) X + 20(ra,) /0 b*(9)Z(s) ds — ¢*(rao)} }

1
E[A‘ - go(reo)Xngo(reo)fO b(5)Z(s) ds — p(rg,)

The information bound for estimation of a is

where x®% = xx™ for any vector x € RP.

Remark 1. Detailed discussions on the explicit forms of »* and ¢* in the efficient score
function can be found in § 1.3 of the Supplementary Material.
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PROPOSITION 2. For any &* = (6*,g*) that maximizes El,(¢), it holds that ||g*(re») —
g0(rgy)la = 0. Under Conditions 1-4, if I(a) is nonsingular, we further establish g* = go,
a* = ag and |* — Pollc = 0. Moreover, f* = Py holds when the covariance function
C(s, 1) satisfies the Sacks—YIvisaker conditions of order k, with integer 1 < k < [w] — 1,
COD,0)=0fori=0,1,...,k— 1 and the jth derivative of B* equals 0 at points 0 and 1 for
j=0,...,[o] - L

Remark 2. The result of Proposition 2 provides sufficient conditions to guarantee the
identifiability of model (1). These conditions entail specific smoothness requirements for
C(s,t) and pp and require that gy is nonconstant and nonperiodic. Such identifiability is
the key to statistical inference. However, in the AFT model, the accelerated hazard regres-
sion model and the longitudinal data model, statistical inference is often based on a direct
assumption of model identifiability (Zeng & Lin, 2007; Zhao et al., 2017; Kong et al., 2018).

We next give the convergence rate of the bundled estimator g, (rén).

THEOREM 1. Under Conditions 1-5 and 8, we have
18n(rg,) — 80(rg) 4 = Op(n™),
where ¢ = min[v(w + o + 1), kg, (1 — max{v, g})/2].

Next, the consistency of each estimator is derived separately. For g, we first show that the
sequence {g,},>1 1s precompact and then apply the Arzela—Ascoli theorem. Let g, denote
the first derivative of g,. The result indicates that both g, and g, converge in probability
under the supremum norm || - | «. Similar approaches were studied by Murphy et al. (1999)
and Kuchibhotla & Patra (2020); however, they were rarely applied to survival analysis.
Next, to derive the consistency of f3,, we define an integral operator of C(s, 7) and derive
the consistency based on the compactness of the operator. When /(ag) is nonsingular, the
accuracy of a, and ﬁn can be measured by | - | and || - || ¢, respectively.

THEOREM 2. Suppose that Conditions 1-6 and 8 hold. If 1(ag) is nonsingular then the
following statements hold.

(i) (Consistency.) We have g — gollos + I&n — 20lloe = 0p(1). I — o] = 0,(1) and
18 — Bollc = op(1).
(i1) (Convergence rate.) Let ¢ = min[v(w + o + 1),xq, (1 — max{v, ¢q})/2]. We have

d(y, &) = 0p(n™).

(iti) We have |éy — aol + |fn — Pollc + 118 — gollg = Op(n~0).

Whenv = 1/(2w+20+3) and ¢ = 1/(1+2x«), Theorem 2(ii) implies that the convergence
rate of the sieve estimator &, could reach the slower rate between n—(@+e+1/Co+2e+3) 454
n~*/(1+2€) _Combining the derivation with Theorem 2(iii), it can be shown that, when go has
a weaker smoothness property, g, could reach the optimal rate in nonparametric regression,
as given by Stone (1982), and when fy and C(s, t) have weaker smoothness properties, ﬁn
could reach the optimal rate, as shown in Theorem 4 below. Next, we derive the convergence
rate of scalar estimator @, and show that it could reach n—1/2.
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THEOREM 3. Suppose that Conditions 1-8 hold and that the information bound I(ag) is
nonsingular. Let c; = min[vw, kq, (1 — max{v, g})/2]. When ci — q > 1/4, we have
Vnan — ag) = N(O, ),
where ¥ = I(ag) ™" and ‘2 denotes convergence in distribution.

The above result shows that a, achieves the information bound. Therefore, it is asymp-
totically efficient among all the regular estimators. In Theorem 3, the condition on v and ¢ is
relatively mild and can be conveniently satisfied in most cases. For example, when v = ¢ and
w = «, the condition is satisfied if 1/(2(1 +x)) < ¢ < 1/(2x) for k > 3. We also establish

the minimax lower bound of the convergence rate for estimating £y and show that it reaches
n—(w+g+l)/(2a)+2g+3)‘

THEOREM 4. Under the conditions of Theorem 2, there is a positive number a such that

lim inf sup Pe{||f — Bllc > an~@tetD/CGetdetd)y —
n— oo ﬁA

feZ

where the infimum is taken over all possible estimators j} based on the observed data.

We then develop asymptotic simultaneous confidence bands (ASCBs) for A,. Let &,(s) be
a Gaussian process with E[&,(s)] = 0, var[&,(s)] = 1 and covariance matrix

B, (S)TD; ! B, (S/)
(B (5)" Dy By(5)}V/2{Byy(s) T Dy ' By (s7))1/2

for any s,s" € [0, 1].

cov{&y(s), En(s)} =

Here B, = (by, ..., bm;g)T is the vector of B-spline basis functions for F;; and D, = (&’,-j) 1S
an m{; x m{ matrix. Specifically, c_iij takes the value of the expected negative second derivative
of the loglikelihood function at directions (il][, b;, ilg,‘) and (izlj, b;, izgj). Here IZU and ilg,‘ for
i=1,...,mY are obtained through the minimization problem

]

We define the 100(1 — a)th percentile of the absolute maxima distribution of &,(s) as Oy (a),
which satisfies

1
min P[A‘ — g0(rg,) / bi()Z(s) ds + o(rg,) X "h1 — h3(rg,)
hleB,h3eg;,‘ 0

P| sup 1691 < Qu(@)] =1-a.

s€[0,1]

We now present the theorem that establishes the ASCBs. Let K(s) = P{Z(s) | X} and
K(s, 1) = P[{Z(s) — K(s){Z(t) — K(1)}). Define K&D (s, 1) = ¥ K (s, 1)/ (a5 at).

THEOREM 5. Assume that K (s, t) satisfies the Sacks—Ylvisaker conditions of order k, with
the integer 1 <k < [w]—1, and KOD(-,0) =0 fori=0,1,...,k—1. Under Conditions 1-8,
124+ v —min{fv(w+o+1),kq} <0,0 <v <1/6andc > v+ g+ 1/4, we have

V{Bu(s) = Bo(s))
{Bu(s)TDy ' By(s)}1/2

lim P{ sup

n—00 s€[0,1]

< Qn(a)} =1-a
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4. SIMULATION STUDIES

We conducted simulation studies to evaluate the finite-sample performance of the pro-
posed method. For generating the functional covariate, we considered a similar set-up as

Qu et al. (2016), defining Z(-) as Z(s) = 215(0:1 ¢ Uk (s), where the Uy are independently
sampled from Un[—1,1], &, = (—l)k“k*l/z, ¢1 = 1and ¢y (s) = /2cos(kns) fork > 1.
Then, the covariance function is C(s, f) = Ziozl &1 ()P (¢)/(3k). The functional parameter
Po 1s defined as Sy(s) = Zi()zl (—1)Kk=3/2¢;.(s). The scalar covariates X; followed Ber(0.5)

and X, followed N (0, 0.5) truncated at 2. The transformed failure time 7" was generated
from the FAFT model

T =X +X2+/ Lo Z(s)ds + €.
Io

We considered three error term cases: (a) exp(e) ~ Ex(0.6); (b) e ~ 0.8N(0,1) + 0.2N(0,9)
and (c) the extreme-value distribution with location and scale parameters equal to 0 and 2,
respectively. We generated censoring time R from Unl[0, 7], where ¢ was chosen to produce
desired censoring rates. The transformed observation time was ¥ = min{7,log(R)}. We
considered censoring rates of 25%, 40% and 75% and sample sizes n = 400, 600 and 800.

To estimate the functional parameters So(-) and go(-), we used B-spline functions with
equally spaced interior knots and ¢, = |n'/4], resulting in four basis functions for n = 400
and 600 and five basis functions for n = 800. Let {wi(-), kK = 1,...,q,} and {ni("), k =
1,...,q,} be the spline basis functions with support on Iy = [0, 1] and [«, b], respectively.
The functional parameters fo(-) and go(-) were approximated by S(-) = Z,Z”: 1 Bewi(-) and
g() = ZZ": 1 &kMi(+), respectively. Parameter ¢ = (a1, a2, 8, g) was estimated based on the
loglikelihood function

1 n 4n 4n
W@ =3 [A,- > &l Yi — u (Ui, 0)) — f exp { ngﬂk(l)}l{ Yi— u(Us,0) > 1) dz}
k=1

i=1 k=1

where u(U,0) = a1 X1 + o2 X2 + fH ZZ”:I Brwi(s)Z(s)ds. The chosen support [a, b] was
wide enough such that it covered alol residual terms, Y; — u(U;,0) fori = 1, ..., n. Denote
the estimator by &= (a1, 02, /? ,&). The standard errors of a1 and a, were obtained from the
first two diagonal entries of (H~!/n)!/2, where H was the Hessian matrix of /,. The esti-
mation of D;! for the ASCBs followed a similar method. The details and validation of this
variance estimation method are provided in the Supplementary Material. For each combi-
nation of error distribution, censoring rate and sample size, the simulation was repeated
1000 times.

Table 1 reports the performance of the proposed estimates of a1 and ay, including the
average bias, the sample standard error, the estimated standard error and the coverage prob-
ability. Evidently, both the sample standard error and estimated standard error decrease
with larger sample sizes and lower censoring rates. Moreover, the bias is small and the cov-
erage probability approximates the theoretical level of 95% across all simulation scenarios.
Table 2 shows the performances of ﬁ(-) and the bundled estimator g(r;). The performance
is reasonable for all simulation scenarios, which obviously improves as the sample size
increases. Figure 1 shows the pointwise averages of /3’(-), where the estimates are within
close proximity of the true values for all simulation scenarios. Table 3 reports the perfor-
mance of the ASCBs for ﬁ (-) with a confidence level of 95% and s € [0.2,0.8]. The coverage
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Table 1. The performance of the proposed estimates of a1 and oy with different error
distributions: (a) exponential, (b) Gaussian mixture, (c) extreme value

Error
distribution n
(a) 400
600
800
(b) 400
600
800
(c) 400
600
800

Censoring
rate (%) BIAS
25 —0.012
40 —0.010
75 —0.016
25 —0.002
40 —0.003
75 —0.012
25 0.004
40 0.009
75 —0.001
25 0.007
40 0.007
75 0.012
25 —0.004
40 0.003
75 0.019
25 0.008
40 0.012
75 0.019
25 —0.020
40 —0.014
75 0.001
25 —0.031
40 —0.020
75 0.001
25 —0.017
40 —0.016
75 —0.001

A

a]
SSE

0.210
0.194
0.338
0.175
0.163
0.281
0.152
0.139
0.258

0.165
0.149
0.245
0.115
0.124
0.196
0.103
0.098
0.161

0.220
0.218
0.268
0.182
0.185
0.232
0.154
0.157
0.193

ESE

0.198
0.215
0.351
0.161
0.175
0.283
0.140
0.153
0.242

0.154
0.164
0.246
0.119
0.126
0.198
0.105
0.112
0.173

0.226
0.231
0.288
0.184
0.188
0.236
0.154
0.159
0.203

CP

0.957
0.955
0.953
0.939
0.943
0.940
0.954
0.956
0.901

0.958
0.947
0.950
0.963
0.956
0.954
0.967
0.971
0.923

0.949
0.953
0.957
0.948
0.938
0.948
0.946
0.956
0.937

BIAS

—0.009
—0.006
0.009
0.002
0.003
0.001
0.001
0.008
—0.007

0.010
0.014
0.025
0.007
0.013
0.019
0.005
0.008
0.025

—0.020
—0.021
—0.008
—0.029
—0.022

0.001
—0.015
—0.015
—0.002

A

a2
SSE

0.206
0.187
0.342
0.176
0.163
0.283
0.154
0.141
0.247

0.163
0.151
0.237
0.115
0.124
0.197
0.114
0.104
0.167

0.216
0.219
0.280
0.186
0.188
0.228
0.159
0.161
0.196

ESE

0.200
0.217
0.352
0.162
0.176
0.283
0.141
0.154
0.243

0.155
0.165
0.245
0.119
0.127
0.198
0.106
0.113
0.173

0.228
0.233
0.291
0.185
0.189
0.237
0.155
0.160
0.204

BIAS, bias; SSE, sample standard error; ESE, estimated standard error; CP, coverage probability.

CP

0.966
0.963
0.954
0.946
0.951
0.950
0.951
0.947
0.912

0.953
0.948
0.948
0.965
0.961
0.948
0.959
0.948
0.902

0.956
0.964
0.959
0.946
0.946
0.965
0.943
0.947
0.937

Table 2. The performance of the proposed estimates of po(-) and go(rg,) with different error
distributions: (a) exponential, (b) Gaussian mixture, (c) extreme value

Error

(@ 400
600
800
(b) 400
600
800
(© 400
600
800

Censoring rate = 25%
distribution n |5 — follc 118(ry) — go(ra)lla 116 — Bollc 18Gry) — go(ro)lla 116 — Bollc 18(rp) — gora)lla

0.204
0.176
0.166

0.166
0.128
0.120

0.222
0.185
0.173

0.159
0.135
0.139

0.318
0.250
0.246

0.218
0.203
0.163

Censoring rate = 40%

0.222
0.191
0.179

0.183
0.137
0.130

0.226
0.187
0.177

0.158
0.134
0.137

0.300
0.236
0.233

0.194
0.177
0.152

Censoring rate = 75%

0.378
0.305
0.295

0.296
0.255
0.234

0.330
0.283
0.248

0.158
0.129
0.133

0.210
0.193
0.173

0.169
0.149
0.133

probabilities under all simulation scenarios approach the target confidence level. Overall,
simulation results validate that both the scalar and functional parameter estimators are
consistent, and the proposed variance estimation procedure provides reasonable estimates.
Furthermore, the empirical coverage probabilities are close to the theoretical level of
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Table 3. The performance of the asymptotic simultaneous confidence bands for f(-) at a con-
fidence level of 95% and s € [0.2,0.8] with different error distributions: (a) exponential,
(b) Gaussian mixture; (c) extreme value

Error distribution n Censoring rate = 25% Censoring rate = 40% Censoring rate = 75%
(a) 400 0.959 0.957 0.966
600 0.930 0.937 0.970
800 0.962 0.965 0.971
(b) 400 0.919 0.907 0.956
600 0.932 0.928 0.933
800 0.960 0.950 0.964
© 400 0.963 0.967 0.927
600 0.965 0.972 0.909
800 0.955 0.963 0.954

95%, verifying the validity of normal approximation and the established ASCBs. Additional
numerical comparisons between the FAFT and functional Cox models are presented in the
Supplementary Material.

5. APPLICATION

As an illustration, we applied the proposed FAFT model to analyse data from the
National Health and Nutrition Examination Survey (NHANES) (Mirel et al., 2013).
NHANES was a study conducted by the Centers for Disease Control to assess the health
and nutritional status of individuals in the United States, and the dataset is available in
the R package rnhanesdata (Leroux et al., 2018; R Development Core Team, 2025).
A distinct feature of the dataset was the inclusion of high-resolution physical activity and
time-to-death data. The physical activity was measured using hip-worn accelerometers by
participants for seven consecutive days. The recorded data were represented as minute-
level log-transformed activity counts (LACs), a measure commonly adopted in the physical
activity research literature (Varma et al., 2017, 2018).

The NHANES accelerometry data were collected from a total of 14631 study partic-
ipants. We excluded data that had missing mortality information, resulting in a dataset
of 9590 participants, with a censoring rate of 84.8%. A common approach to include the
physical activity in classical survival models was to calculate a daily average of LACs and
treat the mean of these averages as a scalar covariate. However, much information would
be lost during such an aggregation process. The proposed FAFT model provided a more
effective alternative by averaging the LACs at each time-point over available days, smooth-
ing the data using the procedure described by Cui et al. (2021) and treating the resulting
smoothed, averaged LACs as a functional covariate. The transformed event time was the
natural logarithm of the number of months until death since the day the accelerators were
worn. We incorporated all available scalar covariates in the model: age, body mass index,
gender, various health conditions (mobility problems, coronary heart disease, congestive
heart failure, stroke, cancer, diabetes), self-reported overall health (poor or not poor), smok-
ing status (never, former or current smoker), alcohol consumption (heavy drinker or not
heavy drinker), employment status, educational attainment (less than high school, high
school or more than high school), poverty-income ratio (< 1 or > 1) and race (White,
Black, Mexican American, other Hispanic or other). Among the 9590 participants, 2507
had covariates with missing values. We imputed these missing values using the modes for
qualitative variables and the means for quantitative variables, where the qualitative vari-
ables are binary, taking the value 1 for yes and 0 for no. In the analysis, we standardized
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Table 4. Estimation results of regression coefficients for scalar covariates in the NHANES
data analysis, where participants with missing mortality information were excluded and missing
covariates were imputed (n = 9590, censoring rate = 84.8%)

Covariates o SE t-statistic p-value

Age —0.432 0.030 —14.502 < 0.001

Body mass index 0.050 0.035 1.421 0.155
Gender (female = 1, male = 0) 0.390 0.049 7911 < 0.001
Mobility problem —0.568 0.050 —11.362 < 0.001
Diabetes —0.156 0.060 —2.587 0.010
Coronary heart disease —0.075 0.080 —0.934 0.350
Congestive heart failure —0.581 0.088 —6.604 < 0.001
Stroke —0.347 0.080 —4.327 < 0.001

Cancer —0.482 0.062 —7.783 < 0.001

Overall health is poor —0.220 0.089 —2.468 0.014
Former/current smoker —0.083 0.046 —1.783 0.075
Heavy drinker —0.120 0.094 —-1.272 0.204
Employed 0.655 0.062 10.563 < 0.001

High school 0.162 0.058 2.787 0.005
More than high school 0.302 0.055 5.444 < 0.001
Poverty-income ratio > 1 —0.066 0.049 —1.343 0.179
White —0.217 0.137 —1.587 0.112

Black 0.058 0.143 0.407 0.684
Mexican American —0.069 0.144 —0.474 0.635
Other Hispanic 0.155 0.220 0.706 0.480

continuous variables for numerical stability and utilized absolute values of the standard-
ized body mass index, as deviations from the average body mass index may influence
mortality. We centred the functional covariate by subtracting the LACs from the point-
wise averages. We adopted cubic spline functions to estimate the functional coefficient with
gn = |n'/*| = 7 basis functions using equally spaced knots.

Table 4 presents a summary of the estimated regression coefficients for the scalar covari-
ates, where the 7-statistic is defined as the ratio of the estimate to the corresponding estimated
standard error. It reveals that patients’ existing health status (such as mobility problems,
diabetes, congestive heart failure, stroke and cancer) was negatively associated with mortal-
ity, while educational attainment was positively associated with mortality. Figure 2 shows
the estimated functional coefficient #(-) and the corresponding 95% asymptotic simulta-
neous confidence band, which indicates a functional association between physical activity
and patient mortality. In particular, regular physical activity from 11:30 am to 9 pm was
associated with a lower risk of death.

We also experimented with two additional data-processing methods: excluding
participants with either missing mortality information or missing scalar covariates (n =
7083, censoring rate = 85.9%), and excluding those with either missing information or fewer
than seven days of accelerometer wear time (n = 979, censoring rate = 73.4%). Additionally,
we performed a goodness-of-fit evaluation to validate the suitability of the FAFT model for
the data application under all three data-processing methods. The results of these analyses
are provided in the Supplementary Material.
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Fig.2. Estimated functional coefficient 4(-) for the NHANES data, where participants with missing mortality
information were excluded and missing covariates were imputed (n = 9590, censoring rate = 84.8%).

SUPPLEMENTARY MATERIAL

The Supplementary Material provides all technical details and proofs, as well as a
detailed description of the numerical implementation procedure. It also includes additional
numerical simulations and results from the data application.
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