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Learning quantum properties from short-
range correlations usingmulti-task networks

Ya-Dong Wu 1,2,7, Yan Zhu 2,7 , Yuexuan Wang3,4 & Giulio Chiribella 2,5,6

Characterizing multipartite quantum systems is crucial for quantum com-
puting and many-body physics. The problem, however, becomes challenging
when the system size is large and theproperties of interest involve correlations
among a large number of particles. Here we introduce a neural networkmodel
that can predict various quantum properties of many-body quantum states
with constant correlation length, using only measurement data from a small
number of neighboring sites. The model is based on the technique of multi-
task learning, which we show to offer several advantages over traditional
single-task approaches. Through numerical experiments, we show that multi-
task learning can be applied to sufficiently regular states to predict global
properties, like string order parameters, from the observation of short-range
correlations, and to distinguish between quantum phases that cannot be dis-
tinguished by single-task networks. Remarkably, our model appears to be able
to transfer information learnt from lower dimensional quantum systems to
higher dimensional ones, and to make accurate predictions for Hamiltonians
that were not seen in the training.

The experimental characterization of many-body quantum states
is an essential task in quantum information and computation.
Neural networks provide a powerful approach to quantum state
characterization1–4, enabling a compact representation of sufficiently
structured quantum states5. In recent years, different types of neural
networks have been successfully utilized to predict properties of
quantum systems, including quantum fidelity6–8 and othermeasures of
similarity9,10, quantum entanglement11–13, entanglement entropy1,14,15,
two-point correlations1,2,14 and Pauli expectation values4,16, as well as to
identify phases of matter17–21.

A challenge in characterizing multiparticle quantum systems is
that the number of measurement settings rapidly increases with the
system size. Randomized measurement techniques22–30 provide an
effective way to predict the properties of generic quantum states by
using a reduced number of measurement settings, randomly sampled
from the set of products of single particle observables. In the special

case of many-body quantum systems subject to local interactions,
however, sampling from an even smaller set of measurements may be
possible, due to the additional structure of the states under con-
sideration, whichmay enable a characterization of the state based only
on short-range correlations, that is, correlations involving only a small
number of neighboring sites. The use of short-range correlations has
been investigated for the purpose of quantum state tomography31–35

and entanglement detection36,37. A promising approach is to employ
neural networks to predict global quantum properties directly from
data obtained by sampling over a set of short-range correlations.

In this paper, we develop a neural network model for predicting
various properties of quantum many-body states from short-range
correlations. Our model utilizes the technique of multi-task learning38

to generate concise state representations that integrate diverse types
of information. In particular, the model can integrate information
obtained from few-body measurements into a representation of the
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overall quantum state, in a way that is reminiscent of the quantum
marginal problem39–41. The state representations produced by our
model are then used to learn new physical properties that were not
seen during the training, including global properties such as string
order parameters and many-body topological invariants42.

For ground states with short-range correlations, we find that our
model accurately predicts nonlocal features using onlymeasurements
on a fewnearbyparticles.With respect to traditional, single-taskneural
networks, our model achieves more precise predictions with com-
parable amounts of input data and enables a direct, unsupervised
classification of symmetry-protected topological (SPT) phases that
could not be distinguished in the single-task approach. In addition, we
find that, after the training is completed, the model can be applied to
quantum states and Hamiltonians outside the original training set, and
even to quantum systems of higher dimension. This strong perfor-
mance on out-of-distribution states suggests that the multi-task
approach is a promising tool for exploring the next frontier of
intermediate-scale quantum systems.

Results
Multi-task framework for quantum properties
Consider the scenario where an experimenter has access to
multiple copies of an unknown quantum state ρθ, characterized
by some physical parameters θ. For example, ρθ could be a
ground state of many-body local Hamiltonian depending on θ.
The experimenter’s goal is to predict a set of properties of
the quantum state, such as the expectation values of some
observables, or some nonlinear functions, such as the von Neu-
mann entropy. The experimenter is able to perform a restricted
set of quantum measurements, denoted by M. Each measure-
ment M 2 M is described by a positive operator-valued measure
(POVM) M = (Mj), where the index j labels the measurement
outcome, each Mj is a positive operator acting on the system’s
Hilbert space, and the normalization condition ∑jMj = I is satis-
fied. In general, the measurement set M may not be informa-
tionally complete. For multipartite systems, we will typically take
M to consist of short-range measurements, that is, local mea-
surements performed on a small number of neighboring sys-
tems, although this choice is not a necessary part of our multi-
task learning framework. It is also worth noting that choosing
short-range measurements for the set M does not necessarily
mean that the experimenter has to physically isolate a subset of
neighboring systems before doing their measurements. The
access to short-range measurement statistics can obtained, e.g.
from product measurements performed jointly on all systems, by
discarding the outcomes generated from systems outside the
subset of interest. In this way, a single product measurement
performed jointly on all systems can provide data to multiple
short-range measurements.

To collect data, the experimenter randomly picks a subset of
measurements S � M, and performs them on different copies of the
state ρθ. We will denote by s the number of measurements in S, and by
Mi := Mij

� �
the i-th POVM in S. For simplicity, if not specified other-

wise, we assume that each measurement in S is repeated sufficiently
many times, so that the experimenter can reliably estimate the out-
come distribution di := ðdijÞ, where dij := trðρMijÞ.

The experimenter’s goal is to predict multiple quantum proper-
ties of ρθ using the outcome distributions ðdiÞsi = 1. This task is achieved
by a neural network that consists of an encoder andmultiple decoders,
where the encoder E produces a representation of quantum states and
the k-th decoder Dk produces a prediction of the k-th property of
interest. Due to their roles, the encoder and decoders are also known
as representation and prediction networks, respectively.

The input of the representation network E is the outcome dis-
tribution di, together with a parametrization of the corresponding

measurement Mi, hereafter denoted by mi. From the pair of data
(di,mi), the network produces a state representation ri := Eðdi,miÞ. To
combine the state representations arising from different measure-
ments in S, the network computes the average r := 1

s

Ps
i= 1 ri. At this

point, the vector r can be viewed as a representation of the unknown
quantum state ρ.

Each prediction network Dk is dedicated to a different property
of the quantum state. In the case of multipartite quantum systems,
we include the option of evaluating the property on a subsystem,
specified by a parameter q. We denote by fk,q(ρθ) the correct value of
the k-th property of subsystem qwhen the total system is in the state
ρθ. Upon receiving the state representation r and the subsystem
specification q, the prediction network produces an estimate Dkðr,qÞ
of the value fk,q(ρ).

The representation network and all the prediction networks are
trained jointly, with the goal of minimizing the total prediction error
on a set of fiducial states. The fiducial states are chosen by randomly
sampling a set of physical parameters ðθlÞLl = 1. For eachfiducial state ρθl

,
we independently sample a set of measurements Sl and calculate the
outcome distributions for each measurement in the set Sl . We ran-
domly choose a subset of properties Kl for each ρθl

, where each
property k 2 Kl corresponds to a set of subsystems Qk , and then cal-
culate the correct values of the quantum properties ff k,qðρθl

Þg for all
properties k 2 Kl associatedwith subsystemsq 2 Qk . The trainingdata
may be either classically simulated or gathered by actual measure-
ments on the set of fiducial states, or it could also be obtained by any
combination of these two approaches.

During the training, we do not provide the model with any
information about the physical parameters θl or about the functions
fk,q. Instead, the internal parameters of the neural networks are
jointly optimized in order to minimize the prediction errors
jDk 1=s

Ps
i = 1 Eðfdi,migÞ,q

� �� f k,qðρθÞj summed over all the fiducial
states, all chosen properties, and all chosen subsystems.

After the training is concluded, our model can be used for
predicting quantum properties, either within the set of
properties seen during training or outside this set. The requested
properties are predicted on a new, unknown state ρθ, and even
out-of-distribution state ρ that has a structural similarity with
the states in the original distribution, e.g., a ground state of the
same type of Hamiltonian, but for a quantum system with a larger
number of particles.

The high-level structure of our model is illustrated in Fig. 1, while
the details of the neural networks are presented in Methods.

Learning ground states of Cluster-Ising model
We first test the performance of ourmodel on a relatively small system
of N = 9 qubits whose properties can be explicitly calculated. For the
state family,we take the ground states of one-dimensional cluster-Ising
model43

HcI = �
XN�2

i= 1

σz
i σ

x
i + 1σ

z
i+ 2 � h1

XN
i = 1

σx
i � h2

XN�1

i = 1

σx
i σ

x
i + 1: ð1Þ

The ground state falls in one of three phases, depending on the values
of the parameters (h1, h2). The three phases are: the SPT phase, the
paramagnetic phase, and the antiferromagnetic phase. SPT phase can
be distinguished from two other phases bymeasuring the string order
parameter44,45h~Si := hσz

1σ
x
2σ

x
4 . . . σ

x
N�3σ

x
N�1σ

z
Ni, which is a global prop-

erty involving (N + 3)/2 qubits.
We test our network model on the ground states corresponding

to a 64 × 64 square grid in the parameter region (h1, h2) ∈
[0, 1.6] × [ − 1.6, 1.6]. For the set of accessible measurements M, we
take all possible three-nearest-neighbor Pauli measurements,
corresponding to the observables σα

i σ
β
i+ 1σ

γ
i + 2, where i∈ {1, 2,… ,N − 2}

and α, β, γ ∈ {x, y, z}. It is worth noting that, when two measurements
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M≠M0 act on disjoint qubit triplets or coincide at overlapping
qubits, these measurements can be performed simultaneously on a
single copy of the state, thereby reducing the number of data collec-
tion rounds.

In general, increasing the range of the correlations among Pauli
measurements can increase the performance of the network. For
example, using the correlations from Pauli measurements on triplets
of neighboring qubits (as described above) leads to a better perfor-
mance than using correlations from Pauli measurements on pairs of
neighboring qubits, as illustrated in Supplementary Note 5. On the
other hand, increasing the range of the correlations also increases the
size of the input to the neural network, making the training more
computationally expensive.

For the prediction tasks, we consider twoproperties: (A1) the two-
point correlation function Cα1j := hσα

1 σ
α
j iρ, where 1 < j ≤N and α = x, z;

(A2) the Rényi entanglement entropy of order two SA := � log2 trρ2
A

� �
for subsystem A = [1, 2,… , i], where 1 ≤ i < N. Both properties (A1) and
(A2) can be either numerically evaluated, or experimentally estimated
by preparing the appropriate quantum state and performing rando-
mized measurements27.

We train our neural network with respect to the fiducial ground
states corresponding to 300 randomly chosen points from our 4096-
element grid. For each fiducial state, we provide the neural network
with the outcome distributions of s = 50 measurements, randomly
chosen from the 243 measurements inM. Half of these fiducial states
randomly chosen from the whole set are labeled by the values of

property (A1) and the other half are labeled by property (A2). After
training is concluded, we apply our trained model to predicting
properties (A1)-(A2) for all remaining ground states corresponding to
points on the grid. For each test state, the representation network is
provided with the outcome distributions on s = 50 measurement set-
tings randomly chosen from M.

Figure 2a illustrates the coefficient of determination (R2), aver-
aged over all test states, for each type of property. Notably, all the
values of R2 observed in our experiments are above 0.95. Our network
makes accurate predictions even near the boundary between the SPT
phase and paramagnetic phase, in spite of the fact that phase transi-
tions typically make it more difficult to capture the ground state
properties from limited measurement data. For a ground state close
to the boundary, marked by a star in the phase diagram (Fig. 3d),
the predictions of the entanglement entropy SA and spin correlation
Cz1j are close to the corresponding ground truths, as shown in
Fig. 2d and e, respectively.

In general, the accuracy of the predictions depends on the num-
ber of samplings for each measurement as well as the number of
measurement settings. For our experiments, the dependence is illu-
strated in Fig. 2b and c.

To examine whether our multi-task neural network model
enhances the prediction accuracy compared to single-task networks,
we perform ablation experiments46. We train three individual single-
task neural networks as our baseline models, each of which predicts
spin correlations in Pauli-x axis, spin correlations in Pauli-z axis, and

Fig. 1 | Flowchart of ourmulti-task neural network. In the data acquisition phase
(1), the experimenter performs short-range local measurements on the system of
interest. The resulting data is used to produce a concise representation of the
quantum state (2). The state representation is then fed into a set of prediction
networks, each of which generates predictions for a given type of quantum
property (3). After the state representation network and prediction networks are

jointly trained, the state representations are employed in new tasks, such as
unsupervised classification of quantum phases of matter, or prediction of
order parameters and topological invariants (4). Once trained, the overall model
can generally be applied to out-of-distribution quantum states and higher-
dimensional quantum systems (5).
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entanglement entropies, respectively. For each single-task neural
network, the training provides the network with the corresponding
properties for the 300 fiducial ground states, without providing any
information about the other properties. After the training is con-
cluded, we apply each single-task neural network to predict the
corresponding properties on all the test states and use their predic-
tions as baselines to benchmark the performance of our multi-task
neural network. Figure 2a compares the values of R2 for the predic-
tions of our multi-task neural model with those of the single-task
counterparts. The results demonstrate that learning multiple physi-
cal properties simultaneously enhances the prediction of each indi-
vidual property.

Transfer learning to new tasks
We now show that the state representations produced by the encoder
can be used to perform new tasks that were not encountered during
the training phase. In particular, we show that state representations
can be used to distinguish between the phases ofmatter associated to
different values of the Hamiltonian parameters in an unsupervised
manner. To this purpose, we project the representations of all the test
states onto a two-dimensional (2D) plane using the t-distributed sto-
chastic neighbor embedding (t-SNE) algorithm.

The results are shown in Fig. 3a. Every data point shows the exact
value of the string order parameter, which distinguishes between the

SPT phase and the other two phases. Quite strikingly, we find that the
disposition of the points in the 2D representation matches the values
of the string order parameter, even though no information about
the string order parameters was provided during the training, and
even though the string order is a global property, while the measure-
ment data provided to the network came from a small number of
neighboring sites.

A natural question is whether the accurate classification of phases
of matter observed above is a consequence of the multi-task nature of
our model. To shed light into this question, we compare the results of
our multi-task network with those of single-task neural networks,
feeding the state representations generatedby thesenetworks into the
t-SNE algorithm to produce a 2D representation. The pattern of the
projected state representations in Fig. 3b indicates that when trained
only with the values of entanglement entropies, the neural network
cannot distinguish between the paramagnetic phase and the anti-
ferromagnetic phase. Interestingly, a single-task network trained only
on the spin correlations can still distinguish the SPT phase from the
other two phases, as shown in Fig. 3c. However, in the next section we
see that applying random local gates induces errors in the single-task
network, while the multi-task network still achieves a correct classifi-
cation of the different phases.

Quantitatively, the values of the string order parameter can
be extracted from the state representations using another neural

Fig. 2 | Predicting properties of ground states of cluster-Ising model. Subfigure
(a) compares theprediction accuracy betweenourmulti-taskmodel and single-task
models forpredicting two-point correlation functions Cx1j and Cz1j , and entanglement
entropy SA. The error bars show the standard deviations of R2 for different test
states. Subfigures (b and c) show how the number of samples for each

measurement and the number of measurements affect the coefficient of determi-
nation for the predictions of SA, Cx1j and Cz1j , respectively, via boxplots59. Subfigures
(d and e) show the predictions of SA and Cz1j for a ground state near phase transition
marked by a red star in Subfigure 3d.
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network N . To train this network, we randomly pick 100 reference
states {σi} out of the 300 fiducial states and minimize the errorP100

i = 1 jN ðrσi
Þ � h~Siσi

j. Then, we use the trained neural network N to
produce the prediction N ðrρÞ of h~Siρ for every other state ρ. The
prediction for each ground state is shown in the phase diagram
(Fig. 3d), where the 100 reference states are marked by white circles.
The predictions are close to the true values of string order para-
meters, with the coefficient of determination between the predic-
tions and the ground truth being 0.97. It is important to stress
that, while the network N was trained on values of the string order
parameter, the representation network E was not provided any
information about this parameter. Note also that the values of the
Hamiltonian parameters (h1, h2) are just provided in the figure for the
purpose of visualization: in fact, no information about the Hamilto-
nian parameters was provided to the network during training or test.
In Supplementary Note 5, we show that our neural network model
trained for predicting entanglement entropy and spin correlations
can also be transferred to other ground-state properties of the
cluster-Ising model.

Generalization to out-of-distribution states
In the previous sections, we assumed that both the training and
the testing states were randomly sampled from a set of ground
states of the cluster-Ising model (1). In this subsection, we explore
how a model trained on a given set of quantum states can gen-
eralize to states outside the original set in an unsupervised or
weakly supervised manner.

Our first finding is that ourmodel, trained on the ground states of
the cluster-Ising model, can effectively cluster general quantum states
in the SPT phase and the trivial phase (respecting the symmetry of bit

flips at even/odd sites), without further training. Random quantum
states in SPT (trivial) phase can be prepared by applying short-range
symmetry-respecting local random quantum gates on a cluster state
in the SPT phase (a product state ∣+ i�N in the paramagnetic phase).
For these random quantum states, we follow the same measurement
strategy adopted before, feed the measurement data into our trained
representation network, and use t-SNE to project the state repre-
sentations onto a 2D plane.

When the quantum circuit consists of a layer of translation-
invariant next-nearest neighbor symmetry-respecting random gates,
ourmodel successfully classifies the output states into their respective
SPT phase and trivial phase in both cases, as shown by Fig. 4a. In
contrast, feeding the same measurement data into the representation
network trained only on spin correlations fails to produce two distinct
clusters via t-SNE, as shown by Fig. 4b. While this neural network
successfully classifies different phases for the cluster-Ising model,
random local quantum gates confuse it. This failure is consistent with
the recent observation that extracting linear functions of a quantum
state is insufficient for classifying arbitrary states within SPT phase and
trivial phase26.

We then prepare more complex states by applying two layers of
translation-invariant random gates consisting of both nearest neigh-
bor andnext-nearest neighbor gates preserving the symmetryonto the
initial states. The results in Fig. 4c show that the state representations
of these two phases remain different, but the boundary between them
in the representation space is less clearly identified. Whereas, the
neural network trained only on spin correlations fails to classify these
two phases, as shown by Fig. 4d.

Finally, we demonstrate that our neural model, trained on the
cluster-Ising model, can adapt to learn the ground states of a new,

Fig. 3 | Transfer learning to predict properties of the ground states of the
cluster-Ising model. Subfigures a, b and c illustrate the 2D projection of the state
representations obtained with the t-SNE algorithm, where the color of each data
point indicates the true value of the string order parameter h~Si of the corre-
sponding ground state. Subfigure (a) corresponds to the state representations
produced for jointly predicting spin correlations and entanglement entropy.
Subfigures (b and c) correspond to the state representations produced for

separately predicting entanglement entropy and spin correlations, respectively.
Subfigure (d) shows the predictions of h~Si for the ground states corresponding to a
64 × 64 grid in parameter space, together with the true values of h~Si for 100
randomly chosen states indicated bywhite circles, where the dashed curves are the
phase boundaries between symmetry protected topological (SPT) phase and the
other two phases.
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perturbed Hamiltonian47

HpcI =HcI +h3

XN�1

i = 1

σz
i σ

z
i + 1: ð2Þ

This perturbation breaks the original symmetry, shifts the boundary of
the cluster phase, and introduces a new phase of matter. In spite of
these substantial changes, Fig. 5a shows that ourmodel, trained on the
unperturbed cluster-Ising model, successfully identifies the different
phases, including the new phase from the perturbation. Moreover,
using just 10 randomly chosen additional reference states (marked by
white circles in Fig. 5b), the original prediction network can be
adjusted to predict the values of h~Si from state representations.
As shown in Fig. 5b, the predicted values closely match the ground
truths in Fig. 5c, achieving a coefficient of determination of up to 0.956
between the predictions and the ground truths.

Learning ground states of XXZ model
We now apply our model to a larger quantum system, consisting of 50
qubits in ground states of the bond-alternating XXZ model24

H = J
XN=2
i = 1

σx
2i�1σ

x
2i + σ

y
2i�1σ

y
2i + δσ

z
2i�1σ

z
2i

� �

+ J0
XN=2�1

i = 1

σx
2iσ

x
2i+ 1 + σ

y
2iσ

y
2i + 1 + δσ

z
2iσ

z
2i + 1

� �
,

ð3Þ

where J and J0 are the alternating values of the nearest-neighbor spin
couplings. We consider a set of ground states corresponding to a
21 × 21 square grid in the parameter region ðJ=J0,δÞ 2 ð0, 3Þ× ð0, 4Þ.
Depending on the ratio of J=J0 and the strength of δ, the corresponding
ground state falls into one of three possible phases: trivial SPT phase,
topological SPT phase, and symmetry broken phase.

Fig. 4 | 2D projections of state representations for those states prepared by
shallow random symmetric quantum circuits. Subfigures (a and b) correspond
quantum states in the symmetry protected topological (SPT) and the trivial phases
prepared by one layer of random quantum gates, and Subfigures (c and d)

correspond quantum states in the SPT and the trivial phases prepared by two layers
of random quantum gates. Subfigures (a and c) illustrate state representations
produced by our multi-task neural network. Subfigures (b and d) illustrate state
representations produced by the neural network trained only on spin correlations.
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Unlike the SPT phases of cluster-Ising model, the SPT phases of
bond-alternating XXZ model cannot be detected by any string order
parameter. Both SPT phases are protected by bond-center inversion
symmetry, and detecting them requires a many-body topological
invariant, called the partial reflection topological invariant24 and
denoted by

ZR :=
trðρIRI Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr ρ2
I1

� �
+ tr ρ2

I2

� �h i
=2

r : ð4Þ

Here,RI is the swap operation on subsystem I := I1 ∪ I2 with respect to
the center of the spin chain, and I1 = [N/2 − 5, N/2 − 4, … , N/2] and
I2 = [N/2 + 1, N/2 + 2, … , N/2 + 6] are two subsystems with six qubits.

For the set of possible measurements M, we take all possible
three-nearest-neighbor Pauli projective measurements, as we did ear-
lier in the cluster-Ising model. For the prediction tasks, we consider
two types of quantum properties: (B1) nearest-neighbor spin correla-
tions Cβi,i+ 1 := hσβ

i σ
β
i + 1ið1≤ i≤N � 1Þ, where β = x, z; (B2) order-two

Rényi mutual information IA:B, where A and B are both 4-qubit sub-
systems: either A1 = [22: 25], B1 = [26: 29] or A2= [21: 24], B2 = [25: 28].

We train our neural network with respect to the fiducial ground
states corresponding to 80 pairs of ðJ=J0,δÞ, randomly sampled from
the 441-element grid. For each fiducial state, we provide the neural
network with the probability distributions corresponding to s = 200
measurements randomly chosen from the 1350 measurements in M.
Half of the fiducial states randomly chosen from the entire set are
labeled by the property of (B1), while the other half are labeled by the
property of (B2). After the training is concluded, we use our trained
model to predict both properties (B1) and (B2) for all the ground states
in the grid.

Figure 6a demonstrates the strong predictive performance of our
model, where the values of R2 are above 0.92 for all properties aver-
aged over test states. We benchmark the performances of our multi-
task neural network with the predictions of single-task counterparts.
Here each single-task neural network, the size of which is same as the
multi-task network, aims at predicting one single physical property
and is trained using the same set of measurement data of 80 fiducial
states togetherwithoneof their properties:Cx

i,i+ 1,C
z
i,i+ 1, IA1 :B1

and IA2 :B2
.

Figure 6a compares the coefficients of determination for the predic-
tions of both our multi-task neural network and the single-task neural
networks, where each experiment is repeated multiple times over
different sets of s = 200measurements randomly chosen fromM. The

Fig. 6 | Predicting properties of 50 qubit ground states of bond-alternating
XXZ model. Subfigure (a) compares the prediction accuracy between our multi-
task model and single-task models for predicting spin correlations Cxi i + 1 and Czi i+ 1,
as well as Rényi mutual information IA1 :B1

and IA2 :B2
, where

A1= [22: 25], B1 = [26: 29], A2 = [21: 24] and B2 = [25: 28] are all four-qubit

subsystems. The error bars show the standard deviations of R2 for different test
states. Subfigure (b and c) showhow the number of samples for eachmeasurement
and the number of measurements affect the coefficient of determination for the
predictions of all the properties via boxplots.

Fig. 5 | Prediction of properties of ground states of a perturbed Hamiltonian.
Subfigure (a) illustrates the 2D projections of state representations for the ground
states of the perturbed Hamiltonian, together with their true values of h~Si.

Subfigure (b) illustrates the predictions of h~Si usingour adjustedneural network for
the perturbedmodel. Subfigure (c) show the true values of string order parameters
h~Si for both the original model (1) and the perturbed model (2).
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results indicate that our multi-task neural model not only achieves
higher accuracy in the predictions of all properties, but also is much
more robust to different choices of quantummeasurements. As in the
case of the cluster-Ising model, we also study how the number of
quantum measurements s and the number of samplings for each
quantum measurement affect the prediction accuracy of our neural
network model, as shown by Fig. 6b and c. Additionally, in Supple-
mentaryNote 6we test how the size of the quantum system affects the
prediction accuracy given the same amount of local measurement
data, and how the number of layers in the representation network
affects the prediction accuracy. Interestingly, we observe that redu-
cing the number of layers from four to two results in a significant
decline in performance when predicting properties (B1) and (B2). This
observation indicates that the depth of the network plays an important
role in achieving effective multi-task learning of the bond-alternating
XXZ ground states.

We show that, even in the larger-scale example considered in this
section, the state representations obtained throughmulti-task training
contain information about the quantumphases ofmatter. In Fig. 7a, we
show the 2D-projection of the state representations. The data points
corresponding to ground states in the topological SPT phase, the tri-
vial SPT phase and the symmetry broken phase appear to be clearly
separated into three clusters, while the latter two connected by a few
data points corresponding to ground states across the phase bound-
ary. A few points, corresponding to ground states near phase bound-
aries of the topological SPT phase, are incorrectly clustered by the
t-SNE algorithm. The origin of the problem is that the correlation
length of ground states near phase boundary becomes longer, and
therefore the measurement statistics on nearest-neighbor-three qubit
subsystems cannot capture sufficient information for predicting the
correct phase of matter.

We further examine if the single-task neural networks above
can correctly classify the three different phases of matter. We
project the state representations produced by each single-task
neural network onto 2D planes by the t-SNE algorithm, as shown
by Fig. 7b and c. The pattern of projected representations in
Fig. 7b implies that when trained only with the values of spin
correlations, the neural network cannot distinguish the topolo-
gical SPT phase from the trivial SPT phase. The pattern in Fig. 7c
indicates that when trained solely with mutual information, the
performance of clustering is slightly improved, but still cannot
explicitly classify these two SPT phases. We also project the state
representations produced by the neural network for predicting
measurement outcome statistics3 onto a 2D plane. The resulting
pattern, shown in Fig. 7d, shows that the topological SPT phase
and the trivial SPT phase cannot be correctly classified either.
These observations indicate that a multi-task approach, including
both the properties of mutual information and spin correlations,
is necessary to capture the difference between the topological
SPT phase and the trivial SPT phase.

The emergence of clusters related to different phases of matter
suggests that the state representation produced by our network also
contains quantitative information about the topological invariantZR.
To extract this information, we use an additional neural network,
which maps the state representation into a prediction of ZR.
We train this additional network by randomly selecting 60 reference
states (marked by gray squares in Fig. 7e) out of the set of 441 fiducial
states, and by minimizing the prediction error on the reference
states. The predictions together with 60 exact values of the reference
states are shown in Fig. 7e The absolute values of the differences
between the predictions and ground truths are shown in Fig. 7f.
The predictions are close to the ground truths, except for the
ground states near the phase boundaries, especially the boundary of
topological SPT phase. The mismatch at the phase boundaries cor-
responds the state representations incorrectly clustered in Fig. 7a,

suggesting our network struggles to learn long-range correlations at
phase boundaries.

Generalization to quantum systems of larger size
We now show that our model is capable of extracting features that are
transferable across different system sizes. To this purpose, we use a
training dataset generated from 10-qubit ground states of the bond-
alternating XXZ model (3) and then we use the trained network to
generate state representations from the local measurement data of
each 50-qubit ground state of (3). Note that, since we use measure-
ments on subsystems of fixed size, the size of the input to our neural
network remains constant during both training and testing, indepen-
dently of the total number of qubits in the system. During training on
10-qubit systems, the network is informed by the index of the first
qubit in each qubit triplet, which ranges from 0 to 7. For testing, this
index ranges from 0 to 47. This index primarily labels the triplets
without carrying specificmeaning.Numerical experiments below show
that this index does not significantly affect the quality of predictions,
likely due to the approximate translational symmetry. Alternatively,
one-hot encoding could specify qubit triplets, but this would compli-
cate the neural network and introduce size dependence.

Figure 8a shows that inputting the state representations into the
t-SNE algorithm still gives rise to clusters according to the three dis-
tinct phases of matter. This observation suggests that the neural net-
work can effectively classify different phases of the bond-alternating
XXZ model, irrespective of the system size. In addition to clustering
larger quantum states, the representation network also facilitates the
prediction of quantum properties in the larger system. To demon-
strate this capability, we employ 40 reference ground states of the
50-qubit bond-alternating XXZ model, which are only half size of the
training dataset used for 10-qubit system, to train two prediction
networks: one for spin correlations and the other for mutual infor-
mation. Figure 8b shows the coefficients of determination for each
prediction, which exhibit values around 0.9 or above. Figure 8b also
shows the impact of inaccurate labeling of the ground states on our
model. In the reported experiments, we assumed that 10% of the labels
in the training dataset corresponding to 40 reference states are ran-
domly incorrect, while the remaining 90% are accurate. Without any
mitigation, we observe that the error substantially impacts
the accuracy of our predictions. On the other hand, employing a
technique of noise mitigation during the training of prediction net-
works (see SupplementaryNote 6) can effectively reduce the impact of
the incorrect labels.

Measuring all qubits simultaneously
We now apply our multi-task network to a scenario where all qubits
are measured simultaneously with suitable product observables.
This scenario is motivated by recent experiments on trapped-ion
systems33,36,37. In these experiments, the qubits were divided into
groups of equal size, and the same product of Pauli observables was
measured simultaneously in all groups. Here, we adopt the settings
of33,36, where the groups consist of three neighboring qubits.
We consider the ground states of a 50-qubits XXZ model and take
MM to be the the set of all 27 measurements that measure the same
three-qubit Pauli observable on each triplet. Compared to the set
of 350 products of Pauli observables on all qubits, this choice sig-
nificantly reduces the number of measurement settings the experi-
menter has to sample from.

As an example, we choose S � M as the set of three measure-
ments corresponding to the cyclically permuted Pauli strings
σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 � � � σy

50, σ
y
1σ

z
2σ

x
3σ

y
4σ

z
5σ

x
6 � � � σz

50, and σz
1σ

x
2σ

y
3σ

z
4σ

x
5σ

y
6 � � � σx

50.
For each copy of the quantum state, we randomly sample a measure-
ment from S to apply to the state and perform a total of 300 mea-
surements. We then use themarginal distributions of the outcomes on
every qubit triplet as the input to our representation network to
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produce state representations. Figure 9a shows the 2D projections of
our data-driven state representations of 49 ground states of the bond-
alternating XXZ model obtained using the t-SNE algorithm, where all
three different phases are clearly classified.

It is interesting to compare the performance of our neural
network algorithm with the approach of principal component
analysis (PCA) with shadow kernel26. In the original classical
shadowmethod,measurements are randomly chosen from the set of

Fig. 7 | 2D projections of the state representations for bond-alternating XXZ
model obtained with the t-SNE algorithm and predictions of many-body
topological invariants.The color of each data point in Subfigures a-d indicates the
true value of many-body topological invariant ZR of the corresponding ground
state. Subfigure (a) corresponds to the state representations produced for pre-
dicting both spin correlations and mutual information. Whereas, Subfigures (b, c
and d) correspond to the state representations produced for predicting spin

correlations, mutual information and measurement outcome distributions
respectively. Subfigure (e) shows the predictions of ZR for the ground states cor-
responding to all pairs of parameters ðJ=J 0,δÞ together with the true values of 60
reference states marked by gray squares. The color for each pair of parameters in
the phase diagram represents the prediction values. Subfigure (f) illustrates the
absolute differences between the predictions and the ground truths, where lighter
colors indicate smaller differences and darker colors signify larger differences.
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all possible Pauli measurements. To make a fair comparison, here we
assume that the set of measurements performed in the laboratory is
S, the set of measurements used by our method. Figure 9b shows
the 2D projections of the shadow representations of the same
set of ground states obtained by kernel PCA. The results show
that PCA with the shadow kernel can hardly distinguish the topolo-
gical SPT phase from the trivial SPT phase in this restricted mea-
surement setting. In contrast, our multi-task learning network
appears to achieve a good performance in distinguishing the differ-
ent phases.

Discussion
The use of short-range local measurements is a key distinction
between our work and prior approaches approaches using rando-
mized measurements22–27. Rather than performing randomized mea-
surements over all spins together, we employ only randomized Pauli
measurements detecting short-range correlations. This feature is
appealing for practical applications, as measuring only short-range
correlations can significantly reduce the number of measurement
settings probed in the laboratory. Under restrictions on the set of Pauli
measurements sampled in the laboratory, our algorithm outperforms
the previous methods using classical shadows. On the other hand,
the restriction to short-range local measurements implies that the
applicability of our method is limited to many-body quantum states

with a constant correlation length, such as ground states within an
SPT phase.

A crucial aspect of our neural network model is its ability to
generate a latent state representation that integrates different pieces
of information, corresponding to multiple physical properties.
Remarkably, the state representations appear to capture information
about properties beyond those encountered in training. This feature
allows for unsupervised classification of phases of matter, applicable
not only to in-distribution Hamiltonian ground states but also to out-
of-distribution quantum states, like those produced by random cir-
cuits. The model also appears to be able to generalize from smaller to
larger quantum systems, whichmakes it an effective tool for exploring
intermediate-scale quantum systems.

For new quantum systems, whose true phase diagrams is still
unknown, discovering phase diagrams in an unsupervised manner is a
major challenge. This challenge can potentially be addressed by com-
bining our neural network with consistency-checking, similar to the
approach in ref. 18. The idea is to start with an initial, potentially inac-
curate, phase diagram ansatz constructed from limited prior knowl-
edge, for instance, the results of clustering. Then, one can randomly
select a set of reference states, labeling them according to the ansatz
phases. Based on these labels, a separate neural network is trained to
predict phases. Finally, the ansatz can be revised based on the deviation
with the network’s prediction, and the procedure can be iterated until it

Fig. 9 | Comparison of the state representations from our neural network
algorithm and shadow kernel PCA. 2D projections of our data-driven state
representations for bond-alternating XXZ model obtained by the t-SNE algorithm

(subfigure a) and 2D projections of the shadow representations for the same set of
states obtained by kernel PCA (subfigure b). The color of each data point indicates
the value of ZR on the corresponding ground state.

Fig. 8 | Predictions of properties of 50-qubit systemsmade by a neural network
trainedover the dataof 10-qubit systems. Subfigure (a) shows the 2Dprojections
of state representations via t-SNE algorithm. The color of each data point indicates

the value of ZR on the corresponding state. Subfigure (b) shows the coefficient of
determination for the predictions of properties using noiseless training labels and
noisy training labels, as well as the predictions after error mitigation.
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converges to a stable ansatz. In Supplementary Note 7, we provide
examples of this approach, leaving the development of a full algorithm
for autonomous discovery of phase diagram as future work.

Methods
Data generation
Here we illustrate the procedures for generating training and test
datasets. For the one-dimensional cluster-Ising model, we obtain
measurement statistics and values for various properties in both the
training and test datasets through direct calculations, leveraging the
ground states solved by exact algorithms. In the case of the one-
dimensional bond-alternating XXZmodel, we first obtain approximate
ground states represented by matrix product states48,49 using the
density-matrix renormalization group (DMRG)50 algorithm. Subse-
quently, we compute the measurement statistics and properties by
contracting the tensor networks. For the noisymeasurement statistics
because of finite sampling, we generate them by sampling from the
actual probability distribution of measurement outcomes. More
details are provided in Supplementary Note 1.

Representation network
The representation network operates on pairs of measurement out-
come distributions and the parameterization of their corresponding
measurements, denoted as ðdi,miÞmi = 1 associated with a state ρ. This
network primarily consists of three multilayer perceptrons (MLPs)51.
The first MLP comprises a four-layer architecture that transforms the
measurement outcome distribution into hd

i , whereas the second two-
layer MLP maps the corresponding mi to hm

i :

hd
i = MLP1ðdiÞ,

hm
i = MLP2ðmiÞ:

Next, wemerge hd
i and hm

i , feeding them into another three-layer MLP
to obtain a partial representation denoted as ri for the state:

rðiÞρ =MLP3 hd
i ,h

m
i

h i� �
: ð5Þ

Following this, we aggregate all the ri representations through an
average pooling layer to produce the complete state representation,
denoted as rρ:

rρ =
1
s

Xs

i = 1

ri: ð6Þ

Alternatively, we can leverage a recurrent neural network equipped
with gated recurrent units (GRUs)52 to derive the comprehensive state

representation from the set frigmi= 1:

zi = sigmoid Wzr
ðiÞ
ρ +Uzr

ði�1Þ
ρ +bz

� �
,

ĥi = tanh Whr
ðiÞ
ρ +Uhðzi � hi�1Þ+bh

� �
,

hi = ð1� ziÞ � hi�1 + zi � ĥi,

rρ = hm,

where W, U, b are trainable matrices and vectors. The architecture of
the recurrent neural network offers a more flexible approach to gen-
erate the complete state representation; however, in our experiments,
we did not observe significant advantages compared to the average
pooling layer.

Reliability of Representations
The neural network can assess the reliability of each state repre-
sentation by conducting contrastive analysis within the representation
space. Figure 10 shows a measure of the reliability of each state
representation,which falls in the region [0, 1], forboth the cluster-Ising
model and the bond-alternating XXZmodel. As this measure increases
from0 to 1, the reliability of the correspondingprediction strengthens,
with values closer to 0 indicating low reliability and values closer to 1
indicating high reliability. Figure 10a indicates that the neural network
exhibits lower confidence for the ground states in SPT phase than
those in the other two phases, with the lowest confidence occurring
near the phase boundaries. Figure 10b shows that the reliability of
predictions for the ground states of the XXZ model in two SPT phases
are higher than those in the symmetry broken phase, which is due to
the imbalance of training data, and that the predictions for quantum
states near the phase boundaries have the lowest reliability. Here,
the reliability is associated with the distance between the state
representation and its cluster center in the representation space.
We adopt this definition based on the intuition that for a quantum
state that the model should exhibit higher confidence for quantum
states that cluster more easily.

Distance-based methods53,54 have proven effective in the task of
Out-of-Distribution detection in classical machine learning. This task
focuses on identifying instances that significantly deviate from the
data distribution observed during training, thereby potentially com-
promising the reliability of the trained neural network. Motivated by
this line of research, we present a contrastive methodology for
assessing the reliability of representations produced by the proposed
neural model. Denote the set of representations corresponding
quantum states as frρ1

,rρ2
, � � � ,rρn

g. We leverage reachability distances,
fdρj

gn
j = 1

, derived from the OPTICS (Ordering Points To Identify the

Fig. 10 | Ameasure of reliabilityof state representations.Subfigure (a) shows the
reliability of the representation of each ground state of the cluster-Ising model.
Subfigure (b) illustrates the reliability of the representation of each ground state of
the bond-alternating XXZ model, together with the true subsystem entanglement

entropy for two example states: one is near the phase boundary and the other is
further away from the phase boundary. In both subfigures, the color in the phase
diagram indicates reliability, with lighter colors representing higher reliability and
darker colors indicating lower reliability.
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Clustering Structure) clustering algorithm55 to evaluate the reliability
of representations, denoted as frvρj

gn
j = 1

:

fdρj
gn
j = 1

= OPTICS fϕðrρj
Þgn

j = 1

� �
,

rvρj
=

expð�dρk
Þ

maxnk = 1 expð�dρk
Þ ,

where ϕ is a feature encoder. In the OPTICS clustering algorithm, a
smaller reachability distance indicates that the associated point lies
closer to the center of its corresponding cluster, thereby facilitating its
clustering process. Intuitively, a higher density within a specific region
of the representation space indicates that the trained neuralmodel has
had more opportunities to gather information from that area,
thus enhancing its reliability. Our proposed method is supported by
similar concepts introduced in ref. 54. More details are provided in
Supplementary Note 3.

Prediction Network
For each type of property associated with the state, we employ a
dedicated prediction network responsible for making predictions.
Each prediction network is composed of three MLPs. The first MLP
takes the state representation rρ as input and transforms it into a
feature vectorhrwhile the second takes the query task index q as input
and transforms it into a feature vectorhq. The secondMLP operates on
the combined feature vectors [hr, hq] to produce the prediction fq(ρ)
for the property under consideration:

hr = MLP4ðrρÞ,
hq = MLP5ðqÞ,

f qðρÞ= MLP6ð½hr,hq�Þ:

Network training
We employ the stochastic gradient descent56 optimization algorithm
and the Adam optimizer57 to train our neural network. In our training
procedure, for each state within the training dataset, we jointly train
both the representation network and the prediction networks asso-
ciated with one or two types of properties available for that specific
state. The training loss is the cumulative sum of losses across dif-
ferent states and properties. This training is achieved by minimizing
the difference between the predicted values generated by the net-
work and the ground-truth values, thus refining themodel’s ability to
capture and reproduce the desired property characteristics. The
detailed pseudocode for the training process can be found in Sup-
plementary Note 2.

Network Test & Transfer Learning
After the training is concluded, the multi-task networks are fixed. To
evaluate the performance of the trained model, we perform a series
of tests on a separate dataset that includes states not seen during
training. This evaluation helps in assessing the model’s ability to
generalize to new data. To achieve transfer learning for new tasks
using state representations produced by the representation network,
we first fix the representation network and obtain the state repre-
sentations. We then introduce a new prediction network that takes
these state representations as input, allowing us to leverage the pre-
trained representations to predict new properties. During the train-
ing of this new task, we use the Adam optimizer57 and stochastic
gradient descent56 to minimize the prediction error. Once the train-
ing is complete, we fix this new prediction network and test its per-
formance on previously unseen states to evaluate its generalization
capability.

Hardware
Weemploy the PyTorch framework58 to construct themulti-task neural
networks in all our experiments and train them with two NVIDIA
GeForce GTX 1080 Ti GPUs.

Data availability
Data sets generated during the current study are available in https://
github.com/yzhuqici/learn_quantum_properties_from_local_correlation.

Code availability
The codes that support the findings of this study are available in https://
github.com/yzhuqici/learn_quantum_properties_from_local_correlation.
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