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Abstract: Diffractive achromats (DAs) combined with image processing algorithms offer
a promising lens solution for high-performance ultra-thin imagers. However, the design of
large-aperture DAs that align seamlessly with image processing algorithms remains challenging.
Existing sequential methods, which prioritize focusing efficiency in DAs before selecting an
algorithm, may not achieve a satisfactory match due to an ambiguous relationship between
efficiency and final imaging quality. Conversely, image-quality-oriented end-to-end design
often entails high computational complexity for both front-end optics and back-end algorithms,
impeding the development of large-aperture designs. To address these issues, we present a
hybrid design scheme that begins with end-to-end optimization of the DA with the simplest
image processing algorithm, i.e., Wiener filter, significantly reducing the back-end complexity.
Subsequently, we apply complex algorithm fine-tuning to further enhance image quality. We
validate this hybrid design scheme through extensive investigations on several DA imagers. Our
results demonstrate a reduction in memory requirement by approximately 50% while maintaining
a high imaging quality with a reasonably large aperture. As a case in point, we simulated a DA
imager with a 25 mm diameter aperture. Furthermore, our hybrid design scheme provides two
crucial insights. Firstly, we find no strong linear correlation between focusing efficiency and
imaging quality, which challenges the conventional understanding. Secondly, we establish a
prediction formula for imaging quality, benefiting from the hybrid design scheme.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The demand for high-performance optical imagers that are lightweight has been steadily increasing
in academia and industry, particularly for applications such as biomedical imaging [1], machine
vision [2], and consumer electronics [3]. However, traditional refractive optics encounter
substantial obstacles in developing lightweight systems due to their bulky nature. Diffractive
lenses [4—7] and metalenses [8,9] have emerged as promising alternatives, utilizing planar
micro/nanostructures to simplify the complexity of optics and have shown great potential for
lightweight optical imaging devices. However, their practical implementation is still limited by
inherent chromatic aberrations [10,11], caused by phase wrapping, where wavelengths other than
the designed wavelength deviate from the ideal phase distribution [12]. Although a number of
studies have demonstrated achromatic diffractive lenses [13] and achromatic metalenses [14—16]
(collectively referred to as diffractive achromats) through well-designed structures, achieving
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achromaticity comes at a cost, as it introduces additional wavefront aberrations. Therefore,
subsequent image processing procedures, that is, computational imaging, are often employed
to correct the residual aberrations and improve the imaging quality. Diffractive achromats
(DAs) combined with image processing algorithms are promising in achieving high-performance,
lightweight DA imagers. Some pioneering work [17-21] has recently designed high-performance
broadband computational imaging systems using this insight.

Currently, there are two primary types of DA imager designs. The first type is to optimize the
structural parameters of the DAs with focusing efficiency as the optimization goal [5-7,22,23] and
subsequently design an image processing algorithm to improve the imaging quality, as shown in
Fig. 1(a). This method is often known as sequential design, which is simple to perform and does
not require a large computational memory. However, the sequentially designed DA imagers often
exhibit mediocre image quality due to the unclear relationship between focusing efficiency and
final imaging quality. The second type is the end-to-end design approach [4,9,24-27] that jointly
designs DAs and image processing algorithms with the final imaging quality as the optimization
goal by simulating the entire imaging pipeline. This approach has been relatively successful
in matching DA and image processing algorithms. However, complex front-end optics and
numerous back-end algorithms have significant computational complexities, requiring enormous
computing resources [28], as illustrated in Fig. 1(b). Although Dun et al. developed a concentric
ring decomposition method [4] that reduces the front-end optics calculation, optimizing large
aperture DAs remains challenging because of the complexity of the back-end algorithms.
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Fig. 1. Comparison of different diffractive achromat (DA) design strategy. (a) The
sequential design optimizes the DAs with focusing efficiency, then followed by the design of
an image processing algorithm. (b) The end-to-end design optimizes the DAs and image
processing algorithms together. (c) The proposed hybrid design scheme first end-to-end
design DAs and the simplest image processing algorithm, that is, the Wiener filter, then
followed by a complex algorithm fine-tuning to further enhance image quality.

In this study, we present a hybrid design scheme, shown in Fig. 1(c), that first jointly optimizes
DA and the simplest image algorithm, namely the Wiener filter, and subsequently fine-tunes
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the image algorithm by cascading deep learning after the Wiener filter, while maintaining the
DA constant. By decomposing the computational complexity into two distinct processes, our
strategy reduces the memory requirement and enables the optimization of large-aperture DAs.
We validate the effectiveness of our approach by optimizing and analyzing several DA imagers
with varying parameters. Our hybrid design scheme attains high imaging performance while
maintaining minimal memory requirement. To demonstrate the superiority of the proposed
scheme, we present a DA imager design with an ultra large-aperture diameter of 25 mm, which,
to the best of our knowledge, represents the largest DA imager in the visible spectrum employing
an end-to-end design architecture. In addition, based on this hybrid design strategy, we uncover
two critical insights. First, we find that a robust linear correlation between focusing efficiency and
image quality is absent, implying that relying solely on optimizing DAs for focusing efficiency
may be insufficiently reliable. Second, we present a formula to predict the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) of DA imagers, providing a valuable reference for
the design of desired DAs.

2. Hybrid design scheme for DA imagers
2.1. End-to-end design of the DA and Wiener filtering

In the first stage of our hybrid design scheme, the DA and Wiener filter are jointly learned by
constructing a differentiable pipeline. This pipeline consists of a forward imaging model, a
Wiener filter image recovery model [29], and a loss function.

The forward imaging model incorporates the calculation of the point spread function (PSF)
and the simulation of sensor imaging. We assume that the DA exhibits rotational symmetry and
consists of concentric rings with a ring interval (feature size) d and varying heights 4,,, where
m=1,2,...,N,N = D/2d, and D is the aperture. The complex transmittance function of the
DA can be expressed using a matrix:

t(r,1) = k(D-Dht ik D)-Dhy  ik((D-Dhy | | (1

where k = 27/ is the wave number, n(1) is the refractive index of DA material. Based on the
concentric ring decomposition [4], the rotationally symmetric PSF model of DA is as follows:

PSF(p, 1) = |t(r, YH(r, p)|%, )

where p represents the polar coordinates in the image plane, and H(r, p) is a matrix formed by
the Rayleigh-Sommerfeld diffraction field of each concentric ring. This matrix is calculated
using the angle spectrum method [30,31] in advance. The H(r, p) used in our work differs from
Ref. [4], as we consider a more rigorous situation.

The two-dimensional PSF is obtained by rotating the PSF(p, 1) along the optical axis. Similar
to the Ref. [4], we use a relatively small sensor size to save computational memory. However, we
not only incorporate energy regularization (see loss function) but also modify the PSF;e50,(x, ¥, 4)
on the sensor to account for the possibility of energy outside the sensor. This additional energy is
collected and added as a uniformly distributed background PSF;,(x, y, 2).

For brevity, we assume the DA imager is shift invariant [31-33], which is valid for within
a diagonal field of view (FOV) of 30°. See Supplement | for detailed analysis. Larger FOV
scenarios require consideration of shift variant, which involves advanced off-axis modeling [34]
and can be explored in future work. Therefore, the images y(x, y) acquired by the DA and sensor
can be expressed as follows:

/lmax
Y0uy) = / ((PSFsonsor(t.y. ) + PSFpg(x,y. ) # I(x. v, ) R, 3)

Amin
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where R (1) is the spectral response curve of sensor, * represents convolution, and /(x, y, 1) is
the scene. By modeling the sensor noise, the sensor images b(x, y) can be written as:

b(x,y) = ng(y(x,y), o) + mp,(¥(x, y), ap), “4)

where n,(y(x,y), 0g) ~ N(y(x,y), 0'3) is the Gaussian noise component and 7,(y(x,y), a,) ~
P(y(x,y)/ap) is the Poisson noise component.

The Wiener filter image recovery model is represented as:

1 (H, )" (1 +7)B(u, v))
|H(u,v)I> +y

I(x,y)=F &)

where F~!(-) is the inverse Fourier transform, (u, v) represents frequency-space coordinates, *
represents a conjugate operator, 7 is a learnable parameter, and H(u, v) and B(u, v) are the Fourier
transforms of PSF and b(x, y), respectively. The sensor images are fed into the Wiener filter
image recovery model to recover the scene image.

DA and Wiener filtering optimizations are achieved by minimizing the following loss function:

L = Liecon + aRpsr, (6)

where L.con represents the fidelity, namely the £, norm, « is the regularization weight, and
Rpsr represents energy regularization [4], which limits the amount of diffraction energy falling
on the sensor as much as possible, allowing us to use a relatively small sensor size for saving
computational memory.

2.2. Fine-tuning with a neural network complex algorithm

In the second stage of the hybrid design scheme, we fine-tune the image processing algorithm with
a more complex neural network algorithm. We maintain the DA optimized in the first stage, and
connect the Res-Unet network [35] after the Wiener filtering to further denoise the intermediate
image, which is already deconvolved using the Wiener filter. Specifically, we begin by extracting
the DA height distribution from the optimized result in the first stage. We then utilize the forward
model of the DA to process all the hyperspectral images in the dataset, resulting in the generation
of image pairs comprising sensor images and RGB ground truth. These image pairs are then
employed for retraining the imaging processing algorithm. During the retraining process, we
optimize the Res-Unet network by connecting it in series after the Wiener filter, and jointly
optimizing them by minimizing the loss function. The loss function is adjusted to exclusively
include the first fidelity term L.con in Eq. (6). Supplement 1 provides details regarding the
Res-Unet network architecture and configuration.

Our hybrid design scheme significantly reduces memory requirement. Figure 2 compares the
memory requirement of the hybrid design scheme and the vanilla end-to-end design method
(refer to Supplement 1 for the evaluation method). It can be seen that when designing DA
with an aperture greater than 20 mm using the vanilla end-to-end design method, the memory
requirement reaches 12 GB, exceeding the memory limitations of many consumer-level GPUs,
such as the NVIDIA 3060Ti GPU.

By contrast, in the first stage of the hybrid design scheme, although the memory consumption
also increases with aperture size, using the simplest image processing algorithm reduces memory
requirement to 6.5 GB for a DA with 20 mm aperture, a saving of approximately 50%. In the
second stage, the memory requirement is independent of the aperture as the front-end optics
remains fixed. In addition, through this decomposition trick, our scheme reduces the number of
optimization variables, potentially improving the convergence. Refer to the analysis in Section
3.1 for details.
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Fig. 2. Memory consumption comparison of the hybrid design scheme and end-to-end

design method [4] under different aperture settings. Note that the memory requirement

is also related to the feature size of DA. In this figure, the feature size is 2 um. If itis 1 um,

the memory requirement of the hybrid design stage 1 and end-to-end design needs to be
doubled.

3. Evaluation in simulation

3.1. Effectiveness validation of the hybrid design scheme

To validate the effectiveness of the hybrid design scheme in designing DAs, we optimized 21 DA
imagers to compare the design results with the vanilla end-to-end design method [4]. These DA
imagers spanned aperture sizes from 1 to 10 mm, F-numbers ranging from 1 to 5, and maximum
heights from 2 to 16 um. Specific parameters can be found in Supplement 1. The ring feature
size was set to 1 um for all DAs. The material for DAs was PMMA. The achromatic spectrum
ranged from 400 to 700 nm and comprised 11 channels with intervals of 30 nm. The initial height
map was the Fresnel lens distribution. The sensor pixel size was set at 6 um with a sensor count
of 512 x 512. The sensor noise, including Gaussian o, and Poisson a,, noises, was configured
at 0.001 and 0.005, respectively. The starting learning rates for the DA and image processing
algorithms were set to 107 and 107#, respectively, with the Adam optimizer. The learning
rate decayed linearly during optimization, and the cut-off learning rate was set to 1070, The
energy regularization weight « in the loss function was fixed at 0.005. The datasets comprise
the Harvard [36], ICVL [37], CAVE [37], and NUS [38] datasets. 14 hyperspectral images are
selected as the test set and the remaining 361 images as the training set.

Figure 3 compares the optimization performance of the hybrid design scheme and the vanilla
end-to-end design method [4]. The imaging quality of the DA imagers designed by these two
design methods has a good linear correlation. These results prove that directly using complex
reconstruction algorithms, such as deep learning, to optimize DA imagers is not required. As an
alternative, simple algorithms, such as the Wiener filter algorithm, can be used to optimize DAs,
and then deep learning can be cascaded to fine-tune the image processing algorithms. Moreover,
by using the red isoline to divide and compare the PSNR (SSIM) values between the two design
methods, we find that most DAs designed using the hybrid method exhibit higher PSNR (SSIM)
than that of the vanilla end-to-end method.

3.2. Application validation of a large-aperture DA imager

We designed a 25 mm diameter DA imager as a demonstration example using the proposed
hybrid design scheme. For this aperture size DA imager, the vanilla end-to-end design method
would require at least 16.5 GB memory according to Fig. 2, which exceeds the memory limitation
of most consumer-level GPUs. However, using our scheme, the required memory is reduced to
approximately 11 GB. The focal length of the DA was 180 mm. The maximum height was 4 um,
and the feature size was 2 um. Other settings were the same as those mentioned in Section 3.1.
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Fig. 4. Results of simulating a 25 mm diameter aperture DA imager. (a) Height map.
(b) Light field intensities along the optical axis and at the focal plane. (c) Sensor images and
recovery images. The inset values indicate the PSNR and SSIM.

Figure 4(a) shows the height map of the designed DA. We analyzed its achromatic characteristics
based on two-dimensional angular spectrum diffraction. Figure 4(b) shows the focusing fields
along the optical and focal planes. Across all 11 wavelengths between 400-700 nm, the light
converged at a consistent point (z = 180 mm). Figure 4(c) shows the simulated imaging results
of the DA imager. The initial restoration of image details through Wiener filtering achieved an
average PSNR of 24.68 dB and SSIM of 0.780. Subsequently, the cascaded Res-Unet network
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almost eliminated residual aberrations, resulting in final recovered images with an average
PSNR of 33.52 dB and SSIM of 0.926. Thus, the proposed hybrid design scheme realizes an
ultra-large-aperture DA design with high imaging performance.

4. Insights regarding DA imagers
4.1. Relationship between focusing efficiency and imaging quality

The relationship between a DA’s focusing efficiency and its imaging quality has been rarely
investigated in previous studies. By conducting statistical analysis, we explored the relationship
between focusing efficiency and image quality, as well as between Strehl ratio and image quality.
Specifically, we calculated the focusing efficiency, Strehl ratio and PSNR (SSIM) of the DAs,
as detailed in Section 3.1, considering 21 parameter groups designed using the hybrid design
scheme. The focusing efficiency is defined as the ratio of the power within three times the full
width at half maximums (3w) of PSF of the DAs over the entire transmitted power on the exit
pupil. To consider the size of the PSFs, based on the function from equation 5 of reference [6],
the efficiency is divided by w?, where w is normalized by the diameter of the diffraction-limited
focus disc (1/2NA, full width at half maximum, strictly speaking). The averaging focus efficiency
of the DA is defined as (Hf)., /w2, where w2, is the maximum normalized diameter of PSF
across 11 wavelengths. Strehl ratio is the ratio of the maximum value of PSF over the maximum
value diffraction-limited PSF. In this study, Strehl ratio refers to the average Strehl ratio of the
DA across 11 wavelengths.

We considered two imaging quality metrics (PSNR and SSIM) before and after Res-Unet
fine-tuning (only Wiener filter deconvolution). Figures 5(a)-(b) and (e)-(f) respectively show the
results before Res-Unet fine-tuning. To mitigate statistical errors resulting from local optima, we
optimized the DA for each set of parameters ten times and plotted the error bars. It is evident that
a straightforward linear relationship between either DA focusing efficiency or Strehl ratio and
resulting image quality is absent. Despite certain DA imagers exhibiting notably high focusing
efficiency and high Strehl ratio, the final imaging quality is not satisfactory. Figures 5(c)-(d) and
(g)-(h) show the results after fine-tuning the DA using Res-Unet. The correlation between them
became less apparent. These results lack error bars because we optimized the Res-Unet only once
for each set of DA imagers due to the time-consuming nature of Res-Unet training. In addition,
we plotted the MTF graphs for all DAs in Supplement 1 and examine the MTF value at the sensor
cutoff frequency. We found it does not have a linear relationship with PSNR/SSIM either.

4.2.  Prediction formula for DA imaging quality

DA imagers with varying apertures, focal lengths, and maximum heights exhibit varying levels
of image quality. To find the underlying patterns, we analyzed the results obtained from Wiener
filtering. Given the small number of optimizable variables in Wiener filtering, the image quality
trend is more apparent than that of the Res-Unet. For an in-depth discussion on the effects of F
number, maximum height, and aperture on imaging quality, refer to Figure S5 in Supplement 1.
Overall, we observe that smaller apertures, larger F-numbers, and higher maximum heights tend
to lead to DA imagers with higher PSNR and SSIM values.

Expanding on our findings, we can summarize a prediction formula for the image quality of
DAs when Wiener filtering is employed as the joint design algorithm:

Fa4 (a5 + ha6)

FP* (bs + )
PSNR(D, F,h) = a; _
a, + D

, SSIM(D,F,h)=b
( ) =bi by + D

; @)
where D, h, and F are the aperture, maximum height, and F number of DA, respectively.
The fitting coeflicients a; and b;(i = 1,2, ...,6) are listed in Table 1. The fitting function is
4-dimensional, and visualizing the fitting error is inconvenient. Thus, we fixed maximum height
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indicate variance in PSNR (SSIM). (c)-(d) Scatter plot showing corresponding statistical
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Fig. 6. Fitting errors and the image quality improvement correspondence. (a)-(b)
PSNR (SSIM) fitting errors of the prediction formula. The red stars and colorful surfaces
represent the actual and fitting data, respectively. (c)-(d) The correspondence between the
PSNR (SSIM) recovered by Wiener filtering and that fine-tuned after Res-Unet.

dimension and changed the other three dimensions for display. Figures 6(a) and (b) show the
fitting errors when the maximum height with 2 um. See Supplement 1 for fitting errors when
fixing other maximum heights. The maximum PSNR and SSIM errors are within 1.84 dB and
0.055, respectively. Note that although the prediction formula was obtained using 1-10 mm
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apertures, 1-5 F-numbers, and 2—16 um maximum heights, it remains valid outside these ranges.
For example, the PSNR and SSIM prediction errors are only 2.12 dB and 0.049, respectively, for
the 25 mm DA described in Section 3.2.

Table 1. Fitting coefficient of the prediction formula for DA image quality

Fitting coefficient 1 2 3 4 5 6
a; 28.5181 11.2420 0.5875 0.0840 12.0416 0.5632
b; 0.6724 25.9461 0.5875 0.0840 31.8462 0.5632

The use of Res-Unet fine-tuning further enhances the PSNR and SSIM values. Figures 6(c)
and (d) show the improvement correspondence in PSNR (SSIM) from the Wiener filtering to the
Res-Unet fine-tuning. Using the prediction formula and the improvement correspondence shown
in Fig. 6, one can readily specify the PSNR (SSIM) of the DA with arbitrary parameters set by
the proposed hybrid design scheme.

5. Conclusion

In this study, we present a hybrid design scheme aimed at addressing the challenges associated
with optimizing large-aperture DAs due to the optical and algorithmic complexities inherent in
traditional end-to-end design methods. Our approach employs Wiener filter to initially optimize
the DA, followed by fine-tuning using Res-Unet. This strategy significantly reduces memory
requirement and facilitates large aperture DA optimization while achieving superior imaging
performance compared with traditional end-to-end design method. Our hybrid design method
is a versatile paradigm, we found that it is more pronounced when using more advanced and
complex networks [9,19]. See Supplement 1 for detailed analyse and comparison.

In addition, we found that DAs exhibiting higher focusing efficiency do not consistently exhibit
enhanced imaging quality. As a result, relying solely on optimizing DAs for focusing efficiency
proves insufficiently reliable in all cases. It is imperative to adopt a methodology that jointly
optimizes both the DA and downstream algorithms, including even the most rudimentary, to
achieve high-performance imaging. We found that a DA characterized by a high maximum
height, large F-number, and small aperture is more likely to deliver exceptional imaging quality.
Our proposed prediction formula for the DA image quality offers a valuable reference for optical
designers in selecting DA parameters. We envision our work enable large-aperture, lightweight,
and high-performance optical imagers for applications in biomedical research and consumer
electronics.
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