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Abstract
For one-dimensional (1D) topological insulators, the edge states always reside in the bulk
bandgaps as isolated modes. The emergence and vanishing of these topological edge states are
always associated with the closing/reopening of the bulk bandgap and changes in topological
invariants. In this work, we discover a special kind of edge state in a 1D electrical circuit, which can
appear not only inside the bandgap but also outside the bulk bands with the changing of bulk
circuit parameters, resembling Tamm states or Shockley states. We prove analytically that the
emergence/vanishing of this edge state and its position relative to the bulk bands depends on the
intersections of certain critical frequencies. Specifically, the edge mode in the proposed circuit can
be mathematically described by polynomials with roots equal to some critical frequencies in the
bulk circuit. From this point of view, the transition of the edge state is uniquely determined by the
order of the critical frequencies in the bulk circuit. Such topological behaviors shown by the edge
state in the proposed electrical circuit may indicate, in a broader sense, the presence of certain type
of topology.

1. Introduction

Edge states, or surface states, appearing at a material interface, have been observed in in various physical
systems. They can be classified into trivial and nontrivial phases, depending on whether they possess certain
nontrivial topologies in the bulk. For topological edge states, they always appear either as isolated modes
inside the bandgap of one-dimensional (1D) topological systems, or as continuous lines/surfaces between
the bulk bands in two-dimensional (2D)/three-dimensional (3D) topological systems. The emergence and
vanishing of them are always accompanied by the closing and reopening of bulk bandgap and are related to
changes in the topological invariant of the bulk system. This is known as the bulk-edge correspondence
[1–3], which ensures a one-to-one correspondence between the number of topological edge states in an
open system and the topological invariant in the bulk. Meanwhile, trivial edge states, commonly known as
the Tamm states [4] or Shockley states [5], do not present such topological behavior. Their existence is
highly related to the boundary properties and can appear almost everywhere in the band structure, even
inside the bulk band as the bound states in the continuum [6, 7].

Electrical circuits [8] have recently emerged as a popular platform for studying various topological
states, covering a wide range of designs from 1D [9, 10], 2D [11–16], 3D [17, 18], to 4D [19–21], from
Hermitian [9, 11–14, 17, 19, 21] to non-Hermitian [14, 18, 22, 23], from topological insulators
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[11, 13, 14, 17] to topological semimetals [24–26], from lower-order to higher-order [14, 27, 28], and from
linear to nonlinear regimes [29–31]. Electrical circuits are unique compared to the photonic and quantum
electronic systems for the experimental investigation of topological physics in the following aspects. Firstly,
low frequency electrical circuits provide high-precision experimental implementation to deliver highly
accurate measurement results, due to the low parasitic effects of circuit wiring and high precision circuit
component. Secondly, electrical circuits offer high degrees of freedom to the realization of exotic topological
structures with complex couplings such as higher-dimensional and non-abelian type topological insulators
[32–35], owing to the convenient connections among circuit nodes at an arbitrary distance. Thirdly, a wide
range of active and nonlinear circuit components allows the experimental realization of non-Hermitian
[15, 22, 23] and nonlinear topological systems [29–31] which possess much richer physics than the
Hermitian counterpart.

In this work, we discover a special type of edge state in a 1D electrical circuit which displays certain
topological behaviors. Distinct from conventional topological systems, we found that the edge state can
traverse the bulk bands by varying only the bulk circuit parameters, i.e. they can appear not only inside the
bulk bandgap, but also below or above the bulk bands. Most importantly, the emergence/vanishing of the
edge states as well as their transition among the bulk bands is strictly determined by the competition of
certain critical frequencies of the bulk circuit. That is to say, the transition of the surface state can only
occur at the crossings of these critical bulk frequencies, making the circuit an analog of a topological
insulator. The transport of edge state through the bulk bands is experimentally demonstrated through the
measurement of the bulk and edge states in the circuit along a sweeping path in three different phase
diagrams.

We note that the edge state observed in the proposed circuit belongs to the category of Tamm state.
Although there have been literatures reported on the manipulation of the position of the Tamm states, or
Shockley states, to be above or below the bulk bands [36–38], the boundary sites or the defect sites where
the surface states appear have been intentionally modified. It is important to note that, in the circuit we
proposed, the boundary sites are kept the same as the bulk sites, which forms a natural boundary
truncation.

2. Circuit design and phase analysis
Each unit cell of the circuit comprises two resonators and two identical coupling links, as shown in
figure 1(a). The grounded resonators are composed of a shunt-resonant circuit with inductors La/Lb and
capacitors Ca/Cb, and the coupling links are made of identical shunt-resonant circuits with L0 and C0. We
remark that this circuit is different from the Su–Schrieffer–Heeger (SSH) type topological circuit reported
previously [11, 29, 30], in that both the on-site and coupling terms in our circuit are made of parallel
resonant LC tanks, while in previous designs, the coupling terms are made of a single inductor or capacitor.

For the above circuit unit cell in the periodic boundary condition, we have the following Kirchhoff’s
current law circuit equations at the two nodes,

I1 − iωC0 ·
(
V2 e−ik − V1

)
= Ia − iωCa · V1 + I2 − iωC0 · (V1 − V2) (1)

I2 − iωC0 · (V1 − V2) = Ib − iωCb · V2 + I1 eik − iωC0 ·
(
V2 − V1 eik

)
(2)

and the Kirchhoff’s voltage law circuit equations in the four loops as,

−iωL0 · I1 = V2 e−ik − V1 − iωL0 · I2 = V1 − V2

−iωLa · Ia = V1 − iωLb · Ib = V2

(3)

in which V1/V2 are the voltage at node 1/2, I1/I2 are the current flowing through the coupling branches
O1/O2, Ia/Ib are the current flowing through the resonator branches A/B, ω is the angular frequency, k is the
quasi-wavevector. By defining E = ω2C0L0, Ci = riC0, Li = siL0, ti = risi, we can rewrite equations (1)–(3) in
a dimensionless form as (see supplementary materials note S1
(https://stacks.iop.org/NJP/23/103005/mmedia)),

S (k) · V = E · R (k) · V (4)

in which,

S (k) =

[
2 + s−1

a −1 − e−ik

−1 − eik 2 + s−1
b

]
, R (k) =

[
2 + ra −1 − e−ik

−1 − eik 2 + rb

]
, V =

[
V1

V2

]
(5)

2
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Figure 1. Structure and bulk band structure of the proposed circuit. (a) Circuit schematic of a single unit cell. (b) Fabricated
sample with 10.5 (21 circuit node) unit cells. (c) Band structure of the bulk circuit with ra = 1.2, rb = 1.8, sa = sb = 1. The
dashed lines mark the six critical frequencies of the bulk circuit.

Noted that by choosing a proper gauge V = R1/2V , we can have a Hermitian circuit Hamiltonian
H (k) = R−1/2 (k) S (k) R−1/2 (k).

Figure 1(b) shows the bulk band structure of a typical circuit with parameter sa = 1, sb = 1, ra = 1.2,
rb = 0.8. The six dashed lines in the plot mark two resonant frequencies of the A/B branches
Er,a = 1/ta, Er,b = 1/tb, and four frequency limits of the bulk bands, Eπ,a =

1+2sa
2sa+ta

, Eπ,b =
1+2sb
2sb+tb

,

E0,± =
sara+sbrb+2sa+2sb+2sasb(ra+rb)±

√
Δ1

2sasb·(2ra+2rb+rarb) , in which Δ1 is a positive real number (see supplementary materials

note S1). The upper/lower bounds of the bulk bands Eπ,a, Eπ,b depends only on the resonant frequencies of
the A/B links, while the bounds of the bandgap E0,+, E0,− depend on all circuit parameters. Crossing among
the six critical frequencies can occur as the parameters sa, sb, ra, rb are tuned. We will see in the following
demonstrations that the relative relations between these critical frequencies can determine the edge states of
the system, that is, the number of edge modes and its position in the open circuit.

To investigate the edge state in such an electrical circuit, we consider a finite circuit chain with 50.5 unit
cells (i.e. 101 circuit nodes), in which both boundaries are terminated with resonator B. We first consider
the simple case with sa = sb = 1. Figure 2(a) shows the phase diagram of the circuit for [ra, rb] ranging
from 0 to 2. Two critical lines rb = ra, rb = 1, divide the phase diagram into three regions, each representing
an individual state describing a distinct location of the edge state relative to the bulk bands. The square
bracket representation [1/0, 1/0, 1/0] indicates the existence/absence of edge state below, inside, and above
the bulk band. For example, the yellow region marked with [0,1,0] represents an in-gap edge state which is
located between the lower and upper bands; while the [1,0,0] and [1,0,0] regions represent a bottom and
top edge state which reside below or above the bulk bands. To observe how the edge state crosses through
the two bulk bands, we provide in figures 2(b)–(e) the variation of the band structure along four straight
lines in the phase diagram (figure 2(a)), respectively, at ra = 0.5, ra = 1.5, rb = 0.5, and rb = 1.5, as marked
by gray-dashed lines. The black dots in figures 2(b)–(e) represent the bulk modes, while the cyan, magenta,
and blue circles represent the bottom, in-gap, and top edge states. For rb = 0.5 (figure 2(b)), the edge state
locates inside the bulk band gap for ra < 0.5, and jumps above the upper band as ra > 0.5; while for
rb = 1.5, the edge state remains below the lower band until the band gap closes at ra = 1.5, and appears
inside the band gap as ra further increases. Note that the gap closing line ra = rb is not the only condition
for phase transition; the edge state also experiences phase changes at rb = 1, when the resonant frequency of
the resonator B equals that of the coupling link, which is normalized as 1. Note that this phase transition
line would become ra = 1 if the boundary is terminated with resonator A. For example, when rb sweeps
along the line ra = 0.5 (figure 2(d)), the edge state firstly transits from above the upper band to inside the
band gap, and then crosses the lower band at rb = 1 to the lower side of the bulk bands. For ra = 1.5
(figure 2(e)), the edge state firstly passes through the upper band from above at rb = 1, and then transits to
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Figure 2. Phase diagram and band structures of the circuit with sa = sb = 1. (a) Phase diagram as ra and rb sweep from 0 to 2.
The binary digits ‘0’ and ‘1’ in the bracket represent, from left to right, the existence and absence of spoof topological edge state
below, inside, and above the bulk bands, respectively. (b)–(e) Finite band structures obtained along the four gray dashed lines in
(a) with (b) rb = 0.5, (c) rb = 1.5, (d) ra = 0.5, (e) ra = 1.5. Black dots and colored circles represent the bulk and edge modes,
respectively. (f) Distribution of the edge state on the circuit with parameter sets marked by red circles in (a).

the bottom state at gap closing point rb = 1.5. Figure 2(f) shows the eigenstates of three edge modes [1,0,0],
[0,1,0], and [0,0,1] as marked by the circles in figure 2(a), which all exhibit an obvious exponential
localization to the edges.

Note that one can find Tamm states transversing across the bulk bands in other systems [36–38]. For
example, we can induce a similar surface state in the conventional SSH model by tuning the potential of the
boundary sites (see supplementary materials note S4). However, the boundary sites in this case have been
intentionally modified to be different from the bulk sites. While in the our circuit, both the boundary sites
and bulk sites are kept identical. Most importantly, the phase transition of the edge state observed in the
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proposed circuit is strictly dependent on the bulk frequencies, as will be demonstrated in the following
section.

3. Analytical solution of the edge state

To further gain a physical insight into the mechanism of the edge state in our electrical circuit, we next
consider a more general case with an arbitrary parameter set sa, sb, ra, rb, and give analytical solutions to its
edge mode. To obtain the analytical solution of the edge state, we consider a semi-infinite chain with one
end terminated by resonator B. Using the transfer matrix method to obtain the exponential decay ratio of
all modes in the bulk circuit and applying it to the boundary, we obtain the equation for solving the edge
mode (see supplementary materials note S2),

Ξ ·
(
E − Ea,π

)
·
(
E − Er,b

)2
=

(
E − Eb,π

)
·
(
E − E0,+

) (
E − E0,−

)
(6)

in which Ξ = (2sa + ta) · tb
2/ {(2sb + tb) · (2satb + 2sbta + tatb)} is a positive real number. Note that Er,b

becomes
(
2s−1

b0 − s−1
b

)
/ (2rb0 − rb) in a more general case with arbitrary boundary site Lb0, representing a

mixed frequency term combining the resonant frequencies of both the bulk and boundary sites. However,
for a circuit with natural boundary truncation in our cases, in which the boundary site needs to be kept
identical to the bulk site, Er,b is exactly the same as the resonant frequency of resonator B. It is important to
note that just because Er,a and Er,b are not relevant to the bulk bands, the transition of the edge state is not
solely determined by the bandgap closing condition as in the conventional SSH-type model, as will be
demonstrated in the following. They are also of vital importance for the unusual edge state to emerge
outside the bulk bands.

It is intriguing to note that equation (6) takes the simple form of the equating between two polynomials
with roots equal to five critical frequencies Eπ,a, Eπ,b, E0,+, E0,−, Er,b of the bulk circuit. The status of the edge
state, i.e. the existence of edge state and its position relative to the bulk bands, can only change at the
crossings of these critical frequencies, that is, when any two elements each from one of the two critical
frequency sets {Eπ,a, Eb,r } and {Eπ,b, E0,+, E0,−} are equal to each other. Note that for the case of boundary
termination with resonator A, one should replace Eb,r on the left side of equation (6) with Ea,r, and swap
Eπ,a, Eπ,b. By numerically analyzing the variations of the five critical frequencies in the phase diagram, one
can find the following three equations that determine the boundaries of distinct phases in our circuit,

Eb,r = E0,± ⇒ ta = tb (line1) (7)

Er,b = E0,± = Eπ,b ⇒ tb = 1 (line2) (8)

Eπ,a = Eπ,b ⇒ tb =
sb (2sb + 1)

2sa + 1
ta +

sb (2sa + sb)

2sa + 1
(line3) . (9)

The theoretical prediction of the above critical lines is verified from the phase diagram in figures 3(a)
and (b), for two cases with sa = 0.5, sb = 1.0 and sa = 1.0, sb = 0.5, respectively. The phase diagrams in both
cases are divided into six regions by the three critical lines. Compared to the phase diagram in figure 2(a)
with sa = sb = 1, the phase diagram in figures 3(a) and (b) exhibit three more new phases [1,1,0], [0,1,1],
[0,0,0], which respectively correspond to the following three cases: (1) when the edge state appears both
inside and below the bulk bands, (2) it appears both inside and above the bulk bands, and (3) the edge state
vanishes. To visualize of the edge mode and its relative position to the bulk band, we sweep the parameter
set [ta, tb] along a circle (red circle in figures 3(a) and (b)) with radius of 0.5 in the phase diagram.
Figure 3(c) shows that as we scan θ = tan−1

(
tb/ta

)
counterclockwise from θ = 0◦, the edge state first

appears inside the band gap until θ reaches critical line 1 at 45◦. As θ resides between critical line 1 and line
3, the edge state appears both below and inside the bulk band. As θ further increases, the circuit enters
phase [1,0,0], with the edge located below the bulk bands. The edge state then crosses from below the lower
band into the band gap at tb = 1 (line 2), until it reaches again at line 3, at which the edge state is located
both inside and above the bulk bands. As θ passes line 3, the circuit enters into phase [0,0,1], at which the
edge state is located above the bulk bands. The phase diagram with parameter set [sa, sb] = [1.0, 0.5]
(figure 3(d)) is similar to that in the previous case (figure 3(c)), except that critical line 3 is mirrored to the
opposite side of critical line 1. This configuration produces a new phase region [0,0,0] between line 1 and
line 3, in which the edge state vanishes.

To investigate how the competition of the critical frequencies determines the phase of the circuit, we
present in figures 3(e) and (f) the variation of the five critical frequencies as well as the bulk/edge modes as
θ scans along the same circular path as in figures 3(c) and (d). It is observed that the crossings of the critical
frequency curves correspond exactly to the changes of the edge state in either its existence or position. In
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Figure 3. Phase diagram, band structures, and variations of critical frequencies of the circuit with sa = 0.5, sb = 1.0 and sa = 1.0,
sb = 0.5. (a) and (b) Phase diagrams of the circuit with sa = 0.5, sb = 1.0 and sa = 1.0, sb = 0.5, respectively. (c) and (d) Band
structures of the circuit obtained along the red circles in (a) and (b) with radius of 0.5, respectively. Black dots and colored circles
represent the bulk and edge modes, respectively. (e) and (f) Variation of the five critical frequencies along the circle path in (a)
and (b), respectively. Red dots indicate all the possible edge modes solved from the edge mode equation equation (6), including
both boundary terminations with resonator A and B. All phases are shaded with the same color as in (a) and (b). Those edge
states corresponding to boundary termination with site B are selected by using the corresponding decay direction (see
supplementary materials note S3) and are marked by colored circles. The red pins mark the crossings of these critical frequencies
that correspond to phase transitions.

other words, the existence and position of the edge state remain unchanged as long as the critical frequency
curves Eπ,a (θ) , Er,b (θ) do not cross with Eπ,b (θ) , E0,+ (θ) , E0,− (θ), as marked in figures 3(e) and (f) by
small red pins. The continuous red dotted lines represent all the edge mode solutions solved from
equation (6). Those red dots marked by circles correspond to the case with boundary terminated by
resonator B, while the rest red dots without circles correspond to the case with boundary terminated by
resonator A (see supplementary materials note S3). Note that the crossings between the curves Eπ,a (θ) and
Er,b (θ) do not correspond to phase transitions because both frequencies are on the left-hand side of
equation (6).

4. Experimental demonstration

To experimentally verify the existence of the edge state and its transition among the bulk bands, we
construct a circuit with 10.5 unit cells (21 nodes), as shown in figure 1(c). Ca/Cb and La/Lb are designed as
capacitor and inductor sets, which are composed of multiple capacitors/inductors with different
capacitance/inductances being connected in parallel to a multiway switching. This configuration allows us
to reach all the phases of the circuit as the capacitance Ca/Cb and La/Lb can be manually swept from 100 to
2900 pF and 11 to 22 uH, respectively. L0 and C0 are fixed at 22 μH and 1000 pF, respectively, during the
measurement. This is equivalent to sweep ra/rb from 0.1 to 2.9, and sa/sb from 0.5 to 1.0. Three different
cases, sa = 1.0, sb = 1.0, sa = 1.0, sb = 0.5 and sa = 0.5, sb = 1.0 are chosen for the experiment, which cover
all possible types of phase diagrams. In the first case with La = Lb = 22 μH, figures 4(a) and (b) show the
measured and simulated finite band structures as Ca and Cb sweep along a rectangular path as indicated in
supplementary figure S1(a). The bulk states are obtained from the impedance spectrum (Z11) measured at
node 10 and 11 in the circuit, as indicated by the gray shading in figure 4(a). The red dots represent the
edge state which are obtained as the frequency peaks of the impedance spectrum measured at node 1. More
experimental details are given in the method. The first point starts from the bottom left corner of the path
with Ca/Cb of 300/700 pF, which lies in the [0,1,0] phase with the ingap edge state. As Ca increases, the
circuit enters [0,0,1] phase, with the edge state remaining above the upper bulk band. The phase moves
back to phase [0,1,0] as Ca reaches 1800 pF and Cb exceeds 1000 pF, as can be observed in figure 4(a) that
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Figure 4. Experimentally measured band structures obtained along a rectangular path in three cases with different
configurations of La and Lb. (a)–(c) Experimentally measured band structures along the rectangular paths shown in
supplementary figures S1(a)–(c) with (a) sa = 1.0, sb = 1.0, (b) sa = 1.0, sb = 0.5. (c) sa = 0.5, sb = 1.0. (d)–(f) Theoretically
calculated band structures with the same parameters as in (a)–(c), respectively. All phases in (d)–(f) are shaded with the same
color as in supplementary figures S1(a)–(c).

the edge state crosses from above the upper band into the band gap at path index 19. As Cb remains at
1300pF and Ca decreases to 1300 pF (path index 27), the circuit enters phase [1,0,0] with the edge state
jumping from inside the bandgap down to the bottom of the lower band. As the parameter sweeps along
the left edge of the path back to the starting point, the phase moves back to [0,1,0] with the edge state
entering the bandgap at Cb = 1000 pF.

For the second case with sa = 1.0, sb = 0.5, two more regions representing the absence of edge state
appear in the phase diagram (see supplementary figure S1(b). The sweeping path starts again from the
bottom left corner of the rectangular path with Ca/Cb of 200/1000 pF. Those cases with sweeping points
falling inside the phase [0,0,0] (gray regions) do not show obvious voltage localization to the circuit edge,
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and hence, leading to the absence of red dots in these regions. The frequency spectra of the edge state and
bulk state for the other sweeping point follow a similar trend as those in the first case. One may notice that
some edge states in case 2 are further away from the bulk states than those in case 1, due to the fact that
those points have larger distances to the phase boundaries.

For case 3 with the value of La and Lb swapped, the phase diagram displays a new center at
Ca = 2000 pF and Cb = 1000 pF, and two new phase regions [1,1,0] and [0,1,1] (see supplementary
figure S1(c). We can see from figure 4(c) that those parameter points inside the [1,1,0] and [0,1,1] regions
display two edge states. The position of the edge state relative to the bulk states can be verified from
supplementary figure S2, which gives the impedance spectra at all circuit nodes for six parameters chosen in
each region in figure 4(c) (marked by yellow circles). The voltage distribution of the edge mode showing the
localization of the edge state in each phase region is provided in supplementary figure S3. The measurement
results in all three cases (figures 4(a)–(c)) are in excellent agreement with the simulation results
(figures 4(d)–(f)).

5. Conclusion

In this work, we present a special kind of edge state in a 1D electrical circuit that mimics the behavior of the
topological one. We found that the emergence/vanishing of the edge state and its position relative to the
bulk bands in such a Hermitian electrical circuit is uniquely determined by the competition among certain
critical frequencies of the bulk circuit, which can be strictly solved from an elegant equation formed by two
polynomial functions with roots corresponding exactly to these critical bulk frequencies. Noted that
although the trimer model having three sites per unit cell can exhibit similar Tamm state that are controlled
by the bulk parameters [39, 40], the circuit proposed in this work composed of only two sites per unit cell
serves as the simplest model to exhibit such properties. In addition, the edge states in the proposed circuit
can appear outside the bulk bands, while they are confined inside the bandgaps for the trimer model.

We emphasize that the unusual edge state found in our circuit is not the conventional Tamm state,
because the emergence and vanishing of Tamm state in quantum electronic and photonic is simply a
boundary effect and does not rely on the bulk parameters. Most importantly, there is no literatures reported
on the observation of conventional Tamm state to exhibit such topological behaviors. It should also be
noted that the unusual edge state shown in this work is neither the SSH-type topological edge state. Because
the Chiral symmetry is broken by the unbalanced grounded terms (resonator A and B), Zak phase does not
take quantized value (0 and π) for the bulk circuit Hamiltonian in equation (4). However, the fact that the
phase of the edge state is ambiguously determined by the order of the bulk critical frequencies can be
reasonably viewed, in a broader sense, as the original definition of topology in mathematics, which
describes certain quantities that are invariant under continuous deformations. We expect more intriguing
physics of the extension of such unusual edge stage to higher-dimensional, and non-Hermitian circuits.

6. Method

6.1. Experimental details
The impedance spectra for each circuit node are measured using a vector network analyser (VNA, Agilent
8753ES) in the S11 (reflection coefficient) format with 2 KHz frequency resolution, and is transformed to
Z11 (input impedance) using Z11 = Z0 (1 + S11) / (1 − S11). It can be proved that the impedance Z11

measured for a certain circuit node is strictly equivalent to the voltage response on it when excited by an
ideal current source on the same node, which does not affect the circuit to be measured and can correctly
reflect the permitted mode on the tested node.
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