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The conventional bulk-boundary correspondence directly connects the number of topological edge states in a finite system with the
topological invariant in the bulk band structure with periodic boundary condition (PBC). However, recent studies show that this
principle fails in certain non-Hermitian systems with broken reciprocity, which stems from the non-Hermitian skin effect
(NHSE) in the finite system where most of the eigenstates decay exponentially from the system boundary. In this work, we
experimentally demonstrate a 1D non-Hermitian topological circuit with broken reciprocity by utilizing the unidirectional
coupling feature of the voltage follower module. The topological edge state is observed at the boundary of an open circuit
through an impedance spectra measurement between adjacent circuit nodes. We confirm the inapplicability of the conventional
bulk-boundary correspondence by comparing the circuit Laplacian between the periodic boundary condition (PBC) and open
boundary condition (OBC). Instead, a recently proposed non-Bloch bulk-boundary condition based on a non-Bloch winding
number faithfully predicts the number of topological edge states.

1. Introduction

Non-Hermitian systems with gain and loss are very common
in the real world [1–5]. The interplay between Non-
Hermitian Hamiltonian and topological phases induces
many interesting physical phenomena that exhibit substan-
tial differences from their Hermitian counterparts. One of
the intriguing recent discoveries is the breakdown of conven-
tional bulk-boundary correspondence [6], a well-known
principle used to predict the number of topological edge
states of a finite Hermitian system with open boundary con-
dition (OBC) directly from the topological invariant of the
same system with periodic boundary condition (PBC) [7].
Yao et al. explained this phenomenon as a result of the
non-Hermitian skin effect (NHSE), an exponential decay
behavior of eigenstates in non-Hermitian systems with bro-
ken reciprocity where most of the eigenstates are localized
near the boundary. The NHSE violates the conventional
Bloch theorem where all eigenstates extend to the entire bulk
with equal intensity [6, 8, 9]. A non-Bloch bulk-boundary
correspondence was later established for the non-Hermitian

topological systems with a redefinition of a non-Bloch topo-
logical invariant in a generalized Brillouin zone [6, 10, 11].

Due to the design flexibility of electrical circuits, it has
recently become a powerful platform for studying topological
physics and demonstrating some of the topological phe-
nomena, such as topologically protected edge state in the
1-D Su–Schrieffer–Heeger (SSH) model [12, 13], Haldane
model and magnetic dipole [14], Weyl state and Fermi arc
surface state in three-dimensional(3-D) [15, 16], and higher-
order topological states in higher-dimensional circuit lattices
[17–19]. The wide range of active devices for electrical circuits
has enabled convenient realizations of non-Hermitian topo-
logical systems which require precisely controlled gain and/or
loss. Operational amplifier (OpAmp) was recently employed
as a gain element to realize a reconfigurable non-Hermitian
system with a tunable topological bandgap [20], a gain-and-
loss induced topological phases [21], and a bulk Fermi-arc
state (bulk drumhead states) that connects between the excep-
tional points (exceptional lines). It is also convenient to intro-
duce strong nonlinear effect into topological circuit by using
varactor diodes whose capacitance is dependent on the
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voltage across it, opening door to realization of self-induced
topological states [22, 23] and enhanced harmonic generation
in a nonlinear transmission line metamaterial [24].

In this work, we experimentally demonstrate a 1D non-
Hermitian topological circuit with broken reciprocity by uti-
lizing a voltage follower module to implement unidirectional
coupling. We experimentally observe the topological edge
state at the circuit boundary by measuring the impedance
spectra between each adjacent node. To confirm the break-
down of conventional bulk-boundary correspondence in
such non-Hermitian topological circuits, we compare the dif-
ferences of phase transition conditions for circuit under the
PBC and OBC with both theoretical calculations and numer-
ical simulations. We show that a recently proposed bulk-
boundary correspondence in the non-Hermitian regime
which introduces a non-Bloch wave vector for the calculation
of the topological invariant precisely predicts the number of
topological edge mode in such non-Hermitian topological
circuits [6].

2. Bulk Properties

We start with the schematic model presented in Figure 1(a),
which is a nonreciprocal version of the 1-D Su–Schrieffer–
Heeger (SSH) model [12, 13]. Each unit cell comprises of
two sites A and B, with nonreciprocal intracell coupling
t1 + γ1/2 and t1 − γ1/2 and nonreciprocal intercell coupling
t2 + γ2/2 and t2 − γ2/2. This model can be physically real-
ized in electrical circuit, as demonstrated in Figure 1(b).
Each site is composed of a LC resonant tank with induc-
tance L0 and capacitance C0. The nonreciprocal coupling
±γi/2 is achieved through a one-way coupling capacitor
C3ðC4Þ. This can be realized in electrical circuits in many
ways, for example, by connecting C3ðC4Þ in series with a
voltage follower, as detailed in Figure 1(c), which is com-
posed of an operational amplifier (OpAmp) configured
with a negative feedback network. Due to the virtual open
and virtual short circuit conditions between the inverting
input and noninverting input pins, the current at the left
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Figure 1: Schematic and circuit diagram of the nonreciprocal non-Hermitian circuit. (a) Schematic of the nonreciprocal non-Hermitian
model in the electronic system. The dashed line outlines a single unit cell. (b) Circuit implementation of the nonreciprocal non-Hermitian
model. (c) Circuit diagram of the voltage follower module. (d) Real PCB layout of one unit cell of the nonreciprocal non-Hermitian circuit.
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side of the capacitor is blocked, while it remains uninflu-
enced at the right side, as shown in Figure 1(c).
Figure 1(d) shows the photo of a single unit cell of the
fabricated sample.

According to Kirchhoff’s law, any circuit lattice can be
completely described by the admittance matrix (or the circuit
Laplacian) as [25]

I = iωC + 1/iωWð ÞV = J ωð ÞV , ð1Þ

in which C and W represent the Laplacian matrices for
capacitance and inverse inductance, respectively. Therefore,
we can write the circuit Laplacian of the periodic circuit in
Figure 1(b) as

in which q is the Bloch wave number relating the volt-
age between two adjacent unit cells through Vn±1ðtÞ =
VnðtÞ ⋅ e±iq. Note that in electrical circuit, because the
offdiagonal components (mutual admittance) also contrib-
ute to the diagonal component (self-admittance), an addi-
tional capacitor C3/C4 is connected in parallel with the
corresponding site to ensure that all nodes have identical
self-admittance.

It is noted that the eigenfrequency of the circuit is
obtained from the circuit Hamiltonian which can be con-
structed in the new basis ψðtÞ = ðVðtÞ, _VðtÞÞ using the circuit
Laplacian matrices C and W (Supplementary Note S1 and
Eqs. (S3)-(S4)) [16, 18, 26].

H = i
0 W

C
−I 0

2
4

3
5: ð3Þ

Supplementary Note S1 shows that the circuit Laplacian
and circuit Hamiltonian are connected in a way that the zeros
of eigenvalue of circuit Laplacian correspond to the eigen-
values of the circuit Hamiltonian (i.e., eigenfrequencies of
the circuit).

Note that ω in the circuit Laplacian Eq. (2) is not the
eigenfrequency but an external parameter. For ω0 = 1/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðC0 + C1 + C2 + C3 + C4ÞL0
p

, the diagonal components of
Jðω0, qÞ vanishes, and Eq. (2) simplifies to the block offdiago-
nal form

J ω0, qð Þ = iω0C0 dx + iγ2/2 sin qð Þ½ �σxf
+ dy + i γ1/2 − γ2/2 cos qð Þð Þ� �

σyg,
ð4Þ

where t1 = 2C1 + C3/2C0, t2 = 2C2 + C4/2C0, γ1 = C3/C0, γ2
= C4/C0, dx = t1 + t2 cos ðqÞ, dy = t2 sin ðqÞ, and σx,y are the
Pauli matrices. Due to the chiral symmetry σ−1

z Jðω0, qÞσz = −
Jðω0, qÞ, the eigenvalues of Jðω0, qÞ come in pairs, given

byj± = ±iω0C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dx + iγ2/2 ⋅ sin ðqÞ�2 + ½dy + iðγ1/2 − γ2/2 ⋅ cos ðqÞÞ�2

q
.

The gap closing condition ðt1 − t2Þ2 − ðγ1/2 + γ2/2Þ2 = 0 can

be found by letting j± = 0, which is achieved only at q = ±π. This
is confirmed by the band structures of the bulk circuit at three
different t1 of 1.2, 2.85, and 4.8, as detailed in Supplementary
Figure S1a. We first consider the special case γ1 = γ2 = γ,
which leads to the phase transition condition t1 = t2 ± γ.
Figure 2(a) shows the bulk eigenfrequencies as a function of
t1 for fixed t2 = 2:85 and γ1 = γ2 = 1:45, which correspond
to circuit parameters C0 = 470 pF, C2 = 1000 pF, C3 = C4 =
680 pF, and L0 = 47 μH. Each curve in Figure 2(a)
represents an eigenfrequency at certain Bloch momentum
q in the first Brillouin zone (BZ). Two transition points at
t1 = 1:4 and 4.3 are clearly observed in Figure 2(a), which
coincide exactly with the theoretical value t1 = t2 ± γ. It is
noted that the gap closing condition derived at frequency
ω0 is valid for the entire frequency spectrum, due to the
continuity of the eigenvalue jn of circuit Laplacian.

In comparison, for a finite circuit chain with N = 40 unit
cells, the two transition points merge into a single one at
t1 = t2 = 2:85, as shown in Figure 2(b). An isolated curve
observed in the bulk band gap represents the topological
edge state. One may notice that the edge mode exists on
both sides of the transition points, which is due to the dif-
ference of boundary termination between electrical circuits
and quantum systems, as is clarified by Supplementary
Figure S2. The mid gap mode on the left (red curve) and
right (blue curve) side of the transition points represents
the edge mode at the right and left boundary, respectively,
which are confirmed in Supplementary Figure S3 for the
eigenstates of the left and right edge modes. We explain the
discrepancy of the band structure between PBC and
OBC by considering a finite circuit Laplacian Jðω0Þ. [6]
Let us construct a 2N × 2N diagonal matrix S = diag ð1,
r11, r11r12, r21r12, r21r22,⋯, rN−1

1 rN−2
2 , rN−1

1 rN−1
2 , rN1 rN−1

2 Þ, in which
the general form of the odd and even diagonal
components are ½S�odd,n = rn−1/21 rn−1/22 and ½S�even,n = rn/21 rn/2−12 ,

respectively, with r1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðt1 − γ1/2Þ/ðt1 + γ1/2Þj

p
and r2 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðt2 − γ2/2Þ/ðt2 + γ2/2Þj

p
. Then, we can transforms the

nonreciprocal circuit Laplacian Jðω0Þ into a reciprocal one
�Jðω0Þ = SJðω0ÞS−1, which is equivalent to the standard
reciprocal SSH model with intracell and intercell couplings

J ω, qð Þ = iωC + 1
iω

W = iω
− C0 + C1 + C2 + C3 + C4 − 1/ω2L0
� �

C1 + C3 + C2e
−iq

C1 + C2 + C4ð Þeiq − C0 + C1 + C2 + C3 + C4 − 1/ω2L0
� �

" #
, ð2Þ
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�t1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt1 + γ1/2Þðt1 − γ1/2Þ

p
and �t2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt2 + γ2/2Þðt2 − γ2/2Þ
p

,
respectively. Obviously, the gap closing condition for the
OBC becomes �t1 =�t2, which results in the phase transition

point at t1 = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t22 + ðγ1/2Þ2 − ðγ2/2Þ2

q
. For γ1 = ±γ2, we

have t1 = ±t2, which perfectly matches with the numerical
results in Figure 2(b). Noted that in spite of the differences
between the circuit Hamiltonian and circuit Laplacian,
they share the same transition points, as are confirmed
by the eigenvalue spectra of Jðω0, qÞ provided in
Supplementary Figure S1b and c. The pronounced
deviations observed in the band structure from the PBC
(Figure 2(a)) to OBC (Figure 2(b)) imply that the bulk
band structure no longer describes a finite system with
open boundaries in such non-Hermitian systems. The
bulk transition point for the case γ1 = ‐γ2 = γ becomes t1
= t2, which happens to coincide with that of the finite
chain, as illustrated in Supplementary Figure S4.

Several new topological invariants have been defined to
characterize the non-Hermitian systems, including the
Chern number [27–29], generalized Berry phase [30–32],

and winding numbers [6, 10, 11, 33–37]. Here, we employ
the non-Bloch winding number as the topological invariant
[6], which is calculated based on a non-Bloch circuit
Laplacian. Inspired by the phenomenon of NHSE that all
eigenstates are tightly confined to the system boundary, the
conventional Bloch wave number eiq should be replaced by
a non-Bloch wave number β = reiq. Here, r = r1r2 is a real
positive number representing the level of eigenstate localiza-
tion. The generalized Brillouin zone with the same circuit
parameters used in the experiment is presented in Supple-
mentary Material Figure S5. Thus, the non-Bloch circuit
Laplacian is

~J ω0, βð Þ = ~U+ ω0, βð Þσ+ + ~U− ω0, βð Þσ−, ð5Þ

in which, ~U+ðω0, βÞ = iω0ðC1 + C3 + C2r
−1
1 r−12 e−iqÞ, ~U−ðω0,

βÞ = iω0ðC1 + ðC2 + C4Þr1r2eiqÞ, and σ± = ðσx + iσyÞ/2. The
bulk band structure of the non-Bloch circuit Hamiltonian
~HðβÞ is shown in Figure 2(c), which exactly coincides
with that of the open circuit (Figure 2(b)). To calculate
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Figure 2: Bulk properties of the of the nonreciprocal non-Hermitian circuit. (a) Bulk band structure as a function of t1 for fixed t2 = 2:85 and
γ1 = γ2 = 1:45, which correspond to real circuit parameters C0 = 470 pF, C2 = 1000 pF, C3 = C4 = 680 pF, and L0 = 47μH. Each curve in (a)
represents an eigenfrequency at certain Bloch momentum q in the first Brillouin zone (BZ). (b) The finite band structure as a function of
t1 of a finite circuit chain with 40 unit cells. The circuit parameters are the same as in (a). (c) The bulk band structure as a function of t1
of the generalized Bloch circuit Hamiltonian. Each curve in (c) represents an eigenfrequency at certain non-Bloch wavevector β in the first
BZ. (d) Non-Bloch winding number calculated using the generalized Bloch circuit Hamiltonian in the generalized Brillouin zone with the
same circuit parameters in Figure 2(a).
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the topological invariant of ~Jðω0, βÞ, a generalization of
the usual “Q matrix” is defined as [38]

Q = ~uR,+
�� �

~uL,+
	 �� − ~uR,−

�� �
~uL,−
	 �� = 1ffiffiffiffiffiffiffiffiffiffiffiffi

~U+ ~U−

q 0 ~U+

~U− 0

 !
,

ð6Þ

in which j~uR,±i and j~uL,±i are the right and left eigenstates
satisfying h~uL,±j~uR,±i = δ+−

~uR,±
�� �

= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~U+ ~U−

q ~U+

±
ffiffiffiffiffiffiffiffiffiffiffiffi
~U+ ~U−

q
0
@

1
A,

~uL,±
�� �

= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~U†

+ ~U
†
−

q ~U
†
−

±
ffiffiffiffiffiffiffiffiffiffiffiffi
~U
†
+ ~U

†
−

q
0
@

1
A:

ð7Þ

The non-Bloch winding number is defined as

W = i
2π

ð
Cβ

g−1dg, ð8Þ

in which

g =
~U+ffiffiffiffiffiffiffiffiffiffiffiffi
~U+ ~U−

q , g−1 =
~U−ffiffiffiffiffiffiffiffiffiffiffiffi
~U+ ~U−

q : ð9Þ

The integration is proceeded along a nonunit circle
β = reiq, which becomes a unit circle for the Hermitian
case. Figure 2(d) shows the numerical results of the
non-Bloch winding number W, which jumps from 1 to
0 at t1 = t2 = 2:85. As mentioned above, due to the
boundary termination of our circuit, W = 1 and W = 0
indicate the appearance of topological edge states at the
left and right ends of the circuit, respectively. In this regard,
we have recovered the bulk-boundary correspondence in
non-Hermitian topological circuit, named as non-Bloch
correspondence.

3. Topological Edge Stage in the Finite Circuit

The nontrivial topological feature predicted from the finite
band structure (Figure 2(b)) of our nonreciprocal topological
circuit is indicated by a prominent edge state confined at the
circuit boundaries. In both quantum and photonics systems,
topological edge states can be directly measured by the state
intensity on each node. However, as have been mentioned
in many previous literatures, the topological edge states in
electrical circuits are manifested by a strong resonant peak
in the impedance spectra measured between two adjacent
nodes [13, 15, 21, 39].

To experimentally observe the topological edge state in
our nonreciprocal electrical circuit, a sample containing 9.5
unit cells (19 nodes in total) is fabricated, as shown in

Figure 3(a). A 0Ω resistor pad is designed between node 1
and node 19 to allow the circuit to switch between the OBC
and PBC scenarios. The circuit parameters are chosen to
be the same as those in Figure 2(a), which are C0 = 470
pF, C1 = 470 pF, C2 = 1000 pF, C2 = 1000 pF, C3 = C4 = 680
pF, and L0 = 47 μH, corresponding tot1 = 1:72, t2 = 2:85,
and γ1 = γ2 = 1:45.

First, we investigate the finite circuit chain with OBC by
turning off the switch. Figure 3(b) shows the real part of the
calculated eigenfrequency spectra of the finite circuit. A
mid-gap eigenmode (red circle) at around 404 KHz repre-
sents the topological edge state confined at the left boundary
of the circuit. The edge mode is also indicated in the imagi-
nary part of eigenvalues of the finite circuit Laplacian
(Figure 3(c)) by an isolated curve, which crosses zero at
exactly the frequency of edge state (404 KHz), while the
remaining curves represent all the bulk modes. The measured
and simulated impedance spectra between all adjacent nodes
are shown in Figures 3(d) and 3(e), respectively. A distinct
peak (red curve) of nearly 2000Ω representing the topologi-
cal edge state between leftmost nodes is clearly identified at
404KHz, far exceeding the impedance between all the other
adjacent nodes (black curves) which represent the bulk
mode. Figures 3(f) and 3(g) further provide the impedance
distributions at the edge mode frequency for the measured
and simulation results, respectively, where the topological
edge state is clearly identified at the left edge and quickly
decays into the bulk. Discrepancies observed in the imped-
ance spectra between the simulation and experimental results
are due to the real working status of the OpAmp in the exper-
iment, which is sensitive to the peripheral circuit and is easily
affected by many factors in experiment.

Next, we investigate how the above circuit behaves under
the PBC and OBC by turning on and off the switch, respec-
tively. To ensure a strict PBC with a total number of 9 unit
cells (18 nodes), node 19 is removed, and the grounding term
at node 1 is adjusted to fit the PBC illustrated in Figure 1(b).
The circuit Laplacian of the periodic circuit is experimentally
obtained by firstly measuring the N-port S-parameter of the
entire network (18 nodes) and then transforming it into cir-
cuit Laplacian (admittance matrix, see method). Figures 4(a)
and 4(b) show the experimental results of the imaginary part
and real part of eigenvalue spectra jnðωÞ of the closed-loop
circuit Laplacian, respectively, while Figures 4(e) and 4(f)
present the experimental results of the imaginary part and
real part of eigenvalue spectra jnðωÞ of the open-loop circuit
Laplacian, respectively. The experimental results shown in
both cases are highly consistent with the numerical results
given in supplementary Figure S6 a,b and Figure S7a,b. The
absence of the isolated curve in imaginary part of the
eigenvalue spectra jnðωÞ in the PBC case (Figure 4(a))
implies the vanishing of topological edge state in the
closed-loop circuit. The dramatic change of the circuit
Laplacian from PBC to OBC can be more obviously noticed
from the complex eigenvalues jnðω0Þ at the mid-gap
frequency ω0, as are illustrated in Figures 4(c) and 4(g) for
the PBC and OBC cases, respectively. The eigenvalues jnðω0Þ
for the PBC case take nonzero values in both real and
imaginary parts, forming an almost equally spaced loop in
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Figure 3: Experimental and numerical results for the topological edge mode. (a) Fabricated sample of the finite circuit chain containing 9.5
unit cells (19 nodes), with circuit parameters C0 = 470 pF, C1 = 470 pF, C2 = 1000 pF, C2 = 1000 pF, C3 = C4 = 680 pF, and L0 = 47μH,
corresponding tot1 = 1:72, t2 = 2:85, and γ1 = γ2 = 1:45. (b) Sorted eigenfrequencies of the finite circuit chain. Red circle represents the
topological edge mode. (c) Imaginary part of the eigenvalue spectra of JðωÞ for the finite circuit chain. The isolated curve represents the
edge mode. (d, e) Experimentally measured and numerically calculated impedance spectra of the finite circuit chain, respectively. Red
curve indicates the impedance measured across the leftmost coupling capacitors. (f, g) Experimentally measured and numerically
calculated impedance distributions of the finite circuit chain. Note that the impedance spectra in all experiments and simulations are
measured across the each adjacent node (i.e., across each coupling capacitor).

6 Research

D
ow

nloaded from
 https://spj.science.org on Septem

ber 16, 2025



the complex plane. In sharp contrast, the eigenvalues jnðω0Þ
for the OBC case collapse into a gapped line with nearly
identical real parts. The isolated circle located inside the gap
with zero imaginary parts represents the topological edge
mode. The measured eigenvalues jnðω0Þ (Figures 4(c) and
4(g)) are in excellent agreement with the numerical results
(Supplementary Figure S6c, Figure S7c).

The difference between the PBC and OBC of the nonre-
ciprocal circuit lattice is also manifested by their eigenstates,
as shown in Figures 4(d) and 4(h), respectively. For the PBC
case (Figure 4(d)), all the measured eigenstates of Jðω0Þ oscil-
late in the entire chain with almost identical intensity, which
agrees reasonably well with the simulation results (Supple-
mentary Figure S6d). However, we see from Figure 4(h)
that all eigenstates of the open chain (OBC) are
exponentially localized at the end of the chain, which again
matches well with the simulation results (Supplementary
Figure S7d) and indicates the non-Hermitian skin effect
[21, 31, 35].

Now, we discuss how the nonreciprocal factor r1/r2
affects the localization of eigenstates (NHSE) of Jðω0Þ in
the open circuit. For r1r2 > 1, all the eigenstates are localized
at the left end of the chain (Supplementary Figure S8c), while
for r1r2 < 1, all the eigenstates are localized at the right end of
the chain (Supplementary Figure S8d). The value of r1r2
also determines the level of localization; that is, the larger
the jlog ðr1r2Þj is, the more likely the eigenstates will be
confined to the circuit boundaries. See more details in
Supplementary Note S2. Note that during the submission
of this manuscript, we noticed another work reported on
the experimental observation of the NHSE [40]. However,
there are substantial differences between our work and

theirs. There are two independent nonreciprocal factors r1
and r2 controlling the intracell and intercell coupling in
our model, while the nonreciprocal effect only exists in
the intracell coupling in the model reported in Ref. 40.
The additional nonreciprocal coupling provides us not
only higher flexibility in manipulating the level NHSE but
also a more generalized form of the nonreciprocal non-
Hermitian topological circuit.

4. Conclusion

To conclude, we have proposed and experimentally demon-
strated a 1-D non-Hermitian topological circuit with nonre-
ciprocal couplings. We analytically derive the phase
transition conditions for the circuit under PBC and OBC,
which perfectly match with experimental measurements
and numerical simulations. A non-Bloch Hamiltonian with
β = reiq as the non-Bloch wave number is defined which
allows the calculation of topological invariant in the general-
ized Brillouin zone and extends the bulk-boundary corre-
spondence to non-Hermitian systems [6]. Topological
circuit provides us with a convenient platform for experi-
mentally demonstrating new topological physics. The highly
flexible configurations OpAmp allow a wide range of circuit
functions, including addition, subtraction, integration, and
differential, to be applied to the design of hopping parameters
of topological circuits. The nonlinear effect can also be con-
veniently introduced to the non-Hermitian topological cir-
cuit by using nonlinear circuit elements, such as transistors
and varactor diodes [22, 24, 25]. Our work highlights the
interesting features of non-Hermitian topological circuit with
nonreciprocity and suggests a convenient experimental
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Figure 4: Experimental results for the eigenvalue and eigenstates of the finite circuit Laplacian under PBC and OBC. (a, b) The imaginary and
real part of eigenvalues of the closed-loop circuit Laplacian under PBC, respectively. (c, d) The eigenvalues jnðω0Þ and their eigenstates of the
circuit Laplacian at the mid-gap frequency ω0 for the finite circuit under PBC. (e, f) The imaginary and real part of eigenvalues of the closed-
loop circuit Laplacian under OBC, respectively. (g, h) The eigenvalues jn(ω0) and their eigenstates of the circuit Laplacian at the mid gap
frequency ω0 for the finite circuit under OBC. Note that the eigenstates are plotted in absolute values.
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platform for future investigation of non-Hermitian topologi-
cal physics.

5. Method

A voltage feedback operational amplifier (Taxes Instrument,
LM6171) was used in the experiment to construct the voltage
follower module, which blocks the input current while keep-
ing the output current same as in the case without the voltage
follower. High-Q inductors (Murata, Q-factor>40, 2% toler-
ance) were used in experiments to ensure sharp impedance
resonance and ideal circuit performance. Additional circuit
elements are added in the real circuit to guarantee the stabil-
ity of the OpAmp, including a Rb = 5Ω resistor connecting in
series in each C3/C4 branch, a resistor Ra = 2000Ω in shunt
with a capacitor Ca = 100 pF connecting across the inverting
input and output of OpAmp. In measurement, a pair of filter
capacitors (2.2μF and 2pF) were connected in parallel with
the output of DC supply (Agilent E3648A) to provide
±15VDC voltage for the OpAmp with minimized ripple cur-
rent. The impedance spectra of the circuit were measured by
a vector network analyzer (VNA, Tektronix TTr500) via the
preset SMA ports between adjacent nodes. The PSpice model
for the OpAmp officially provided by Texas Instruments was
employed in the circuit simulation to deliver accurate numer-
ical results. The measurement of the N-port S-parameter was
achieved by measuring the two-port S-parameter for every
combination of the 18 nodes using the two-Port VNA. In
each measurement, the rest of the ports were connected with
50Ω load terminator. The S-parameter matrix S was then
transformed into admittance matrix (circuit Laplacian) using
Y = ðI + SÞ−1ðI − SÞ/Z0, in which I is the identity matrix, and
Z0 is the port impedance of VNA.

Data Availability
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