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Data augmentation is necessary for graph representation learning due to the scarcity and noise present in
graph data. Most of the existing augmentation methods overlook the context information inherited from the
dataset as they rely solely on the graph structure for augmentation. Despite the success of some large language
model-based (LLM) graph learning methods, they are mostly white-box which require access to the weights
or latent features from the open-access LLMs, making them difficult to be democratized for everyone as the
most advanced LLMs are often closed-source for commercial considerations. To overcome these limitations,
we propose a black-box context-driven graph data augmentation approach, with the guidance of LLMs —
DemoGraph. Leveraging the text prompt as context-related information, we task the LLM with generating
knowledge graphs (KGs), which allow us to capture the structural interactions from the text outputs. We
then design a dynamic merging schema to stochastically integrate the LLM-generated KGs into the original
graph during training. To control the sparsity of the augmented graph, we further devise a granularity-aware
prompting strategy and an instruction fine-tuning module, which seamlessly generates text prompts according
to different granularity levels of the dataset. Extensive experiments on various graph learning tasks validate
the effectiveness of our method over existing graph data augmentation methods. Notably, our approach excels
in scenarios involving electronic health records (EHRs), which validates its maximal utilization of contextual
knowledge, leading to enhanced predictive performance and interpretability.
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1. Introduction Cross, & Sun, 2023; Tang et al., 2023; Wei et al., 2024; West et al.,

2021; Zhang et al., 2022) which leverage LLM for graph representa-

Graph representation learning has received increasing attention in
recent years. It achieves great success in solving tasks where relational
features are important, such as recommendation systems (Cai, Huang,
Xia, & Ren, 2023; Shi, Hu, Zhao, & Philip, 2018), citation networks (Hu,
Fey, et al.,, 2020), and medical records analysis (Choi, Xiao, Stew-
art, & Sun, 2018; Ma et al., 2018). However, the scarcity and noise
present in graph data pose great challenges for effective graph learning,
necessitating the development of graph data augmentation algorithms.

Existing graph data augmentation methods focus on graph struc-
tures for data augmentation, such as randomly dropping nodes or
edges, adding Gaussian noise to the node or edge attributes, or applying
graph-based transformations such as sub-sampling and node permuta-
tion. While these methods have demonstrated some successes in graph
representation learning scenarios, they do not consider the context or
attributes associated with the graph data. This prompts some recent
works (He et al., 2023; Huang, Zeng, Wu, & Lii, 2024; Jiang, Xiao,
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tion learning. Despite their success, they are mostly white-box which
require access to the weights or latent features from the open-access
LLMs. While numerous open-source LLMs exist, the most advanced
models are often closed-source for commercial reasons, posing signif-
icant challenges to democratize these methods for broader use. As a
result, the resulting augmented graph becomes less identifiable due to
a lack of contextual guidance. Furthermore, most of these augmentation
methods leverage in-domain knowledge under a close-world setting,
which does not borrow the vast repositories of knowledge in the
open world. Additionally, the sparsity of the augmented graph is not
well studied, although some methods, such as DropEdge, attempt to
sparsify the graph for augmentation. Without proper sparsity control,
the augmented graph would be over-sparsified and likely reduced to
trivial graphs (i.e., uninformative graphs). These limitations pop the
necessity of developing a new graph data augmenter under open-world
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Representation

Fig. 1. Schematic illustration of the feature distribution of original graph ¢, from
observations and ¢*'¢, which represents the augmented graph for G, after merging the
context knowledge in terms of KC. After performing graph data augmentation with
LLM-guided DemoGraph, G*¢ is closer to the true representation G,.

settings with proper sparsity control, such that the augmented graph
can be closer to the true data distribution (see Fig. 1).

In light of the vast development of large language models (LLMs),
we propose a novel framework, namely DemoGraph, to perform con-
textual graph data augmentation with a generative pretrained LLM.
Our contributions can be summarized as (1) We introduce a black-box
method that leverages extensive knowledge from LLM to perform graph
data augmentation without access to model weights or source codes.
This is particularly realistic when most LLMs are provided in close-
source commercial APIs, enabling the democratization of LLM-based
methods. We adopt latent KGs to capture the structural interactions
from the text outputs, as well as a compatible data structure for
graph data. (2) We design a dynamic merging strategy to stochasti-
cally integrate the LLM-generated KGs into the raw graph data during
the network training, which guides the optimization trajectory with
contextual knowledge. (3) To tackle the sparsity induced by generated
KGs, we design a granularity-aware prompting strategy to control the
sparsity while maximizing the utility of domain knowledge. Also, we
leverage a sequential prompting with instruction fine-tuning strategy
to incentivize the LLM to generate the most relevant concepts to the
context, and hence high-quality KGs. (4) Extensive experiments on var-
ious graph learning tasks validate the effectiveness of our method over
existing graph data augmentation methods. (5) Our method demon-
strates high scalability across datasets ranging from small to large-scale,
consistently delivering satisfactory performance. Notably, our approach
excels in scenarios involving electronic health records (EHRs), where
our method maximizes the utilization of contextual information, and
leads to enhanced predictive performance and interpretability.

2. Related works

Graph Neural Networks (GNNs). GNNs are gaining significant suc-
cess in many problem domains (Chan, Wong, Shen, & Yin, 2023;
Hu, Dong, et al.,, 2020; Kojima et al., 2020; Liu, Li, Peng, He, &
Philip, 2020; Simonovsky & Komodakis, 2018; Wu, Ren, Li, & Leskovec,
2020). They learn node representation by aggregating information from
the neighboring nodes on the graph topology. Most of the existing
GNN architectures are on homogeneous graphs (Velickovi¢, Cucurull,
Casanova, Romero, Lio, & Bengio, 2017; Welling & Kipf, 2016; Xu, Hu,
Leskovec, & Jegelka, 2018; Yun, Jeong, Kim, Kang, & Kim, 2019). There
are also GNN architectures that operate on heterogeneous graphs to
learn its enriched structural information and complex relations (Hu,
Dong, et al., 2020; Huang, Xu, & Wang, 2020; Schlichtkrull et al.,
2018; Wang, Ji, et al., 2019; Yang, Song, Jin, & Du, 2020). However,
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due to limited samples, it is difficult to approximate the true data
distribution, especially in the graph domain. Hence, an effective graph
data augmentation algorithm is needed to boost the performance of
GNNs.

Graph Data Augmentation. Graph data augmentation (GDA) aims
to enhance the utility of the input graph data and produce graph
samples close to the true data distribution to alleviate the finite sam-
ple bias (Ding, Xu, Tong, & Liu, 2022). Most of the existing works
focus on perturbating the graph structures or node features/labels to
achieve augmentation, such as node dropping (Feng et al., 2020), edge
perturbation (Rong, Huang, Xu, & Huang, 2019; Velickovi¢, Fedus,
Hamilton, Lio, Bengio, & Hjelm, 2018), graph rewriting (Franceschi,
Niepert, Pontil, & He, 2019; Wang et al., 2020; Yang et al., 2019),
graph sampling (Hamilton, Ying, & Leskovec, 2017a, 2017b; Qiu et al.,
2020), graph diffusion (Park et al., 2021; Qiu et al., 2020; Topping, Di
Giovanni, Chamberlain, Dong, & Bronstein, 2021; Zheng et al., 2020)
or pseudo-labeling (Zhang, Cisse, Dauphin, & Lopez-Paz, 2017). There
are also works that adopt a learnable graph data augmenter and design
specific losses for training (Li, Han, & Wu, 2018; Liu, Ying, et al,,
2022; Park, Shim, & Yang, 2022; Suresh, Li, Hao, & Neville, 2021; Wu
et al., 2020; You, Chen, Wang, et al., 2020). However, these methods
mainly focus on the graph structures without considering the contextual
information or introducing open-world knowledge.

Recent works He et al. (2023), Huang et al. (2024), Jiang et al.
(2023), Tang et al. (2024), Wei et al. (2024), West et al. (2021), Zhang
et al. (2022), Zhao, Qu, et al. (2023) on LLM-based GDA have achieved
promising improvements. However, current LLM-based methods are
mostly white-box which require access to the weights or latent features
from the LLMs. It is computationally inefficient and impractical, as
SOTA LLMs are costly for large-scale experiments and often closed-
source. Additionally, they often distinctly require enriched contextual
information for specific tasks (e.g. detailed abstract for academic pub-
lications (Chen, Feng, He, Deng, Pu, & Li, 2025; He et al., 2023),
clinical reports for medical tasks (Jiang et al., 2023) or detailed text
annotation at single granularity (Zhao, Qu, et al., 2023)), hindering
their generalizability and performance in broader graph learning sce-
narios. Moreover, these methods mostly focus on node-level context
and neglect the higher-order graph structures. Hence, a black-box LLM-
based GDA framework with awareness of higher-level graph structure
is needed to address these limitations. Moreover, these methods mostly
focus on node-level context and neglect the higher-order graph struc-
tures. Hence, a black-box LLM-based GDA framework with awareness
of higher-level graph structure is needed to address these limitations.

Graph Learning in Healthcare. Knowledge distillation from massive
EHRs has been a popular topic in healthcare informatics. To address the
longitudinal features in the EHR data, several early works (Ma et al.,
2017; Ma, Gao, et al.,, 2020; Ma, Zhang, et al., 2020) attempted to
learn the EHR features using recurrent neural networks. Since the EHR
data represent relational information between entities (e.g., patients
make visits), graphical models turn out to be an ideal approach for
representing the EHR data (Choi, Bahadori, Song, Stewart, & Sun,
2017; Choi et al., 2018). GRAM (Choi et al., 2017) is a well-known
method that learns robust medical code representations by adopting
a graph-based attention mechanism. However, a critical gap remains
in these methods: they do not fully incorporate the rich contextual
information available in EHR data (Fiol et al., 2013; Hsu, Taira, El-
Saden, Kangarloo, & Bui, 2012). This oversight can lead to a lack
of nuanced understanding of patient data, impacting the accuracy
and applicability of the derived insights (Evans, 2016). Furthermore,
there is a notable absence of effective regularization mechanisms for
adjusting to the inherent noise in EHR data, which is cluttered with
irrelevant or redundant information.
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Fig. 2. Overview of our proposed DemoGraph framework. Given a dataset, we first construct a graph G, to highlight the relational information, and then perform context-driven
knowledge retrieval by utilizing the original dataset and a frozen generative pre-trained LLM. We conduct contextual, adaptive, sparsity-controllable and granularity-aware prompt
learning on the LLM, thus obtaining either concept-specific KGs or important extra concept nodes at different levels after refinement. For the original graph ,, we perform graph
data augmentation with the domain-knowledge injection procedure. We train a GNN model on the augmented graph ¢*'8, thus our framework is able to handle a wide range of

downstream tasks across various domains depending on the original datasets.

3. Preliminaries

Graphs. A graph G is a collection of vertices V and edges &, typically
represented as G = (V, £). Each edge e € € is an ordered or unordered
pair of vertices representing the connection between them. In the
context of graph neural networks, each vertex v; is often associated
with a feature vector x; in the feature space X. A knowledge graph
(KG) is a specialized type of graph denoted as K£G = (V, £, R), where R
is a set of relation types. A KG can be constructed from a set of triples

= {(h;,r ,,t,)}ll_g where h;,t;, and r; are the ith head and tail nodes
respectlvely, and r; is the relation type for the ith triple.

Graph Data Augmentation (GDA). Given ¢ = (V,&), GDA aims to
derive an augmented graph G?'8 = (Va8, £2U8) where V28 and £218
represent the augmented set of nodes and edges, respectively. The aug-
mentation process should preserve or enhance the inherent structure
and properties of G, while facilitating the improved performance of a
GNN (denoted as M) on downstream tasks.

4. Methodology

Our proposed framework consists of two main modules: a knowl-
edge graph construction module with leveraging knowledge from LLMs,
and a graph data augmentation module with dynamic knowledge injec-
tion. Fig. 2 and Algorithm 1 provide an overview of the workflow of
our framework.

4.1. Context-driven knowledge retrieval

General Prompting Strategy. The cornerstone of our framework is
the construction of KGs using LLMs. The context-aware KGs serve
as enriched contextual domain knowledge that augments the original
graph G, towards the true representation G,. The KG construction is
facilitated through a prompting mechanism that steers the LLM toward
generating subgraphs focused on specific concepts. The generation
process in general can be formulated as 7 « LLM(prompt), where
T = {(h,-,r,.,t,»)}ll.g represents the set of triples indicating the rela-
tionships between the generated concepts. A knowledge graph K£G can
then be constructed from 7. We design modularized prompts (with

Algorithm 1 The training workflow of our graph data augmentation
method.
1: Input: Original graph G, = (¥, &) with randomly-initialized node
features {x;,Vi € V}, granularity level s, number of KGs generated
K (per step), ground truth labels y.
: Output: Augmented graph 2“8, trained GNN model M.
: Initialize G218 = G,
: for each epoch do
VXY « Get concept nodes as augmentation entities,
{ICQ}[’i1 « Load KGs from VX9,
{ICQ}K « Perform instruction fine-tuning with customized
sparsity control on {ICQ}K 0
C?8 «— merge_ KG({ICQ}K ,GAug),
9: Update node indices for all node types in G2"8,
10: Get prediction from the GNN j = M(G¥"8),
11: Compute training loss £(J, y),
12: Backpropagate £ to M
13: end for
14: return Trained GNN M

4

placeholders for the descriptions) that are based on all the available
information (e.g., the summary of datasets, task descriptions) of the
working graph dataset, such that context knowledge can be maximally
utilized. One example of the prompting design on the EHR context
is: where the variables as placeholders are inside {} — {example}
provides an exemplar triple format, {descriptions} offers the
contextual information, and “updates:” prompts the LLM to finish
the paragraph. This prompt initially instructs the LLM to identify and
generate concept entities VX9 and their interrelations £X9 driven by
the descriptions (e.g., on the dataset or entity) and oriented to the
target tasks. Subsequently, the LLM regularizes these relationships into
standardized triple formats. Finally, the above prompt expands this
structured information both in width and depth, digging into more
meaningful and nested relationships, until a pre-defined number of
triples is reached. We also prompt example triples to regularize the
output formats of 7. This multi-step process ensures that the KG
is both information-rich and aligned with domain-specific objectives.
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Notably, this paradigm utilizing placeholders avoids manual prompt
customization, thereby reducing human labor costs.

Start with the following prompt on a given medical
concept (such as health condition/treatment
procedure/drug) and generate an extensive array of
associated connections based on your domain
knowledge. These connections should help improve
prediction tasks in healthcare, e.g. drug
recommendation, mortality prediction, length of
stay and readmission prediction.

Format each association as [ENTITY 1, RELATIONSHIP,
ENTITY 2], ensuring the sequence reflects the
direction of the relationship. Both ENTITY 1 and
ENTITY 2 are to be nouns. Elements within [ENTITY 1,
RELATIONSHIP, ENTITY 2] must be definitive and
succinct.

Approach in both breadth and depth. Continue expanding [
ENTITY 1, RELATIONSHIP, ENTITY 2] combinations
until reaching a total of 100.

{example}

prompt: {descriptions}

updates:

Granularity-Aware Prompting for Sparsity Control. Naively utilizing
the prompting strategy in the previous section would mostly lead to
a sparse KG, where data points are unevenly distributed with many
gaps or missing links. Hence, we propose a multi-layer augmentation
strategy that determines a granularity level prior to generation, such
that the sparsity of the KG can be controlled.

Granularity refers to the data scale of detail in the augmentation
process, ranging from coarse-grained dataset level to fine-grained node
level information. Based on the availability of information in the work-
ing dataset, we define s as the sparsity level parameter (s increases as
the data are more fine-grained), and separate the prompting strategy
into three granularity levels, s, < s; < s,, as follows:

+ Dataset-level Augmentation (s = s,). At the dataset level, our
objective is to identify and propagate overarching themes and
concepts that are broadly relevant across the dataset. This macro
approach involves curating concepts and triples that reflect high-
level semantics and dependencies. This is the most fundamental
form of our method since dataset-level information is always
available.

Type-level Augmentation (s = s;). Another common scenario
is that we have node type level information (e.g., class labels in
texts for classification). We distill the most salient concepts and
relationships pertinent to each class or node type. By doing so, we
gain an in-depth understanding of the node categories, fleshing
out their characteristics and the interconnections within them. A
node-type level prompting example on the Cora dataset (7 classes)
is provided in the appendix.

Node-level Augmentation (s = s,). In some scenarios (e.g., EHR
datasets), we have the finest information (e.g., text description)
on each node (or medical entity). At this juncture, we aim to
enrich individual nodes with highly relevant and specific concepts
that are crucial for the particular tasks. This targeted augmenta-
tion ensures that nodes are imbued with unique attributes that
can drive predictive tasks more effectively.

Concept Pruning via Instruction Fine-tuning. Due to the high com-
plexity of given tasks, LLM’s one-time retrieval of KGs may contain
low-entropy (i.e., uninformative) concepts (e.g., is, dataset, or disease).
We thus instruct LLMs to go through a chain-of-thought process to
do multi-stage reasoning and self-improve the quality of KGs. Fig. 3
illustrates our concept prompting procedure via instruction fine-tuning.
Given the initial generated KG, we refine it by recursively calling
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Fig. 3. Concept pruning via instruction fine-tuning, where trivial concepts can be
pruned by re-prompting the coarse set of concepts to the LLM.

the LLM and pruning less relevant nodes and edges, while ensuring
that a predefined percentage of the concepts are directly derived from
the original dataset. A template for this instruction fine-tuning (IFT)
process is given below (we use EHR as an illustrative example). After
this procedure, a set of important concept nodes VX¢ is then output for
triple construction and KG generation.

Given the 1list of triples augmented with MIMIC-III
dataset, I want to select ‘{number_of_concepts}’
most important triples from the 1list. The importance

of a triple is based on your knowledge and inference
on how it will help improve prediction tasks in
healthcare, e.g. drug recommendation, mortality
prediction, length of stay, readmission prediction.
If you think a triple is important, please keep it.
Otherwise, please remove it. You can also add
triples from your background knowledge.

triples: {triples}

updates:

4.2. Augmentation with generated KGs

Dynamic Graph Merging. The motivation behind designing dynamic
merging is to ensure that the GNN learns meaningful information by
integrating KGs with raw graphs. This process allows the GNN to
explore different ways of connecting the raw graph and the KG at each
training step, enabling the model to optimize the graph structure for
the specific task at hand.

Specifically, we provide a detailed explanation as follows: First, we
perform node and edge selection. For each concept node v, € VX9 in
the KG, we select a subset of nodes Vs =1z 1z €V} from the base
graph G, where n, is the predetermined number of edges per concept
node. These nodes are then connected to the concept nodes to form an
edge set

EM = {(v,, 2)|Vv, € VX9, z € V).

The edge set between the original graph and the augmented graph is
determined by the training loss. During training, the set is dynamically
selected and updated so that the training loss can be minimized.

The augmented graph 28 = (Va8, £218) is obtained by combining
the edge sets and node sets from both the original and augmented
graphs: £2U8 = geonn y £, U £XY and VU8 = V), u VXY,

During iterative updates, unlike a one-off merging process, dynamic
merging is iterative. In each training epoch, the model updates the KG
based on its current state, ensuring the graph data remains dynamic and
contextually relevant. This iterative approach helps prevent overfitting
and improves the model’s generalization to unseen data.

Due to the computation limitations, the number of LLM inferences
is limited. Therefore, we precompute KG offline and merge it with G,
stochastically during training. Under sufficient computational condi-
tions, the dynamic merging schema allows for online prompting where
an up-to-date X°G can be generated after every optimization step. On
the other hand, the LLM can also be fine-tuned online with task-specific
losses. This allows for more context-related KG generations and hence
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Table 1
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Performance evaluation of various GNN architectures on graph learning tasks. The PPI dataset is employed for graph classification (assessed via Micro-F1), while the remaining
datasets (Cora, Citeseer, and Actor) are used for node classification (evaluated using Micro-F1 and Accuracy). Standard deviations are indicated in parentheses.

PPI Cora Citeseer Actor Cora Citeseer
GNN Archi. Augmenter Micro-F1 Micro-F1 Micro-F1 Accuracy Accuracy Accuracy
None 60.0 (2.7) 82.8 (3.6) 69.1 (2.5) 36.7 (1.8) 81.0 (3.3) 70.9 (2.0)
DropNode (Feng et al., 2020) 61.5 (2.6) 81.4 (3.4 68.0 (2.4) 36.8 (1.5) 80.6 (3.2) 70.1 (2.7)
Graph DropEdge (Rong, Huang, Xu, & Huang, 2020) 63.2 (3.1) 81.6 (2.8) 70.4 (2.6) 36.8 (2.9) 80.4 (2.8) 71.2 (3.2)
SAGE RandomwalkPE (Dwivedi, Luu, Laurent, Bengio, & Bresson, 2021) 63.1 (2.7) 82.0 (2.6) 68.0 (1.5) 37.7 (2.7) 81.2 (3.1) 70.8 (2.6)
LaplacianPE (Dwivedi et al., 2023) 63.5 (3.1) 81.9 (2.1) 69.7 (1.9) 36.7 (2.1) 80.9 (2.2) 70.7 (2.5)
GraphGPT (Tang et al., 2024) 90.2 (3.0) 82.2 (2.7) 70.5 (2.2) 37.2 (2.5) 81.5 (2.9) 71.0 (2.6)
DemoGraph (Ours) 93.6 (2.3) 83.3 (2.0) 71.7 (1.2) 37.9 (1.6) 83.3 (1.2) 72.6 (2.0)
None 97.1 (3.0) 82.0 (4.0) 71.0 (3.6) 30.3 (2.7) 82.1 (4.3) 72.1 (3.7)
DropNode (Feng et al., 2020) 94.0 (3.4) 80.5 (3.7) 71.2 (3.3) 31.3 (2.2) 80.7 (3.7) 71.9 (3.2)
GAT DropEdge (Rong et al., 2020) 85.1 (3.0) 79.1 (3.8) 68.8 (3.8) 31.2 (3.0) 78.9 (3.9) 69.1 (3.9)
RandomWalkPE (Dwivedi et al., 2021) 90.8 (3.6) 81.3 (2.9) 71.2 (3.1) 31.4 (2.5) 81.2 (3.2) 71.9 (3.2)
LaplacianPE (Dwivedi et al., 2023) 90.7 (2.7) 81.5 (2.5) 71.4 (2.6) 30.9 (2.9) 81.4 (2.4) 71.8 (2.7)
GraphGPT (Tang et al., 2024) 95.9 (3.3) 82.2 (3.6) 71.9 (3.4) 31.5 (2.9) 81.6 (3.1) 71.6 (3.0)
DemoGraph (Ours) 97.2 (3.4) 83.6 (3.2) 72.4 (2.3) 32.2 (2.3) 83.6 (2.0) 73.1 (2.2)
None 53.2 (2.4) 78.4 (3.4) 71.6 (2.7) 29.8 (2.1) 81.0 (2.7) 69.4 (2.0)
DropNode (Feng et al., 2020) 58.9 (1.9) 79.2 (2.6) 72.2 (1.5) 28.7 (2.5) 78.9 (2.6) 70.5 (2.0)
GCN DropEdge (Rong et al., 2020) 54.8 (4.1) 82.2 (3.9) 71.5 (2.7) 28.9 (3.4) 82.4 (3.5) 71.3 (3.2)
RandomWalkPE (Dwivedi et al., 2021) 59.0 (1.6) 80.9 (2.2) 71.8 (2.4) 29.8 (2.9) 80.0 (2.9) 71.6 (2.2)
LaplacianPE (Dwivedi et al., 2023) 59.3 (1.6) 80.4 (2.1) 71.3 (1.9) 29.6 (2.2) 80.0 (1.9) 71.1 (2.1)
GraphGPT (Tang et al., 2024) 59.1 (1.8) 82.0 (2.9) 72.1 (2.1) 30.2 (2.6) 81.6 (1.9) 71.8 (2.1)
DemoGraph (Ours) 60.3 (1.2) 82.7 (2.9) 73.1 (1.9) 32.4 (2.3) 82.9 (1.0) 73.1 (1.1)
None 70.3 (2.8) 81.0 (4.1) 70.8 (3.7) 31.9 (2.0) 81.6 (2.0) 70.9 (3.7)
DropNode (Feng et al., 2020) 75.2 (3.1) 79.1 (4.2) 70.8 (4.1) 32.4 (2.2) 78.5 (4.1) 70.6 (4.0)
GIN DropEdge (Rong et al., 2020) 78.3 (3.7) 81.8 (3.9) 69.0 (3.8) 32.7 (2.8) 81.8 (4.4) 71.5 (3.9)
RandomWalkPE (Dwivedi et al., 2021) 76.2 (3.5) 81.1 (3.3) 69.8 (3.6) 33.1 (2.5) 80.9 (2.7) 71.1 (3.8)
LaplacianPE (Dwivedi et al., 2023) 74.5 (2.9) 80.0 (2.7) 69.9 (3.7) 329 (2.4) 81.9 (2.7) 71.4 (3.6)
GraphGPT (Tang et al., 2024) 78.2 (3.0) 81.6 (4.6) 71.0 (4.1) 33.0 (2.5) 81.9 (4.4 71.6 (4.1)
DemoGraph (Ours) 79.2 (2.8) 82.2 (4.9) 72.2 (4.2) 34.8 (2.2) 82.3(4.5) 72.9 (3.9)

improved data augmentation performance. It also enables the potential
for training open-world GNN models.

Training Paradigm. We use GNN to predict the labels with the aug-
mented graph as the input, = M(G**¢). We benchmark with different
choices of M: graph convolutional network (GCN) (Welling & Kipf,
2016), graph attention network (GAT) (Velickovic et al., 2017), Graph-
SAGE (Hamilton et al., 2017a), and graph isomorphism network (GIN)
(detailed formulations and descriptions of GNNs in appendix). We
compute the loss for backpropagation with the predictive labels. For
instance, in a multi-class classification task, we adopt the cross-entropy
loss, L. = —% Zfil ch=1 ¥ log(softmax(z; .)), where y, . is the ground
truth label for patient i and class ¢, N is the number of observations,
C is the number of classes, and z; . is logits obtained from the model.

4.3. Adaptability to other graph datasets

Since EHR contains enriched contextual information that allows for
flexible prompting design, we use the EHR dataset to illustrate our
prompting strategy. However, our prompting strategy is adaptable to
other graph datasets, as the placeholders in the modularized prompts
can be replaced by information on the target datasets. We can also
incrementally enlarge the KG such that knowledge from the existing
domain can be leveraged to the target domain. We employ a highly-
adaptive customization strategy that tailors the prompt structure based
on the specific dataset in use. This strategy includes understanding the
data’s content and structure and then adjusting the prompts to ensure
the generated KGs are optimally suited for the data in question.

5. Experiments

5.1. Experimental settings

Datasets and Tasks. (1) We perform experiments on generic graph
benchmarks (Cora, PPI, Actor, and Citeseer), where we benchmark our
method on node classification tasks. (2) We validate the scalability of

DemoGraph on two large-scale datasets — OGBN-products and OGBN-
arxiv (Hu, Fey, et al.,, 2020) against additional LLM-based methods.
Table B.11 and B.12 provide a summary of these graph datasets from
small to large-scales. (3) Additionally, we highlight an application of
our method on a large-scale EHR dataset — MIMIC-III (Johnson et al.,
2016). It contains a publicly available dataset of 46,520 intensive care
unit (ICU) patients over 11 years. We perform four supervised tasks
— in-hospital mortality prediction (MORT), readmission prediction
(READM), length of stay (LOS) prediction, and drug recommendations
(DR), where MORT and READM predictions are approached as binary
classification tasks, LOS prediction as a multi-class classification task,
and DR as a multi-label classification task. Since the lab events are
sparse and introduce heavy noise, we exclude them when constructing
the graph. Table B.13 in the appendix presents a summary of the types
and counts of the entities in the MIMIC-III dataset, and the details of
each task.

Evaluation Metrics. We evaluate our method with area under the
receiver operating curve (AUROC), area under the precision-recall
curve (AUPR), accuracy, Fl-scores, and Jaccard index, applied as rel-
evant to each task. For robust validation of our results, we employ
a five-fold cross-validation strategy in all major experiments. More
detailed information on the datasets, tasks and their loss functions, and
evaluation metrics is presented in the appendix.

5.2. Compared methods

We compare our method to the following graph data augmentation
methods to validate the empirical performance of DemoGraph: Lapla-
cianPE (Dwivedi et al., 2023), RandomWalkPE (Dwivedi et al., 2021),
DropEdge (Rong et al., 2020), and DropNode (Feng et al., 2020). For
the EHR analysis benchmark, we also include additional competitors
as follows: GraphCare (LLM-based) (Jiang et al., 2023), GRU (Medsker
& Jain, 2001), Transformer (Vaswani et al., 2017), GRAM (Choi et al.,
2017), StageNet (Gao, Xiao, Wang, et al., 2020), Concare (Ma, Zhang,
et al., 2020), Adacare (Ma, Gao, et al., 2020), Dr. Agent (Gao, Xiao,
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Table 2
Performance [%] of DemoGraph on node classification task for the OGBN-arxiv and
OGBN-products datasets.

GNN Archi. Augmenter Accuracy
OGBN-products OGBN-arxiv
Graph DropNode 54.22 (0.31) 58.42 (0.20)
SAGE DropEdge 55.23 (0.32) 54.83 (0.19)
RandomWalkPE OOM OOM
LaplacianPE OoOoM OOM
GraphGPT-std N/A 62.58
LLM* 74.40 (0.23) 73.56 (0.06)
TAPE 81.37 (0.43) 76.72 (0.07)
GLEM-LM 81.25 (0.15) 74.53 (0.12)
GLEM-GNN 83.16 (0.19) 75.50 (0.24)
DemoGraph (Ours) 84.22 (0.27) 76.84 (0.17)
GAT DropNode 55.43 (0.34) 57.36 (0.25)
DropEdge 53.36 (0.37) 58.26 (0.21)
RandomWalkPE OOM OOM
LaplacianPE OOM OOM
GraphGPT-std N/A 62.58
LLM* 74.40 (0.23) 73.56 (0.06)
TAPE 82.34 (0.36) 77.50 (0.12)
GLEM-LM OOM 75.45 (0.12)
GLEM-GNN OOM 76.97 (0.19)
DemoGraph (Ours) 84.00 (0.32) 77.18 (0.22)
GCN DropNode 56.94 (0.45) 58.57 (0.42)
DropEdge 54.62 (0.47) 58.15 (0.43)
RandomWalkPE OOM OOM
LaplacianPE OOM OOM
GraphGPT-std N/A 62.58
GraphGPT-stage2 N/A 75.11
3-HiGCN N/A 76.41 (0.53)
LLM* 74.40 (0.23) 73.56 (0.06)
TAPE 79.96 (0.41) 75.20 (0.03)
GLEM-LM OOM 75.71 (0.24)
GLEM-GNN OOM 75.93 (0.19)
DemoGraph (Ours) 82.86 (0.42) 76.05 (0.23)

OOM: out-of-memory. LLM: Using zero-shot ChatGPT with the same prompts of TAPE
as the approach, denoted as LLM.

Glass, et al., 2020), and GRASP (Zhang et al., 2021). For drug rec-
ommendation, we also include additional competitors: MICRON (Yang,
Xiao, Glass, et al., 2021), Safedrug (Yang, Xiao, Ma, Glass, et al.,
2021), and MoleRec (Yang, Zeng, Wu, & Yan, 2023). For the large-scale
OGBN datasets, additionally, we have included more advanced LLM-
based baselines (i.e., GraphGPT (Tang et al., 2023), LLM, TAPE (He
et al., 2023), HiGCN (Huang et al., 2024)) and GLEM (Zhao, Qu, et al.,
2023). We reimplemented the baseline methods, where details of the
implementations and descriptions of the baseline methods can be found
in the appendix. For the experiments on generic graph datasets, we
do not include all LLM-based methods for comparison, as we find it
difficult to implement some of the approaches (e.g. TAPE, HiGCN,
GLEM) due to framework adaptation issues. For example, TAPE is
restricted to topic-modeling problems as it assumes a topic model,
while GLEM focuses on node classification problems and cannot tackle
multi-granularity as in the generic datasets.

5.3. Quantitative results

Results on Generic Graph Data. Table 1 presents the node clas-
sification results of our proposal compared to existing graph data
augmentation methods. Table 2 presents the results on the large-
scale OGBN-products and OGBN-arxiv datasets against both traditional
and LLM-based competitors. We observe that our method achieves
satisfactory performance on generic graph classification datasets, as
well as large-scale datasets. Some of the traditional GDA methods that
operate on whole graphs failed to generalize to large-scale datasets
(i.e., encountered out-of-memory error). Our method obtains a 3% im-
provement on average over all comparable methods with all four GNN
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Fig. 4. Visualization of the learned node embeddings w/ (left) and w/o (right) our
graph data augmentation, respectively. We use MIMIC-III as the example and color
nodes differently by their entity types.

architectures (i.e., GCN (Welling & Kipf, 2016), GAT (Velickovi¢ et al.,
2017), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017a)).
This shows evidence that leveraging context knowledge, such as dataset
summary and class label information, with LLMs can augment graph
data to its true data distribution. We also compare among the compa-
rable methods with different GNN architectures. We observe that our
method still performs satisfactorily when different GNN architectures
are used, demonstrating the robustness of our method.

Our experiments on the protein-protein interaction dataset demon-
strate that DemoGraph enhances the modeling of protein interfaces,
which is crucial for accurate protein structure prediction. This can facil-
itate the identification of potential therapeutic targets and elucidating
biological processes.

Results on EHR Data. Table 3 presents the results of different tasks
on the MIMIC-III dataset (detailed results with more evaluation metrics
are presented in the appendix). We observe that our proposed frame-
work outperforms alternative methods, thereby validating the effective-
ness of contextual LLM augmentation and sparsity-aware instruction
prompting. In particular, our method outperforms the competitors by
7.4% (in accuracy) in length-of-stay prediction. Our method can even
outperform the methods specifically designed for EHR analysis, includ-
ing GraphCare (Jiang et al., 2023), a similar method using LLM for
personalized healthcare. We elaborate the key differences between our
method and GraphCare in the appendix. When integrating the enriched
context information (e.g., clinical discharge reports, radiology reports,
and lab event reports) in real-world EHR datasets, the performance on
clinical task prediction can be further improved.

The Effect of Different LLM backbones.

In light of the importance of LLM backbones on the performance
of our method, we further study the effects of LLM backbones with
differnet capacities. We performed experiments with some renowned
black-box LLMs (we access these LLMs only through APIs) shown in
Table 4. We observe the differences in model performances, which arise
from different training methods and parameter sizes. Nevertheless, our
method can maintain satisfactory performance across different LLM
backbones, validating its robustness.

5.4. Qualitative results

Embedding Visualization. We visualize the node embeddings of each
type of entity to evaluate the performance of feature representation
learning. Fig. 4 presents the TSNE plot of the embeddings generated by
different methods. The task is readmission prediction on the MIMIC-
III dataset with a GAT model. It is observed that the embeddings with
DemoGraph are grouped according to their node types, which validates
that the embeddings learn the unique representation of each node type,
while the embeddings without DemoGraph are noisy and do not present
a clear pattern by the node type.
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Table 3
Performance of drug recommendation, length of stay, mortality and readmission prediction on MIMIC-III [%]. Standard deviations are shown in brackets.
Drug Recommendation Length of Stay Mortality Readmission

Model AUROC AUPR AUROC Acc. AUROC AUPR AUROC AUPR

GRU 96.38 (0.1) 64.75 (0.2) 80.32 (0.2) 42.14 (0.6) 61.09 (0.7) 9.65 (1.5) 65.58 (1.1) 68.57 (1.6)
Transformer 95.87 (0.0) 60.19 (0.1) 79.31 (0.8) 41.68 (0.7) 57.20 (1.3) 10.10 (0.9) 63.75 (0.5) 68.92 (0.1)
Deepr 96.09 (0.0) 62.48 (0.1) 78.02 (0.4) 39.31 (1.2) 60.80 (0.4) 13.20 (1.1) 66.50 (0.4) 68.80 (0.9)
GRAM 94.20 (0.0) 76.70 (0.1) 78.02 (0.4) 39.31 (1.2) 60.40 (0.9) 11.40 (0.7) 64.30 (0.4) 67.20 (0.8)
Concare 95.78 (0.1) 61.67 (0.3) 80.27 (0.3) 42.04 (0.6) 61.98 (1.8) 9.67 (1.5) 65.28 (1.1) 66.67 (1.9)
Dr. Agent 96.41 (0.1) 64.16 (0.5) 79.45 (0.6) 41.40 (0.5) 57.52 (0.4) 9.66 (0.8) 64.86 (2.6) 67.41 (1.0)
AdaCare 95.86 (0.0) 60.76 (0.0) 78.73 (0.4) 40.70 (0.8) 58.40 (1.4) 11.10 (0.4) 65.70 (0.3) 68.60 (0.6)
StageNet 96.05 (0.0) 62.43 (2.4) 77.94 (0.2) 40.70 (0.8) 61.50 (0.7) 12.40 (0.3) 66.70 (0.4) 69.30 (0.6)
GRASP 96.01 (0.1) 62.53 (0.3) 78.97 (0.4) 40.66 (0.3) 59.20 (1.4) 9.90 (1.1) 66.30 (0.6) 69.20 (0.4)
DropNode 97.60 (0.2) 81.41 (0.1) 81.10 (0.5) 41.81 (1.1) 58.06 (0.9) 9.46 (1.7) 64.48 (0.8) 67.75 (0.4)
DropEdge 95.61 (0.1) 72.32 (0.3) 78.41 (0.3) 39.98 (0.8) 57.85 (0.8) 10.34 (1.5) 62.11 (0.6) 67.46 (0.5)
RandomWalkPE 94.89 (0.1) 63.86 (0.2) 78.01 (0.4) 39.47 (0.9) 57.15 (1.2) 9.76 (0.9) 66.20 (0.7) 59.58 (0.6)
LaplacianPE 95.26 (0.2) 69.34 (0.3) 78.22 (0.3) 40.02 (0.9) 57.65 (1.1) 10.05 (1.2) 65.71 (0.6) 63.43 (0.8)
GraphCare 95.00 (0.0) 78.50 (0.2) 79.40 (0.3) 41.90 (0.2) 66.60 (1.1) 14.30 (0.8) 68.10 (0.6) 71.50 (0.7)
DemoGraph (Ours) 98.54 (0.2) 83.89 (0.1) 82.68 (0.2) 45.28 (1.0) 67.79 (0.6) 16.09 (1.6) 68.97 (0.4) 73.92 (0.4)

Table 4

Performance of mortality and readmission prediction on MIMIC-III [%] with different LLM backbones. Standard deviations
are shown in brackets.

Mortality Readmission
Models AUROC AUPR AUROC AUPR
GraphCare (GPT-4, KG method) 66.6 (1.1) 14.3 (0.8) 68.1 (0.6) 71.5 (0.7)
DemoGraph (LLaMA-3.1-8B) 66.5 (0.9) 14.7 (1.1) 68.0 (0.7) 71.1 (0.8)
DemoGraph (Claude-3-Opus) 66.9 (1.0) 15.7 (0.8) 69.0 (0.6) 73.0 (0.7)
DemoGraph (LLaMA-3.1-70B) 67.1 (0.8) 15.9 (1.0) 69.2 (0.5) 73.1 (0.6)
DemoGraph (GPT-4, original) 67.7 (0.6) 16.0 (1.6) 69.0 (0.4) 73.9 (0.4)
DemoGraph (LLaMA-3.1-405B) 67.9 (0.7) 16.3 (1.0) 69.4 (0.5) 73.8 (0.6)
DemoGraph (Claude-3.5-Sonnet) 68.0 (0.5) 16.3 (0.8) 69.6 (0.3) 73.9 (0.5)
DemoGraph (GPT-40-mini) 68.0 (0.6) 16.4 (0.7) 69.5 (0.4) 74.0 (0.4)
DemoGraph (GPT-40) 68.1 (0.5) 16.3 (0.8) 69.6 (0.3) 74.1 (0.5)
DemoGraph (DeepSeek-V3) 68.6 (0.6) 17.0 (0.9) 69.8 (0.6) 74.1 (0.4)
Table 5
Medical Performance w/ and w/o augmentation from KG, and w/ a biased KG from another
History Chest X-Ray S dataset (i.e. PPI), repectively.
1.3627, 1.4850 Sqrgical
History w/o KG w/ KG w/ PPI KG
\ / & Dataset Acc. F1 Acc. F1 Acc. F1
Chepnickidney Cora 82.10 81.66 83.60 83.64 73.70 73.83
1.2500 T A, Actor 30.33 27.90 32.21 28.91 30.19 27.82
e/ Blo0d] Citeseer 72.10 69.60 73.10 72.46 63.40 64.68
Gases
Antihypertensives \ 1.8581
1.8628
Acute Respiratory Electlgf"asl'ggogram M’.C'gbli:ﬂogical
Distreggeifigiome ey Network Interpretation. The incorporation of contextual learning
enhances the capability of the model by enabling a nuanced under-
Aslo Mfio’r standing and interpretation of the graph data at a deeper level. We
cpngf.i’:fions A;Zzpi::;: ':o St: analyze the interpretability of our model by considering a specific visit
1.6240 1.5987 Nutritional node in the MIMIC-III dataset. As shown in Fig. 5, the following are the
rtes top augmented corrections (i.e., with the highest attention scores) that
Psychosocial exemplify the importance of specific clinical concepts influencing the
i plity p P P g
up) « P . ,, . . . . . .
1.3625 ———_ NormialBlood readmission is true pred.lctlon. Antihypertensives (2.3722), Anticoag-
——rT 5t ReSUItS ulants (1.8628), and arterial blood gases (1.8581), where the computed
a3 attention scores are shown below the node name. It is observed that
Effective Post- \ : the augmentation process can impute context-related concepts so that
Discharge Plan R GAT can select the most important ones. This provides interpretations
1.9854 guldr, o L : o -
Follow-Up Pain for the predictive process. This is especially beneficial in the clinical
AcutoliiSsuiptory Visits Management s . . s .
D'S"":S" ;g;""’"’a 1.5839 1.5068 decision context since the enriched open-world knowledge can inspire

clinicians with the embedded concepts, and enhance the understanding

. , . . . .
Fig. 5. Interpretability visualization of DemoGraph: (Top) Readmission node predicted of patients behaviors and the pOtentlal reasons for certain diseases.

as True, (Down) Case where readmission is False: a visit node (blue) and related concept
nodes (red), with attention scores, visualized in size/shade of red nodes. 5.5. Ablated analyﬂs

The Effect of Augmented KGs. We study the effect of augmented KGs
on downstream task performance (Table 5), including three scenarios:
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E:rb}loerr:ance of node classification (using GAT) with and without dynamic merging, respectively.
Cora Actor PPI Citeseer
Merging Acc. F1 Acc. F1 Acc. F1 Acc. F1
Static 83.30 83.43 31.45 28.01 96.82 94.67 72.20 71.73
Dynamic 83.60 83.64 32.21 28.91 98.28 97.20 73.10 72.46
Table 7 Table 9

Performance of node classification (using GAT) with different numbers of edges per
concept generated by the KG.

Performance in terms of accuracy (%) of our framework on node classification with
different numbers of layers L, using GCN and GAT.

|gconn| Cora Actor PPI Citeseer GCN GAT
Acc. F1 Acc. F1 Acc. F1 Acc. F1 L Cora Actor Citeseer Cora Actor Citeseer
0 81.3 80.7 30.3 28.0 91.6 97.1 72.1 69.6 1 81.40 31.91 71.77 83.30 32.21 72.70
3 83.6 83.6 32.2 28.9 96.4 97.2 73.1 72.5 2 81.50 32.41 73.10 83.60 29.21 73.10
30 79.3 79.4 31.0 28.8 97.5 97.2 68.5 68.3 3 82.90 31.45 70.45 82.10 28.49 72.10
100 75.4 75.5 30.9 28.4 98.3 97.2 66.2 66.2 4 80.50 30.54 70.04 81.70 28.20 71.70
Table 8 0 o 971 972 972 973 972

Performance of our framework on Cora node classification with different granularity
levels s, and with or without IFT, respectively. We denote s, as the class type level, s,
as the dataset level, and s, +s, as a multi-granularity scheme merging these two levels.

IFT s= NER s=s0+5;

Acc. F1 Acc. F1 Acc. F1
w/o IFT 81.40 81.53 82.17 82.05 81.00 81.07
w/ IFT 83.20 83.26 83.60 83.64 83.15 83.25

with KG, without KG, and with a biased (or wrong) KG augmented
from another dataset (i.e. PPI). It is observed that the model performs
worse than the baseline (i.e., w/o any augmentations) when the wrong
context is applied, indicating a biased augmented graph. On the other
hand, improved performance is observed when a context-driven KG is
applied, thus validating the effectiveness of our method. A visualization
of the effect of DemoGraph on node embeddings can also be found in
Fig. 4.

The Effect of Dynamic Merging. We evaluate the contribution of
the dynamic merging schema, as summarized in Table 6, where static
merging means that the KG are merged into G, offline before train-
ing. We observe that the performance improved on all generic graph
datasets with dynamic merging, which validates the contributions of
the schema.

The Effect of Sparsity Control. We demonstrate how different levels
of sparsity affect the performance of graph data augmentation. We
control the level of sparsity using the number of edges per concept
|£conn| used for KG generation. Table 7 presents the results of this study.
Given a fixed number of concepts, the performance improves when
|| increases, demonstrating the effectiveness of graph merging.
However, when |£°°™| is too large compared to the original graph
size, the augmented graph would be biased from too many noisy
connections, and hence the observed performance deteriorates.

The Influence of Different Granularity and Instruction Fine-tuning.
We evaluate the influence of different granularity and instruction fine-
tuning (IFT) on augmentation performance. From Table 8, it is observed
that the performance is improved when an appropriate s is chosen,
while adopting a multi-granularity (s, + s;) could potentially lead to
over-sparsification. With KG concepts pruned by IFT, the performance
is consistently improved on different granularity levels.

The Influence of Number of GNN Layers. We evaluate the per-
formance of our method with different numbers of GNN layers, as
summarized in Table 9. We observe that in general a better perfor-
mance is obtained when the number of layers is small. The performance
slightly deteriorates as the number of layers increases more than two
layers, indicating the potential over-smoothing problem. Other experi-
ments on relatively fine-grained hyperparameters, such as the dropout
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Fig. 6. Performance of our method on Cora node classifications with respect to
different dropout ratios, with GAT as the GNN architecture.

W Acc. AUROC

100 96.5 96.9 97.3 97.1
20 81.581.7 82.982.2 83.683.6 83.183.2
80
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32 64 128 256
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Fig. 7. Performance of our method on Cora node classifications with respect to
different numbers of hidden dimensions, with GAT as the GNN architecture.

rate, number of hidden dimensions, and number of attention heads for
GAT, are presented in the appendix.

Dropout Ratios. Since graph learning is difficult to optimize and easy
to lead to overfitting, we adopt dropout as the default regularizer for all
benchmark methods. We further study the effects of different dropout
rates, Fig. 6 presents the results. We observe that our method is in
general robust to changes in dropout rates while being optimized when
the dropout rate is 0.6. However, a large dropout rate would lead to
over-sparsification of neural network weights and important features
being dropped, hindering the predictive performance.

Number of hidden dimensions. We benchmark our method with
respect to different hidden dimensions. Fig. 7 presents the results of
this study.

We observe our method is overall robust to different numbers of
hidden dimensions. In general, a larger number of hidden dimensions
leads to better classification performance.

Number of attention heads. We benchmark the performance of our
method with respect to different attention heads, as summarized in
Fig. 8. We observe that the performance is overall improving with the
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Analysis of time complexity of training time on the ogbn-arxiv dataset.

Method DemoGraph (Ours) on GAT

TAPE GraphGPT-stage-2 GraphGPT-stage-1

Training Time (min) 89

192 224 1325

100 96.2 96.5 97.2 97.3

%0 819821 82.682.8 83.383.4 83.683.6

80
70
60
50
40
30
20
10
2 4 8 16

M Acc. F1 m AUROC

Fig. 8. Performance of our method on Cora node classifications with respect to
different heads of GAT.

number of heads increases, while a larger number of heads (e.g., 32)
would lead to a heavier memory burden under the current hardware
settings.

6. Discussion

Fairness and Privacy Discussion

In the context of EHR research, fairness and privacy are critical
concerns that warrant thorough discussion, particularly when incor-
porating LLMs for data augmentation. Although the use of LLMs can
enhance the capture of nuanced clinical relationships, there is a risk
that inherent biases in the training data may be amplified, thereby
exacerbating disparities across ethnicities and genders. Additionally,
the integration of sensitive patient information within these models
introduces potential privacy risks, emphasizing the need for robust
anonymization and data protection protocols. Prior studies have pro-
vided valuable insights into these challenges, with empirical inves-
tigations characterizing fairness in clinical risk prediction (Liu, Li,
et al.,, 2022) and proposing deconfounding approaches to mitigate
health disparities in EHRs (Liu, Li, & Yu, 2023; Pfohl, Foryciarz, &
Shah, 2021). Moreover, the nature of adaptability under the black-
box settings of DemoGraph inherently protects the privacy of patients,
as the framework leverages latent KGs extracted via external LLM
interfaces without direct access to raw patient data, thereby ensuring
that sensitive information remains anonymized. Additionally, in line
with the insights provided by Pfohl et al. (2024) in their empirical
characterization of fair machine learning for clinical risk prediction,
we recognize that ensuring equitable predictions requires careful eval-
uation of how biases may affect disparate patient groups. Addressing
these concerns within the current framework would not only strengthen
its ethical foundation but also enhance its applicability in real-world
clinical settings.

Time Complexity Analysis. Since we generate the KGs offline using
the OpenAl API of gpt-4-0125-preview (OpenAl, 2023) (our method
works under a black-box setting), this process only needs to be per-
formed once for each dataset. The additional complexity arises from
the dynamic merging process, which needs to be repeated at each
optimization step. However, the time complexity of this step is trivial
compared to the forward passing of GNNs. Therefore, it only increases
the overall time complexity on a minor level.

Table 10 below shows the quantitative analysis of the training time
complexity on the ogbn-arxiv dataset.

Efficiency through Single Query and Reuse. Our prompting
paradigm avoids manual prompt customization for adaptations to
different datasets, thereby reducing human labor costs. Our method
necessitates only a single query to the LLM, with KGs and significant
concept nodes stored for subsequent reuse. Our query process can be
efficiently completed in 37.6 s in average for the large-scale ogbn-arxiv
dataset. This approach not only enhances efficiency but also reduces
the number of API calls, thereby saving the cost of commercial LLMs.
Additionally, we have provided the responses from the LLMs gained in
our experiments for the public use.

7. Conclusion

We propose a novel framework for graph data augmentation,
namely DemoGraph, which leverages the open-world knowledge in
LLMs to perform context-driven graph data augmentation. Our method
directly operates on knowledge graphs constructed from LLM outputs
and does not require access to model weights and features, which
enables democratization to most of the closed-access LLMs. To tackle
the sparsity induced by generated knowledge graphs, we design a
granularity-aware prompting strategy to control the sparsity while
maximizing the utility of domain knowledge. Experiments on generic
graph datasets and a medical records dataset with an array of GNN
architectures validate that our method can better augment the graph
data than existing methods. Ablation analysis on key components
and hyperparameters of our method validates the significance of our
method and robustness to variations. Our method also has a wide range
of potential application fields beyond medical record analysis such as
molecular chemistry, recommendation, computational biology, social
networks, and citation networks etc.
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