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 A B S T R A C T

Data augmentation is necessary for graph representation learning due to the scarcity and noise present in 
graph data. Most of the existing augmentation methods overlook the context information inherited from the 
dataset as they rely solely on the graph structure for augmentation. Despite the success of some large language 
model-based (LLM) graph learning methods, they are mostly white-box which require access to the weights 
or latent features from the open-access LLMs, making them difficult to be democratized for everyone as the 
most advanced LLMs are often closed-source for commercial considerations. To overcome these limitations, 
we propose a black-box context-driven graph data augmentation approach, with the guidance of LLMs —
DemoGraph. Leveraging the text prompt as context-related information, we task the LLM with generating 
knowledge graphs (KGs), which allow us to capture the structural interactions from the text outputs. We 
then design a dynamic merging schema to stochastically integrate the LLM-generated KGs into the original 
graph during training. To control the sparsity of the augmented graph, we further devise a granularity-aware 
prompting strategy and an instruction fine-tuning module, which seamlessly generates text prompts according 
to different granularity levels of the dataset. Extensive experiments on various graph learning tasks validate 
the effectiveness of our method over existing graph data augmentation methods. Notably, our approach excels 
in scenarios involving electronic health records (EHRs), which validates its maximal utilization of contextual 
knowledge, leading to enhanced predictive performance and interpretability.
1. Introduction

Graph representation learning has received increasing attention in 
recent years. It achieves great success in solving tasks where relational 
features are important, such as recommendation systems (Cai, Huang, 
Xia, & Ren, 2023; Shi, Hu, Zhao, & Philip, 2018), citation networks (Hu, 
Fey, et al., 2020), and medical records analysis (Choi, Xiao, Stew-
art, & Sun, 2018; Ma et al., 2018). However, the scarcity and noise 
present in graph data pose great challenges for effective graph learning, 
necessitating the development of graph data augmentation algorithms.

Existing graph data augmentation methods focus on graph struc-
tures for data augmentation, such as randomly dropping nodes or 
edges, adding Gaussian noise to the node or edge attributes, or applying 
graph-based transformations such as sub-sampling and node permuta-
tion. While these methods have demonstrated some successes in graph 
representation learning scenarios, they do not consider the context or
attributes associated with the graph data. This prompts some recent 
works (He et al., 2023; Huang, Zeng, Wu, & Lü, 2024; Jiang, Xiao, 
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Cross, & Sun, 2023; Tang et al., 2023; Wei et al., 2024; West et al., 
2021; Zhang et al., 2022) which leverage LLM for graph representa-
tion learning. Despite their success, they are mostly white-box which 
require access to the weights or latent features from the open-access 
LLMs. While numerous open-source LLMs exist, the most advanced 
models are often closed-source for commercial reasons, posing signif-
icant challenges to democratize these methods for broader use. As a 
result, the resulting augmented graph becomes less identifiable due to 
a lack of contextual guidance. Furthermore, most of these augmentation 
methods leverage in-domain knowledge under a close-world setting, 
which does not borrow the vast repositories of knowledge in the 
open world. Additionally, the sparsity of the augmented graph is not 
well studied, although some methods, such as DropEdge, attempt to 
sparsify the graph for augmentation. Without proper sparsity control, 
the augmented graph would be over-sparsified and likely reduced to 
trivial graphs (i.e., uninformative graphs). These limitations pop the 
necessity of developing a new graph data augmenter under open-world 
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Fig. 1. Schematic illustration of the feature distribution of original graph 0 from 
observations and aug, which represents the augmented graph for 0 after merging the 
context knowledge in terms of . After performing graph data augmentation with 
LLM-guided DemoGraph, aug is closer to the true representation 𝑡.

settings with proper sparsity control, such that the augmented graph 
can be closer to the true data distribution (see Fig.  1).

In light of the vast development of large language models (LLMs), 
we propose a novel framework, namely DemoGraph, to perform con-
textual graph data augmentation with a generative pretrained LLM. 
Our contributions can be summarized as (1) We introduce a black-box 
method that leverages extensive knowledge from LLM to perform graph 
data augmentation without access to model weights or source codes. 
This is particularly realistic when most LLMs are provided in close-
source commercial APIs, enabling the democratization of LLM-based 
methods. We adopt latent KGs to capture the structural interactions 
from the text outputs, as well as a compatible data structure for 
graph data. (2) We design a dynamic merging strategy to stochasti-
cally integrate the LLM-generated KGs into the raw graph data during 
the network training, which guides the optimization trajectory with 
contextual knowledge. (3) To tackle the sparsity induced by generated 
KGs, we design a granularity-aware prompting strategy to control the 
sparsity while maximizing the utility of domain knowledge. Also, we 
leverage a sequential prompting with instruction fine-tuning strategy 
to incentivize the LLM to generate the most relevant concepts to the 
context, and hence high-quality KGs. (4) Extensive experiments on var-
ious graph learning tasks validate the effectiveness of our method over 
existing graph data augmentation methods. (5) Our method demon-
strates high scalability across datasets ranging from small to large-scale, 
consistently delivering satisfactory performance. Notably, our approach 
excels in scenarios involving electronic health records (EHRs), where 
our method maximizes the utilization of contextual information, and 
leads to enhanced predictive performance and interpretability.

2. Related works

Graph Neural Networks (GNNs). GNNs are gaining significant suc-
cess in many problem domains (Chan, Wong, Shen, & Yin, 2023; 
Hu, Dong, et al., 2020; Kojima et al., 2020; Liu, Li, Peng, He, & 
Philip, 2020; Simonovsky & Komodakis, 2018; Wu, Ren, Li, & Leskovec, 
2020). They learn node representation by aggregating information from 
the neighboring nodes on the graph topology. Most of the existing 
GNN architectures are on homogeneous graphs (Veličković, Cucurull, 
Casanova, Romero, Lio, & Bengio, 2017; Welling & Kipf, 2016; Xu, Hu, 
Leskovec, & Jegelka, 2018; Yun, Jeong, Kim, Kang, & Kim, 2019). There 
are also GNN architectures that operate on heterogeneous graphs to 
learn its enriched structural information and complex relations (Hu, 
Dong, et al., 2020; Huang, Xu, & Wang, 2020; Schlichtkrull et al., 
2018; Wang, Ji, et al., 2019; Yang, Song, Jin, & Du, 2020). However, 
2 
due to limited samples, it is difficult to approximate the true data 
distribution, especially in the graph domain. Hence, an effective graph 
data augmentation algorithm is needed to boost the performance of 
GNNs.

Graph Data Augmentation. Graph data augmentation (GDA) aims 
to enhance the utility of the input graph data and produce graph 
samples close to the true data distribution to alleviate the finite sam-
ple bias (Ding, Xu, Tong, & Liu, 2022). Most of the existing works 
focus on perturbating the graph structures or node features/labels to 
achieve augmentation, such as node dropping (Feng et al., 2020), edge 
perturbation (Rong, Huang, Xu, & Huang, 2019; Veličković, Fedus, 
Hamilton, Liò, Bengio, & Hjelm, 2018), graph rewriting (Franceschi, 
Niepert, Pontil, & He, 2019; Wang et al., 2020; Yang et al., 2019), 
graph sampling (Hamilton, Ying, & Leskovec, 2017a, 2017b; Qiu et al., 
2020), graph diffusion (Park et al., 2021; Qiu et al., 2020; Topping, Di 
Giovanni, Chamberlain, Dong, & Bronstein, 2021; Zheng et al., 2020) 
or pseudo-labeling (Zhang, Cisse, Dauphin, & Lopez-Paz, 2017). There 
are also works that adopt a learnable graph data augmenter and design 
specific losses for training (Li, Han, & Wu, 2018; Liu, Ying, et al., 
2022; Park, Shim, & Yang, 2022; Suresh, Li, Hao, & Neville, 2021; Wu 
et al., 2020; You, Chen, Wang, et al., 2020). However, these methods 
mainly focus on the graph structures without considering the contextual 
information or introducing open-world knowledge.

Recent works He et al. (2023), Huang et al. (2024), Jiang et al. 
(2023), Tang et al. (2024), Wei et al. (2024), West et al. (2021), Zhang 
et al. (2022), Zhao, Qu, et al. (2023) on LLM-based GDA have achieved 
promising improvements. However, current LLM-based methods are 
mostly white-box which require access to the weights or latent features 
from the LLMs. It is computationally inefficient and impractical, as 
SOTA LLMs are costly for large-scale experiments and often closed-
source. Additionally, they often distinctly require enriched contextual 
information for specific tasks (e.g. detailed abstract for academic pub-
lications (Chen, Feng, He, Deng, Pu, & Li, 2025; He et al., 2023), 
clinical reports for medical tasks (Jiang et al., 2023) or detailed text 
annotation at single granularity (Zhao, Qu, et al., 2023)), hindering 
their generalizability and performance in broader graph learning sce-
narios. Moreover, these methods mostly focus on node-level context 
and neglect the higher-order graph structures. Hence, a black-box LLM-
based GDA framework with awareness of higher-level graph structure 
is needed to address these limitations. Moreover, these methods mostly 
focus on node-level context and neglect the higher-order graph struc-
tures. Hence, a black-box LLM-based GDA framework with awareness 
of higher-level graph structure is needed to address these limitations.
Graph Learning in Healthcare. Knowledge distillation from massive 
EHRs has been a popular topic in healthcare informatics. To address the 
longitudinal features in the EHR data, several early works (Ma et al., 
2017; Ma, Gao, et al., 2020; Ma, Zhang, et al., 2020) attempted to 
learn the EHR features using recurrent neural networks. Since the EHR 
data represent relational information between entities (e.g., patients 
make visits), graphical models turn out to be an ideal approach for 
representing the EHR data (Choi, Bahadori, Song, Stewart, & Sun, 
2017; Choi et al., 2018). GRAM (Choi et al., 2017) is a well-known 
method that learns robust medical code representations by adopting 
a graph-based attention mechanism. However, a critical gap remains 
in these methods: they do not fully incorporate the rich contextual 
information available in EHR data (Fiol et al., 2013; Hsu, Taira, El-
Saden, Kangarloo, & Bui, 2012). This oversight can lead to a lack 
of nuanced understanding of patient data, impacting the accuracy 
and applicability of the derived insights (Evans, 2016). Furthermore, 
there is a notable absence of effective regularization mechanisms for 
adjusting to the inherent noise in EHR data, which is cluttered with 
irrelevant or redundant information.
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Fig. 2. Overview of our proposed DemoGraph framework. Given a dataset, we first construct a graph 0 to highlight the relational information, and then perform context-driven 
knowledge retrieval by utilizing the original dataset and a frozen generative pre-trained LLM. We conduct contextual, adaptive, sparsity-controllable and granularity-aware prompt 
learning on the LLM, thus obtaining either concept-specific KGs or important extra concept nodes at different levels after refinement. For the original graph 0, we perform graph 
data augmentation with the domain-knowledge injection procedure. We train a GNN model on the augmented graph aug, thus our framework is able to handle a wide range of 
downstream tasks across various domains depending on the original datasets.
3. Preliminaries

Graphs. A graph  is a collection of vertices  and edges  , typically 
represented as  = ( , ). Each edge 𝑒 ∈  is an ordered or unordered 
pair of vertices representing the connection between them. In the 
context of graph neural networks, each vertex 𝑣𝑖 is often associated 
with a feature vector 𝑥𝑖 in the feature space  . A knowledge graph 
(KG) is a specialized type of graph denoted as  = ( ,  ,), where 
is a set of relation types. A KG can be constructed from a set of triples 
 = {(ℎ𝑖, 𝑟𝑖, 𝑡𝑖)}

| |

𝑖=1 where ℎ𝑖, 𝑡𝑖, and 𝑟𝑖 are the 𝑖th head and tail nodes 
respectively, and 𝑟𝑖 is the relation type for the 𝑖th triple.
Graph Data Augmentation (GDA). Given  = ( , ), GDA aims to 
derive an augmented graph aug = (aug, aug), where aug and aug
represent the augmented set of nodes and edges, respectively. The aug-
mentation process should preserve or enhance the inherent structure 
and properties of , while facilitating the improved performance of a 
GNN (denoted as ) on downstream tasks.

4. Methodology

Our proposed framework consists of two main modules: a knowl-
edge graph construction module with leveraging knowledge from LLMs, 
and a graph data augmentation module with dynamic knowledge injec-
tion. Fig.  2 and Algorithm 1 provide an overview of the workflow of 
our framework.

4.1. Context-driven knowledge retrieval

General Prompting Strategy. The cornerstone of our framework is 
the construction of KGs using LLMs. The context-aware KGs serve 
as enriched contextual domain knowledge that augments the original 
graph 0 towards the true representation 𝑡. The KG construction is 
facilitated through a prompting mechanism that steers the LLM toward 
generating subgraphs focused on specific concepts. The generation 
process in general can be formulated as  ← LLM(prompt), where 
 = {(ℎ𝑖, 𝑟𝑖, 𝑡𝑖)}

| |

𝑖=1 represents the set of triples indicating the rela-
tionships between the generated concepts. A knowledge graph  can 
then be constructed from  . We design modularized prompts (with 
3 
Algorithm 1 The training workflow of our graph data augmentation 
method.
1: Input: Original graph 0 = (0, 0) with randomly-initialized node 
features {𝑥𝑖,∀𝑖 ∈ }, granularity level 𝑠, number of KGs generated 
𝐾 (per step), ground truth labels 𝑦.

2: Output: Augmented graph aug, trained GNN model .
3: Initialize aug = 0
4: for each epoch do
5:   ← Get concept nodes as augmentation entities,
6:  {}𝐾𝑖=1 ← Load KGs from ,
7:  {}𝐾𝑖=1 ← Perform instruction fine-tuning with customized 
sparsity control on {}𝐾𝑖=1,

8:  aug ← merge_KG({}𝐾𝑖=1,
aug),

9:  Update node indices for all node types in aug,
10:  Get prediction from the GNN 𝑦̂ = (aug),
11:  Compute training loss (𝑦̂, 𝑦),
12:  Backpropagate  to 
13: end for
14: return Trained GNN 

placeholders for the descriptions) that are based on all the available 
information (e.g., the summary of datasets, task descriptions) of the 
working graph dataset, such that context knowledge can be maximally 
utilized. One example of the prompting design on the EHR context 
is: where the variables as placeholders are inside {} — {example}
provides an exemplar triple format, {descriptions} offers the 
contextual information, and ‘‘updates:’’ prompts the LLM to finish 
the paragraph. This prompt initially instructs the LLM to identify and 
generate concept entities  and their interrelations  driven by 
the descriptions (e.g., on the dataset or entity) and oriented to the 
target tasks. Subsequently, the LLM regularizes these relationships into 
standardized triple formats. Finally, the above prompt expands this 
structured information both in width and depth, digging into more 
meaningful and nested relationships, until a pre-defined number of 
triples is reached. We also prompt example triples to regularize the 
output formats of  . This multi-step process ensures that the KG 
is both information-rich and aligned with domain-specific objectives. 
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Notably, this paradigm utilizing placeholders avoids manual prompt 
customization, thereby reducing human labor costs.

Start with the following prompt on a given medical
concept (such as health condition/treatment
procedure/drug) and generate an extensive array of
associated connections based on your domain
knowledge. These connections should help improve
prediction tasks in healthcare, e.g. drug
recommendation, mortality prediction, length of
stay and readmission prediction.

Format each association as [ENTITY 1, RELATIONSHIP,
ENTITY 2], ensuring the sequence reflects the
direction of the relationship. Both ENTITY 1 and
ENTITY 2 are to be nouns. Elements within [ENTITY 1,
RELATIONSHIP, ENTITY 2] must be definitive and
succinct.

Approach in both breadth and depth. Continue expanding [
ENTITY 1, RELATIONSHIP, ENTITY 2] combinations
until reaching a total of 100.

{example}
prompt: {descriptions}
updates:

ranularity-Aware Prompting for Sparsity Control. Naively utilizing 
he prompting strategy in the previous section would mostly lead to 
 sparse KG, where data points are unevenly distributed with many 
aps or missing links. Hence, we propose a multi-layer augmentation 
trategy that determines a granularity level prior to generation, such 
hat the sparsity of the KG can be controlled.
Granularity refers to the data scale of detail in the augmentation 

rocess, ranging from coarse-grained dataset level to fine-grained node 
evel information. Based on the availability of information in the work-
ng dataset, we define 𝑠 as the sparsity level parameter (𝑠 increases as 
he data are more fine-grained), and separate the prompting strategy 
nto three granularity levels, 𝑠0 < 𝑠1 < 𝑠2, as follows:

• Dataset-level Augmentation (𝑠 = 𝑠0). At the dataset level, our 
objective is to identify and propagate overarching themes and 
concepts that are broadly relevant across the dataset. This macro 
approach involves curating concepts and triples that reflect high-
level semantics and dependencies. This is the most fundamental 
form of our method since dataset-level information is always 
available.

• Type-level Augmentation (𝑠 = 𝑠1). Another common scenario 
is that we have node type level information (e.g., class labels in 
texts for classification). We distill the most salient concepts and 
relationships pertinent to each class or node type. By doing so, we 
gain an in-depth understanding of the node categories, fleshing 
out their characteristics and the interconnections within them. A 
node-type level prompting example on the Cora dataset (7 classes) 
is provided in the appendix.

• Node-level Augmentation (𝑠 = 𝑠2). In some scenarios (e.g., EHR 
datasets), we have the finest information (e.g., text description) 
on each node (or medical entity). At this juncture, we aim to 
enrich individual nodes with highly relevant and specific concepts 
that are crucial for the particular tasks. This targeted augmenta-
tion ensures that nodes are imbued with unique attributes that 
can drive predictive tasks more effectively.

oncept Pruning via Instruction Fine-tuning. Due to the high com-
lexity of given tasks, LLM’s one-time retrieval of KGs may contain 
ow-entropy (i.e., uninformative) concepts (e.g., is, dataset, or disease). 
e thus instruct LLMs to go through a chain-of-thought process to 
o multi-stage reasoning and self-improve the quality of KGs. Fig.  3 
llustrates our concept prompting procedure via instruction fine-tuning. 
iven the initial generated , we refine it by recursively calling 
l

4 
ig. 3. Concept pruning via instruction fine-tuning, where trivial concepts can be 
runed by re-prompting the coarse set of concepts to the LLM.

he LLM and pruning less relevant nodes and edges, while ensuring 
hat a predefined percentage of the concepts are directly derived from 
he original dataset. A template for this instruction fine-tuning (IFT) 
rocess is given below (we use EHR as an illustrative example). After 
his procedure, a set of important concept nodes  is then output for 
riple construction and KG generation.

Given the list of triples augmented with MIMIC-III
dataset, I want to select ‘{number_of_concepts}’
most important triples from the list. The importance
of a triple is based on your knowledge and inference
on how it will help improve prediction tasks in
healthcare, e.g. drug recommendation, mortality
prediction, length of stay, readmission prediction.
If you think a triple is important, please keep it.
Otherwise, please remove it. You can also add
triples from your background knowledge.

triples: {triples}
updates:

.2. Augmentation with generated KGs

ynamic Graph Merging. The motivation behind designing dynamic 
erging is to ensure that the GNN learns meaningful information by 
ntegrating KGs with raw graphs. This process allows the GNN to 
xplore different ways of connecting the raw graph and the KG at each 
raining step, enabling the model to optimize the graph structure for 
he specific task at hand.
Specifically, we provide a detailed explanation as follows: First, we 

erform node and edge selection. For each concept node 𝑣𝑐 ∈  in 
he KG, we select a subset of nodes 𝑠

0 = {𝑧 ∣ 𝑧 ∈ 0} from the base 
raph 0, where 𝑛𝑐 is the predetermined number of edges per concept 
ode. These nodes are then connected to the concept nodes to form an 
dge set
conn = {(𝑣𝑐 , 𝑧)|∀𝑣𝑐 ∈ , 𝑧 ∈ 𝑠

0}.

The edge set between the original graph and the augmented graph is 
etermined by the training loss. During training, the set is dynamically 
elected and updated so that the training loss can be minimized.
The augmented graph aug = (aug, aug) is obtained by combining 

he edge sets and node sets from both the original and augmented 
raphs: aug = conn ∪ 0 ∪  and aug = 0 ∪ .
During iterative updates, unlike a one-off merging process, dynamic 
erging is iterative. In each training epoch, the model updates the KG 
ased on its current state, ensuring the graph data remains dynamic and 
ontextually relevant. This iterative approach helps prevent overfitting 
nd improves the model’s generalization to unseen data.
Due to the computation limitations, the number of LLM inferences 

s limited. Therefore, we precompute  offline and merge it with 0
tochastically during training. Under sufficient computational condi-
ions, the dynamic merging schema allows for online prompting where 
n up-to-date  can be generated after every optimization step. On 
he other hand, the LLM can also be fine-tuned online with task-specific 
osses. This allows for more context-related KG generations and hence 
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Table 1
Performance evaluation of various GNN architectures on graph learning tasks. The PPI dataset is employed for graph classification (assessed via Micro-F1), while the remaining 
datasets (Cora, Citeseer, and Actor) are used for node classification (evaluated using Micro-F1 and Accuracy). Standard deviations are indicated in parentheses.
 PPI Cora Citeseer Actor Cora Citeseer  
 GNN Archi. Augmenter Micro-F1 Micro-F1 Micro-F1 Accuracy Accuracy Accuracy  
 

Graph 
SAGE

None 60.0 (2.7) 82.8 (3.6) 69.1 (2.5) 36.7 (1.8) 81.0 (3.3) 70.9 (2.0)  
 DropNode (Feng et al., 2020) 61.5 (2.6) 81.4 (3.4) 68.0 (2.4) 36.8 (1.5) 80.6 (3.2) 70.1 (2.7)  
 DropEdge (Rong, Huang, Xu, & Huang, 2020) 63.2 (3.1) 81.6 (2.8) 70.4 (2.6) 36.8 (2.9) 80.4 (2.8) 71.2 (3.2)  
 RandomwalkPE (Dwivedi, Luu, Laurent, Bengio, & Bresson, 2021) 63.1 (2.7) 82.0 (2.6) 68.0 (1.5) 37.7 (2.7) 81.2 (3.1) 70.8 (2.6)  
 LaplacianPE (Dwivedi et al., 2023) 63.5 (3.1) 81.9 (2.1) 69.7 (1.9) 36.7 (2.1) 80.9 (2.2) 70.7 (2.5)  
 GraphGPT (Tang et al., 2024) 90.2 (3.0) 82.2 (2.7) 70.5 (2.2) 37.2 (2.5) 81.5 (2.9) 71.0 (2.6)  
 DemoGraph (Ours) 93.6 (2.3) 83.3 (2.0) 71.7 (1.2) 37.9 (1.6) 83.3 (1.2) 72.6 (2.0) 
 

GAT

None 97.1 (3.0) 82.0 (4.0) 71.0 (3.6) 30.3 (2.7) 82.1 (4.3) 72.1 (3.7)  
 DropNode (Feng et al., 2020) 94.0 (3.4) 80.5 (3.7) 71.2 (3.3) 31.3 (2.2) 80.7 (3.7) 71.9 (3.2)  
 DropEdge (Rong et al., 2020) 85.1 (3.0) 79.1 (3.8) 68.8 (3.8) 31.2 (3.0) 78.9 (3.9) 69.1 (3.9)  
 RandomWalkPE (Dwivedi et al., 2021) 90.8 (3.6) 81.3 (2.9) 71.2 (3.1) 31.4 (2.5) 81.2 (3.2) 71.9 (3.2)  
 LaplacianPE (Dwivedi et al., 2023) 90.7 (2.7) 81.5 (2.5) 71.4 (2.6) 30.9 (2.9) 81.4 (2.4) 71.8 (2.7)  
 GraphGPT (Tang et al., 2024) 95.9 (3.3) 82.2 (3.6) 71.9 (3.4) 31.5 (2.9) 81.6 (3.1) 71.6 (3.0)  
 DemoGraph (Ours) 97.2 (3.4) 83.6 (3.2) 72.4 (2.3) 32.2 (2.3) 83.6 (2.0) 73.1 (2.2) 
 

GCN

None 53.2 (2.4) 78.4 (3.4) 71.6 (2.7) 29.8 (2.1) 81.0 (2.7) 69.4 (2.0)  
 DropNode (Feng et al., 2020) 58.9 (1.9) 79.2 (2.6) 72.2 (1.5) 28.7 (2.5) 78.9 (2.6) 70.5 (2.0)  
 DropEdge (Rong et al., 2020) 54.8 (4.1) 82.2 (3.9) 71.5 (2.7) 28.9 (3.4) 82.4 (3.5) 71.3 (3.2)  
 RandomWalkPE (Dwivedi et al., 2021) 59.0 (1.6) 80.9 (2.2) 71.8 (2.4) 29.8 (2.9) 80.0 (2.9) 71.6 (2.2)  
 LaplacianPE (Dwivedi et al., 2023) 59.3 (1.6) 80.4 (2.1) 71.3 (1.9) 29.6 (2.2) 80.0 (1.9) 71.1 (2.1)  
 GraphGPT (Tang et al., 2024) 59.1 (1.8) 82.0 (2.9) 72.1 (2.1) 30.2 (2.6) 81.6 (1.9) 71.8 (2.1)  
 DemoGraph (Ours) 60.3 (1.2) 82.7 (2.9) 73.1 (1.9) 32.4 (2.3) 82.9 (1.0) 73.1 (1.1) 
 

GIN

None 70.3 (2.8) 81.0 (4.1) 70.8 (3.7) 31.9 (2.0) 81.6 (2.0) 70.9 (3.7)  
 DropNode (Feng et al., 2020) 75.2 (3.1) 79.1 (4.2) 70.8 (4.1) 32.4 (2.2) 78.5 (4.1) 70.6 (4.0)  
 DropEdge (Rong et al., 2020) 78.3 (3.7) 81.8 (3.9) 69.0 (3.8) 32.7 (2.8) 81.8 (4.4) 71.5 (3.9)  
 RandomWalkPE (Dwivedi et al., 2021) 76.2 (3.5) 81.1 (3.3) 69.8 (3.6) 33.1 (2.5) 80.9 (2.7) 71.1 (3.8)  
 LaplacianPE (Dwivedi et al., 2023) 74.5 (2.9) 80.0 (2.7) 69.9 (3.7) 32.9 (2.4) 81.9 (2.7) 71.4 (3.6)  
 GraphGPT (Tang et al., 2024) 78.2 (3.0) 81.6 (4.6) 71.0 (4.1) 33.0 (2.5) 81.9 (4.4) 71.6 (4.1)  
 DemoGraph (Ours) 79.2 (2.8) 82.2 (4.9) 72.2 (4.2) 34.8 (2.2) 82.3(4.5) 72.9 (3.9) 
improved data augmentation performance. It also enables the potential 
for training open-world GNN models.
Training Paradigm. We use GNN to predict the labels with the aug-
mented graph as the input, 𝑦̂ = (aug). We benchmark with different 
choices of : graph convolutional network (GCN) (Welling & Kipf, 
2016), graph attention network (GAT) (Veličković et al., 2017), Graph-
SAGE (Hamilton et al., 2017a), and graph isomorphism network (GIN) 
(detailed formulations and descriptions of GNNs in appendix). We 
compute the loss for backpropagation with the predictive labels. For 
instance, in a multi-class classification task, we adopt the cross-entropy 
loss, 𝐿ce = − 1

𝑁
∑𝑁

𝑖=1
∑𝐶

𝑐=1 𝑦𝑖,𝑐 log(softmax(𝑧𝑖,𝑐 )), where 𝑦𝑖,𝑐 is the ground 
truth label for patient 𝑖 and class 𝑐, 𝑁 is the number of observations, 
𝐶 is the number of classes, and 𝑧𝑖,𝑐 is logits obtained from the model.

4.3. Adaptability to other graph datasets

Since EHR contains enriched contextual information that allows for 
flexible prompting design, we use the EHR dataset to illustrate our 
prompting strategy. However, our prompting strategy is adaptable to 
other graph datasets, as the placeholders in the modularized prompts 
can be replaced by information on the target datasets. We can also 
incrementally enlarge the KG such that knowledge from the existing 
domain can be leveraged to the target domain. We employ a highly-
adaptive customization strategy that tailors the prompt structure based 
on the specific dataset in use. This strategy includes understanding the 
data’s content and structure and then adjusting the prompts to ensure 
the generated KGs are optimally suited for the data in question.

5. Experiments

5.1. Experimental settings

Datasets and Tasks.  (1) We perform experiments on generic graph 
benchmarks (Cora, PPI, Actor, and Citeseer), where we benchmark our 
method on node classification tasks. (2) We validate the scalability of 
5 
DemoGraph on two large-scale datasets — OGBN-products and OGBN-
arxiv (Hu, Fey, et al., 2020) against additional LLM-based methods. 
Table B.11 and B.12 provide a summary of these graph datasets from 
small to large-scales. (3) Additionally, we highlight an application of 
our method on a large-scale EHR dataset — MIMIC-III (Johnson et al., 
2016). It contains a publicly available dataset of 46,520 intensive care 
unit (ICU) patients over 11 years. We perform four supervised tasks 
— in-hospital mortality prediction (MORT), readmission prediction 
(READM), length of stay (LOS) prediction, and drug recommendations 
(DR), where MORT and READM predictions are approached as binary 
classification tasks, LOS prediction as a multi-class classification task, 
and DR as a multi-label classification task. Since the lab events are 
sparse and introduce heavy noise, we exclude them when constructing 
the graph. Table B.13 in the appendix presents a summary of the types 
and counts of the entities in the MIMIC-III dataset, and the details of 
each task.
Evaluation Metrics. We evaluate our method with area under the 
receiver operating curve (AUROC), area under the precision–recall 
curve (AUPR), accuracy, F1-scores, and Jaccard index, applied as rel-
evant to each task. For robust validation of our results, we employ 
a five-fold cross-validation strategy in all major experiments. More 
detailed information on the datasets, tasks and their loss functions, and 
evaluation metrics is presented in the appendix.

5.2. Compared methods

We compare our method to the following graph data augmentation 
methods to validate the empirical performance of DemoGraph: Lapla-
cianPE (Dwivedi et al., 2023), RandomWalkPE (Dwivedi et al., 2021), 
DropEdge (Rong et al., 2020), and DropNode (Feng et al., 2020). For 
the EHR analysis benchmark, we also include additional competitors 
as follows: GraphCare (LLM-based) (Jiang et al., 2023), GRU (Medsker 
& Jain, 2001), Transformer (Vaswani et al., 2017), GRAM (Choi et al., 
2017), StageNet (Gao, Xiao, Wang, et al., 2020), Concare (Ma, Zhang, 
et al., 2020), Adacare (Ma, Gao, et al., 2020), Dr. Agent (Gao, Xiao, 
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Table 2
Performance [%] of DemoGraph on node classification task for the OGBN-arxiv and 
OGBN-products datasets.
 GNN Archi. Augmenter Accuracy

 OGBN-products OGBN-arxiv  
 Graph DropNode 54.22 (0.31) 58.42 (0.20)  
 SAGE DropEdge 55.23 (0.32) 54.83 (0.19)  
 RandomWalkPE OOM OOM  
 LaplacianPE OOM OOM  
 GraphGPT-std N/A 62.58  
 LLM* 74.40 (0.23) 73.56 (0.06)  
 TAPE 81.37 (0.43) 76.72 (0.07)  
 GLEM-LM 81.25 (0.15) 74.53 (0.12)  
 GLEM-GNN 83.16 (0.19) 75.50 (0.24)  
 DemoGraph (Ours) 84.22 (0.27) 76.84 (0.17) 
 GAT DropNode 55.43 (0.34) 57.36 (0.25)  
 DropEdge 53.36 (0.37) 58.26 (0.21)  
 RandomWalkPE OOM OOM  
 LaplacianPE OOM OOM  
 GraphGPT-std N/A 62.58  
 LLM* 74.40 (0.23) 73.56 (0.06)  
 TAPE 82.34 (0.36) 77.50 (0.12) 
 GLEM-LM OOM 75.45 (0.12)  
 GLEM-GNN OOM 76.97 (0.19)  
 DemoGraph (Ours) 84.00 (0.32) 77.18 (0.22) 
 GCN DropNode 56.94 (0.45) 58.57 (0.42)  
 DropEdge 54.62 (0.47) 58.15 (0.43)  
 RandomWalkPE OOM OOM  
 LaplacianPE OOM OOM  
 GraphGPT-std N/A 62.58  
 GraphGPT-stage2 N/A 75.11  
 3-HiGCN N/A 76.41 (0.53) 
 LLM* 74.40 (0.23) 73.56 (0.06)  
 TAPE 79.96 (0.41) 75.20 (0.03)  
 GLEM-LM OOM 75.71 (0.24)  
 GLEM-GNN OOM 75.93 (0.19)  
 DemoGraph (Ours) 82.86 (0.42) 76.05 (0.23) 
OOM: out-of-memory. LLM: Using zero-shot ChatGPT with the same prompts of TAPE 
as the approach, denoted as LLM.

Glass, et al., 2020), and GRASP (Zhang et al., 2021). For drug rec-
ommendation, we also include additional competitors: MICRON (Yang, 
Xiao, Glass, et al., 2021), Safedrug (Yang, Xiao, Ma, Glass, et al., 
2021), and MoleRec (Yang, Zeng, Wu, & Yan, 2023). For the large-scale 
OGBN datasets, additionally, we have included more advanced LLM-
based baselines (i.e., GraphGPT (Tang et al., 2023), LLM, TAPE (He 
et al., 2023), HiGCN (Huang et al., 2024)) and GLEM (Zhao, Qu, et al., 
2023). We reimplemented the baseline methods, where details of the 
implementations and descriptions of the baseline methods can be found 
in the appendix.  For the experiments on generic graph datasets, we 
do not include all LLM-based methods for comparison, as we find it 
difficult to implement some of the approaches (e.g. TAPE, HiGCN, 
GLEM) due to framework adaptation issues. For example, TAPE is 
restricted to topic-modeling problems as it assumes a topic model, 
while GLEM focuses on node classification problems and cannot tackle 
multi-granularity as in the generic datasets.

5.3. Quantitative results

Results on Generic Graph Data. Table  1 presents the node clas-
sification results of our proposal compared to existing graph data 
augmentation methods. Table  2 presents the results on the large-
scale OGBN-products and OGBN-arxiv datasets against both traditional 
and LLM-based competitors. We observe that our method achieves 
satisfactory performance on generic graph classification datasets, as 
well as large-scale datasets. Some of the traditional GDA methods that 
operate on whole graphs failed to generalize to large-scale datasets 
(i.e., encountered out-of-memory error). Our method obtains a 3% im-
provement on average over all comparable methods with all four GNN 
6 
Fig. 4. Visualization of the learned node embeddings w/ (left) and w/o (right) our 
graph data augmentation, respectively. We use MIMIC-III as the example and color 
nodes differently by their entity types.

architectures (i.e., GCN (Welling & Kipf, 2016), GAT (Veličković et al., 
2017), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017a)). 
This shows evidence that leveraging context knowledge, such as dataset 
summary and class label information, with LLMs can augment graph 
data to its true data distribution. We also compare among the compa-
rable methods with different GNN architectures. We observe that our 
method still performs satisfactorily when different GNN architectures 
are used, demonstrating the robustness of our method.

Our experiments on the protein-protein interaction dataset demon-
strate that DemoGraph enhances the modeling of protein interfaces, 
which is crucial for accurate protein structure prediction. This can facil-
itate the identification of potential therapeutic targets and elucidating 
biological processes.
Results on EHR Data. Table  3 presents the results of different tasks 
on the MIMIC-III dataset (detailed results with more evaluation metrics 
are presented in the appendix). We observe that our proposed frame-
work outperforms alternative methods, thereby validating the effective-
ness of contextual LLM augmentation and sparsity-aware instruction 
prompting. In particular, our method outperforms the competitors by 
7.4% (in accuracy) in length-of-stay prediction. Our method can even 
outperform the methods specifically designed for EHR analysis, includ-
ing GraphCare (Jiang et al., 2023), a similar method using LLM for 
personalized healthcare. We elaborate the key differences between our 
method and GraphCare in the appendix. When integrating the enriched 
context information (e.g., clinical discharge reports, radiology reports, 
and lab event reports) in real-world EHR datasets, the performance on 
clinical task prediction can be further improved.
The Effect of Different LLM backbones.

In light of the importance of LLM backbones on the performance 
of our method, we further study the effects of LLM backbones with 
differnet capacities. We performed experiments with some renowned 
black-box LLMs (we access these LLMs only through APIs) shown in 
Table  4. We observe the differences in model performances, which arise 
from different training methods and parameter sizes. Nevertheless, our 
method can maintain satisfactory performance across different LLM 
backbones, validating its robustness.

5.4. Qualitative results

Embedding Visualization. We visualize the node embeddings of each 
type of entity to evaluate the performance of feature representation 
learning. Fig.  4 presents the TSNE plot of the embeddings generated by 
different methods. The task is readmission prediction on the MIMIC-
III dataset with a GAT model. It is observed that the embeddings with 
DemoGraph are grouped according to their node types, which validates 
that the embeddings learn the unique representation of each node type, 
while the embeddings without DemoGraph are noisy and do not present 
a clear pattern by the node type.
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Table 3
Performance of drug recommendation, length of stay, mortality and readmission prediction on MIMIC-III [%]. Standard deviations are shown in brackets.
 Drug Recommendation Length of Stay Mortality Readmission

Model AUROC AUPR AUROC Acc. AUROC AUPR AUROC AUPR

GRU 96.38 (0.1) 64.75 (0.2) 80.32 (0.2) 42.14 (0.6) 61.09 (0.7) 9.65 (1.5) 65.58 (1.1) 68.57 (1.6)  
Transformer 95.87 (0.0) 60.19 (0.1) 79.31 (0.8) 41.68 (0.7) 57.20 (1.3) 10.10 (0.9) 63.75 (0.5) 68.92 (0.1)  
Deepr 96.09 (0.0) 62.48 (0.1) 78.02 (0.4) 39.31 (1.2) 60.80 (0.4) 13.20 (1.1) 66.50 (0.4) 68.80 (0.9)  
GRAM 94.20 (0.0) 76.70 (0.1) 78.02 (0.4) 39.31 (1.2) 60.40 (0.9) 11.40 (0.7) 64.30 (0.4) 67.20 (0.8)  
Concare 95.78 (0.1) 61.67 (0.3) 80.27 (0.3) 42.04 (0.6) 61.98 (1.8) 9.67 (1.5) 65.28 (1.1) 66.67 (1.9)  
Dr. Agent 96.41 (0.1) 64.16 (0.5) 79.45 (0.6) 41.40 (0.5) 57.52 (0.4) 9.66 (0.8) 64.86 (2.6) 67.41 (1.0)  
AdaCare 95.86 (0.0) 60.76 (0.0) 78.73 (0.4) 40.70 (0.8) 58.40 (1.4) 11.10 (0.4) 65.70 (0.3) 68.60 (0.6)  
StageNet 96.05 (0.0) 62.43 (2.4) 77.94 (0.2) 40.70 (0.8) 61.50 (0.7) 12.40 (0.3) 66.70 (0.4) 69.30 (0.6)  
GRASP 96.01 (0.1) 62.53 (0.3) 78.97 (0.4) 40.66 (0.3) 59.20 (1.4) 9.90 (1.1) 66.30 (0.6) 69.20 (0.4)  
DropNode 97.60 (0.2) 81.41 (0.1) 81.10 (0.5) 41.81 (1.1) 58.06 (0.9) 9.46 (1.7) 64.48 (0.8) 67.75 (0.4)  
DropEdge 95.61 (0.1) 72.32 (0.3) 78.41 (0.3) 39.98 (0.8) 57.85 (0.8) 10.34 (1.5) 62.11 (0.6) 67.46 (0.5)  
RandomWalkPE 94.89 (0.1) 63.86 (0.2) 78.01 (0.4) 39.47 (0.9) 57.15 (1.2) 9.76 (0.9) 66.20 (0.7) 59.58 (0.6)  
LaplacianPE 95.26 (0.2) 69.34 (0.3) 78.22 (0.3) 40.02 (0.9) 57.65 (1.1) 10.05 (1.2) 65.71 (0.6) 63.43 (0.8)  
GraphCare 95.00 (0.0) 78.50 (0.2) 79.40 (0.3) 41.90 (0.2) 66.60 (1.1) 14.30 (0.8) 68.10 (0.6) 71.50 (0.7)  
DemoGraph (Ours) 98.54 (0.2) 83.89 (0.1) 82.68 (0.2) 45.28 (1.0) 67.79 (0.6) 16.09 (1.6) 68.97 (0.4) 73.92 (0.4) 
Table 4
Performance of mortality and readmission prediction on MIMIC-III [%] with different LLM backbones. Standard deviations 
are shown in brackets.
 Mortality Readmission

 Models AUROC AUPR AUROC AUPR  
 GraphCare (GPT-4, KG method) 66.6 (1.1) 14.3 (0.8) 68.1 (0.6) 71.5 (0.7)  
 DemoGraph (LLaMA-3.1-8B) 66.5 (0.9) 14.7 (1.1) 68.0 (0.7) 71.1 (0.8)  
 DemoGraph (Claude-3-Opus) 66.9 (1.0) 15.7 (0.8) 69.0 (0.6) 73.0 (0.7)  
 DemoGraph (LLaMA-3.1-70B) 67.1 (0.8) 15.9 (1.0) 69.2 (0.5) 73.1 (0.6)  
 DemoGraph (GPT-4, original) 67.7 (0.6) 16.0 (1.6) 69.0 (0.4) 73.9 (0.4)  
 DemoGraph (LLaMA-3.1-405B) 67.9 (0.7) 16.3 (1.0) 69.4 (0.5) 73.8 (0.6)  
 DemoGraph (Claude-3.5-Sonnet) 68.0 (0.5) 16.3 (0.8) 69.6 (0.3) 73.9 (0.5)  
 DemoGraph (GPT-4o-mini) 68.0 (0.6) 16.4 (0.7) 69.5 (0.4) 74.0 (0.4)  
 DemoGraph (GPT-4o) 68.1 (0.5) 16.3 (0.8) 69.6 (0.3) 74.1 (0.5) 
 DemoGraph (DeepSeek-V3) 68.6 (0.6) 17.0 (0.9) 69.8 (0.6) 74.1 (0.4) 
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ig. 5. Interpretability visualization of DemoGraph: (Top) Readmission node predicted 
s True, (Down) Case where readmission is False: a visit node (blue) and related concept 
odes (red), with attention scores, visualized in size/shade of red nodes.
o

7 
able 5
erformance w/ and w/o augmentation from KG, and w/ a biased KG from another 
ataset (i.e. PPI), repectively.

w/o KG w/ KG w/ PPI KG
Dataset Acc. F1 Acc. F1 Acc. F1

Cora 82.10 81.66 83.60 83.64 73.70 73.83 
Actor 30.33 27.90 32.21 28.91 30.19 27.82 
Citeseer 72.10 69.60 73.10 72.46 63.40 64.68 

etwork Interpretation. The incorporation of contextual learning 
nhances the capability of the model by enabling a nuanced under-
tanding and interpretation of the graph data at a deeper level. We 
nalyze the interpretability of our model by considering a specific visit 
ode in the MIMIC-III dataset. As shown in Fig.  5, the following are the 
op augmented corrections (i.e., with the highest attention scores) that 
xemplify the importance of specific clinical concepts influencing the 
‘readmission is true’’ prediction: Antihypertensives (2.3722), Anticoag-
lants (1.8628), and arterial blood gases (1.8581), where the computed 
ttention scores are shown below the node name. It is observed that 
he augmentation process can impute context-related concepts so that 
AT can select the most important ones. This provides interpretations 
or the predictive process. This is especially beneficial in the clinical 
ecision context since the enriched open-world knowledge can inspire 
linicians with the embedded concepts, and enhance the understanding 
f patients’ behaviors and the potential reasons for certain diseases.

.5. Ablated analysis

he Effect of Augmented KGs.  We study the effect of augmented KGs 
n downstream task performance (Table  5), including three scenarios: 
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Table 6
Performance of node classification (using GAT) with and without dynamic merging, respectively.
 Cora Actor PPI Citeseer

 Merging Acc. F1 Acc. F1 Acc. F1 Acc. F1

 Static 83.30 83.43 31.45 28.01 96.82 94.67 72.20 71.73 
 Dynamic 83.60 83.64 32.21 28.91 98.28 97.20 73.10 72.46 
.
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Table 7
Performance of node classification (using GAT) with different numbers of edges per 
concept generated by the KG.
 |conn| Cora Actor PPI Citeseer

 Acc. F1 Acc. F1 Acc. F1 Acc. F1

 0 81.3 80.7 30.3 28.0 91.6 97.1 72.1 69.6 
 3 83.6 83.6 32.2 28.9 96.4 97.2 73.1 72.5 
 30 79.3 79.4 31.0 28.8 97.5 97.2 68.5 68.3 
 100 75.4 75.5 30.9 28.4 98.3 97.2 66.2 66.2 

Table 8
Performance of our framework on Cora node classification with different granularity 
levels 𝑠, and with or without IFT, respectively. We denote 𝑠1 as the class type level, 𝑠0
as the dataset level, and 𝑠1 + 𝑠0 as a multi-granularity scheme merging these two levels
 IFT 𝑠 = 𝑠1 𝑠 = 𝑠0 𝑠 = 𝑠0 + 𝑠1

Acc. F1 Acc. F1 Acc. F1

w/o IFT 81.40 81.53 82.17 82.05 81.00 81.07 
w/ IFT 83.20 83.26 83.60 83.64 83.15 83.25 

ith KG, without KG, and with a biased (or wrong) KG augmented 
rom another dataset (i.e. PPI). It is observed that the model performs 
orse than the baseline (i.e., w/o any augmentations) when the wrong 
ontext is applied, indicating a biased augmented graph. On the other 
and, improved performance is observed when a context-driven KG is 
pplied, thus validating the effectiveness of our method. A visualization 
f the effect of DemoGraph on node embeddings can also be found in 
ig.  4.
he Effect of Dynamic Merging.  We evaluate the contribution of 
he dynamic merging schema, as summarized in Table  6, where static 
erging means that the KG are merged into 0 offline before train-
ng. We observe that the performance improved on all generic graph 
atasets with dynamic merging, which validates the contributions of 
he schema.
he Effect of Sparsity Control.  We demonstrate how different levels 
f sparsity affect the performance of graph data augmentation. We 
ontrol the level of sparsity using the number of edges per concept 
conn| used for KG generation. Table  7 presents the results of this study. 
iven a fixed number of concepts, the performance improves when 
conn| increases, demonstrating the effectiveness of graph merging. 
owever, when |conn| is too large compared to the original graph 
ize, the augmented graph would be biased from too many noisy 
onnections, and hence the observed performance deteriorates.
he Influence of Different Granularity and Instruction Fine-tuning.
e evaluate the influence of different granularity and instruction fine-
uning (IFT) on augmentation performance. From Table  8, it is observed 
hat the performance is improved when an appropriate 𝑠 is chosen, 
hile adopting a multi-granularity (𝑠0 + 𝑠1) could potentially lead to 
ver-sparsification. With KG concepts pruned by IFT, the performance 
s consistently improved on different granularity levels.
he Influence of Number of GNN Layers.  We evaluate the per-
ormance of our method with different numbers of GNN layers, as 
ummarized in Table  9. We observe that in general a better perfor-
ance is obtained when the number of layers is small. The performance 
lightly deteriorates as the number of layers increases more than two 
ayers, indicating the potential over-smoothing problem. Other experi-
ents on relatively fine-grained hyperparameters, such as the dropout 
F

8 
Table 9
Performance in terms of accuracy (%) of our framework on node classification with 
different numbers of layers 𝐿, using GCN and GAT. 
 GCN GAT

𝐿 Cora Actor Citeseer Cora Actor Citeseer

1 81.40 31.91 71.77 83.30 32.21 72.70  
2 81.50 32.41 73.10 83.60 29.21 73.10  
3 82.90 31.45 70.45 82.10 28.49 72.10  
4 80.50 30.54 70.04 81.70 28.20 71.70  

ig. 6. Performance of our method on Cora node classifications with respect to 
ifferent dropout ratios, with GAT as the GNN architecture.

ig. 7. Performance of our method on Cora node classifications with respect to 
ifferent numbers of hidden dimensions, with GAT as the GNN architecture.

ate, number of hidden dimensions, and number of attention heads for 
AT, are presented in the appendix. 
ropout Ratios. Since graph learning is difficult to optimize and easy 
o lead to overfitting, we adopt dropout as the default regularizer for all 
enchmark methods. We further study the effects of different dropout 
ates, Fig.  6 presents the results. We observe that our method is in 
eneral robust to changes in dropout rates while being optimized when 
he dropout rate is 0.6. However, a large dropout rate would lead to 
ver-sparsification of neural network weights and important features 
eing dropped, hindering the predictive performance.
Number of hidden dimensions.  We benchmark our method with 
espect to different hidden dimensions. Fig.  7 presents the results of 
his study.
We observe our method is overall robust to different numbers of 

idden dimensions. In general, a larger number of hidden dimensions 
eads to better classification performance. 
Number of attention heads. We benchmark the performance of our 
ethod with respect to different attention heads, as summarized in 
ig.  8. We observe that the performance is overall improving with the 
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Table 10
Analysis of time complexity of training time on the ogbn-arxiv dataset.
 Method DemoGraph (Ours) on GAT TAPE GraphGPT-stage-2 GraphGPT-stage-1 
 Training Time (min) 89 192 224 1325  
Fig. 8. Performance of our method on Cora node classifications with respect to 
different heads of GAT.

number of heads increases, while a larger number of heads (e.g., 32) 
would lead to a heavier memory burden under the current hardware 
settings. 

6. Discussion

Fairness and Privacy Discussion
In the context of EHR research, fairness and privacy are critical 

concerns that warrant thorough discussion, particularly when incor-
porating LLMs for data augmentation. Although the use of LLMs can 
enhance the capture of nuanced clinical relationships, there is a risk 
that inherent biases in the training data may be amplified, thereby 
exacerbating disparities across ethnicities and genders. Additionally, 
the integration of sensitive patient information within these models 
introduces potential privacy risks, emphasizing the need for robust 
anonymization and data protection protocols. Prior studies have pro-
vided valuable insights into these challenges, with empirical inves-
tigations characterizing fairness in clinical risk prediction (Liu, Li, 
et al., 2022) and proposing deconfounding approaches to mitigate 
health disparities in EHRs (Liu, Li, & Yu, 2023; Pfohl, Foryciarz, & 
Shah, 2021). Moreover, the nature of adaptability under the black-
box settings of DemoGraph inherently protects the privacy of patients, 
as the framework leverages latent KGs extracted via external LLM 
interfaces without direct access to raw patient data, thereby ensuring 
that sensitive information remains anonymized. Additionally, in line 
with the insights provided by Pfohl et al. (2024) in their empirical 
characterization of fair machine learning for clinical risk prediction, 
we recognize that ensuring equitable predictions requires careful eval-
uation of how biases may affect disparate patient groups. Addressing 
these concerns within the current framework would not only strengthen 
its ethical foundation but also enhance its applicability in real-world 
clinical settings.
Time Complexity Analysis.  Since we generate the KGs offline using 
the OpenAI API of gpt-4-0125-preview (OpenAI, 2023) (our method 
works under a black-box setting), this process only needs to be per-
formed once for each dataset. The additional complexity arises from 
the dynamic merging process, which needs to be repeated at each 
optimization step. However, the time complexity of this step is trivial 
compared to the forward passing of GNNs. Therefore, it only increases 
the overall time complexity on a minor level.

Table  10 below shows the quantitative analysis of the training time 
complexity on the ogbn-arxiv dataset. 
9 
Efficiency through Single Query and Reuse.  Our prompting
paradigm avoids manual prompt customization for adaptations to 
different datasets, thereby reducing human labor costs. Our method 
necessitates only a single query to the LLM, with KGs and significant 
concept nodes stored for subsequent reuse. Our query process can be 
efficiently completed in 37.6 s in average for the large-scale ogbn-arxiv 
dataset. This approach not only enhances efficiency but also reduces 
the number of API calls, thereby saving the cost of commercial LLMs. 
Additionally, we have provided the responses from the LLMs gained in 
our experiments for the public use. 

7. Conclusion

We propose a novel framework for graph data augmentation,
namely DemoGraph, which leverages the open-world knowledge in 
LLMs to perform context-driven graph data augmentation. Our method 
directly operates on knowledge graphs constructed from LLM outputs 
and does not require access to model weights and features, which 
enables democratization to most of the closed-access LLMs. To tackle 
the sparsity induced by generated knowledge graphs, we design a 
granularity-aware prompting strategy to control the sparsity while 
maximizing the utility of domain knowledge. Experiments on generic 
graph datasets and a medical records dataset with an array of GNN 
architectures validate that our method can better augment the graph 
data than existing methods. Ablation analysis on key components 
and hyperparameters of our method validates the significance of our 
method and robustness to variations. Our method also has a wide range 
of potential application fields beyond medical record analysis such as 
molecular chemistry, recommendation, computational biology, social 
networks, and citation networks etc.
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