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Neural networks (NNs), especially electronic-based NNs, have been rapidly developed in the past few decades.
However, the electronic-based NNs rely more on highly advanced and heavy power-consuming hardware, facing
its bottleneck due to the slowdown of Moore’s law. Optical neural networks (ONNs), in which NNs are realized
via optical components with information carried by photons at the speed of light, are drawing more attention
nowadays. Despite the advantages of higher processing speed and lower system power consumption, one major
challenge is to realize reliable and reusable algorithms in physical approaches, particularly nonlinear functions,
for higher accuracy. In this paper, a versatile parametric-process-based ONN is demonstrated with its adaptable
nonlinear computation realized using the highly nonlinear fiber (HNLF). With the specially designed mode-
locked laser (MLL) and dispersive Fourier transform (DFT) algorithm, the overall computation frame rate
can reach up to 40 MHz. Compared to ONNs using only linear computations, this system is able to improve
the classification accuracies from 81.8% to 88.8% for the MNIST-digit dataset, and from 80.3% to 97.6% for the
Vowel spoken audio dataset, without any hardware modifications. © 2025 Chinese Laser Press

https://doi.org/10.1364/PRJ.553388

1. INTRODUCTION

In the past decades, with the help of powerful electronic hard-
ware, neural networks (NNs) have become an important part of
both scientific applications and daily life areas [1–4]. However,
as the exponential scaling of electronic transistors approaches its
physical limit, the development of electronic hardware ruled by
Moore’s law has seen a tendency to slow down. This becomes
a bottleneck for NN computation performances [5,6]. Thus, it
is of great significance that a new generation of NN computa-
tion platforms is developed. Optical systems, which can also
provide computation solutions as information carriers, have
great potential in altering traditional NN structures into optical
neural networks (ONNs), with the advantages of high energy
efficiency, low crosstalk, light-speed process, and massive par-
allelism computation [7–9].

Though the information in ONNs is processed at the
speed of light, most exciting research on ONNs usually in-
volves direct spatial manipulations and observations with
the help of other electronic devices, such as digital micromir-
ror devices, spatial light modulators, and cameras. The frame
rate of these items, to some extent, is also determined by elec-
tronic hardware and may only reach several thousand Hz, lim-
iting the computation speed of ONNs [10,11]. Therefore, it

is desired that superior optical manipulation and observation
methods are implemented for higher-speed ONNs. On the
one hand, mode-locked lasers (MLLs), which can produce
pulses of ultrashort durations, are able to generate ultra-
wide-bandwidth carrier lasers. In this way, more efficient spa-
tial encoding with waveshapers can be realized [12,13].
Further, by applying temporal dispersion, wavelength-to-time
mapping can be achieved. Utilizing the dispersive Fourier
transform (DFT) technique, spectrum observations can be
conducted with a higher frame rate, as proven to be effective
in microscopy and soliton dynamics observation applica-
tions [14].

Another challenge of ONNs is the realization of effective
and flexible nonlinear computations. In NN systems, nonlin-
ear computations (i.e., activation functions) are required for
closer fittings and higher accuracies [15]. Though efforts have
been seen for specific activation functions, with multimode
fibers (MMFs) [16] or diffractive metasurface [17,18], these
modules are usually designed aiming at one specific task func-
tion, and thus lack the adaptability for different tasks. One of
the potential solutions to this challenge is to apply the non-
linear Schrödinger equation in the system [19,20], specifically
with the highly nonlinear fiber (HNLF). The parametric
process in HNLF can project the input vector to a separable
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vector space, while maintaining certain flexibilities of pre-
sented nonlinear functions by optimizing the equation varia-
bles [21]. Hence, it is promising to implement HNLF for
nonlinear computations in ONNs. Zhou et al. [22] designed
a nonlinear Schrödinger kernel-based hardware accelerator that
can nonlinearly project data into a linear, predictable space.
Although the system has proved to be effective for different types
of tasks, the optical kernels applied are data-dependent and not
trained; therefore, they are still not flexible enough when it
comes to reusable system implementation.

Based on the above discussions, we present here a novel,
high-speed, and versatile optical neural network. An adaptive
nonlinear computation module via HNLF and its parametric
processes are implemented in this system. Aiming at a versatile
system for different types of tasks, we specifically researched
how the gains of the nonlinear Schrödinger process affect
the system accuracy and thus realize the adaptive nonlinear
computation by optimizing the process variables. In this
way, the system can be achieved with versatility for different
types of tasks. Meanwhile, this ONN system can further
achieve an overall computation frame rate of up to 40 MHz
with the specially designed MLL source combined with
DFT processes. Evaluations are conducted on both handwrit-
ten digit datasets and spoken audio datasets with one system
setup without any hardware modification. After applying
nonlinear computations, the classification accuracy is increased
from 81.8% to 88.8% for the MNIST-digit image dataset,
and from 80.3% to 97.6% for the Vowel spoken audio
dataset.

2. METHODS

The novel ONN system design is illustrated in Fig. 1. The laser
source is an inertial-free swept MLL source designed based on
our previous research (102 nm, 10 dB optical bandwidth cen-
tered at 1.55 μm, 22 mW direct output average power, and
1.6 ps pulse width) with a repetition rate of 40 MHz [13].
The input data will be converted into a spectral form and a
waveshaper is then leveraged to directly modulate the input
data onto the MLL pulses. Since the parametric process is
polarization-dependent, a polarization controller is applied at
the output of the waveshaper to optimize the parametric pro-
cess realized in the HNLF.

The parametric process is regarded as the key to the non-
linear computation part of the system. Specifically, HNLF is
used here to realize optical computation in the spectrum

domain, in which the pulses propagate following the nonlinear
Schrödinger equation expressed as Eq. (1):
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∂T 2 � iγP0jU j2U , (1)

where U is the initial field; α is the fiber loss coefficient;
T � t − z∕vg , with t being the physical time and vg being
the group velocity; and γ is the nonlinear coefficient. It can
be seen that Eq. (1) is a combination of linear attenuation,
second-order dispersion, and the Kerr effect, which plays an
important role in the nonlinear parametric process [19,20].

It is worth noting that, apart from the advantages of light-
speed computations and low power consumption, by modify-
ing the modulation signal and optimizing the gains of the
nonlinear Schrödinger process in HNLF, our network features
can be adapted to handle different types of tasks without recon-
structing the system. This will be further demonstrated in the
evaluation sections. Hence, our system provides great potential
for a variety of advanced applications.

Since this computation is fully realized in a physical ap-
proach at the speed of light, the system latency is greatly short-
ened, and the computation capacity is no longer limited by
conventional hardware. Moreover, the MLL pulse has a large
peak power with low average power because of the low duty
ratio; the parametric process can then be carried out by con-
suming only a few milliwatts with the help of the HNLF, which
can introduce a strong nonlinear phase shift on a low power
level [23]. Thus, this nonlinear computation process offers
great energy conservation.

After the nonlinear computations, the proceeding pulse is di-
vided by a 90/10 coupler. Ten percent of the pulse is observed
directly by the optical spectrum analyzer (OSA) for spectrum
references, and 90% is stretched by a dispersion compensation
fiber (DCF) with a dispersion of 166 ps/nm to execute the DFT
process for high-frame-rate observations. Based on the temporal
far-field diffraction with femtosecond laser pulses (MLL) and dis-
persive components (DCF), the transfer function of the temporal
dispersion is expressed as Eq. (2):

H �ω� � exp

�
iβ2zω2

2

�
, (2)

where β2 is the second-order dispersion parameter, z is
the propagation distance, and Φ � β2z is the group
delay dispersion. After the dispersion module, the wavelength

Fig. 1. Experimental setup of parametric process-based ONN. DCF, dispersion compensation fiber; HNLF, highly nonlinear fiber;
MLL, mode-locked laser; OSA, optical spectrum analyzer; PC, polarization controller; PD, photodetector.
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information region is mapped to the temporal information re-
gion [14,24,25]. In this way, the encoded spectrum is recorded
by the oscilloscope in the time domain. Because the spectrum is
acquired by DFT in real-time, the frame rate of the ONN is
equal to the 40 MHz repetition rate of the MLL. Finally, the
observed spectrum is used as the input to a digital decision layer
(ridge regression) to complete the classification task.

The feasibility of the proposed system is initially assessed
through simulations. The ONN structure depicted in Fig. 1
is implemented using MATLAB. The coding block diagram
and related parameter configurations are presented in Fig. 2,
where functions such as SMF_simu( ), HNLF_simu( ), and
DCF_simu( ) are custom-coded for simulating the respective
components in the system. The testing dataset is the MNIST-
digit dataset, which is a collection of handwritten digit images
in different fonts. In our evaluation, 1200 samples are applied
for classification tasks, with 1000 samples for training and
200 samples for testing. These 2D digit images are first resized
into 1D arrays by pixels, and then converted into spectral form
and modulated into the laser source signals by a waveshaper.
The regression penalty term, denoted as alpha, is configured
to be 100. A comparison of flattened data sample “1” both be-
fore and after the HNLF is illustrated in Fig. 3(a), focusing on
an observation wavelength range of 1520–1600 nm. It can be
observed that a significant nonlinear transformation is applied
to the original data input. Meanwhile, the relationship between
the decay of input power gain and accuracy is given in Fig. 3(b).
By optimizing the input gain value, an improved accuracy from
77.17% to 83.78% is achieved. This indicates that in practical
applications, by properly adjusting system variables, our system
can be adapted to completely different tasks without hardware
modifications.

3. EXPERIMENTAL RESULTS

Based on the above results, the system is physically implemented
with the proposed structure and the same parameter settings
as in the simulation. The utilized waveshaper is the Finisar
Waveshaper 4000B. In order to further investigate the perfor-
mances regarding the versatility and accuracy improvement that
benefited from the parametric process on different tasks, evalu-
ations on both digit classifications and audio recognitions are
carried out with the MNIST-digit and the Vowel audio datasets,

respectively. By utilizing the DFT method, the input data is
processed at an overall computation frame rate of 40 MHz
during the evaluations conducted with our specially designed la-
ser source. With a network structure consisting of one full-con-
nect (1-FC) layer, the system is capable of achieving a calculation
speed exceeding 620 GFLOPs.

For the MNIST dataset, it can be observed that with the
physical system, there is a distinct difference between the
encoded spectrum structures before and after HNLF, as
illustrated in Fig. 4(a), thereby resulting in a significant distinc-
tion between features and an increase in classification accuracy.
The confusion matrix with and without nonlinearity
interaction is shown in Fig. 4(b). Without nonlinear compu-
tations, tests on MNIST-digit data only provide an accuracy of
81.5%, whereas we obtain 87.7% accuracy on the test set
with the additional nonlinear computations. Benefiting from
additional complex physical effects, the physical system even
achieves a further accuracy improvement compared to the sim-
ulation result, also as indicated in Fig. 3(b).

Since ridge regression is a linear model, the improvement
in classification performance confirms that it originates from
nonlinear computation. In order to compare our ONN sys-
tem with conventional NNs, we applied various digital linear
approaches [ridge regression, 1-FC, logistic regression, and
linear discriminant analysis (LDA)], as well as digital activa-
tion functions (ReLU, GeLU, and leaky-ReLU), to the same
dataset. The classification report, presented in Table 1, in-
cludes results for both optical input data (referring to the out-
put of the optical system before the HNLF) and digital input
data (referring to the original MNIST-digit data). It is impor-
tant to highlight that our framework achieves a comparable
classification accuracy when compared to these digital neural
network models. Particularly noteworthy is that our system
achieves competitive accuracy with the nonlinearity intro-
duced by the parametric process using HNLF, even when
compared to the nonlinearity provided by commonly used
digital activation functions. This further validates the effec-
tiveness of the novel method we propose.

Next, we further increase the number of digit samples
to 6000, with 5000 samples for training and 1000 samples
for testing. The confusion matrix for both tests with and
without nonlinear computation is shown in Fig. 4(c). The

Fig. 2. Simulation coding block diagram. Self-implemented simulation functions: SMF_simu( ), HNLF_simu( ), and DCF_simu( ).
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improvement in accuracy observed in both tasks is logical, as
increasing the quantity of training samples is a well-known
method for enhancing accuracy in learning outcomes, as men-
tioned in Ref. [26]. Specifically, it is noted that for tasks with-
out nonlinear computations, the accuracy shows a notable
change from 81.5% to 85.5%. On the other hand, in tasks
involving nonlinear computations, the accuracy also increases,
albeit by a smaller margin, from 87.7% to 88.8%. This minor
increase can be attributed to the already competitive results
achieved with smaller datasets. These findings suggest that
our system is adept at extracting additional data features even
when provided with limited data samples, thereby offering a
potential solution to address the challenges associated with
higher power and memory consumption that typically arise
with larger datasets in order to achieve improved accuracy.
The comparison in Table 1 can also confirm the same con-
clusion: with the nonlinearity via parametric process, the
training parameter for similar accuracy is reduced from
50,890 to 784, which is a 98 % decrease. With fewer data
samples to process, the overall speed and efficiency of

the system, to some extent, are correspondingly further
improved.

For audio recognition tasks, an audio dataset with 259
samples of different pronunciations, including “ae,” “ah,”
“aw,” “uw,” “er,” “iy,” and “ih,” from the Vowel dataset is used.
Similarly, with the same system setup, these sampled audio
tracks are then modulated into the source signals in spectral
forms by the waveshaper. For ridge regressions, the ratio be-
tween the training set and the testing set is also 5:1, with
the regression penalty term set to 100.

By optimizing the input power gain of the HNLF, a sig-
nificantly increased accuracy from 80.3% to 97.6% is ob-
served after HNLF, as shown by the confusion matrices
with and without nonlinearity presented in Fig. 5(a). In order
to intuitively show the improvements after HNLF, the linear
discriminant analysis is illustrated in Fig. 5(b). Before HNLF,
the feature components of different pronunciations are heavily
coupled with each other, especially for “er” (brown dots), which
is highly interfered by “iy” (red dots). This results in a 0% ac-
curacy when recognizing “er.” After HNLF, it can be seen that

Fig. 3. (a) Simulated data sample (flattened, “1”) with MNIST-digit database before nonlinear interaction in HNLF (red, frequency domain) and
after HNLF (blue, time domain); (b) tendency of accuracy in relation of input power decay.
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the feature components are better extracted for the pronuncia-
tions, hence obtaining a more distinct distribution and a much
higher recognition accuracy. Thus, it is proved that with the
adaptive parametric process nonlinearity, our system can also

be modified for a more complex audio recognition task in addi-
tion to relatively simpler digit classifications, and implies poten-
tial for more pragmatical types of applications, such as motion
recognition and machine visioning.

Fig. 4. (a) Encoded optical spectrum with MNIST-digit database before and after nonlinear interaction in HNLF; (b) confusion matrices with
and without nonlinearity, 1200 samples; (c) confusion matrices with and without nonlinearity, 6000 samples.
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4. CONCLUSION

In summary, a novel high-speed and versatile parametric optical
neural network that has high potential for applications in multi-
ple areas is demonstrated in this paper. Aiming at the common

challenge of flexible nonlinear activation functions in ONNs, we
propose a parametric process-based realization that can be
adapted for different tasks without modifying the hardware
system. By implementing a specially designed MLL and DFT

Table 1. Classification Reports of MNIST-Digit Dataseta

With Nonlinearity

Input data Optical Optical Optical Optical Optical

Architecture Ridge regression HNLF 1-FC layer HNLF 1-FC layer ReLU 1-FC layer GeLU 1-FC layer leaky-ReLU

Accuracy 87.8% 87.3% 88.5% 88.2% 89.4%

Parameters 784 784 784 784 784

Without Nonlinearity

Input data Optical Digital Digital Digital Digital

Architecture Ridge regression 1-FC layer Logistic regression LDA
(1200 samples)

LDA
(6000 samples)

1-FC layer

Accuracy 81.5% 80.3% 81.4% 65.8% 82.6% 87.5%

Parameters 784 784 784 784 50,890
a1200 samples, 0.01 learning rate (if applicable).

Fig. 5. (a) Confusion matrices with and without nonlinearity, 1200 samples; (b) linear discriminant analysis with and without nonlinearity,
1200 samples.
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process, the overall data processing speed can reach a high speed
up to 40 MHz with a power consumption level of only
a few milliwatts. Evaluations are carried out on both digit clas-
sification and audio recognition tasks. The accuracy is improved
from 81.5% without nonlinearity to 88.8% after HNLF for
the MNIST-digit dataset, and a satisfying increase in audio
recognition from 80.3% to 97.6% is achieved for the Vowel
dataset, which proves the versatility and potential of our system
for a wide range of applications. Meanwhile, an insight into
the comparison with the conventional ONN suggests that
our nonlinear computation is able to effectively extract previ-
ously hidden data features with a 98% reduced scale of parameter
size, which further increases the calculation capacity and
efficiency of the system. Furthermore, with a consistent ultrafast
operation time of 25 ns for each input image manipulation,
the overall computing speed can be significantly enhanced to
hundreds of TFLOPs by incorporating more complex network
structures. If an FC layer with a 1:1000 pixel-node mapping
structure is implemented, a computation speed exceeding 600
TFLOPs can be attained. This level of computational perfor-
mance approaches the speed capabilities of a cutting-edge cluster
of GPUs. Admittedly, the information-imparting process speed is
still limited by the waveshaper. This challenge can be potentially
overcome with temporal modulation methods, which will be
a worthy direction in our future work.
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