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Minimising airborne infection with respiratory viruses, such as SARS-CoV-2, requires knowledge of the infectious
quanta generation rate for determining the minimum dilution requirement. The two existing methods for esti-
mating quanta generation rates are the viral load method and outbreak method. The former method is challenged
by significant uncertainty in input data, including dose-response parameters and infectious viral loads. The latter
method, based on the Wells-Riley equation, is challenged by significant individual heterogeneity in quanta
generation rates and lack of outbreak data. In this study, the two methods are integrated for studying the quanta
generation profile of all individuals infected with an ancestral SARS-CoV-2 strain, based on four reported out-
breaks of infection. The airborne transmission droplet size ranges in the four outbreaks, which were determined
in previous studies, are used to estimate the hourly volume of expired droplets for the viral load method. Various
viral load datasets and conversion factors from RNA copies to infectious quanta are tested. Two criteria are used
to identify the probable quanta generation profile, i.e. 70% of infected individuals do not infect others, and the
estimated quanta generation rates estimated using the outbreak method should be within the top 80%-99% of
infected individuals. The predicted quanta generation profile of all individuals infected with SARS-CoV-2 follows
a log-normal distribution, whereas that of the top 30% of infected individuals approximately follows a power-law
distribution.

Practical significance: A major obstacle in defining dilution requirements for minimising airborne infection
is the lack of infectious quanta generation rates for the general population. Our approach integrates two existing
quanta estimation methods and paves the way to obtaining reliable quanta generation rate profiles at the
population level.

1. Introduction

An increasing number of studies have recognised airborne trans-
mission as the predominant route for the spread of respiratory diseases,
such as COVID-19 and influenza [18,26,40]. Many studied outbreaks
have revealed the long-range airborne transmission of respiratory
pathogens such as severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [21,25,30], influenza viruses [38], SARS-CoV [17], and
Middle East respiratory syndrome coronavirus [41]. Most infections
with such respiratory pathogens occur indoors, e.g. infection with
SARS-CoV-2 [33]. Respiratory infections can cause death. From 1999 to
2015, an annual seasonal influenza-related respiratory death was

estimated at 291,243 - 645,832 [20]. Troeger et al. [35] found that
influenza lower respiratory tract infection caused an estimated 145,000
deaths globally in 2017. Lower respiratory infections were ranked as the
fourth leading cause of disability-adjusted life-years worldwide in 2019
[39].

Theoretically, airborne infection can be controlled if the released
infectious viruses are sufficiently diluted in enclosed spaces. The
observation that indoor environments lead to a higher risk of infection
than outdoor environments is an indirect but clear piece of evidence
[33]. To estimate the minimum dilution required to prevent airborne
infection, the infectious quanta generation rates or other infectious units
should be known [14,27,34]. An infectious quantum is a quantitative
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surrogate for an infectious virus unit with a dose-response parameter of
unity (1/quantum). Significant individual heterogeneity is expected to
exist in quanta generation rates. Most infected individuals do not cause
any secondary infection [1]. Superspreading events drive both an initial
explosive increase in respiratory infection cases and a sustained trans-
mission of the respiratory pathogen [13]. Ending superspreading events
is the key to stopping a pandemic, such as the COVID-19 pandemic, and
there is a need to understand individual heterogeneity in virus shedding,
differences in susceptibility, and other factors [6]. The degree of indi-
vidual heterogeneity in quanta generation remains unknown.

Two existing methods for estimating quanta generation rates are the
viral load method and outbreak method. The outbreak method, which is
based on the Wells-Riley equation, is only applicable to scenarios
comprising a specific index case in a particular infection venue. How-
ever, the number of outbreaks with sufficient input data for this method
is limited. Regarding the viral load method [4,5], viral loads have been
widely monitored, and the estimated quanta generation rate profiles
may be applicable to the general population, at least theoretically.
However, significant uncertainty exists in the conversion factors from
RNA copies to infectious quanta and in the viral load datasets. Mean-
while, not all expired droplets contribute to infectious quanta, and the
effective size range of expired droplets involved in airborne transmission
is a function of the air dilution system ([11,37]; and [31]). In studying
the viral load method for determining the population quanta generation
rates, Jones et al. [16] concluded that “the predictions are so uncertain
that they cannot be used in any meaningful way to provide useful
quantitative guidance for designing indoor spaces.”

In the present study, the outbreak method based on the Wells-Riley
equation and the viral load method are integrated. In the viral load
method, a recently obtained volume of hourly generated airborne
transmission droplets [11] is tested against three datasets of viral loads
and four datasets of conversion factors. In the outbreak method, four
outbreaks of infection with the ancestral SARS-CoV-2 strain with full
input data are investigated, i.e. a restaurant [21], a courtroom [36], and
two buses [30]. The basis for combining the two methods is that the
deterministic individual quanta generation rates can be used to evaluate
the probabilistic population data. To select the most probable quanta
generation rate distribution among those obtained from the viral load
method, two criteria are developed, i.e. 70% of infected individuals do
not infect others [1], and the quanta generation rates estimated using
the outbreak method in the four venues should be within the top 80% —
99% of infected individuals. The minimum quanta generation rate to
cause a secondary infection is inferred from existing outbreak data. This
novel integrated approach enables us to obtain the first quanta gener-
ation rate distribution for all infected individuals and for the top 30% of
infected individuals.

2. Methods
2.1. Probable quanta generation rate profiles

We define a unit-size bin [dp,dp 1) of expired droplets, whered, = 1,
2, 3,4 ... 999, which is the lower bound of each unit-size bin [dy,dp1) ,
and dy,; =dp + 1, which is the upper bound of each unit-size bin except
when the droplet diameter is <1 pm, i.e. d, = 0.1, dyy; = 1. Thus,
1000 unit-size bins exist between 1.0 and 1000 ym and in the range [0.1,
1.0). These bins are all referred to as unit-size bins. The bracket notation
[) indicates that the lower bound is included in the range, while the
upper bound is not.

The expired droplets involved in long-range transmission are
referred to as airborne transmission droplets, and their size range is [dol,
d,] . All droplets expired from the mouth or nostril within the airborne
transmission size range, i.e. airborne transmission droplets, contribute
to the infectious quanta generation rate Q (number/h). In the viral load
method, the quanta generation rate is estimated as follows.

Building and Environment 267 (2025) 112256

Q= eV, @

where Vex|Z::l“ = f ;o"l“ c‘li("éix)/é-dgddo (mL/h) is the hourly volume of expired

droplets within the airborne transmission size range [da,z, do‘u]; ¢y (RNA
copies/mL) is the viral load in the expired droplets; and c¢; (quanta/RNA
copies) is the conversion factor from viral RNA copies to infectious
quanta.

The viral load ¢, is variant-dependent with individual heterogeneity
and varies with the number of days after symptom onset. The viral load
is assumed to be the same in all droplets. Three datasets of viral loads for
the ancestral SARS-CoV-2 strain are tested. The first dataset is from a
systematic literature review by Chen et al. [7], which found that log;4c,
follows a Weibull distribution, with a scale factor of 6.66 and a shape
factor of 3.52 [n = 50] on day O after symptom onset, and with other
factors on other days after symptom onset. The second dataset is from
the study by Puhach et al. [32], who identified 15 samples of the
ancestral SARS-CoV-2 strain and detected 13 of them to have non-zero
values of focus-forming units. The log10-transformed viral load results
of the 13 samples [n = 13] are fitted with a normal distribution of
N(8.85, 1.182) in the present study (Supplementary Information SI 1).
Additionally, the datasets from the study by Buonanno et al. [4] were
also tested but were not found to satisfy our criteria. Buonanno et al. [4]
considered a normal distribution of N(7, 0.712) for log, ¢, with refer-
ence to five viral load datasets in the literature.

Four datasets of the conversion factor c; are identified. The first three
are as follows: a value within the range of 0.01-0.10 (denoted ‘uniform’;
[51); a constant value of 1/700 (denoted ‘constant’; [3]); and a revised
constant value of 0.0146 (denoted ‘constant’, identified in this study).
The proposal of the revised constant value (¢; = 0.0146) will be
explained later in Section 2.4. Buonanno et al. [5] did not specify the
distribution for the conversion factor c;, so a uniform distribution
U(0.01, 0.1) is assigned in this study. Fourthly, the reciprocal of the
product of two normal distributions, N(210, 212) and N(130, 132),
from the study by Buonanno et al. [4] was tested, but was not found to be
suitable.

Finally, with two chosen datasets for the viral load ¢, and three
chosen datasets for the conversion factor c;, we have six possible com-
binations of viral load and conversion factor for estimating quanta
generation. The built-in function of the empirical cumulative distribu-
tion function plot (cdfplot) is used to obtain the cumulative probability
mass plots for ¢, and ¢; (Figure S1.1).

Each combination of input data generates a quanta generation rate
profile. Choosing the most probable profile is not an easy task. A prob-
ability distribution is characterised by both location and scale parame-
ters (Fig. 1). The location of the probability distribution is determined
using the observation that 70% of infected individuals did not cause any
secondary infection. There is a need to determine the corresponding
quanta threshold value Q,q, at which no infection occurs. The shape of a
probability distribution is guided by the spread of the curve. Our strat-
egy is to use the quanta generation rates from the observed outbreaks.
Ideally, if the sample size is sufficient, such a strategy should work well.
Only the curves within the range of the known quanta generation rates
are possible candidates. The challenge is that the number of outbreaks
with reliable input data is limited. The detailed selection strategy is
described later in Sections 2.4 and 2.5.

2.2. Four infection venues

A major input parameter in the viral load method is the hourly
volume of expired droplets within the airborne transmission droplet size
range [d,;, do,]. The airborne transmission droplet size range may not
be identical in all spaces, but instead depends on dilution ability. Hy-
pothetically, with a ‘typhoon’ wind in a building, no expired droplets
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Fig. 1. Screening criteria for determining the shape and location of the cumulative probability distribution of the population quanta generation rates.

would be able to be airborne, but would instead be completely removed
so that the range of droplet sizes involved would be zero. It is thus
essential to use a realistic range of dilution flow rates to estimate [d, ],
dO.Ll] .

We examined four venues of COVID-19 outbreaks for which
approximately complete outbreak and environmental data are available:
a courtroom, a restaurant, and two buses (Table 1). In all four outbreaks,
exposure occurred on the day of symptom onset of the index case, and
the outbreaks were caused by the ancestral SARS-CoV-2 strain. The
outbreaks exhibited varying levels of attack rates (10.2% to 33.3%),
occupied air volumes (1.2 to 15.0 m3 per person), ventilation rates (0.9
to 3.5 L/s per person), total dilution (3.52 to 7.60 L/s per person), and
exposure time (1.0 to 3.3 h).

The exhalation and inhalation rates are estimated based on meta-
bolic rates, which are in turn estimated from the observed physical and
respiratory activities. The exhalation and inhalation rates are similar
across all venues except the restaurant, where the index case exhibited a
high level of body movement and vocalisation, resulting in an increased

Table 1

pulmonary rate.
In our previous study [11], we estimated the airborne transmission
droplets in the four outbreak venues using the droplet dataset provided

by Johnson et al. [15]. The dataset covered the range of 0.1-30 um for

dNex dCex (do
dd(:i()) = dd(o >qex; we

estimated the size distribution of expired droplets. A transient number
balance model was used together with existing formulas for
size-resolved settling rates and filtration efficiencies, and a deposition
model from the International Commission on Radiological Protection.
This enabled a determination of the size-resolved concentrations of
exhaled droplets in indoor air, the size-resolved number of droplet
nuclei in the inhaled air, and the number of droplets deposited
throughout the respiratory tract.

Three criteria were used to determine whether a droplet unit-size bin
should be included in airborne transmission droplet size range [11]. The
first criterion is the indoor air criterion, i.e. the number concentration
within that bin at the steady state must be equal to or greater than
1 #/m?3. The second criterion is the inhalation criterion, i.e. at least one

breathing and 0.1-1000 um for speaking. Using

Outbreak-related data for the four COVID-19 outbreak venues (adapted from [11]). The quanta generation rates in bold are calculated using the dilution flow rates in

the table, and those in normal font are obtained from the literature.

Parameter category Parameter Courtroom Restaurant Bus 1 Bus 2
Studies Vernez et al. [36] Lietal. [21] Ou et al. [30] Ou et al. [30]

Exposure date® 09/30 01/24 01/22 01/22

Symptom onset date” 09/30 01/24 01/22 01/22

Day from symptom onset to transmission 0 0 0 0
Outbreak No. of index cases 1 1 1 1

No. of susceptible individuals 9 88 46 17

No. of secondary infections 3 9 7 2

Attack rate (%) 33.3 10.2 15.22 11.76

Air volume (m®) 150 431 60.42 21.69
Venue 3

Occupancy (m” per person) 15.0 4.8 1.3 1.2
Room dilution (h%, or L/s)" Total dilution, gr 55.0 677.6 96.2 63.4

Transient correction factor (1 — C;) 0.75 0.85 0.95 0.90
Dilution per person (L/(s~person))b Outdoor air, g, 1.62 0.90 1.71 3.21

Total dilution, g, 5.50 7.60 2.05 3.52
Pulmonary rate and exposure Inhalation rate, gin, m3/h 0.576 0.701 0.576 0.576

Average exposure time At, h 3.0 1.206 3.33 1.0

Mask wearing None None None' None
Targeted quanta generation rate Q (quanta/h) 61.7-90.0 154.9-364.6 31.4-37.1 54.8-65.9

2 The outbreak occurred in 2020.

" The settling rate is assumed to be a constant of 0.3 kL. The filtration efficiency in the restaurant is 20% [21].
¢ The inhalation rate g, and the exhalation rate g, are assumed to be equal and are estimated based on observed activities [11].
4 Only five passengers on Bus 1 and one passenger on Bus 2 were found to be wearing masks based on the available screenshots from closed-circuit television videos

[30]. Mask wearing is not considered in the calculations.
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particle (droplet) in a unit-size bin [dy,d}. 1) must be inhaled within the
exposure duration. The third criterion is the deposition criterion, i.e. at
least one particle (droplet) within a unit-size bin must be deposited in
the total respiratory tract within the exposure duration. The size range
determined by the inhalation criterion is always the largest, which is
chosen for this study. For the courtroom, the size range is [0.1, 6]; for the
restaurant, it is [0.1, 4]; and for Bus 1 and Bus 2, it is [0.1, 5]. The hourly
numbers (volumes) of expired droplets are 95,043.4 #/h (0.40 nL/h) in
the courtroom, 113,111.8 #/h (0.42 nL/h) in the restaurant, and 96,
320.1 #/h (0.38 nL/h) on the buses. The volume of the hourly generated
airborne transmission droplets does not vary significantly with the
determined size range, when the upper/lower bound of the 95% confi-
dence interval and the average size distribution of the expired droplets
are employed respectively [11].

2.3. Targeted quanta generation rates

For consistency, a set of quanta generation rates Q is estimated from
the reported outbreaks using the transient Wells-Riley equation.

in
P o1 ¢ Qg -0 @

where P is the observed attack rate in the outbreak, and g4 is the total
dilution rate obtained using settling/filtration data in each of the
outbreak venues, L/s. The index case arrives at time t = 0, and At is the
exposure duration in hours. Regarding the transient effect, the coeffi-
cient G, =1¢ e
changes per hour. The total dilution rates and inhalation rates provided
in Table 1 are used, and the targeted quanta generation rates are also
summarised in Table 1, which are obtained as follows.

For the courtroom, a transient Wells-Riley model gives a quanta
generation rate of 61.7 quanta/h using the total dilution data in Table 1.
Vernez et al. [36] estimated a mean value of 90.0 quanta/h when the
ventilation rate was 0.23/h and the windows were closed. They con-

ducted Monte Carlo simulations with an infection probability of 3 —3 and

is the transient correction factor, where nr is air

a settling rate of 0.3 — 1.5, whereas only the lower ends of the two pa-
rameters, 5 and 0.3, are used in our calculations. Considering un-
certainties, the targeted quanta generation rate falls into the range of
61.7-90.0 quanta/h for the courtroom.

For the restaurant, the transient Wells-Riley model gave quanta
generation rates of 79.3 quanta/h in the study by Li et al. [21] and 154.9
quanta/h in the study by Jia et al. [14] (in which the restaurant was
considered as a single zone) and a quanta generation rate of 364.6
quanta/h using the total dilution data in Table 1. Li et al. [21] did not
consider the dilution caused by filtration and assigned an inhalation rate
of 1.65 m>/h to the occupants, which led to a low prediction of the
quanta generation rate. Jia et al. [14] considered filtration but still
assigned a high inhalation rate (1.65 m>/h) to the occupants and thus
obtained a mid-level quanta generation rate. Here, an inhalation rate of
0.701 m>/h is estimated, and filtration is accounted for. The targeted
quanta generation rates for the restaurant fall into the range of
154.9-364.6 quanta/h.

For Buses 1 and 2, Cheng et al. [9] determined the quanta generation
rates of 37.1 and 65.9 quanta/h, respectively. Ou et al. [30] adopted a
steady-state Wells-Riley equation and estimated 35.0 quanta/h for Bus 1
and 58.3 quanta/h for Bus 2 (or 36.9 and 64.4 quanta/h, respectively,
when a transient equation was used). In the current study, the inhalation
rate of 0.576 m>/h yields slightly lower quanta generation rates of 31.4
and 54.8 for Buses 1 and 2, respectively, than the inhalation rate of 0.49
m3/h used by Cheng et al. [9] and Ou et al. [30]. The targeted quanta
generation rates for Buses 1 and 2 fall into the ranges 31.4-37.1 and
54.8-65.9 quanta/h, respectively.
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2.4. Threshold quanta generation rate for locating the probability
distribution

The steady-state Wells-Riley equation for one infector in a venue

_glin
QQT At

states that P = g— =1- e( >, where N, is the number of sus-

ceptible individuals, gr is the total dilution air flow rate (m3/h), and Q is
the quanta generation rate (quanta/h). The exposure time At is usually
one to a few hours in most indoor venues, such as classrooms, restau-
rants, and buses. When the infection probability is sufficiently small, the
equation can be simplified as P ~ Q% At. Consequently, the number of

secondary cases can be approximated as N; = Qq“"h“ NNlp where qt< =
L

N,

N1 is less than 0.9 when

Nfil) is the dilution rate per person and

N, <9.IfQ > ql‘j‘m N;’v“, N; > 1. This means that if the ‘average’ dilution

rate per person, the ‘average’ exposure time and the average number of
susceptible individuals are all known, the threshold quanta generation
rate for producing one secondary infection can be estimated.

Adam et al. [1] identified 169 resolved COVID-19 transmission pairs
of infector-infectee in Hong Kong during the period from 23 January
2020 to 28 April 2020 and found that 69% (65%-71%) of cases did not
transmit to others. This allows us to suggest a criterion for the location of
the probability curve (Fig. 1), i.e. at 70%, the quanta generation rate
should be the threshold quanta generation rate.

There are at least two methods to obtain the average dilution rate
and average exposure time. The first is to obtain the typical dilution flow
rates and people’s gathering time in a sufficient number of indoor spaces
across the ‘world’. Such data are not available yet. It is also likely that
many indoor spaces do not lead to secondary infections. The second is to
gather data from observed outbreaks. Here we use COVID-19 outbreaks
as an example. Luo et al. [22] identified 50 COVID-19 outbreaks, and 13
of these have available or estimated dilution rates (SI 2). These 13
outbreaks are summarised in Table S2.1. The mean equivalent dilution
rate q; is 9.14 L/s per person. The mean exposure time is 4.16 h The
average number of susceptible individuals is 140. The estimated inha-
lation rates g, for occupants (sitting, occasionally speaking) range from
0.15to0 0.20 L/s. The corresponding threshold quanta generation rates in
these venues range from 11.06 to 14.75 quanta/h, with an average of
12.91 quanta/h, i.e. at most one secondary infection occurs (N; < 1).
Therefore, a threshold quanta generation rate of 13 quanta/h is
established.

Aeroplanes are expected to be mostly well diluted, and the inclusion
of aeroplanes may distort the dilution data of typical indoor spaces on
land. Therefore, after excluding the aeroplane outbreaks, the mean
equivalent dilution rate g, is 5.09 L/s per person and the mean exposure
time is 1.79 h The average number of susceptible individuals is 72. The
corresponding threshold quanta generation rates of these venues range
from 14.37 to 19.16 quanta/h, with an average of 16.76 quanta/h. Thus,
another threshold quanta generation rate of 17 quanta/h is found.

For simplicity and considering uncertainty, the chosen 70th
percentile value is 17 quanta/h in this study. The revised constant value
of 0.0146 is proposed to meet the criterion: Q,qy, = 17 quanta/h for the
Puhach et al. [32] viral load dataset. For the other two viral load
datasets, conversion factors higher than 1 (¢; =2.04 and ¢; = 3.40,
respectively) are required to achieve Q,qy, = 17 quanta/h, and thus are
not considered. Calculations are also performed for a value of 13
quanta/h (SI 3). Similarly, a revised constant value of 0.0111 is pro-
posed to meet the criterion: Qo = 13 quanta/h for the Puhach et al.
[32] viral load dataset. For the other two viral load datasets, conversion
factors higher than 1 (¢; = 1.56 and ¢; = 2.60, respectively) are required
to achieve Q,q,, = 13 quanta/h, and thus are not considered.
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2.5. Strategy for selecting the shape of the quanta probability distribution

Adam et al. [1] also estimated that ‘19% (15%-24%) of cases were
responsible for 80% of all SARS-CoV-2 transmission in Hong Kong’,
which follows the 20/80 rule. We infer that the quanta generation rates
for the index cases in the observed outbreaks should be within the top
20% of infected individuals. The number of secondary infections in each
outbreak caused by an infected individual between the top 30% and top
20% of infected individuals is likely to be small, and such outbreaks are
probably less likely to be identified than those caused by the top 20%
infected individuals.

We further assume that the quanta generation rates for the index
cases in the observed outbreaks should be within the 80th-99th
percentile range. The 99th percentile upper limit is laid artificially to
avoid the randomness and rareness of extremely high quanta generation
rates in the population. To demonstrate how the quanta generation rates
from the outbreaks can be used to select the shape of the quanta prob-
ability curve, consider three curves that satisfy the location criterion
(Fig. 1). The curve that is ‘narrower’ than the middle curve (thick solid
line in red) has one quanta value located beyond the 99th percentile, so
it is not chosen. The curve that is ‘wider’ than the middle curve has one
quanta value located between 70% and 80%, so it is also not chosen.

3. Results

3.1. The viral load dataset published by Puhach et al. [32] and a revised

constant conversion factor (c; = 0.0146) yield the most appropriate Q
distribution

For the four outbreaks studied here, each had a single index case, and
virus transmission in all of the outbreaks occurred on the first day of the
index cases’ symptom onset. This allows us to estimate the quanta
emission rate for each index case on the first day of symptom onset.

A significant heterogeneity in the viral load is expected between
individuals. This suggests that it is impossible to use the viral load
approach to predict the exact viral load profile of an individual on a
particular day. Moreover, the number of expired droplets exhibits
heterogeneity.

Fig. 2 illustrates how we arrive at the quanta emission rate profile
determined using the viral load dataset provided by Puhach et al. [32]
and a revised constant conversion factor (0.0146). For all four out-
breaks, only one such combination, i.e. ‘Puhach-revised constant’, en-
ables the target quanta emission rates to fall within the 80th-99th
percentile ranges and also satisfies the location requirement of the 70%
quanta value of 17 quanta/h. Hence, only the ‘Puhach-revised constant’
quanta profile is retained. However, the targeted quanta value
(31.4-37.1 quanta/h) for Bus 1 is slightly lower than the Qgg, t0 Qogy,
range (Fig. 3), and is reluctantly accepted here considering the uncer-
tainty in input data in the outbreak.

A total of 24 quanta generation rate profiles are summarised in
Table 2 for the four outbreaks, with each outbreak analysed using six
combinations of viral load and conversion factor.

3.2. The quanta generation profiles of the top 30% of infected individuals
follow a power-law distribution

The quanta generation rate profiles that are estimated using the
combination ‘Puhach-revised constant (¢; = 0.0146)’ are relatively
consistent across the four venues, even though these venues had
different dilution abilities. The complete quanta generation profiles are
found to follow a log-normal distribution (Fig. 4), i.e. log,,Q ~
N(0.62, 1.18%) for the courtroom, N(0.64, 1.182) for the restaurant,
and N(0.59, 1.182) for the buses. The adjusted R? values are near 1 for
all, showing that the fitted parameters estimate almost 100% of the
variation in the dataset. The log-normal distribution seems to capture
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well the spread and central tendency of the quanta generation rates for
the population infected with the ancestral SARS-CoV-2 strain, with most
values clustering around a central value, but also having a long tail to-
wards larger values.

The probability of each quanta generation rate for the top 30% of

infected individuals for the investigated venues, i.e. P(N) =

If‘,’fg 55 (Q)d(Q), is shown in Fig. 5. All of the estimated probability

profiles follow a power-law distribution, i.e. P(N) = 0.351N~!34! for the
courtroom, P(N) = 0.359N~1342 for the restaurant, and P(N)=
0.345N-134! for the two buses. The closest natural numbers to the 70th
percentile value (17 for the courtroom, 18 for the restaurant, and 16 for
the buses) are used as the starting point of the fitting dataset.

The hourly volume of expired droplets in the long-range airborne
transmission size range is 0.40 nL/h for the courtroom, 0.42 nL/h for the
restaurant, and 0.38 nL/h for the buses. Considering the average hourly
volume of 0.395 nL/h across the four outbreak venues, the estimated
probability profiles of the top 30% of quanta generation rates follow a
power-law distribution as P(N) = 0.352N~1343, The full list of proba-
bilities of the final quanta generation rates between 0 quanta/h and
1000 quanta/h is attached. Please refer to the Excel file named Proba-
bility_Power law.xls.

4. Discussion

4.1. The power-law distribution of the quanta generation rates partially
explains the superspreading events

Our study is the probably first to demonstrate that the quanta gen-
eration rates for the top 30% of infected individuals follow a power-law
distribution.

Many studies on super-spreading events (e.g. [1]) have suggested
that the top 20% of infected individuals are responsible for most sec-
ondary infections and that the bottom 70% of infected individuals do not
infect anyone. It is thus essential to determine the distribution of the
quanta generation rates for the top 20%-30% of the population (Fig. 3).
It may not be a coincidence that our estimated data show that up to
approximately 80% of infected individuals have quanta generation rates
of less than ~40 quanta/h. Our approach uses various combinations of
input data, specifically viral loads and conversion factors. Multiple
quanta generation rate profiles are predicted. We have used the
observed characteristics of superspreading events and the outbreak data
to choose the most likely quanta profile. Our finally obtained quanta
generation profile satisfies the observation that the bottom 70% of
infected individuals do not infect anyone Q<17 quanta/h). Moreover,
the top 20% of infected individuals cause most of the secondary in-
fections, that is, the quanta generation rates obtained from existing
outbreaks are within the top 20% of infected individuals.

This is the first study to obtain the first complete profile of quanta
generation rates of the top 30% of infected individuals. Further verifi-
cation of this profile will enable it to be used to develop minimum
dilution requirements for respiratory infection control. The quanta
generation rate of the top 30% of infected individuals follows a power-
law distribution, whereas that for all infected individuals follows
approximately a log-normal distribution. Such a power-law distribution
of the top 30% of infected individuals may explain why super-spreading
events follow a power-law or negative binomial distribution [1].

In the classical Wells-Riley equation, if infectious quanta generation
rates are known, the dilution required to reduce the infection risk to an
acceptable level may be determined in any setting [27]. This is only
theoretically correct. The infectious quanta generation rate profile of the
general infected population is needed, rather than that of a particular
index case at an outbreak venue. The latter is only applicable to a spe-
cific index case in a specific setting. The population quanta generation
rates should be used to determine the minimum dilution rates. However,
the existence of super-emitters suggests that no minimum dilution rate
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Fig. 3. The j(%)mm £(Q)d(Q) curves for the four outbreaks, i.e. the cumulative
probability mass, obtained using the viral load dataset reported by Puhach et al.
[32] and a revised constant conversion factor (0.0146). The transparent red
band represents the target quanta generation rates for the courtroom
(61.7-90.0 quanta/h), blue for the Guangzhou restaurant (154.9-364.6 quan-
ta/h), left black band for Bus 1 (31.4-37.1 quanta/h), and right black band for
Bus 2 (54.8-65.9 quanta/h). The red star indicates the point (17, 0.7), while the
golden curve highlights the profile from the Qggy to Qogy, range in the
selected percentile.

exists for any single space to avoid infection. For example, for a quanta
generation rate of 100 quanta/h and exposure time of 1 h, a dilution air
flow rate larger than 10 L/s per person might be sufficient in a large
classroom to avoid a secondary infection. However, for a quanta gen-
eration rate of 2000 quanta/h (Table 2), a dilution air flow rate larger
than 200 L/s per person will be needed, which is unrealistically high for
typical classroom settings. A population strategy should be used to
control the spread of pathogen in an epidemic or pandemic of airborne
infection. The causes of superspreading events are not limited to
super-emitters. Super-contactors (with close contacts to many suscep-
tible persons), super-exposure (long exposure time), and poorly venti-
lated spaces are also possible causes. It might be possible to develop
dilution strategies at the building stock scale to ensure that the popu-
lation reproduction number RO is less than one. This will require a
knowledge of the dilution air flow rate profiles of the building stock in a
city, the exposure time distribution in different indoor settings in a city
and their metabolic activity profiles. The eventual implementation of
such dilution measures needs to consider trade-offs between health,
comfort, energy, and cost [12].

The quanta generation rate for the total infected population is found
to follow a log-normal distribution. The top 30% infected is a fraction of
the infected population, and the quanta generation rate profile for the
top 30% is the right tail of the log-normal distribution of the total

Table 2
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population. The right tail is very important to infection control. Both
log-normal distribution and power-law distribution would imply that
the top infected individuals have high quanta generation rates. It is
unfortunate there is a lack of the observed high quanta generation rate
data at the very right tail for verification. A lognormal distribution
would predict a higher quanta generation rate at its right tail and a

035 : . ' |
Court
logyo@ ~ N(0.62,1.18%)
03F Restaurant |
logyo@ ~ N(0.64,1.18%)
025 Buses
> logyo@ ~ N(0.59,1.18%)
8
5 02
2
:'g 0.15
3
[
~
0.1
0.05

-4 2 0 2 4 6
log,,@, number/h

Fig. 4. (long): probability density around log;,Q of interest, comparing the
estimated and fitted distributions of log,,Q for the courtroom, restaurant, and
two buses. The shaded areas under the fitted curves are of a mixed colour due to
the overlapping of red, blue, and black.
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values in each venue.

Comparison between the target ranges and the estimated Qggs, to Qgoo, ranges in the four outbreaks using six combinations of viral load and conversion factor.

Venue Target range Chen-uniform Chen-constant (1/700) Chen-revised constant (0.0146)
Courtroom 61.7-90 0.8-391.3 0.0-10.7 0.2-109.4

Restaurant 154.9-364.6 0.9-410.9 0.0-11.3 0.3-114.9

Bus 1 31.4-37.1 0.8-371.7 0.0-10.2 0.2-103.9

Bus 2 54.8-65.9 0.8-371.7 0.0-10.2 0.2-103.9

Venue Target range Puhach-uniform Puhach-constant (1/700) Puhach-revised constant (0.0146)
Courtroom 61.7-90 140.0-8714.6 4.0-230.3 40.7-2348.8

Restaurant 154.9-364.6 147.0-9150.3 4.2-241.8 42.7-2466.2

Bus 1 31.4-37.1 133.0-8278.9 3.8-218.8 38.6-2231.3

Bus 2 54.8-65.9 133.0-8278.9 3.8-218.8 38.6-2231.3
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power-law distribution predicts less. For example, in the considered
restaurant, our Monte Carlo simulation using the integrated method
predicts a quanta generation rate of 2470 quanta/h for the 99th
percentile infected, while the fitted log-normal distribution predicts a
corresponding value of 2420 quanta/h, and the power-law distribution
predicts 1223 quanta/h.

The underlying mechanisms for the observed quanta generation rate
distribution remain to be studied. The quanta generation rates would
depend on a number of multiplicative factors (Eq. (1)), i.e. the number
and size of the airborne transmission droplets (considered to be constant
in our study), the viral load (log-normal or normal distribution), the
conversion factor from RNA copies to infectious quanta or the dose-
response parameter (depends on the susceptible persons in terms of
susceptibility and immunity, distribution unknown) etc. Multiplicative
products of random factors are known to be log-normal [24]. If the viral
load is the major determining factor (very likely), then the viral load
itself and the susceptibility of the population are both heterogeneous (e.
g. for example see [29]).

This study represents likely the first attempt to obtain a quanta
generation distribution at the population level with verification by
outbreak data and infection data. Quanta generation rates may also be
obtained for different days after symptom onset by using available viral
load data (e.g. [7]). Data on transmissivity could be used to derive in-
fectious quanta generation profiles for different variants of SARS-CoV-2.

4.2. The new profile selection method offers a new approach for
determining the population-level quanta generation rates

The viral load method first developed by Buonanno et al. [4] differs
from the outbreak method and has one obvious advantage in that it
requires no outbreak-related data. The outbreak method requires exact
dilution parameters inside the venue, such as the ventilation rate and
filtration rate, at the time of exposure. However, ventilation rates often
vary in time, depending on window/fan use and air conditioning oper-
ation, and it is not straightforward to access an outbreak venue to
measure ventilation or other types of dilution and collect detailed
associated infection data. There have likely been millions of outbreaks of
SARS-CoV-2 infection worldwide, but complete dilution monitoring has
been conducted only for a very small number of these outbreaks; in fact,
to the best of our knowledge, complete dilution monitoring has only
been performed for the four outbreaks studied here and two other
restaurant outbreaks in Hong Kong [8]. Furthermore, in the case of
many outbreaks, such as the Luk Chuen House outbreak in Hong Kong
[10], it is difficult to determine the exposure time. It is difficult to collect
data on enough outbreaks (i.e. a sufficient sample size) to determine the
infectious quanta generation rate distribution using the outbreak
method.

The viral load method of estimating infectious quanta generation
rates for the general population requires three datasets, namely datasets
of the expired droplet size distribution within the airborne size range,
viral load distribution, and conversion factors from the viral load to
infection quanta. The size-dependent settling rate [28] and filtration
efficiency are essential for estimating the airborne droplet size range for
airborne transmission. The existing conversion factors contain signifi-
cant uncertainty [4]. Thus, a major contribution of the current study in
terms of methodology is its integration of the outbreak method and
major transmission characteristics into the viral load method developed
by Buonanno et al. [4]. Our novel profile selection method (for both
location and shape selection) partly resolves the lack of data on the
conversion factor and the uncertainty in viral load distribution. Our
developed method should be applicable to other respiratory infections
which are predominantly transmitted by the airborne route, particularly
those with significant individual heterogeneity [19] as with
SARS-CoV-2. However, both outbreak data and infection data are
needed for choosing the shape and location parameters in the quanta
generation rate profiles. Our obtained profile might need to be adjusted
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using local heterogeneity data of infection. We used the 80/20 rule of
Adam et al. [1]. Similar results were obtained elsewhere (e.g. [2]). In
Marks et al. [23] studied a cohort of 282 index cases, and found that 68%
did not cause secondary infections, while 32% caused infection clusters.

Our study also demonstrates a need to obtain reliable data on the
expired droplet profiles of the infected individuals, the viral load pro-
files, and conversion factors from RNA copies to infectious quanta, as all
three of these parameters exhibit high heterogeneity across individuals
and activities.

4.3. Limitations

This study has several limitations. First, the accuracy of our estimates
of infectious quanta generation rates depends on the accuracy of the
available data on expired droplets, viral load, conversion factor, and
dilution flow rates. As more accurate data become available, our
developed approach can be used to refine the estimates. However, our
proposed location and shape selection method shows promise in
handling some aspects of data uncertainty.

Second, the sample size for the outbreak data is too small for
determining the threshold quanta generation rate for location selection.
Additionally, only data from four outbreak venues are used for shape
selection. Availability of more outbreak data will further improve the
selection. For outbreak investigations, we suggest implementing a more
comprehensive and standardized reporting system that includes the
environmental measurement such as ventilation and filtration. Low-cost
hourly indoor air quality monitoring might be installed in targeted in-
door spaces such as nursing homes, restaurants and jails etc. as infection
hotspots, so that when an outbreak occurs in one of such monitored
spaces, the environmental data can be retrieved. New privacy-proof
technologies for monitoring occupancy and close contacts may also be
used [42].

Third, our determination of the quanta generation rate is limited to
the ancestral SARS-CoV-2 strain and the day of symptom onset. The
developed method may be extended to other respiratory viruses and the
full course of the disease. In an upcoming study, this was achieved using
the quanta generation rate profile in this study, together with relative
transmissivity and infectivity data from the literature.

5. Conclusion

Stopping superspreading events is the key to ending a pandemic such
as the COVID-19 pandemic. The knowledge of the quanta generation
profile of the infected population is essential for understanding super-
spreading events. The viral load method originally developed by Buo-
nanno et al. [4] suggests that it should be possible to estimate quanta
generation rates on a population level, but a reliable profile of quanta
generation rates has not been obtained due to the significant uncertainty
in input data. The profile is obtained in this study using a novel location
and shape selection method that requires the observed outbreak data
and the transmission characteristics. The predicted quanta generation
profile of the infected individuals with ancestral SARS-CoV-2 follows a
log-normal distribution, whereas that of the top 30% of infected in-
dividuals approximately follows a power-law distribution. Our obtained
quanta generation profile of the top 30% of SARS-CoV-2-infected in-
dividuals can be used to determine the minimum dilution required to
minimise or avoid infection.
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