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A B S T R A C T

Minimising airborne infection with respiratory viruses, such as SARS-CoV-2, requires knowledge of the infectious 
quanta generation rate for determining the minimum dilution requirement. The two existing methods for esti
mating quanta generation rates are the viral load method and outbreak method. The former method is challenged 
by significant uncertainty in input data, including dose-response parameters and infectious viral loads. The latter 
method, based on the Wells–Riley equation, is challenged by significant individual heterogeneity in quanta 
generation rates and lack of outbreak data. In this study, the two methods are integrated for studying the quanta 
generation profile of all individuals infected with an ancestral SARS-CoV-2 strain, based on four reported out
breaks of infection. The airborne transmission droplet size ranges in the four outbreaks, which were determined 
in previous studies, are used to estimate the hourly volume of expired droplets for the viral load method. Various 
viral load datasets and conversion factors from RNA copies to infectious quanta are tested. Two criteria are used 
to identify the probable quanta generation profile, i.e. 70% of infected individuals do not infect others, and the 
estimated quanta generation rates estimated using the outbreak method should be within the top 80%–99% of 
infected individuals. The predicted quanta generation profile of all individuals infected with SARS-CoV-2 follows 
a log-normal distribution, whereas that of the top 30% of infected individuals approximately follows a power-law 
distribution.

Practical significance: A major obstacle in defining dilution requirements for minimising airborne infection 
is the lack of infectious quanta generation rates for the general population. Our approach integrates two existing 
quanta estimation methods and paves the way to obtaining reliable quanta generation rate profiles at the 
population level.

1. Introduction

An increasing number of studies have recognised airborne trans
mission as the predominant route for the spread of respiratory diseases, 
such as COVID-19 and influenza [18,26,40]. Many studied outbreaks 
have revealed the long-range airborne transmission of respiratory 
pathogens such as severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) [21,25,30], influenza viruses [38], SARS-CoV [17], and 
Middle East respiratory syndrome coronavirus [41]. Most infections 
with such respiratory pathogens occur indoors, e.g. infection with 
SARS-CoV-2 [33]. Respiratory infections can cause death. From 1999 to 
2015, an annual seasonal influenza-related respiratory death was 

estimated at 291,243 – 645,832 [20]. Troeger et al. [35] found that 
influenza lower respiratory tract infection caused an estimated 145,000 
deaths globally in 2017. Lower respiratory infections were ranked as the 
fourth leading cause of disability-adjusted life-years worldwide in 2019 
[39].

Theoretically, airborne infection can be controlled if the released 
infectious viruses are sufficiently diluted in enclosed spaces. The 
observation that indoor environments lead to a higher risk of infection 
than outdoor environments is an indirect but clear piece of evidence 
[33]. To estimate the minimum dilution required to prevent airborne 
infection, the infectious quanta generation rates or other infectious units 
should be known [14,27,34]. An infectious quantum is a quantitative 
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surrogate for an infectious virus unit with a dose–response parameter of 
unity (1/quantum). Significant individual heterogeneity is expected to 
exist in quanta generation rates. Most infected individuals do not cause 
any secondary infection [1]. Superspreading events drive both an initial 
explosive increase in respiratory infection cases and a sustained trans
mission of the respiratory pathogen [13]. Ending superspreading events 
is the key to stopping a pandemic, such as the COVID-19 pandemic, and 
there is a need to understand individual heterogeneity in virus shedding, 
differences in susceptibility, and other factors [6]. The degree of indi
vidual heterogeneity in quanta generation remains unknown.

Two existing methods for estimating quanta generation rates are the 
viral load method and outbreak method. The outbreak method, which is 
based on the Wells–Riley equation, is only applicable to scenarios 
comprising a specific index case in a particular infection venue. How
ever, the number of outbreaks with sufficient input data for this method 
is limited. Regarding the viral load method [4,5], viral loads have been 
widely monitored, and the estimated quanta generation rate profiles 
may be applicable to the general population, at least theoretically. 
However, significant uncertainty exists in the conversion factors from 
RNA copies to infectious quanta and in the viral load datasets. Mean
while, not all expired droplets contribute to infectious quanta, and the 
effective size range of expired droplets involved in airborne transmission 
is a function of the air dilution system ([11,37]; and [31]). In studying 
the viral load method for determining the population quanta generation 
rates, Jones et al. [16] concluded that “the predictions are so uncertain 
that they cannot be used in any meaningful way to provide useful 
quantitative guidance for designing indoor spaces.”

In the present study, the outbreak method based on the Wells–Riley 
equation and the viral load method are integrated. In the viral load 
method, a recently obtained volume of hourly generated airborne 
transmission droplets [11] is tested against three datasets of viral loads 
and four datasets of conversion factors. In the outbreak method, four 
outbreaks of infection with the ancestral SARS-CoV-2 strain with full 
input data are investigated, i.e. a restaurant [21], a courtroom [36], and 
two buses [30]. The basis for combining the two methods is that the 
deterministic individual quanta generation rates can be used to evaluate 
the probabilistic population data. To select the most probable quanta 
generation rate distribution among those obtained from the viral load 
method, two criteria are developed, i.e. 70% of infected individuals do 
not infect others [1], and the quanta generation rates estimated using 
the outbreak method in the four venues should be within the top 80% – 
99% of infected individuals. The minimum quanta generation rate to 
cause a secondary infection is inferred from existing outbreak data. This 
novel integrated approach enables us to obtain the first quanta gener
ation rate distribution for all infected individuals and for the top 30% of 
infected individuals.

2. Methods

2.1. Probable quanta generation rate profiles

We define a unit-size bin [db,db+1) of expired droplets, where db = 1, 
2, 3, 4 … 999, which is the lower bound of each unit-size bin [db,db+1) , 
and db+1 = db + 1, which is the upper bound of each unit-size bin except 
when the droplet diameter is <1 µm, i.e. db = 0.1, db+1 = 1. Thus, 
1000 unit-size bins exist between 1.0 and 1000 µm and in the range [0.1, 
1.0). These bins are all referred to as unit-size bins. The bracket notation 
[) indicates that the lower bound is included in the range, while the 
upper bound is not.

The expired droplets involved in long-range transmission are 
referred to as airborne transmission droplets, and their size range is 

[
do,l,

do,u] . All droplets expired from the mouth or nostril within the airborne 
transmission size range, i.e. airborne transmission droplets, contribute 
to the infectious quanta generation rate Q̇ (number/h). In the viral load 
method, the quanta generation rate is estimated as follows. 

Q̇ = cvciVex|
do,u
do,l

, (1) 

where Vex|
do,u
do,l

=
∫ do,u

do,l

dNex
d(do)

⋅π
6⋅d3

oddo (mL/h) is the hourly volume of expired 

droplets within the airborne transmission size range 
[
do,l,do,u

]
; cv (RNA 

copies/mL) is the viral load in the expired droplets; and ci (quanta/RNA 
copies) is the conversion factor from viral RNA copies to infectious 
quanta.

The viral load cv is variant-dependent with individual heterogeneity 
and varies with the number of days after symptom onset. The viral load 
is assumed to be the same in all droplets. Three datasets of viral loads for 
the ancestral SARS-CoV-2 strain are tested. The first dataset is from a 
systematic literature review by Chen et al. [7], which found that log10cv 

follows a Weibull distribution, with a scale factor of 6.66 and a shape 
factor of 3.52 [n = 50] on day 0 after symptom onset, and with other 
factors on other days after symptom onset. The second dataset is from 
the study by Puhach et al. [32], who identified 15 samples of the 
ancestral SARS-CoV-2 strain and detected 13 of them to have non-zero 
values of focus-forming units. The log10-transformed viral load results 
of the 13 samples [n = 13] are fitted with a normal distribution of 
N
(
8.85, 1.182) in the present study (Supplementary Information SI 1). 

Additionally, the datasets from the study by Buonanno et al. [4] were 
also tested but were not found to satisfy our criteria. Buonanno et al. [4] 
considered a normal distribution of N

(
7, 0.712) for log10cv with refer

ence to five viral load datasets in the literature.
Four datasets of the conversion factor ci are identified. The first three 

are as follows: a value within the range of 0.01–0.10 (denoted ‘uniform’; 
[5]); a constant value of 1/700 (denoted ‘constant’; [3]); and a revised 
constant value of 0.0146 (denoted ‘constant’, identified in this study). 
The proposal of the revised constant value (ci = 0.0146) will be 
explained later in Section 2.4. Buonanno et al. [5] did not specify the 
distribution for the conversion factor ci, so a uniform distribution 
U(0.01, 0.1) is assigned in this study. Fourthly, the reciprocal of the 
product of two normal distributions, N

(
210, 212) and N

(
130, 132), 

from the study by Buonanno et al. [4] was tested, but was not found to be 
suitable.

Finally, with two chosen datasets for the viral load cv and three 
chosen datasets for the conversion factor ci, we have six possible com
binations of viral load and conversion factor for estimating quanta 
generation. The built-in function of the empirical cumulative distribu
tion function plot (cdfplot) is used to obtain the cumulative probability 
mass plots for cv and ci (Figure S1.1).

Each combination of input data generates a quanta generation rate 
profile. Choosing the most probable profile is not an easy task. A prob
ability distribution is characterised by both location and scale parame
ters (Fig. 1). The location of the probability distribution is determined 
using the observation that 70% of infected individuals did not cause any 
secondary infection. There is a need to determine the corresponding 
quanta threshold value Q̇70% at which no infection occurs. The shape of a 
probability distribution is guided by the spread of the curve. Our strat
egy is to use the quanta generation rates from the observed outbreaks. 
Ideally, if the sample size is sufficient, such a strategy should work well. 
Only the curves within the range of the known quanta generation rates 
are possible candidates. The challenge is that the number of outbreaks 
with reliable input data is limited. The detailed selection strategy is 
described later in Sections 2.4 and 2.5.

2.2. Four infection venues

A major input parameter in the viral load method is the hourly 
volume of expired droplets within the airborne transmission droplet size 
range [do,l, do,u]. The airborne transmission droplet size range may not 
be identical in all spaces, but instead depends on dilution ability. Hy
pothetically, with a ‘typhoon’ wind in a building, no expired droplets 
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would be able to be airborne, but would instead be completely removed 
so that the range of droplet sizes involved would be zero. It is thus 
essential to use a realistic range of dilution flow rates to estimate [do,l, 
do,u].

We examined four venues of COVID-19 outbreaks for which 
approximately complete outbreak and environmental data are available: 
a courtroom, a restaurant, and two buses (Table 1). In all four outbreaks, 
exposure occurred on the day of symptom onset of the index case, and 
the outbreaks were caused by the ancestral SARS-CoV-2 strain. The 
outbreaks exhibited varying levels of attack rates (10.2% to 33.3%), 
occupied air volumes (1.2 to 15.0 m3 per person), ventilation rates (0.9 
to 3.5 L/s per person), total dilution (3.52 to 7.60 L/s per person), and 
exposure time (1.0 to 3.3 h).

The exhalation and inhalation rates are estimated based on meta
bolic rates, which are in turn estimated from the observed physical and 
respiratory activities. The exhalation and inhalation rates are similar 
across all venues except the restaurant, where the index case exhibited a 
high level of body movement and vocalisation, resulting in an increased 

pulmonary rate.
In our previous study [11], we estimated the airborne transmission 

droplets in the four outbreak venues using the droplet dataset provided 
by Johnson et al. [15]. The dataset covered the range of 0.1–30 µm for 
breathing and 0.1–1000 µm for speaking. Using dNex(do)

ddo
=

dCex(do)
ddo

qex, we 
estimated the size distribution of expired droplets. A transient number 
balance model was used together with existing formulas for 
size-resolved settling rates and filtration efficiencies, and a deposition 
model from the International Commission on Radiological Protection. 
This enabled a determination of the size-resolved concentrations of 
exhaled droplets in indoor air, the size-resolved number of droplet 
nuclei in the inhaled air, and the number of droplets deposited 
throughout the respiratory tract.

Three criteria were used to determine whether a droplet unit-size bin 
should be included in airborne transmission droplet size range [11]. The 
first criterion is the indoor air criterion, i.e. the number concentration 
within that bin at the steady state must be equal to or greater than 
1 #/m3. The second criterion is the inhalation criterion, i.e. at least one 

Fig. 1. Screening criteria for determining the shape and location of the cumulative probability distribution of the population quanta generation rates.

Table 1 
Outbreak-related data for the four COVID-19 outbreak venues (adapted from [11]). The quanta generation rates in bold are calculated using the dilution flow rates in 
the table, and those in normal font are obtained from the literature.

Parameter category Parameter Courtroom Restaurant Bus 1 Bus 2

Studies Vernez et al. [36] Li et al. [21] Ou et al. [30] Ou et al. [30]

Outbreak

Exposure datea 09/30 01/24 01/22 01/22
Symptom onset datea 09/30 01/24 01/22 01/22
Day from symptom onset to transmission 0 0 0 0
No. of index cases 1 1 1 1
No. of susceptible individuals 9 88 46 17
No. of secondary infections 3 9 7 2
Attack rate (%) 33.3 10.2 15.22 11.76

Venue Air volume (m3) 150 431 60.42 21.69
Occupancy (m3 per person) 15.0 4.8 1.3 1.2

Room dilution (h− 1, or L/s)b Total dilution, qT 55.0 677.6 96.2 63.4
Transient correction factor (1 − Ct) 0.75 0.85 0.95 0.90

Dilution per person (L/(s⋅person))b Outdoor air, qv 1.62 0.90 1.71 3.21
Total dilution, qt 5.50 7.60 2.05 3.52

Pulmonary rate and exposure Inhalation ratec, qin, m3/h 0.576 0.701 0.576 0.576
Average exposure time Δt, h 3.0 1.206 3.33 1.0
Mask wearing None None Noned Noned

Targeted quanta generation rate Q̇ (quanta/h) 61.7–90.0 154.9–364.6 31.4–37.1 54.8–65.9

a The outbreak occurred in 2020.
b The settling rate is assumed to be a constant of 0.3 h− 1. The filtration efficiency in the restaurant is 20% [21].
c The inhalation rate qin and the exhalation rate qex are assumed to be equal and are estimated based on observed activities [11].
d Only five passengers on Bus 1 and one passenger on Bus 2 were found to be wearing masks based on the available screenshots from closed-circuit television videos 

[30]. Mask wearing is not considered in the calculations.
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particle (droplet) in a unit-size bin [db,db+1) must be inhaled within the 
exposure duration. The third criterion is the deposition criterion, i.e. at 
least one particle (droplet) within a unit-size bin must be deposited in 
the total respiratory tract within the exposure duration. The size range 
determined by the inhalation criterion is always the largest, which is 
chosen for this study. For the courtroom, the size range is [0.1, 6]; for the 
restaurant, it is [0.1, 4]; and for Bus 1 and Bus 2, it is [0.1, 5]. The hourly 
numbers (volumes) of expired droplets are 95,043.4 #/h (0.40 nL/h) in 
the courtroom, 113,111.8 #/h (0.42 nL/h) in the restaurant, and 96, 
320.1 #/h (0.38 nL/h) on the buses. The volume of the hourly generated 
airborne transmission droplets does not vary significantly with the 
determined size range, when the upper/lower bound of the 95% confi
dence interval and the average size distribution of the expired droplets 
are employed respectively [11].

2.3. Targeted quanta generation rates

For consistency, a set of quanta generation rates Q̇ is estimated from 
the reported outbreaks using the transient Wells–Riley equation. 

P = 1 − e− Q̇
qin
qd

Δt(1− Ct ) (2) 

where P is the observed attack rate in the outbreak, and qd is the total 
dilution rate obtained using settling/filtration data in each of the 
outbreak venues, L/s. The index case arrives at time t = 0, and Δt is the 
exposure duration in hours. Regarding the transient effect, the coeffi
cient Ct =

1− e− nT Δt

nTΔt is the transient correction factor, where nT is air 
changes per hour. The total dilution rates and inhalation rates provided 
in Table 1 are used, and the targeted quanta generation rates are also 
summarised in Table 1, which are obtained as follows.

For the courtroom, a transient Wells–Riley model gives a quanta 
generation rate of 61.7 quanta/h using the total dilution data in Table 1. 
Vernez et al. [36] estimated a mean value of 90.0 quanta/h when the 
ventilation rate was 0.23/h and the windows were closed. They con
ducted Monte Carlo simulations with an infection probability of 39 −

4
9 and 

a settling rate of 0.3 − 1.5, whereas only the lower ends of the two pa
rameters, 3

9 and 0.3, are used in our calculations. Considering un
certainties, the targeted quanta generation rate falls into the range of 
61.7–90.0 quanta/h for the courtroom.

For the restaurant, the transient Wells–Riley model gave quanta 
generation rates of 79.3 quanta/h in the study by Li et al. [21] and 154.9 
quanta/h in the study by Jia et al. [14] (in which the restaurant was 
considered as a single zone) and a quanta generation rate of 364.6 
quanta/h using the total dilution data in Table 1. Li et al. [21] did not 
consider the dilution caused by filtration and assigned an inhalation rate 
of 1.65 m3/h to the occupants, which led to a low prediction of the 
quanta generation rate. Jia et al. [14] considered filtration but still 
assigned a high inhalation rate (1.65 m3/h) to the occupants and thus 
obtained a mid-level quanta generation rate. Here, an inhalation rate of 
0.701 m3/h is estimated, and filtration is accounted for. The targeted 
quanta generation rates for the restaurant fall into the range of 
154.9–364.6 quanta/h.

For Buses 1 and 2, Cheng et al. [9] determined the quanta generation 
rates of 37.1 and 65.9 quanta/h, respectively. Ou et al. [30] adopted a 
steady-state Wells–Riley equation and estimated 35.0 quanta/h for Bus 1 
and 58.3 quanta/h for Bus 2 (or 36.9 and 64.4 quanta/h, respectively, 
when a transient equation was used). In the current study, the inhalation 
rate of 0.576 m3/h yields slightly lower quanta generation rates of 31.4 
and 54.8 for Buses 1 and 2, respectively, than the inhalation rate of 0.49 
m3/h used by Cheng et al. [9] and Ou et al. [30]. The targeted quanta 
generation rates for Buses 1 and 2 fall into the ranges 31.4–37.1 and 
54.8–65.9 quanta/h, respectively.

2.4. Threshold quanta generation rate for locating the probability 
distribution

The steady-state Wells–Riley equation for one infector in a venue 

states that P = Ns
Nσ

= 1 − e

(

− Q̇qin
qT

Δt

)

, where Nσ is the number of sus

ceptible individuals, qT is the total dilution air flow rate (m3/h), and Q̇ is 
the quanta generation rate (quanta/h). The exposure time Δt is usually 
one to a few hours in most indoor venues, such as classrooms, restau
rants, and buses. When the infection probability is sufficiently small, the 
equation can be simplified as P ≈ Q̇qin

qT
Δt. Consequently, the number of 

secondary cases can be approximated as Ns = Q̇qinΔt
qt

Nσ
Nσ+1, where qt

(

=

qT
Nσ+1

)

is the dilution rate per person and Nσ
Nσ+1 is less than 0.9 when 

Nσ < 9. If Q̇ >
qt

qinΔt
Nσ+1

Nσ
, Ns > 1. This means that if the ‘average’ dilution 

rate per person, the ‘average’ exposure time and the average number of 
susceptible individuals are all known, the threshold quanta generation 
rate for producing one secondary infection can be estimated.

Adam et al. [1] identified 169 resolved COVID-19 transmission pairs 
of infector–infectee in Hong Kong during the period from 23 January 
2020 to 28 April 2020 and found that 69% (65%–71%) of cases did not 
transmit to others. This allows us to suggest a criterion for the location of 
the probability curve (Fig. 1), i.e. at 70%, the quanta generation rate 
should be the threshold quanta generation rate.

There are at least two methods to obtain the average dilution rate 
and average exposure time. The first is to obtain the typical dilution flow 
rates and people’s gathering time in a sufficient number of indoor spaces 
across the ‘world’. Such data are not available yet. It is also likely that 
many indoor spaces do not lead to secondary infections. The second is to 
gather data from observed outbreaks. Here we use COVID-19 outbreaks 
as an example. Luo et al. [22] identified 50 COVID-19 outbreaks, and 13 
of these have available or estimated dilution rates (SI 2). These 13 
outbreaks are summarised in Table S2.1. The mean equivalent dilution 
rate qt is 9.14 L/s per person. The mean exposure time is 4.16 h The 
average number of susceptible individuals is 140. The estimated inha
lation rates qin for occupants (sitting, occasionally speaking) range from 
0.15 to 0.20 L/s. The corresponding threshold quanta generation rates in 
these venues range from 11.06 to 14.75 quanta/h, with an average of 
12.91 quanta/h, i.e. at most one secondary infection occurs (Ns ≤ 1). 
Therefore, a threshold quanta generation rate of 13 quanta/h is 
established.

Aeroplanes are expected to be mostly well diluted, and the inclusion 
of aeroplanes may distort the dilution data of typical indoor spaces on 
land. Therefore, after excluding the aeroplane outbreaks, the mean 
equivalent dilution rate qt is 5.09 L/s per person and the mean exposure 
time is 1.79 h The average number of susceptible individuals is 72. The 
corresponding threshold quanta generation rates of these venues range 
from 14.37 to 19.16 quanta/h, with an average of 16.76 quanta/h. Thus, 
another threshold quanta generation rate of 17 quanta/h is found.

For simplicity and considering uncertainty, the chosen 70th 
percentile value is 17 quanta/h in this study. The revised constant value 
of 0.0146 is proposed to meet the criterion: Q̇70% = 17 quanta/h for the 
Puhach et al. [32] viral load dataset. For the other two viral load 
datasets, conversion factors higher than 1 (ci = 2.04 and ci = 3.40, 
respectively) are required to achieve Q̇70% = 17 quanta/h, and thus are 
not considered. Calculations are also performed for a value of 13 
quanta/h (SI 3). Similarly, a revised constant value of 0.0111 is pro
posed to meet the criterion: Q̇70% = 13 quanta/h for the Puhach et al. 
[32] viral load dataset. For the other two viral load datasets, conversion 
factors higher than 1 (ci = 1.56 and ci = 2.60, respectively) are required 
to achieve Q̇70% = 13 quanta/h, and thus are not considered.
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2.5. Strategy for selecting the shape of the quanta probability distribution

Adam et al. [1] also estimated that ‘19% (15%–24%) of cases were 
responsible for 80% of all SARS-CoV-2 transmission in Hong Kong’, 
which follows the 20/80 rule. We infer that the quanta generation rates 
for the index cases in the observed outbreaks should be within the top 
20% of infected individuals. The number of secondary infections in each 
outbreak caused by an infected individual between the top 30% and top 
20% of infected individuals is likely to be small, and such outbreaks are 
probably less likely to be identified than those caused by the top 20% 
infected individuals.

We further assume that the quanta generation rates for the index 
cases in the observed outbreaks should be within the 80th–99th 
percentile range. The 99th percentile upper limit is laid artificially to 
avoid the randomness and rareness of extremely high quanta generation 
rates in the population. To demonstrate how the quanta generation rates 
from the outbreaks can be used to select the shape of the quanta prob
ability curve, consider three curves that satisfy the location criterion 
(Fig. 1). The curve that is ‘narrower’ than the middle curve (thick solid 
line in red) has one quanta value located beyond the 99th percentile, so 
it is not chosen. The curve that is ‘wider’ than the middle curve has one 
quanta value located between 70% and 80%, so it is also not chosen.

3. Results

3.1. The viral load dataset published by Puhach et al. [32] and a revised 
constant conversion factor (ci = 0.0146) yield the most appropriate Q̇ 
distribution

For the four outbreaks studied here, each had a single index case, and 
virus transmission in all of the outbreaks occurred on the first day of the 
index cases’ symptom onset. This allows us to estimate the quanta 
emission rate for each index case on the first day of symptom onset.

A significant heterogeneity in the viral load is expected between 
individuals. This suggests that it is impossible to use the viral load 
approach to predict the exact viral load profile of an individual on a 
particular day. Moreover, the number of expired droplets exhibits 
heterogeneity.

Fig. 2 illustrates how we arrive at the quanta emission rate profile 
determined using the viral load dataset provided by Puhach et al. [32] 
and a revised constant conversion factor (0.0146). For all four out
breaks, only one such combination, i.e. ‘Puhach–revised constant’, en
ables the target quanta emission rates to fall within the 80th–99th 
percentile ranges and also satisfies the location requirement of the 70% 
quanta value of 17 quanta/h. Hence, only the ‘Puhach–revised constant’ 
quanta profile is retained. However, the targeted quanta value 
(31.4–37.1 quanta/h) for Bus 1 is slightly lower than the Q̇80% to Q̇99% 
range (Fig. 3), and is reluctantly accepted here considering the uncer
tainty in input data in the outbreak.

A total of 24 quanta generation rate profiles are summarised in 
Table 2 for the four outbreaks, with each outbreak analysed using six 
combinations of viral load and conversion factor.

3.2. The quanta generation profiles of the top 30% of infected individuals 
follow a power-law distribution

The quanta generation rate profiles that are estimated using the 
combination ‘Puhach–revised constant (ci = 0.0146)’ are relatively 
consistent across the four venues, even though these venues had 
different dilution abilities. The complete quanta generation profiles are 
found to follow a log-normal distribution (Fig. 4), i.e. log10Q̇ ∼

N
(
0.62, 1.182) for the courtroom, N(0.64, 1.182) for the restaurant, 

and N(0.59, 1.182) for the buses. The adjusted R2 values are near 1 for 
all, showing that the fitted parameters estimate almost 100% of the 
variation in the dataset. The log-normal distribution seems to capture 

well the spread and central tendency of the quanta generation rates for 
the population infected with the ancestral SARS-CoV-2 strain, with most 
values clustering around a central value, but also having a long tail to
wards larger values.

The probability of each quanta generation rate for the top 30% of 
infected individuals for the investigated venues, i.e. P(N) =
∫N+0.5

N− 0.5 f(Q̇)d(Q̇), is shown in Fig. 5. All of the estimated probability 
profiles follow a power-law distribution, i.e. P(N) = 0.351N− 1.341 for the 
courtroom, P(N) = 0.359N− 1.342 for the restaurant, and P(N) =

0.345N− 1.341 for the two buses. The closest natural numbers to the 70th 
percentile value (17 for the courtroom, 18 for the restaurant, and 16 for 
the buses) are used as the starting point of the fitting dataset.

The hourly volume of expired droplets in the long-range airborne 
transmission size range is 0.40 nL/h for the courtroom, 0.42 nL/h for the 
restaurant, and 0.38 nL/h for the buses. Considering the average hourly 
volume of 0.395 nL/h across the four outbreak venues, the estimated 
probability profiles of the top 30% of quanta generation rates follow a 
power-law distribution as P(N) = 0.352N− 1.343. The full list of proba
bilities of the final quanta generation rates between 0 quanta/h and 
1000 quanta/h is attached. Please refer to the Excel file named Proba
bility_Power law.xls.

4. Discussion

4.1. The power-law distribution of the quanta generation rates partially 
explains the superspreading events

Our study is the probably first to demonstrate that the quanta gen
eration rates for the top 30% of infected individuals follow a power-law 
distribution.

Many studies on super-spreading events (e.g. [1]) have suggested 
that the top 20% of infected individuals are responsible for most sec
ondary infections and that the bottom 70% of infected individuals do not 
infect anyone. It is thus essential to determine the distribution of the 
quanta generation rates for the top 20%–30% of the population (Fig. 3). 
It may not be a coincidence that our estimated data show that up to 
approximately 80% of infected individuals have quanta generation rates 
of less than ~40 quanta/h. Our approach uses various combinations of 
input data, specifically viral loads and conversion factors. Multiple 
quanta generation rate profiles are predicted. We have used the 
observed characteristics of superspreading events and the outbreak data 
to choose the most likely quanta profile. Our finally obtained quanta 
generation profile satisfies the observation that the bottom 70% of 
infected individuals do not infect anyone (Q̇ < 17 quanta/h). Moreover, 
the top 20% of infected individuals cause most of the secondary in
fections, that is, the quanta generation rates obtained from existing 
outbreaks are within the top 20% of infected individuals.

This is the first study to obtain the first complete profile of quanta 
generation rates of the top 30% of infected individuals. Further verifi
cation of this profile will enable it to be used to develop minimum 
dilution requirements for respiratory infection control. The quanta 
generation rate of the top 30% of infected individuals follows a power- 
law distribution, whereas that for all infected individuals follows 
approximately a log-normal distribution. Such a power-law distribution 
of the top 30% of infected individuals may explain why super-spreading 
events follow a power-law or negative binomial distribution [1].

In the classical Wells–Riley equation, if infectious quanta generation 
rates are known, the dilution required to reduce the infection risk to an 
acceptable level may be determined in any setting [27]. This is only 
theoretically correct. The infectious quanta generation rate profile of the 
general infected population is needed, rather than that of a particular 
index case at an outbreak venue. The latter is only applicable to a spe
cific index case in a specific setting. The population quanta generation 
rates should be used to determine the minimum dilution rates. However, 
the existence of super-emitters suggests that no minimum dilution rate 
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Fig. 2. (a1–c1): The cumulative probability mass 
∫ Q̇
(Q̇)min

f(Q̇)d(Q̇), from the minimum value Q̇min to Q̇ of interest; (a2–c2): The probability density f
(
log10Q̇

)
as a 

function of log10Q̇ for the courtroom, the restaurant, Bus 1, and Bus 2, where the target Q̇ ranges are shown by a translucent band in red. Two bands are shown in (c1) 
and (c2) for Buses 1 and 2, respectively. The red star indicates point (17, 0.7), while the golden curve highlights the range [Q̇80%, Q̇99%] in the selected profile.
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exists for any single space to avoid infection. For example, for a quanta 
generation rate of 100 quanta/h and exposure time of 1 h, a dilution air 
flow rate larger than 10 L/s per person might be sufficient in a large 
classroom to avoid a secondary infection. However, for a quanta gen
eration rate of 2000 quanta/h (Table 2), a dilution air flow rate larger 
than 200 L/s per person will be needed, which is unrealistically high for 
typical classroom settings. A population strategy should be used to 
control the spread of pathogen in an epidemic or pandemic of airborne 
infection. The causes of superspreading events are not limited to 
super-emitters. Super-contactors (with close contacts to many suscep
tible persons), super-exposure (long exposure time), and poorly venti
lated spaces are also possible causes. It might be possible to develop 
dilution strategies at the building stock scale to ensure that the popu
lation reproduction number R0 is less than one. This will require a 
knowledge of the dilution air flow rate profiles of the building stock in a 
city, the exposure time distribution in different indoor settings in a city 
and their metabolic activity profiles. The eventual implementation of 
such dilution measures needs to consider trade-offs between health, 
comfort, energy, and cost [12].

The quanta generation rate for the total infected population is found 
to follow a log-normal distribution. The top 30% infected is a fraction of 
the infected population, and the quanta generation rate profile for the 
top 30% is the right tail of the log-normal distribution of the total 

population. The right tail is very important to infection control. Both 
log-normal distribution and power-law distribution would imply that 
the top infected individuals have high quanta generation rates. It is 
unfortunate there is a lack of the observed high quanta generation rate 
data at the very right tail for verification. A lognormal distribution 
would predict a higher quanta generation rate at its right tail and a 

Fig. 3. The 
∫ Q̇
(Q̇)min

f(Q̇)d(Q̇) curves for the four outbreaks, i.e. the cumulative 
probability mass, obtained using the viral load dataset reported by Puhach et al. 
[32] and a revised constant conversion factor (0.0146). The transparent red 
band represents the target quanta generation rates for the courtroom 
(61.7–90.0 quanta/h), blue for the Guangzhou restaurant (154.9–364.6 quan
ta/h), left black band for Bus 1 (31.4–37.1 quanta/h), and right black band for 
Bus 2 (54.8–65.9 quanta/h). The red star indicates the point (17, 0.7), while the 
golden curve highlights the profile from the Q̇80% to Q̇99% range in the 
selected percentile.

Table 2 
Comparison between the target ranges and the estimated Q̇80% to Q̇99% ranges in the four outbreaks using six combinations of viral load and conversion factor.

Venue Target range Chen–uniform Chen–constant (1/700) Chen–revised constant (0.0146)

Courtroom 61.7–90 0.8–391.3 0.0–10.7 0.2–109.4
Restaurant 154.9–364.6 0.9–410.9 0.0–11.3 0.3–114.9
Bus 1 31.4–37.1 0.8–371.7 0.0–10.2 0.2–103.9
Bus 2 54.8–65.9 0.8–371.7 0.0–10.2 0.2–103.9

Venue Target range Puhach–uniform Puhach–constant (1/700) Puhach–revised constant (0.0146)

Courtroom 61.7–90 140.0–8714.6 4.0–230.3 40.7–2348.8
Restaurant 154.9–364.6 147.0–9150.3 4.2–241.8 42.7–2466.2
Bus 1 31.4–37.1 133.0–8278.9 3.8–218.8 38.6–2231.3
Bus 2 54.8–65.9 133.0–8278.9 3.8–218.8 38.6–2231.3

Fig. 4.
(
log10Q̇

)
: probability density around log10Q̇ of interest, comparing the 

estimated and fitted distributions of log10Q̇ for the courtroom, restaurant, and 
two buses. The shaded areas under the fitted curves are of a mixed colour due to 
the overlapping of red, blue, and black.

Fig. 5. Probability of each quanta emission rate having certain values: P(N) =
∫N+0.5

N− 0.5 f(Q̇)d(Q̇), where N is a natural number higher than the 70th percentile 
values in each venue.
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power-law distribution predicts less. For example, in the considered 
restaurant, our Monte Carlo simulation using the integrated method 
predicts a quanta generation rate of 2470 quanta/h for the 99th 
percentile infected, while the fitted log-normal distribution predicts a 
corresponding value of 2420 quanta/h, and the power-law distribution 
predicts 1223 quanta/h.

The underlying mechanisms for the observed quanta generation rate 
distribution remain to be studied. The quanta generation rates would 
depend on a number of multiplicative factors (Eq. (1)), i.e. the number 
and size of the airborne transmission droplets (considered to be constant 
in our study), the viral load (log-normal or normal distribution), the 
conversion factor from RNA copies to infectious quanta or the dose- 
response parameter (depends on the susceptible persons in terms of 
susceptibility and immunity, distribution unknown) etc. Multiplicative 
products of random factors are known to be log-normal [24]. If the viral 
load is the major determining factor (very likely), then the viral load 
itself and the susceptibility of the population are both heterogeneous (e. 
g. for example see [29]).

This study represents likely the first attempt to obtain a quanta 
generation distribution at the population level with verification by 
outbreak data and infection data. Quanta generation rates may also be 
obtained for different days after symptom onset by using available viral 
load data (e.g. [7]). Data on transmissivity could be used to derive in
fectious quanta generation profiles for different variants of SARS-CoV-2.

4.2. The new profile selection method offers a new approach for 
determining the population-level quanta generation rates

The viral load method first developed by Buonanno et al. [4] differs 
from the outbreak method and has one obvious advantage in that it 
requires no outbreak-related data. The outbreak method requires exact 
dilution parameters inside the venue, such as the ventilation rate and 
filtration rate, at the time of exposure. However, ventilation rates often 
vary in time, depending on window/fan use and air conditioning oper
ation, and it is not straightforward to access an outbreak venue to 
measure ventilation or other types of dilution and collect detailed 
associated infection data. There have likely been millions of outbreaks of 
SARS-CoV-2 infection worldwide, but complete dilution monitoring has 
been conducted only for a very small number of these outbreaks; in fact, 
to the best of our knowledge, complete dilution monitoring has only 
been performed for the four outbreaks studied here and two other 
restaurant outbreaks in Hong Kong [8]. Furthermore, in the case of 
many outbreaks, such as the Luk Chuen House outbreak in Hong Kong 
[10], it is difficult to determine the exposure time. It is difficult to collect 
data on enough outbreaks (i.e. a sufficient sample size) to determine the 
infectious quanta generation rate distribution using the outbreak 
method.

The viral load method of estimating infectious quanta generation 
rates for the general population requires three datasets, namely datasets 
of the expired droplet size distribution within the airborne size range, 
viral load distribution, and conversion factors from the viral load to 
infection quanta. The size-dependent settling rate [28] and filtration 
efficiency are essential for estimating the airborne droplet size range for 
airborne transmission. The existing conversion factors contain signifi
cant uncertainty [4]. Thus, a major contribution of the current study in 
terms of methodology is its integration of the outbreak method and 
major transmission characteristics into the viral load method developed 
by Buonanno et al. [4]. Our novel profile selection method (for both 
location and shape selection) partly resolves the lack of data on the 
conversion factor and the uncertainty in viral load distribution. Our 
developed method should be applicable to other respiratory infections 
which are predominantly transmitted by the airborne route, particularly 
those with significant individual heterogeneity [19] as with 
SARS-CoV-2. However, both outbreak data and infection data are 
needed for choosing the shape and location parameters in the quanta 
generation rate profiles. Our obtained profile might need to be adjusted 

using local heterogeneity data of infection. We used the 80/20 rule of 
Adam et al. [1]. Similar results were obtained elsewhere (e.g. [2]). In 
Marks et al. [23] studied a cohort of 282 index cases, and found that 68% 
did not cause secondary infections, while 32% caused infection clusters.

Our study also demonstrates a need to obtain reliable data on the 
expired droplet profiles of the infected individuals, the viral load pro
files, and conversion factors from RNA copies to infectious quanta, as all 
three of these parameters exhibit high heterogeneity across individuals 
and activities.

4.3. Limitations

This study has several limitations. First, the accuracy of our estimates 
of infectious quanta generation rates depends on the accuracy of the 
available data on expired droplets, viral load, conversion factor, and 
dilution flow rates. As more accurate data become available, our 
developed approach can be used to refine the estimates. However, our 
proposed location and shape selection method shows promise in 
handling some aspects of data uncertainty.

Second, the sample size for the outbreak data is too small for 
determining the threshold quanta generation rate for location selection. 
Additionally, only data from four outbreak venues are used for shape 
selection. Availability of more outbreak data will further improve the 
selection. For outbreak investigations, we suggest implementing a more 
comprehensive and standardized reporting system that includes the 
environmental measurement such as ventilation and filtration. Low-cost 
hourly indoor air quality monitoring might be installed in targeted in
door spaces such as nursing homes, restaurants and jails etc. as infection 
hotspots, so that when an outbreak occurs in one of such monitored 
spaces, the environmental data can be retrieved. New privacy-proof 
technologies for monitoring occupancy and close contacts may also be 
used [42].

Third, our determination of the quanta generation rate is limited to 
the ancestral SARS-CoV-2 strain and the day of symptom onset. The 
developed method may be extended to other respiratory viruses and the 
full course of the disease. In an upcoming study, this was achieved using 
the quanta generation rate profile in this study, together with relative 
transmissivity and infectivity data from the literature.

5. Conclusion

Stopping superspreading events is the key to ending a pandemic such 
as the COVID-19 pandemic. The knowledge of the quanta generation 
profile of the infected population is essential for understanding super
spreading events. The viral load method originally developed by Buo
nanno et al. [4] suggests that it should be possible to estimate quanta 
generation rates on a population level, but a reliable profile of quanta 
generation rates has not been obtained due to the significant uncertainty 
in input data. The profile is obtained in this study using a novel location 
and shape selection method that requires the observed outbreak data 
and the transmission characteristics. The predicted quanta generation 
profile of the infected individuals with ancestral SARS-CoV-2 follows a 
log-normal distribution, whereas that of the top 30% of infected in
dividuals approximately follows a power-law distribution. Our obtained 
quanta generation profile of the top 30% of SARS-CoV-2-infected in
dividuals can be used to determine the minimum dilution required to 
minimise or avoid infection.

CRediT authorship contribution statement

Pan Cheng: Writing – review & editing, Writing – original draft, 
Validation, Investigation, Formal analysis, Data curation. Wei Jia: 
Writing – review & editing, Data curation. Li Liu: Writing – review & 
editing, Data curation. Hui-Ling Yen: Writing – review & editing, 
Validation, Data curation, Conceptualization. Yuguo Li: Writing – re
view & editing, Writing – original draft, Supervision, Resources, 

P. Cheng et al.                                                                                                                                                                                                                                   Building and Environment 267 (2025) 112256 

8 



Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This work was supported by the Research Grants Council of Hong 
Kong’s Collaborative Research Fund (grant number C7104–21G) and a 
General Research Grant (grant number 17206522). Professional 
English-language editing support was provided by AsiaEdit (asiaedit. 
com).

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.buildenv.2024.112256.

Data availability

Data will be made available on request. 

References

[1] D.C. Adam, P. Wu, J.Y. Wong, E.H.Y. Lau, T.K. Tsang, S. Cauchemez, et al., 
Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong, 
Nat. Med. 26 (11) (2020) 1714–1719.

[2] T.L. Anderson, A. Nande, C. Merenstein, B. Raynor, A. Oommen, B.J. Kelly, et al., 
Quantifying individual-level heterogeneity in infectiousness and susceptibility 
through household studies, Epidemics. 44 (2023) 100710.

[3] M. Bertone, A. Mikszewski, L. Stabile, G. Riccio, G. Cortellessa, F.R. d’Ambrosio, et 
al., Assessment of SARS-CoV-2 airborne infection transmission risk in public buses, 
Geosci. Front. 13 (6) (2022) 101398.

[4] G. Buonanno, L. Morawska, L. Stabile, Quantitative assessment of the risk of 
airborne transmission of SARS-CoV-2 infection: prospective and retrospective 
applications, Environ. Int. 145 (2020) 106112.

[5] G. Buonanno, L. Stabile, L. Morawska, Estimation of airborne viral emission: 
quanta emission rate of SARS-CoV-2 for infection risk assessment, Environ. Int. 141 
(2020) 105794.

[6] P.Z. Chen, M. Koopmans, D.N. Fisman, F.X. Gu, Understanding why superspreading 
drives the COVID-19 pandemic but not the H1N1 pandemic, Lancet Infect. Dis. 21 
(9) (2021) 1203–1204.

[7] P.Z. Chen, N. Bobrovitz, Z. Premji, M. Koopmans, D.N. Fisman, F.X. Gu, 
Heterogeneity in transmissibility and shedding SARS-CoV-2 via droplets and 
aerosols, Elife 10 (2021) e65774.

[8] V.C.C. Cheng, D.C. Lung, S.C. Wong, A.K.W. Au, Q. Wang, H. Chen, et al., Outbreak 
investigation of airborne transmission of Omicron (B. 1.1. 529)-SARS-CoV-2 
variant of concern in a restaurant: implication for enhancement of indoor air 
dilution, J. Hazard. Mater. 430 (2022) 128504.

[9] P. Cheng, K. Luo, S. Xiao, H. Yang, J. Hang, C. Ou, et al., Predominant airborne 
transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus 
COVID-19 outbreak originating from the same pre-symptomatic index case, 
J. Hazard. Mater. 425 (2022) 128051.

[10] P. Cheng, W. Chen, S. Xiao, F. Xue, Q. Wang, P.W. Chan, et al., Probable cross- 
corridor transmission of SARS-CoV-2 due to cross airflows and its control, Build. 
Environ. 218 (2022) 109137.

[11] P. Cheng, W. Jia, L. Liu, H.L. Yen, Y. Li, What sizes of droplets contribute to long- 
range airborne transmission? Indoor Environ. (2024) 100045.

[12] C.A. Faulkner, T.I. Salsbury, B. Abboushi, C. Mouchref, B.C. Singer, M.D. Sohn, 
G. Arnold, Comparison of effectiveness and energy use of airborne pathogen 
mitigation measures to meet clean air targets in a prototypical office building, 
Build. Environ. 257 (2024) 111466.

[13] T.R. Frieden, C.T. Lee, Identifying and interrupting superspreading 
events—Implications for control of severe acute respiratory syndrome coronavirus 
2, Emerg. Infect. Dis. 26 (6) (2020) 1059.

[14] W. Jia, P. Cheng, L. Ma, S. Wang, H. Qian, Y. Li, Individual heterogeneity and 
airborne infection: effect of non-uniform air distribution, Build. Environ. (2022) 
109674.

[15] G. Johnson, L. Morawska, Z. Ristovski, M. Hargreaves, K. Mengersen, C.H. Chao, et 
al., Modality of human expired aerosol size distributions, J. Aerosol. Sci. 42 (12) 
(2011) 839–851.

[16] B. Jones, C. Iddon, M. Sherman, Quantifying quanta: determining emission rates 
from clinical data, Indoor Environ. 1 (3) (2024) 100025.

[17] Y. Li, X. Huang, I. Yu, T. Wong, H. Qian, Role of air distribution in SARS 
transmission during the largest nosocomial outbreak in Hong Kong, Indoor. Air. 15 
(2) (2005) 83–95.

[18] Y. Li, G.M. Leung, J. Tang, X. Yang, C. Chao, J.Z. Lin, et al., Role of ventilation in 
airborne transmission of infectious agents in the built environment-a 
multidisciplinary systematic review, Indoor. Air. 17 (1) (2007) 2–18.

[19] J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, W.M. Getz, Superspreading and the 
effect of individual variation on disease emergence, Nature 438 (7066) (2005) 
355–359.

[20] A.D. Luliano, K.M. Roguski, H.H. Chang, D.J. Muscatello, R. Palekar, S. Tempia, et 
al., Estimates of global seasonal influenza-associated respiratory mortality: a 
modelling study, Lancet 391 (10127) (2018) 1285–1300.

[21] Y. Li, H. Qian, J. Hang, X. Chen, P. Cheng, H. Ling, et al., Probable airborne 
transmission of SARS-CoV-2 in a poorly ventilated restaurant, Build. Environ. 196 
(2021) 107788.

[22] Luo, D., Yong, W.H., Gao, C.X., Zheng, X., Li, Y., and Qian, H. (2024) What is an 
appropriate ventilation for public places during the COVID-19 pandemics. 
Submitted for publication.

[23] M. Marks, P. Millat-Martinez, D. Ouchi, C. h Roberts, A. Alemany, M. Corbacho- 
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