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ABSTRACT

Mangrove ecosystems are essential coastal environments that provide extensive ecological and
socioeconomic benefits to both human societies and the natural environment. However, man-
grove degradation can lead to significant declines in biodiversity, ecosystem processes, and
ecosystem services. Compared to the extensive research focused on documenting mangrove
areal changes and deforestation, there is a lack of review on the current status of mangrove
degradation identification with the assistance of remote sensing data. This review analyzed 104
papers focusing on remote sensing-based mangrove degradation assessments across tropical and
subtropical regions from Web of Science and Google Scholar databases. We summarized the
remote sensing approaches employed, the specific proxies or indicators derived from remote
sensing data to characterize mangrove degradation, the primary remote sensing datasets utilized
and remote sensing image classification methods. We also identified the key challenges (e.g. lack of
optimal proxies, confusions between true degradation and natural variability) and emerging
opportunities for future research in the remote sensing-based assessment of mangrove degrada-
tion. Based on publications, one of the primary challenges lies in the inconsistency of definitions
and proxies used to characterize mangrove degradation. Scale effects and the inherent complexity
of remote sensing data further compound these challenges. Nonetheless, the increasing avail-
ability of advanced multi-source remote sensing data holds promise for more accurate and
comprehensive measurement of mangrove degradation, which could ultimately inform and
guide sustainable coastal management and restoration efforts.
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1. Introduction . .
areal extent and deforestation at local, regional,

The significance of mangrove ecosystems has been
gaining more recognition in recent decades.
Mangrove forests, situated in the intertidal regions
in tropical and subtropical climate zones, are
regarded as unique coastal habitats that play irre-
placeable roles and serve invaluable functions. These
include carbon sequestration, water purification, and
the mitigation of coastal erosion (Alongi 2002; Giri
et al. 2011; S. Y. Lee et al. 2014). Located at the land-
sea interface, mangroves have been impacted by
natural and anthropogenic disturbances (Goldberg
et al. 2020). In response to the growing awareness
of the ecological significance of mangrove forests,
numerous countries have enacted policies and reg-
ulations to strengthen the protection and manage-
ment of these coastal environments (S. Y. Lee et al.
2019). Extensive research attention has been
devoted to investigating changes in mangrove

and even global scales (Bunting et al. 2018; Giri
et al. 2011; Jia et al. 2023). However, compared to
the focus on mangrove deforestation and areal
change/loss, the issue of mangrove degradation
has received relatively less attention from the
research community. While mangrove deforestation
is well-documented, large-scale degradation pat-
terns remain poorly quantified (Friess et al. 2019),
masking hidden ecological declines in standing
mangrove forests. A Web of Science topic search
using the terms “mangrove degradation” and “man-
grove deforestation OR mangrove loss” yielded 1,990
and 2,777 results, respectively. Mangrove degrada-
tion reflects the loss of habitat quality (Friess et al.
2019), often characterized by the altered or reduc-
tion of functions, attributes, or ecosystem services
(Gao et al. 2020; Ghazoul et al. 2015; Vasquez-
Grandén, Donoso, and Gerding 2018; Yando et al.
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2021). In addition, degradation is often a gradual
process that may eventually lead to deforestation
or, alternatively, allow for ecosystem recovery and
resilience (Gao et al. 2020). The significance and
challenges associated with mangrove degradation
have been highlighted by scholars such as Friess
et al. (2019), underscoring the need for accurate
monitoring and assessment.

Mangrove degradation is driven by complex mix of
natural and anthropogenic factors (Yando et al. 2021).
Urban development disrupts these ecosystems
through construction and other human activities.
For instance, road construction alters hydrological
conditions, affecting water movement, infiltration
patterns, and tidal pumping (Cardenas et al. 2022).
Although mangrove root systems are capable of pur-
ifying water, pollution from nearby urban areas or
aquaculture can severely degrade water quality, lead-
ing to altered hydrological conditions that negatively
impact the diverse flora and fauna of the ecosystem.
While mangrove mudflats can accumulate pollutants,
oil deposition from vessels can suffocate the breath-
ing and feeder roots of mangroves, resulting in
reduced leaf density and diminished ecological func-
tions and biodiversity (Ishtiaque, Myint, and Wang
2016). Additionally, natural disasters such as typhoons
and tsunamis can devastate mangrove areas, disrupt-
ing the accumulation of organic matter in sediments
and further threatening these vital ecosystems
(Ishtiaque, Myint, and Wang 2016). High salinity and
low nutrient availability can also contribute to condi-
tions that lead to top-dying disease and further
degradation in mangroves (Ishtiaque, Myint, and
Wang 2016; Kathiresan 2002). The consequences of
mangrove degradation are significant across ecologi-
cal, economic, and social dimensions (Carugati et al.
2018; Yando et al. 2021). Ecologically, the degradation
of mangroves leads to reduced biodiversity, habitat
loss, and a decline in ecosystem services, including
carbon sequestration, which exacerbates climate
change by increasing carbon emissions (Senger et al.
2021; Yando et al. 2021). Economically, degraded
mangroves diminish protection for coastal commu-
nities and shorelines, raising the risks and costs asso-
ciated with natural disasters. Additionally, the loss of
mangroves reduces access to valuable timber
resources and impacts tourism development in
coastal areas. On a social level, communities that
rely on mangroves for resources and livelihoods face

significant challenges, potentially leading to the loss
of local cultural heritage and traditions (Carugati et al.
2018). Therefore, it is essential to accurately assess
mangrove degradation.

Prior to broadscale access to remotely sensed data,
the assessment of degradation in mangrove forests
often relied on localized field observations and biolo-
gical measurements. For example, mangrove degra-
dation in China was assessed based on field
investigation and estimation of species extinction
and carbon stock decline (W. Wang et al. 2020). Such
field-based approaches are valuable for providing
evidence on the drivers and mechanisms of ecosys-
tem changes. However, the labor-intensive nature of
field measurements and the spatial limitations of loca-
lized data often constrained the scalability of these
studies. To address this, researchers increasingly
turned to remote sensing, a cost-effective and scal-
able alternative, to complement bioecological
approaches. Remote sensing has emerged as an effec-
tive technique for mangrove monitoring, enabling
spatially continuous and temporally consistent data
across extensive geographic regions. By leveraging
multi-source remote sensing imagery and advanced
methods, remote sensing can map mangrove extent,
detect land-cover changes, characterize composition
and structural properties, and retrieve key biophysical
parameters and ecosystem services, assessing the
health condition of mangrove (Kuenzer et al. 2011;
Lu and Wang 2022; L. Wang et al. 2019). The integra-
tion of fine-scale field data of mangrove habitats with
remote sensing information allows for comprehensive
monitoring and a deeper understanding of the
mechanisms underlying mangrove degradation over
broader spatial scales.

Therefore, a thorough understanding of how past
studies have utilized remote sensing to monitor and
quantify mangrove degradation is critical. Such
insights not only highlight the current capabilities
and limitations of these approaches but also pinpoint
uncertainties, guiding the development of targeted
solutions and methodological refinements to
enhance accuracy and applicability in future assess-
ments. There are review papers that have examined
the broader status of global mangroves (Friess et al.
2019) and ecosystem evaluation. These review articles
offer a comprehensive understanding and valuable
insights into several aspects, including the functions
and services of mangrove ecosystems (Alongi 2014;



Kathiresan 2002; S. Y. Lee et al. 2014; Woodroffe et al.
2016), the drivers and impacts of mangrove change
(Bhowmik et al. 2022; Duke 2016; liman et al. 2016;
Sippo et al. 2018), conservation and restoration stra-
tegies (Datta, Chattopadhyay, and Guha 2012; Field
1999), and interdisciplinary perspectives. In addition,
the advancements in remote sensing techniques for
mangrove monitoring have been adequately
reviewed (Kuenzer et al. 2011; Lu and Wang 2022;
Pham et al. 2019; Tran, Reef, and Zhu 2022; L. Wang
et al. 2019). However, regarding degradation, several
review papers summarized the conceptualization and
evaluation of forest degradation (Ghazoul et al. 2015;
Vasquez-Grandoén, Donoso, and Gerding 2018). The
challenges associated with defining and measuring
degradation based on remote sensing have been
reviewed for forests (Gao et al. 2020) and humid
tropical forests (Dupuis et al. 2020). To our knowl-
edge, a review focused specifically on the current
status of mangrove degradation detection using
remote sensing data is lacking. Therefore, we aim to
review the current state of remote sensing applica-
tions for monitoring and quantifying mangrove
degradation. Specifically, we aim to 1) examine the
commonly used remote sensing-derived proxies that
serve as indicators of mangrove degradation; 2) eval-
uate the primary remote sensing datasets and classi-
fication methodologies that enable mapping
mangrove degradation patterns; 3) assess the uncer-
tainties and challenges in these previous publications
and explore emerging opportunities to overcome the
barriers of accurate mangrove degradation monitor-
ing through advanced technologies.

2. Article selection and review
2.1. Article selection criteria

The literature search was conducted to identify and
analyze peer-reviewed studies that employ remote-
sensing data to monitor or quantify mangrove degra-
dation. We utilized the Web of Science and Google
Scholar databases to obtain relevant peer-reviewed
journal articles published before November 2024. The
keywords employed in the search included
("degraded” OR “degradation”) AND (“mangrove” OR
“mangroves”) AND (“remotely sensed” OR “remote
sensing” OR “satellite” OR “earth observation”).
A total of 410 papers were initially collected. Further
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manual screening of the retrieved literature was per-
formed to refine the selection based on the following
criteria: 1) the articles must recognize the detection of
mangrove degradation as a key research objective
and involve quantitative analysis, rather than merely
discussing or inferring degradation as a driver of
mangrove change; 2) the articles must apply remote
sensing techniques or utilize satellite data to detect
mangrove degradation; 3) the articles must define the
disturbance on mangrove as “degradation,” rather
than merely labeling it as “disturbance” or
“damage.” 4) articles that only compared remote sen-
sing-derived biological parameters between selected
sites of intact (healthy) and degraded mangroves are
excluded from this review, as these studies identified
degraded mangrove sites based on expert knowledge
during the selection of study areas, rather than
employing methodologies grounded in remote sen-
sing technology to detect mangrove degradation
over specific spatial extents. Finally, a total of 104
peer-reviewed journal articles were selected to
explore the current understanding and practices in
remote sensing-based assessment of mangrove
degradation. A potential limitation of this review is
that our selection criteria may exclude studies utiliz-
ing advanced remote sensing techniques to evaluate
degradation-related indicators (e.g. biomass or health
condition mapping). While such studies can provide
valuable insights for refining precision in degradation
indicators, they often do not explicitly target quanti-
fying degradation as they lack measurement of indi-
cator decline. Nevertheless, we hope that the selected
literature could broadly reveal the current state of
remote sensing-based mangrove degradation
research, as it prioritizes studies explicitly linking
remote sensing-derived proxies to degradation and
outcomes.

2.2. Advances of the research

2.2.1. Overview of literature

Prior to 2014, research focused on mangrove degra-
dation using remote sensing was relatively limited,
comprising approximately 17% of the total studies
on this topic (Figure 1). However, over the past dec-
ade, from 2016 up to the present, there has been
a marked rise (about 76%) in the number of publica-
tions evaluating mangrove degradation using remote
sensing techniques. This observed trend aligns with
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Figure 1. Evolution of studies on remote sensing-based mangrove degradation.

the broader evolution in the publications of remote
sensing of mangrove forests (L. Wang et al. 2019). The
shift toward a greater emphasis on remote sensing-
driven assessments of mangrove degradation over
the past decade suggests that researchers and policy-
makers have recognized the importance of remote
sensing technologies in monitoring the health and
status of mangrove ecosystems.

The literature on mangrove degradation appears
to exhibit a geographical concentration, with
a notable emphasis on research conducted in India
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(Figure 2). Specifically, over 37 out of 104 publications
examined mangrove degradation in India. In addition
to India, the research on mangrove degradation has
also been concentrated in several other geographical
hotspots due to the relatively large mangrove covers,
including Bangladesh, Indonesia, Vietnam, and
Myanmar. Many studies on mangrove degradation
in India and Bangladesh focus on the Sundarbans,
which is the largest contiguous mangrove ecosystem
in the world. Furthermore, the study area of Florida in
the United States has also emerged as a prominent
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Figure 2. Number of publications on remote sensing-based mangrove degradation by study area.



focus within the literature on mangrove degradation,
which is owing to the impact of Hurricane Irma,
a major climatic event that occurred in 2017 and
posed significant threats to mangrove ecosystems in
this region (Jamaluddin et al. 2021; Lee et al. 2021;
McCarthy, Jessen, and Barry 2020; McCarthy et al.
2020). The assessment of mangrove degradation
based on remote sensing has been conducted at
various spatial scales, ranging from large-scale, regio-
nal studies to pantropical and global analyses. Several
studies have focused on large-scale analysis, such as
Southeast Asia (Sakti et al. 2020), tropical continental
Asia (Blasco, Aizpuru, and Gers 2001), the pantropical
region (Vancutsem et al. 2021), and global mangrove
ecosystems (Thomas et al. 2017).

The network visualization from VOSviewer
(Figure 3) maps the thematic structure of remote
sensing-based mangrove degradation research.
Clusters of frequently co-occurring terms reveal
dominant interconnected themes, including dataset
preferences, study area hotspots, and key drivers.
Node sizes reflect term prevalence, with larger
nodes representing frequently studied topics (e.g.
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classification, ecosystem). Landsat satellite data
emerged as the most widely used dataset. NDVI,
biomass, and leaf area index derived from remote
sensing data dominate as proxies for mangrove
degradation assessment. Bangladesh and the
Sundarbans are hotspots of study area. It also high-
lights key drivers of mangrove degradation, includ-
ing tsunamis and erosion.

2.2.2. Mangrove degradation proxy derived from
remote sensing

The primary proxies for assessing mangrove degrada-
tion derived from remote sensing data can be categor-
ized into three main types: health, coverage, and
fragmentation indicators (Figure 4). Health indicators
mainly indicate biophysical parameters (e.g. greenness,
biomass, leaf area index, and net primary productivity).
Coverage indicators primarily focus on the spatial
extent and distribution of mangrove forests. They pro-
vide critical information regarding the presence or
absence of mangrove vegetation within specific pixels,
as well as quantifying canopy density and fractional

remote  sensing, mangroves, conservation, coverage.
ndvi  gis erosion
tsugami :
impacts
ecosystem
malagﬁpves
climate s
eco ems
> landsat ;oo getection
resilience
* t 2 sundarbans
emote sensing satellite data
® fO@ts timesseri
degra@dation : =
leaf-aréa index ingex
deforéstation dynamics clumatﬁ:hange@
= cQver 7
SR "~ biodiersity consepyation ~angladesh
classifigation

warld

biomass

Figure 3. Network visualization (from VOSviewer) on remote sensing-based mangrove degradation studies.
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2.2.3.1. Health indicators. Health indicators (which
were the focus of 55.8% of analyzed publications)
primarily focus on assessing the biophysical para-
meters of mangrove ecosystems. The low value or
decline of health indicators represents health status
or health dynamics and can serve as proxies for man-
grove degradation. First, these health indicators can

1

Deep learning

be directly obtained from features of remote sensing
imagery, such as spectral, spatial, and textural char-
acteristics. The spectral signatures of mangrove vege-
tation are closely linked to their biophysical and
biochemical properties, which can change signifi-
cantly due to degradation. Remote sensing images,
such as multispectral and hyperspectral imagery, can



provide information on the spectral characteristics of
mangroves. There are differences in spectral signa-
tures between degraded and healthy mangroves
caused by disparity in leaf pigments, water content,
and canopy structure. In these studies, degraded
mangroves were directly detected from remote sen-
sing images based on spectral characteristics learned
from training samples. For example, it is found that
degraded mangroves in optical images appear in
a grayish tone with coarse and rough texture, whereas
dense/healthy mangroves exhibit a red tone due to
the presence of chlorophyll and smooth texture
(Thakur et al. 2021). Alternatively, health indicators
(biophysical parameters) can be indirectly retrieved
from the remote sensing data through spectral vege-
tation indices, radar indices, and composite indices or
further estimation.

Spectral vegetation indices have been exten-
sively utilized to identify and assess degraded man-
grove areas based on their reduced greenness or
moisture content compared to healthy mangroves,
with degraded areas exhibiting lower index values.
Spectral vegetation indices have been widely
applied in mangrove monitoring (Baloloy et al.
2020; Pham et al. 2019; Tran, Reef, and Zhu 2022),
which are typically computed by combining reflec-
tance values obtained from different wavelength
bands in the electromagnetic spectrum. NDVI is
the most commonly adopted spectral vegetation
index. Generally, higher NDVI values are indicative
of increased vegetation health and greenness. In
addition to NDVI, other commonly employed vege-
tation indices in mangrove degradation studies
include EVI, NDM,l NDWI, transformed difference
vegetation index (TDVI), and soil-adjusted vegeta-
tion indices (SAVI). In addition, some studies have
directly utilized NDVI as a proxy for net primary
productivity (NPP) in mangrove ecosystems
(Marshall et al. 2018), while others have employed
multiple vegetation indices (e.g. EVI, MSAVI, NDVI,
NDM,l) to represent and estimate mangrove bio-
mass (Aljahdali, Munawar, and Khan 2021). This
study also compared the performance of four
indices, suggesting that NDM,l performed better
in identifying degradation and recovery in sparse
mangrove regions (Aljahdali, Munawar, and Khan
2021). The most used vegetation indices as
a proxy of biophysical parameters due to previously
proved correlation, some studies conducted further
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estimation on biophysical parameters. For example,
some studies estimated the LAl of mangroves using
linear regression models with vegetation indices
like EVI (Halder and Pereira 2024) and NDVI
(Kovacs et al. 2009). These empirical relationships
allow for the indirect quantification of this impor-
tant biophysical parameter, which are closely linked
to mangrove productivity and health. Deng et al.
(2023) utilized a machine learning regression
approach to estimate canopy chlorophyll content
(CCC) from vegetation indices derived from
unmanned aerial vehicle (UAV) and Gaofen-6 satel-
lite data. The chlorophyll content is a valuable indi-
cator of photosynthetic capacity and can offer
insights into the physiological conditions of man-
grove canopies.

The sensitivity of radar indices from synthetic aper-
ture radar (SAR) imagery to various biophysical prop-
erties, such as mangrove structure and biomass,
provides complementary information to the spectral
vegetation indices derived from optical sensors (Lucas
et al. 2014). Several studies have leveraged the back-
scatter characteristics of HH and HV polarizations
from L-band ALOS PALSAR and ALOS-2 PALSAR-2
data to identify mangrove degradation (Cornforth
et al. 2013; Datta et al. 2022; C. K. F. Lee et al.
2021Nababa et al. 2020). Cornforth et al. (2013) and
C. K F. Lee et al. (2021) indicates that HV polarization
is better correlated with mangrove structure and
aboveground biomass than HH polarization. A study
(Zhu, Liao, and Shen 2021) utilizing Sentinel-1 C-band
data this study compared the efficacy of four radar
indices in depicting mangrove degradation. These
indices include the backscattering coefficients of VV
and VH polarizations, oy (polarization ratio), and
polarimetric scattering entropy H. The results demon-
strated that these SAR-based metrics were consistent
in characterizing mangrove degradation patterns
(Zhu, Liao, and Shen 2021). Additionally, a study
(Cardenas et al. 2022) that employed L-band JERS-1
and ALOS PALSAR data in 1993 and 2006 showed that
SAR imagery could effectively identify degraded man-
grove areas based on textural differences in the back-
scattering response. Specifically, the study noted that
degraded mangrove areas exhibited a smoother,
specular backscattering pattern, in contrast to the
rough volume backscattering observed in healthy
mangrove stands. These findings collectively high-
light the value and complementarity of SAR-based
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approaches in assessing and monitoring the condi-
tion of mangrove ecosystems, offering insights that
may not be readily captured by traditional optical
remote sensing techniques alone.

2.2.3.2. Coverage. Among the analyzed publica-
tions, 42.3% utilized coverage as a proxy for man-
grove degradation, with metrics such as canopy
density and fractional cover employed to estimate
the proportion of each pixel occupied by mangrove
canopy. Higher canopy density typically correlates
with healthier mangrove ecosystems. For example,
Nfotabong-Atheull, Din, and Dahdouh-Guebas
(2013) differentiated degraded mangroves based on
crown shape and size characteristics. Closed canopies
were identified as undisturbed mangroves. The size
and frequency of gaps within mangrove forests have
also been used to classify degraded mangrove areas
into varying disturbance levels. Additionally, ground
coverage and density of the mangrove forest have
been employed as indicators to distinguish between
degraded and healthy mangrove stands, with lower
ground coverage (generally less than 80%) associated
with degraded mangroves (Blasco, Aizpuru, and Gers
2001; Connette et al. 2016; Nfotabong-Atheull, Din,
and Dahdouh-Guebas 2013).

In addition, the observed absence of mangrove
pixels has been used as a proxy for mangrove degra-
dation (Eddy et al. 2017). Remote sensing techniques
have been widely employed to quantify land use and
land cover (LULC) related to mangrove coverage.
These spatial analyses often utilize pixel-wise differen-
cing to detect and monitor the loss of mangrove
areas, resulting from various drivers, such as defores-
tation, conversion to other land uses, or coastal ero-
sion. However, it is essential to note that the
interpretation of these mangrove absences may not
always accurately distinguish between mangrove
degradation and deforestation. The pixel-based ana-
lysis may not fully capture the complexity of man-
grove canopy structure and stand dynamics. The
inherent pixel mixture within the remote sensing
data can obscure subtle changes in mangrove canopy
characteristics that are indicative of degradation, in
contrast to the total removal of mangrove cover asso-
ciated with deforestation.

2.2.3.3. Fragmentation. While literature focusing
on using fragmentation as a proxy for assessing

mangrove degradation is limited, several studies have
explored this approach (Hai et al. 2022; Toosi et al.
2022). Researchers have employed fragmentation
indices, such as patch size, shape, and connectivity, to
characterize the spatial patterns of mangrove forests
and identify areas undergoing degradation. In
a notable study, Toosi et al. (2022) developed
a spatial disturbance index (SDI) that incorporated var-
ious landscape metrics, such as mean patch size, patch
density, mean shape index, Euclidean nearest neighbor
distance (ENND), total edge, and Shannon’s diversity
index (SHDI). By applying principal component analy-
sis, it can evaluate the spatial patterns associated with
mangrove degradation. Furthermore, Hai et al. (2022)
constructed a mangrove health index (MHI) using an
analytic hierarchy process. This index comprised indi-
cators related to mangrove canopy width, fragmenta-
tion, density, and plant diversity. These studies
demonstrate the potential of adopting fragmentation
metrics combining various spatial and structural attri-
butes of the mangrove to assess degradation status.

2.2.3. Space/Time references of mangrove
degradation from remote sensing

Regarding detecting and identifying mangrove
degradation based on remote sensing techniques,
the existing literature is broadly categorized into
two primary approaches based on space and time
reference: relative to a reference state (41.3% of total
analyzed papers) and temporal change over time
(58.7%) (Figure 4). Mangrove degradation refers to
the transition of the mangrove ecosystem from one
state to another, often resulting in deteriorated con-
ditions. Remote sensing provides a valuable tool for
assessing mangrove degradation by enabling com-
parisons to both spatial reference (relative to
a reference state) and temporal reference (temporal
change over time). When assessing mangrove condi-
tions relative to a reference state, remote sensing
techniques analyze single scenes to evaluate the cur-
rent state of mangroves against a reference condition,
which was determined using a space for time substi-
tution in a single image. In contrast, assessments
based on temporal references focus on analyzing
changes in mangrove conditions across multiple
time periods. This method involves the use of multi-
ple remote sensing data to monitor how the man-
grove ecosystem has altered or deteriorated over
time.



2.2.3.1. Relative to a reference state. Around 42%
of analyzed publications employed space references
for mangrove degradation. Mangrove health condi-
tions are directly detected and mapped from single-
date satellite imagery. The mangrove states are typi-
cally classified into several distinct classes, such as
degraded and healthy/intact mangroves. Some stu-
dies compare the current condition of mangroves
with an expected healthy condition, which serves as
an ideal or baseline state. This reference is typically
derived from established knowledge of the spectral
and texture characteristics of both degraded and
healthy mangroves in specific remote sensing ima-
gery. Such knowledge can then be utilized for unsu-
pervised and supervised classification (Connette et al.
2016), as well as visual interpretation (Nfotabong-
Atheull, Din, and Dahdouh-Guebas 2013). For exam-
ple, in Hayashi et al. (2023) study, degraded man-
groves were detected based on rules that identified
areas with low development of mangroves, com-
pacted sediments, and low frequency of tidal
flooding.

Additionally, there are also papers that establish
space references using known indices and thresholds
to determine mangrove degradation. For instance,
density and coverage metrics provide quantitative
measures of mangrove extent. Known thresholds to
determine degradation have been applied, such as
canopy density and proportion of coverage (Nayak
and Bahuguna 2001). Moreover, indices such as
NDVI are commonly used to assess mangrove health,
with specific NDVI thresholds indicating the transition
from healthy to degraded states (Jones et al. 2015;
Valderrama-Landeros et al. 2018).

Another type of reference state is based on the
range of observed values, which relies on using index-
based rules and thresholds (Sahana et al. 2022;
Servino, de Oliveira Gomes, and Bernardino 2018).
This method aims to delineate different levels of
mangrove degradation, typically categorized into
classes such as healthy, moderately degraded, and
severely degraded. In this approach, various indices
(satellite-derived index, landscape index, and new
composite index) are employed as proxy indicators
of mangrove degradation. Specifically, Meyer et al.
(2019) developed a vegetation index-based compo-
site index, forest degradation index (FDI), which is the
sum of three components: top mean canopy height
(TCH), large tree canopy area (LCA), and forest
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percentage cover (PC). Datta et al. (2022) applied
a radar forest degradation index (RFDI), which is
a normalized ratio of HH and HV backscatter, to assess
mangrove degradation. A wetland ecosystem health
index (WEHI) based on the pressure-state-response
model was developed to assess wetland health across
various levels of degradation (Sahana et al. 2022).

2.2.3.2. Temporal change over time. In addition to
the static classification approach, an alternative
method for mapping mangrove degradation involves
using multi-temporal change detection analysis. This
approach involves comparing two or more satellite
images acquired at different time periods to detect
changes in mangrove cover and status, including
identifying degraded areas. Temporal information
can help identify the underlying causes of mangrove
degradation, such as human activities, natural distur-
bances, or climate-related factors.

(1) Bi-temporal differences

This method is based on bi-temporal differ-
ences in LULC or health index. By comparing
the index values or LULC between two time
periods, it is possible to highlight areas where
mangrove cover has changed, including areas
that have experienced degradation. Tracking
the changes derived from satellite images
over time can offer insights into the temporal
patterns and dynamics of mangrove condi-
tions. The LULC dynamic-based change detec-
tion methodology involves the classification of
mangrove cover in two satellite images
acquired at different time periods, commonly
referred to as the “from” and “to” images. This
approach effectively captures the disappear-
ance or conversion of mangrove areas as an
indicator of degradation. Following the classifi-
cation of mangrove cover for the two time
periods, a pixel-wise differencing operation is
performed to detect mangrove changes.
Specifically, the identification of mangrove
degradation can be approached through two
specific schemes based on classification results
from two distinct periods. First, pixels that exhi-
bit a change from “dense” to “sparse” man-
grove (Hauser et al. 2020) or a decrease in
dense mangrove coverage alongside an
increase in sparse mangrove coverage (Kanjin
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and Alam 2024) are classified as areas of man-
grove degradation. Second, pixels that were
classified as mangrove in the “from” image
but not in the “to” image are also recognized
as areas of mangrove degradation (Jia et al.
2014; Liman Harou et al. 2023). However, it is
crucial to note that this conversion in
the second scheme is sometimes perceived as
mangrove deforestation rather than degrada-
tion.

In addition to the LULC dynamic-based
change detection approach, some of the stu-
dies on mangrove degradation employ
a change detection analysis based on man-
grove health indices. These studies involve the
classification of mangrove health conditions
using various indices in two different time per-
iods. The decrease in the health condition
indices between the two time periods is used
as an indicator of mangrove degradation. The
health condition is typically assessed using
vegetation index (e.g. NDVI, enhanced vegeta-
tion index (EVI), leaf area index (LAIl), gross
primary productivity (GPP)) (Akhand et al.
2017; Ayanlade and Drake 2016; Ayanlade and
Howard 2016; Etemadi, Smoak, and Abbasi
2021; Hasan et al. 2024; Rajitha et al. 2010;
Samanta et al. 2021; Singh and Schoenmakers
2023; Solanki et al. 2022; Toor, Tater, and
Chandra 2024), radar indices (e.g. backscatter,
polarimetric features) (Cornforth et al. 2013),
landscape index (e.g. fragmentation, connectiv-
ity) (Hai et al. 2022) and composite index (man-
grove health index (MHI)) (Hai et al. 2022;
Halder and Pereira 2024) to infer the greenness,
biomass, and fragmentation of the mangrove
ecosystem. This approach focuses on the man-
grove environment's ecological health and
functional aspects, rather than solely on the
areal extent or land cover changes.

Time series trend

Utilizing time series satellite images to
detect the long-term trends in mangrove con-
ditions provides valuable insights into the
degradation and recovery processes. By analyz-
ing the temporal patterns and trajectories of
mangrove-related indices or spectral character-
istics, researchers can identify areas that have
experienced gradual or abrupt changes,

indicating degradation or recovery. Trend ana-
lysis can help distinguish between temporary
disturbances and persistent degradation of the
mangroves. Some research has applied trend
analysis to detect mangrove degradation
(Aljahdali, Munawar, and Khan 2021; Hong,
Avtar, and Fujii 2019; Thakur et al. 2021;
Vancutsem et al. 2021; Wu et al. 2022; Zhu,
Liao, and Shen 2021). For instance, in some
studies (Aljahdali, Munawar, and Khan 2021;
Vancutsem et al. 2021; Zhu, Liao, and Shen
2021), trend analysis (e.g. Theil-Sen, Mann-
Kendall test, Hurst exponent) or linear regres-
sion (least square regression) was used to ana-
lyze long-time series satellite images. The
significant decreasing trends in vegetation
indices (NDVI, EVI, MSAVI (modified soil-
adjusted vegetation index), and NDM,l) repre-
sent the occurrence of mangrove degradation
over this period. The integration of time series
analysis and trend detection methods can offer
a more thorough and holistic understanding of
the temporal patterns, dynamics and trajec-
tories of mangrove ecosystems, thereby enhan-
cing the detection and characterization of
mangrove degradation processes. Vancutsem
et al. (2021) achieved a high overall accuracy
of 91.4% for its disturbance mapping, encom-
passing both deforestation and degradation
classes. This underscores the potential of inte-
grating trend analysis to produce accurate
degradation maps. Trend analysis techniques
are primarily employed to detect changes in
mangrove distribution or proxies like NDVI
over various time periods, the observed decline
trends are indicative of degradation. However,
most trend analysis studies tend to only report
classification accuracy for individual time
points (Hong, Avtar, and Fujii 2019) or do not
report accuracy as degradation was measured
by the decreasing trend of NDVI (Aljahdali,
Munawar, and Khan 2021), rather than the
accuracy of the final degradation maps derived
from trend analysis.

2.2.4. Primary remote sensing data

Remote sensing data utilized in mangrove degrada-
tion research encompasses a diverse range of sensor
platforms (Figure 5), including passive sensors



(multispectral and hyperspectral optical imagery, aer-
ial imagery) and active sensors (SAR, light detection
and ranging (LiDAR)).

2.2.4.1. Passive and active sensors. Among the
commonly employed optical data sources are the
Landsat series (TM, ETM+, OLI), Sentinel-2, and
MODIS, with Landsat data accounting for about 60%
of the total publications in the field. The availability of
high-resolution satellite sensors allows high accuracy
mangrove mapping and improved discrimination
between healthy and degraded vegetation. High-
resolution optical such as SPOT, WorldView-2,
QuickBird, GaoFen-6, RapidEye, PlanetScope,
RESURS, ALOS-1 AVNIR-2, CORONA, Resourcesat-2A
LISS, and KeyHole-9, have been employed in local-
scale analyses (Blasco and Aizpuru 2002; Blasco,
Aizpuru, and Gers 2001; Deng et al. 2023; Dev Roy
and Trivedi 2023; Giri et al. 2007; Kovacs et al. 2009;
McCarthy, Jessen, and Barry 2020; McCarthy et al.
2020; Toosi et al. 2022; Valderrama-Landeros et al.
2018; Veettil 2022; Walcker et al. 2019). For example,
Deng et al. (2023) utilized image from the Chinese
civilian remote sensing satellite GaoFen-6, with
a spatial resolution of 8 m, to estimate species-level
canopy chlorophyll content and infer the degradation
status of mangroves in the Beibu Gulf region of
Guangxi, China. Furthermore, Valderrama-Landeros
et al. (2018) showed that WorldView-2 imagery
(1.6 m spatial resolution), achieved the highest accu-
racy in differentiating dead mangrove and various
mangrove species compared to SPOT-5 (10m),
Landsat-8 (30 m), and Sentinel-2 (10 m) data.

Moreover, hyperspectral remote sensing, which
collects data in hundreds of narrow spectral bands,
has shown potential for a more accurate classification
of mangrove health status by detecting subtle differ-
ences in leaf chemistry and structure (Hati et al. 2022;
Vidhya et al. 2014). For example, Vidhya et al. (2014)
suggested the effectiveness of hyperspectral data in
monitoring mangrove health and distinguishing
between degraded, healthy, and sparse mangrove
areas. Hati et al. (2022) used airborne hyperspectral
AVIRIS-NG data and the SAM method to separate
healthy and degraded mangroves in India based on
various vegetation indices.

In addition, aerial images have also been used for
visual interpretation of degraded mangroves in
Cameroon (Nfotabong-Atheull, Din, and Dahdouh-
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Guebas 2013) and Kenya (Dahdouh-Guebas et al.
2004) during the 1970s, 1990s, and 2000s. These aerial
images were scanned and enlarged to very high reso-
lution, around half-meter pixel resolution, to enable
better identification of degraded mangrove areas. In
recent years, UAV imagery has become available and
has been utilized to complement satellite data.
Studies have used UAV images from DJI Phantom 4
(Cardenas et al. 2022) and Matrice 200 (Deng et al.
2023) platforms to assist in estimating mangrove
canopy height and chlorophyll content information,
which can provide additional details not easily cap-
tured by satellite imagery alone.

Among active sensors, SAR data has proven
effective in retrieving various biophysical properties
of mangrove vegetation, such as structure and bio-
mass. SAR data used in mangrove studies includes
ALOS PALSAR, ALOS-2 PALSAR-2, Sentinel-1, and
JERS-1 (Cardenas et al. 2022; Cornforth et al. 2013;
Datta et al. 2022; C. K. F. Lee et al. 2021; Nababa
et al. 2020; Thomas et al. 2017; Zhu, Liao, and Shen
2021). The unique capabilities of SAR sensors, which
can collect data without being hindered by cloud
cover and time, make them invaluable for monitor-
ing dynamic coastal environments like mangrove
forests. For example, Datta et al. (2022) has utilized
SAR data (ALOS PALSAR and ALOS-2 PALSAR-2) to
identify mangrove degradation based on RFDI,
which is a normalized ratio of HH and HV polariza-
tions (Datta et al. 2022; Zhu, Liao, and Shen 2021).
Several research have also shown the effectiveness
of using the backscatter characteristics of HH and
HV polarizations from SAR data to assess mangrove
degradation (Cornforth et al. 2013; Datta et al. 2022;
Lee et al. 2021; Nababa et al. 2020).

The use of LiDAR can provide additional insights
into mangrove structure attributes (e.g. height)
and biomass, which are essential for understanding
degradation processes and ecosystem health
(Salum et al. 2020; Yin and Wang 2019). In a LiDAR-
based study (Meyer et al. 2019), a forest degrada-
tion index (FDI) was constructed using LiDAR-
derived height and biomass models, along with
a Random Forest prediction approach. The FDI
enabled the classification of mangrove areas into
intact and degraded categories, demonstrating the
potential of integrating LiDAR data for a more
comprehensive assessment of mangrove condi-
tions. Similarly, Cardenas et al. (2022) utilized
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drone-generated point cloud data combined with
Digital Surface Models to estimate mangrove
canopy height, achieving high-resolution vertical
structure mapping for mangrove degradation
assessment.

Integrating diverse remote sensing datasets could
enable more comprehensive characterization and
monitoring of mangrove ecosystems. The most com-
mon integration involves combining optical data (e.g.
Sentinel-2, Landsat) with SAR data (e.g. Sentinel-1,
ALOS PALSAR), where SAR complements optical ima-
gery in cloud-prone regions (Cardenas et al. 2022) or
is fused with optical features in Random Forest mod-
els for degradation classification (Halder and Pereira
2024; Lee et al. 2021). Additionally, LiDAR is frequently
paired with optical data to refine mangrove extent
mapping and provide precise height and biomass
estimates (Meyer et al. 2019).

2.2.4.2. Pre-treatment of input data. Existing lit-
erature extracted spectral, texture, spatial, and polar-
ization features of input remote sensing data. Spectral
signatures in different bands can be used to assess
healthy versus degraded mangrove areas (L. Wang
et al. 2019). As stated in Dev Roy and Trivedi (2023),
the feature of degraded mangroves in optical images
is irregular and smooth. In the panchromatic band,
the tone of degraded mangroves is typically white or
light gray, in contrast to the black or dark gray tone of
healthy mangroves. In the false-color composite, the
tone of degraded mangroves is pale red, compared to
the bright red representation of healthy mangroves.

The modification of bands plays a critical role by
emphasizing specific spectral or polarization charac-
ters that are essential for accurately assessing man-
grove health and condition. Spectral vegetation
indices, which are mathematical combinations of mul-
tiple spectral bands, are effective in enhancing vege-
tation signal, such as EVI, NDVI, NDMI, and NDWI. In
the context of mangrove degradation detection,
Datta et al. (2022) applied RFDI to assess mangrove
degradation, which is a normalized ratio of HH and HV
polarizations. Moreover, C. K. F. Lee et al. (2021) and
Nababa et al. (2020) used a combination of radar
indices (HV, HH) and vegetation indices (NDVI, nor-
malized difference moisture index (NDMol), and nor-
malized difference water index (NDWI)) as input
features for RF classification to map mangrove
degradation.

2.2.5. Remote sensing image classification

2.2.5.1. Object-based and pixel-based classifica-
tion. Object-based classification involves dividing the
image into homogeneous objects based on their prop-
erties (such as spectral, spatial, and textural features),
and then classifying these objects into mangrove
classes (Kuenzer et al. 2011), including the degraded
mangrove class. Several studies have demonstrated
that this approach can provide more accurate results
than traditional pixel-based classification, particularly
in heterogeneous mangrove environments (Wang et al.
2018). The commonly used algorithm in mangrove
degradation studies is the multi-resolution segmenta-
tion algorithm in mangrove degradation studies
(Cardenas et al. 2022; Dev Roy and Trivedi 2023;
Hayashi et al. 2023). It is an object-oriented image
classification based on scale, shape, and compactness
(Wang et al. 2018). This method considers both the
spatial and spectral characteristics of groups of pixels,
capturing the inherent heterogeneity and structure of
the mangrove landscape.

In contrast, pixel-based classification combined
with various classifiers can accurately differentiate
between healthy and degraded mangrove classes
due to the subtle spectral differences (Blasco,
Aizpuru, and Gers 2001; Connette et al. 2016;
Nfotabong-Atheull, Din, and Dahdouh-Guebas 2013).
This method treats each pixel as an independent unit,
analyzing its spectral information to determine
whether it corresponds to healthy mangroves,
degraded areas, or other land cover types. However,
pixel-based classification may encounter mixed pixel
issues, where a single pixel contains a combination of
healthy and degraded mangroves.

2.2.5.2. Approaches to training classes and classi-
fiers. Some studies have manually identified and
digitized degraded mangroves based on features
such as size, color, and texture (Eddy et al. 2017,
2021; Khairuddin et al. 2016; Thomas et al. 2017).
The texture and spatial patterns of the canopy can
vary considerably between healthy and disturbed
mangrove areas. For example, Ramachandran et al.
(1998) characterized the features of degraded man-
groves in SPOT, IRS LISS II, and Landsat 5 imagery as
having a grayish tone, coarse, and rough texture, in
contrast to the dense mangrove stands, which exhi-
bits a red tone due to the presence of chlorophyll and
smooth texture.



Beyond visual interpretation, there are a variety of
supervised and unsupervised classification approaches
that have been employed to map degraded man-
groves from satellite imagery. The unsupervised classi-
fication methods include ISODATA and K-means (Beitl
et al. 2019; Bosire et al. 2014). Supervise classification
mainly relies on machine learning methods, such as,
random forest (RF) (Connette et al. 2016; Senger et al.
2021), maximum likelihood (ML) (Majumdar et al. 2019;
Salami, Akinyede, and De Gier 2010), gaussian maxi-
mum likelihood (Connette et al. 2016), support vector
machine (SVM) (McCarthy et al. 2020), Neural Network
(McCarthy et al. 2020), and decision tree (Kuenzer et al.
2014; McCarthy, Jessen, and Barry 2020; McCarthy et al.
2020). Machine learning has been widely used for
mangrove degradation, using advanced algorithms to
classify pixels or objects based on training data. These
methods rely on the distinctive spectral signatures of
different mangrove cover types, learned from training
data, to differentiate between healthy and degraded
mangrove areas.

In addition to machine learning, deep learning
methods have been applied to mangrove degrada-
tion detection, due to their ability to learn complex
information and require few samples for effective
performance. For example, Jamaluddin et al. (2021)
applied the MDPrePost-Net deep learning method
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with vegetation indices using Sentinel-2 data to sepa-
rate intact or degraded mangroves due to Hurricane
Irma in Florida. The study demonstrated that indices
such as NDVI, normalized difference mangrove index
(NDMal), combined mangrove recognition index
(CMRI), and modular mangrove recognition index
(MMRI) could improve the accuracy of distinguishing
degraded mangroves from intact mangroves.
Panuntun et al. (2024) proposed a LinkNet-Spectral-
Spatial-Temporal Transformer model, demonstrating
a better and more effective performance compared to
existing deep learning and machine learning models.
While the proposed novel deep learning model
achieved the highest accuracy, all other deep learning
models evaluated in the comparison (e.g. U-Net,
LinkNet, MDPrePost-Net, SST-Former) demonstrated
superior performance over traditional machine learn-
ing approaches (RF and SVM) in terms of overall accu-
racy, mean loU, and F1-score (Panuntun et al. 2024).
By comparing the overall accuracies of selected stu-
dies that detected degraded mangroves as a distinct
class across different classification methods (Figure 6),
most classifiers performed well, with a mean overall
accuracy exceeding 85%. Deep learning models
achieved the highest accuracy, outperforming other
machine learning approaches (e.g. RF, SVM) and
object-based classification methods. In contrast,
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Figure 6. Box plot of overall accuracies of selected studies that detected degraded mangroves as a class based on different
classification methods. (OBIA- Object-based image analysis; RF- Random forest; ML- Maximum likelihood; SVM- Support vector
machine; DT- Decision tree; SAM- Spectral angle mapper; VI- visual interpretation; DL-Deep learning).
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decision tree-based classifiers and the Spectral Angle
Mapper exhibited relatively lower performance, with
accuracies around 80%. However, due to the variabil-
ity in proxies and criteria used to define mangrove
degradation across studies, it is challenging to deter-
mine which data or methodological approach repre-
sents a better practice based solely on direct
comparisons of mapping accuracy.

3. Challenges

3.1. Difficulty in selecting optimal proxies for
mangrove degradation

Mangrove degradation is frequently assessed using
proxy indicators derived from remote sensing, such
as vegetation indices (e.g. NDVI, EVI), canopy cover,
and biomass estimates. As reviewed above, mangrove
health conditions (Etemadi, Smoak, and Abbasi 2021;
Thakur et al. 2021), often quantified through spectral
vegetation indices like NDVI, are the most widely
adopted (Marshall et al. 2018). For instance, NDVI is
commonly used as the proxy of greenness, biomass,
or NPP, which is then interpreted as a measure of
mangrove degradation. However, selecting the most
appropriate proxy remains a challenge, as each indi-
cator captures only one aspect of degradation (e.g.
vegetation health, structural changes, or ecosystem
functions), leading to incomplete or biased assess-
ments. For example, NDVI may indicate greenness
but fail to capture structural degradation. Similarly,
biomass proxies may overlook functional declines,
such as reduced carbon sequestration capacity. Over-
reliance on single proxies may oversimplify degrada-
tion, leading to incomplete or misleading conclusions
about mangrove health (Hai et al. 2022). In addition,
variability in proxy selection complicates cross-
regional comparisons and validation, which may hin-
der policy standardization, and reliable baseline
establishment for restoration.

3.2. Confusion between degradation and
deforestation

Deforestation and degradation are distinct ecologi-
cal processes but are often confused in remote-
sensing studies. Deforestation refers to the com-
plete removal of mangrove cover, often associated
with land-use conversion (e.g. to aquaculture or

urban areas), whereas degradation means
a reduction of mangrove attributes, function, or
ecosystem services without full removal of man-
grove areas (Friess et al. 2019). For example, some
articles define degradation as the complete conver-
sion of mangrove ecosystems to other land covers,
which closely resembles the definition of deforesta-
tion (Liman Harou et al. 2023). Actually, it is difficult
to distinguish deforestation and degradation, espe-
cially in coarse-resolution remote sensing imagery.
Pixels containing thinning mangrove canopies or
decreased greenness might be classified as defor-
ested mangroves in coarse-resolution imagery due
to spectral averaging. Misclassification between
degradation and deforestation (Souza et al. 2013)
can lead to over- or underestimation of the extent
of mangrove degradation.

3.3. Differentiating true degradation from natural
variability

Distinguishing true degradation from the natural
variability of mangroves remains a critical challenge
in remote sensing assessment. Mangroves exhibit
inherent variability due to factors such as stand age,
seasonal changes, environmental differences or tidal
fluctuations, all of which can mimic degradation sig-
nals in spectral or structural data. For example, young
mangrove stands in early growth stages or naturally
sparse stands (e.g. species like Avicennia or
Sonneratia) (Taureau et al. 2019) often exhibit lower
canopy density or height. These traits may be misin-
terpreted as degraded vegetation, despite being
healthy. In addition, tidal inundation may alter the
spectral properties of mangroves (Wang et al. 2019),
leading to inaccurate assessments. Existing literature
has often relied on single-date imagery or long-term
(e.g. decadal) change detection approaches to iden-
tify and quantify mangrove degradation (Datta et al.
2022; Hamuna, Kalor, and Tablaseray 2019). However,
some commonly used indicators of mangrove health,
such as greenness and biomass, are sensitive to the
natural phenological cycles of these ecosystems and
can exhibit regular fluctuations over time (Pastor-
Guzman, Dash, and Atkinson 2018). Relying on these
indicators without sufficient temporal frequency can
confound the distinction between seasonal changes
and degradation trends. Remote sensing assessments
require a sufficiently high temporal frequency of



observations to accurately differentiate between
mangrove phenological changes and degradation.
This allows for the detection of short-term changes
and the separation of seasonal/cyclical variations
from long-term degradation trends.

3.4. Uncertainty from varied resolutions and mixed
pixel

The choice of spatial resolution of remote sensing
data significantly influences mangrove degradation
assessment, introducing uncertainties that stem
from mixed pixels and scale-dependent misclassifica-
tion. Sensors with coarse-resolution data often aggre-
gate spectral signals from heterogeneous surfaces
and lead to mixed pixels (Kuenzer et al. 2011).
A single pixel contains a combination of both
degraded and healthy mangroves, as well as non-
mangrove features (L. Wang et al. 2019), obscuring
fine-scale degradation patterns. This can introduce
uncertainty in the classification of degraded man-
grove areas. Coarse spatial resolution satellite data
may average spectral signals and limit the ability to
capture the fine-scale details and heterogeneity
within mangrove ecosystems, hindering the detection
of early stages of degradation or small patches of
degradation. Mangrove forests often exhibit high spe-
cies diversity and structural complexity (Datta et al.
2022). Optical sensors struggle to differentiate spec-
trally similar but ecologically distinct classes, such as
stressed Avicennia vs. healthy Sonneratia. In addition,
partial degradation in a single pixel may be misla-
beled as deforestation in coarse-resolution data due
to dominant spectral signals from water or bare soil.

4. Opportunities

4.1. Integrating multi-source datasets for holistic
insights

Mangrove degradation monitoring is hindered by
environmental and technical challenges as discussed
in Section 3. Factors such as tidal cycles, cloud cover,
and atmospheric conditions can significantly impact
the spectral response of mangrove canopies, making
it challenging to obtain reliable and consistent obser-
vations over time from optical sensors. Emerging
remote sensing technologies, including hyperspectral
sensors, UAV, SAR, and LiDAR, offer synergistic
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solutions when integrated, enabling robust, multi-
dimensional assessments of mangrove degradation.

UAV-based remote sensing can generate data with
very high spatial resolution images, enabling the
detailed mapping of mangrove species, canopy struc-
ture, and condition at the individual tree or stand
level (Cardenas et al. 2022; Deng et al. 2023). It is
useful to distinguish deforestation and degradation
caused by coarse-resolution remote sensing data.
UAV-mounted sensors, such as RGB, multispectral, or
thermal cameras, have been used to assess multiple
mangrove health indicators. In addition, hyperspec-
tral sensors can capture detailed spectral information,
facilitating the differentiation of individual mangrove
species and the detection of subtle changes in canopy
chemistry associated with degradation. Studies have
demonstrated hyperspectral data can effectively map
mangrove species composition, biomass, and stress
indicators, such as changes in chlorophyll content or
water content (Hati et al. 2022; Vidhya et al. 2014).

Furthermore, SAR data, which uses microwave
radiation to penetrate cloud cover and dense cano-
pies, effectively maps mangrove extent, structure, and
biomass. SAR data allows for consistent monitoring in
tropical and cloudy regions. Researchers have utilized
multi-temporal SAR data to detect changes in man-
grove canopy structure and infer degradation
(Cornforth et al. 2013; Datta et al. 2022), especially in
regions with frequent cloud cover that restricts the
use of optical satellite imagery. Advancements in
LiDAR technologies can provide detailed information
on mangrove canopy structure, biomass, and even
belowground carbon stocks (Meyer et al. 2019).

Importantly, integrating multiple sources of
remote sensing images is a vital step in achieving
comprehensive and accurate monitoring of man-
grove ecosystems (Cardenas et al. 2022; Giri et al.
2007). By fusing data from various satellite platforms,
sensors, and spatial resolutions, researchers can over-
come the limitations of individual data sources and
capture the spatial, temporal, and spectral complex-
ities of mangrove habitats. It is possible to reduce
reliance on single proxies and improve the accuracy
of mangrove degradation monitoring. In addition,
multi-source integration with ancillary spatial data
(e.g. aquaculture development, natural disaster, pol-
lution sources, and coastline erosion) could enhance
the accuracy of mangrove condition assessment
(Aljahdali, Munawar, and Khan 2021).
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4.2. Leveraging advanced techniques for accurate
degradation monitoring

Recent advancements in technology, open philoso-
phies, and statistical validity could enhance mangrove
degradation monitoring, allowing researchers to
address longstanding challenges with greater precision
and transparency. These advancements facilitate the
differentiation of true degradation from natural varia-
bility, improve proxy-based analyses, and enhance the
decomposition of mixed-pixel scenarios.

4.2.1. Technological advancements in remote
sensing

Previous studies mainly relied on biological para-
meters such as greenness and biomass as a proxy
for mangrove degradation to achieve robust and
comprehensive monitoring (Aljahdali, Munawar,
and Khan 2021; Etemadi, Smoak, and Abbasi 2021).
Incorporating ecosystem service indicators is also
crucial for comprehensive mangrove degradation
assessment. By linking the biophysical parameters
extracted from remote sensing data to the ecosys-
tem services offered by mangrove forests, such as
coastal protection and carbon sequestration,
a nuanced evaluation of mangrove conditions
would be achieved. Deep learning models are cap-
able of handling complex datasets and identifying
subtle patterns that traditional methods may over-
look (Jamaluddin et al. 2021). Furthermore, artificial
intelligence-driven models can integrate mangrove
conditions with environmental data, effectively
resolving the confusion between degradation and
natural variability. These approaches enhance classi-
fication accuracy by identifying patterns across mul-
tiple dimensions.

Platforms like Google Earth Engine store and orga-
nize petabytes of satellite data into spatially aligned
and analysis-ready formats, enabling large-scale man-
grove extent mapping (Jia et al. 2023). Data cubes
(Chen, Wang, and Gong 2023) enable the seamless
integration of multi-temporal, multi-sensor datasets.
These platforms could facilitate large-scale monitor-
ing of mangrove degradation, making it more feasible
and cost-effective. Additionally, advancements in
cloud computing and computational capacity allow
for real-time processing of dense time series data
(Binh et al. 2024), facilitating rapid alerts for mangrove
disturbances.

4.4.2. Transition to open philosophies

Collaborative code-sharing forums (e.g. GitHub)
enable researchers to share open-source scripts for
mangrove estimation (Simard et al. 2025), deep learn-
ing classification algorithms, and time series analysis.
This promotes technical exchange, accelerates meth-
odological improvements, and ensures reproducibil-
ity across studies. Access to free data is gradually
increasing. The GEE platform provides free, high-
quality, and global-scale satellite imagery, enabling
cost-effective monitoring in resource-limited regions
(Yang et al. 2022; Zhao et al. 2021). Local open data
initiatives, such as those by the Hong Kong govern-
ment, which provide free aerial imagery covering the
entire territory, have demonstrated the effectiveness
of estimating accurate mangrove cover (Zhang et al.
2025).

Collaborative initiatives, such as the Global
Mangrove Alliance and the International Blue
Carbon Initiative (Herr et al. 2017) of the United
Nations Environment Programme (UNEP), could facil-
itate harmonized monitoring protocols and share best
practices across borders. The Global Mangrove
Alliance has launched the Global Mangrove Watch
platform (https://www.globalmangrovewatch.org/),
which displays interactive maps and statistics on man-
grove cover, species distribution, height, and
dynamics, serving as a critical baseline for policy-
makers. For some local initiatives, integrating indigen-
ous knowledge with remote sensing data could
enable local communities to both contribute to and
benefit from degradation assessments.

4.2.3. Improvements in statistical validity
Integrating time series analysis techniques is crucial
for monitoring mangrove degradation (Vancutsem
et al. 2021; X. Yang et al. 2024; Zhu, Liao, and Shen
2021). By examining the temporal dynamics of man-
grove ecosystems using high-frequency remote sen-
sing data, researchers can better differentiate
between seasonal fluctuations, disturbance-driven
changes, and persistent degradation trends.
Analyzing mangrove changes over multiple time
steps to identify persistent losses (deforestation) ver-
sus cyclic or fluctuating changes (degradation)
enables a more detailed and precise representation
of mangrove conditions across different time periods.
Approximately 59% of the studies examined or
discussed the drivers of mangrove degradation,
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encompassing both natural (e.g. climate change, nat-
ural disasters, coastal erosion) and anthropogenic fac-
tors (e.g. land use change, pollution, overexploitation,
infrastructure development). Driver analysis of man-
grove degradation could consider geographical, eco-
logical, climatic, and social perspectives to develop
a comprehensive understanding of the underlying
causes (Yando et al. 2021). By investigating the inter-
actions between factors such as land use changes,
climate change, and socioeconomic pressures,
researchers can better evaluate the complex drivers
of mangrove degradation. This holistic approach is
crucial for informing sustainable development strate-
gies that address the coupled human-nature
dynamics in mangrove-dependent regions. By brid-
ging the biophysical and social dimensions, research-
ers can gain a more nuanced understanding of how
human activities, policies, and institutional arrange-
ments interact with and influence the condition of
mangrove forests (Beitl et al. 2019). Statistical
advancements also enhance the ability to quantify
uncertainties in degradation assessments, improving
the scientific validity and reliability of results.

4.3. Implications of accurate mangrove
degradation monitoring

Accurate mangrove degradation monitoring could
offer actionable insights for conservation, climate pol-
icy, and sustainable development. First, it strengthens
evidence-based conservation and restoration strate-
gies by enabling policymakers to prioritize high-risk
areas and allocate resources efficiently (Dabala et al.
2023). Early detection of degradation allows timely
interventions that reduce long-term restoration costs
(Zimmer et al. 2022). This will bridge remote sensing
data with actionable management strategies, ensur-
ing degraded ecosystems are restored before reach-
ing ecological tipping points and safeguarding
biodiversity and coastal resilience.

In addition, the implications of mangrove degrada-
tion monitoring extend beyond the immediate ecolo-
gical consequences to support Environmental-
Economic Accounting (Ramesh et al. 2023) and cli-
mate action (Donato et al. 2011). Mangroves are cri-
tical carbon sinks, storing more carbon per hectare
than terrestrial forests (Donato et al. 2011). Precise
monitoring quantification of degradation-driven car-
bon emissions can inform blue carbon projects and
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international commitments related to mitigating and
adapting to climate change (Senger et al. 2021).
Accurate monitoring thus transforms ecological data
into economic and policy tools, advancing equitable
climate resilience and sustainable development,
which is aligned with the UN Sustainable
Development Goals (SDGs), particularly SDG 13
(Climate Action) and SDG 14 (Life Below Water)
(Eyzaguirre, Iwama, and Fernandes 2023).

5. Conclusions

This review provided an overview of mangrove
degradation studies that utilized remote sensing
techniques. We found that the specific proxies of
mangrove degradation derived from remote sen-
sing data to assess mangrove degradation predomi-
nantly fall into three broad categories: health
indicators (e.g. canopy condition, biomass, and pro-
ductivity), coverage and fragmentation. Remote
sensing enables comparisons to both spatial refer-
ence (relative to a reference state) and temporal
reference (temporal change over time). Based on
previous publications, we detected some key chal-
lenges, including difficulty in selecting optimal
proxy, confusions between degradation and defor-
estation, confusions between true degradation and
natural variability, and uncertainty caused by coarse
resolution. Nonetheless, the growing accessibility of
advanced remote sensing technologies and data
sources offers significant opportunities. Accurate
and comprehensive monitoring of mangrove degra-
dation could significantly inform and guide sustain-
able coastal management and restoration efforts,
helping to preserve the invaluable ecological and
socioeconomic benefits provided by these critical
ecosystems.
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