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A review of mangrove degradation assessment using remote sensing: advances, 
challenges, and opportunities
Shan Wei a,b, Hongsheng Zhang a,b and Jing Ling a

aDepartment of Geography, The University of Hong Kong, Hong Kong, China; bThe University of Hong Kong Shenzhen Institute of Research 
and Innovation, Shenzhen, China

ABSTRACT
Mangrove ecosystems are essential coastal environments that provide extensive ecological and 
socioeconomic benefits to both human societies and the natural environment. However, man
grove degradation can lead to significant declines in biodiversity, ecosystem processes, and 
ecosystem services. Compared to the extensive research focused on documenting mangrove 
areal changes and deforestation, there is a lack of review on the current status of mangrove 
degradation identification with the assistance of remote sensing data. This review analyzed 104 
papers focusing on remote sensing-based mangrove degradation assessments across tropical and 
subtropical regions from Web of Science and Google Scholar databases. We summarized the 
remote sensing approaches employed, the specific proxies or indicators derived from remote 
sensing data to characterize mangrove degradation, the primary remote sensing datasets utilized 
and remote sensing image classification methods. We also identified the key challenges (e.g. lack of 
optimal proxies, confusions between true degradation and natural variability) and emerging 
opportunities for future research in the remote sensing-based assessment of mangrove degrada
tion. Based on publications, one of the primary challenges lies in the inconsistency of definitions 
and proxies used to characterize mangrove degradation. Scale effects and the inherent complexity 
of remote sensing data further compound these challenges. Nonetheless, the increasing avail
ability of advanced multi-source remote sensing data holds promise for more accurate and 
comprehensive measurement of mangrove degradation, which could ultimately inform and 
guide sustainable coastal management and restoration efforts.
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1. Introduction

The significance of mangrove ecosystems has been 
gaining more recognition in recent decades. 
Mangrove forests, situated in the intertidal regions 
in tropical and subtropical climate zones, are 
regarded as unique coastal habitats that play irre
placeable roles and serve invaluable functions. These 
include carbon sequestration, water purification, and 
the mitigation of coastal erosion (Alongi 2002; Giri 
et al. 2011; S. Y. Lee et al. 2014). Located at the land– 
sea interface, mangroves have been impacted by 
natural and anthropogenic disturbances (Goldberg 
et al. 2020). In response to the growing awareness 
of the ecological significance of mangrove forests, 
numerous countries have enacted policies and reg
ulations to strengthen the protection and manage
ment of these coastal environments (S. Y. Lee et al.  
2019). Extensive research attention has been 
devoted to investigating changes in mangrove 

areal extent and deforestation at local, regional, 
and even global scales (Bunting et al. 2018; Giri 
et al. 2011; Jia et al. 2023). However, compared to 
the focus on mangrove deforestation and areal 
change/loss, the issue of mangrove degradation 
has received relatively less attention from the 
research community. While mangrove deforestation 
is well-documented, large-scale degradation pat
terns remain poorly quantified (Friess et al. 2019), 
masking hidden ecological declines in standing 
mangrove forests. A Web of Science topic search 
using the terms “mangrove degradation” and “man
grove deforestation OR mangrove loss” yielded 1,990 
and 2,777 results, respectively. Mangrove degrada
tion reflects the loss of habitat quality (Friess et al.  
2019), often characterized by the altered or reduc
tion of functions, attributes, or ecosystem services 
(Gao et al. 2020; Ghazoul et al. 2015; Vásquez- 
Grandón, Donoso, and Gerding 2018; Yando et al.  
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2021). In addition, degradation is often a gradual 
process that may eventually lead to deforestation 
or, alternatively, allow for ecosystem recovery and 
resilience (Gao et al. 2020). The significance and 
challenges associated with mangrove degradation 
have been highlighted by scholars such as Friess 
et al. (2019), underscoring the need for accurate 
monitoring and assessment.

Mangrove degradation is driven by complex mix of 
natural and anthropogenic factors (Yando et al. 2021). 
Urban development disrupts these ecosystems 
through construction and other human activities. 
For instance, road construction alters hydrological 
conditions, affecting water movement, infiltration 
patterns, and tidal pumping (Cardenas et al. 2022). 
Although mangrove root systems are capable of pur
ifying water, pollution from nearby urban areas or 
aquaculture can severely degrade water quality, lead
ing to altered hydrological conditions that negatively 
impact the diverse flora and fauna of the ecosystem. 
While mangrove mudflats can accumulate pollutants, 
oil deposition from vessels can suffocate the breath
ing and feeder roots of mangroves, resulting in 
reduced leaf density and diminished ecological func
tions and biodiversity (Ishtiaque, Myint, and Wang  
2016). Additionally, natural disasters such as typhoons 
and tsunamis can devastate mangrove areas, disrupt
ing the accumulation of organic matter in sediments 
and further threatening these vital ecosystems 
(Ishtiaque, Myint, and Wang 2016). High salinity and 
low nutrient availability can also contribute to condi
tions that lead to top-dying disease and further 
degradation in mangroves (Ishtiaque, Myint, and 
Wang 2016; Kathiresan 2002). The consequences of 
mangrove degradation are significant across ecologi
cal, economic, and social dimensions (Carugati et al.  
2018; Yando et al. 2021). Ecologically, the degradation 
of mangroves leads to reduced biodiversity, habitat 
loss, and a decline in ecosystem services, including 
carbon sequestration, which exacerbates climate 
change by increasing carbon emissions (Senger et al.  
2021; Yando et al. 2021). Economically, degraded 
mangroves diminish protection for coastal commu
nities and shorelines, raising the risks and costs asso
ciated with natural disasters. Additionally, the loss of 
mangroves reduces access to valuable timber 
resources and impacts tourism development in 
coastal areas. On a social level, communities that 
rely on mangroves for resources and livelihoods face 

significant challenges, potentially leading to the loss 
of local cultural heritage and traditions (Carugati et al.  
2018). Therefore, it is essential to accurately assess 
mangrove degradation.

Prior to broadscale access to remotely sensed data, 
the assessment of degradation in mangrove forests 
often relied on localized field observations and biolo
gical measurements. For example, mangrove degra
dation in China was assessed based on field 
investigation and estimation of species extinction 
and carbon stock decline (W. Wang et al. 2020). Such 
field-based approaches are valuable for providing 
evidence on the drivers and mechanisms of ecosys
tem changes. However, the labor-intensive nature of 
field measurements and the spatial limitations of loca
lized data often constrained the scalability of these 
studies. To address this, researchers increasingly 
turned to remote sensing, a cost-effective and scal
able alternative, to complement bioecological 
approaches. Remote sensing has emerged as an effec
tive technique for mangrove monitoring, enabling 
spatially continuous and temporally consistent data 
across extensive geographic regions. By leveraging 
multi-source remote sensing imagery and advanced 
methods, remote sensing can map mangrove extent, 
detect land-cover changes, characterize composition 
and structural properties, and retrieve key biophysical 
parameters and ecosystem services, assessing the 
health condition of mangrove (Kuenzer et al. 2011; 
Lu and Wang 2022; L. Wang et al. 2019). The integra
tion of fine-scale field data of mangrove habitats with 
remote sensing information allows for comprehensive 
monitoring and a deeper understanding of the 
mechanisms underlying mangrove degradation over 
broader spatial scales.

Therefore, a thorough understanding of how past 
studies have utilized remote sensing to monitor and 
quantify mangrove degradation is critical. Such 
insights not only highlight the current capabilities 
and limitations of these approaches but also pinpoint 
uncertainties, guiding the development of targeted 
solutions and methodological refinements to 
enhance accuracy and applicability in future assess
ments. There are review papers that have examined 
the broader status of global mangroves (Friess et al.  
2019) and ecosystem evaluation. These review articles 
offer a comprehensive understanding and valuable 
insights into several aspects, including the functions 
and services of mangrove ecosystems (Alongi 2014; 
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Kathiresan 2002; S. Y. Lee et al. 2014; Woodroffe et al.  
2016), the drivers and impacts of mangrove change 
(Bhowmik et al. 2022; Duke 2016; Ilman et al. 2016; 
Sippo et al. 2018), conservation and restoration stra
tegies (Datta, Chattopadhyay, and Guha 2012; Field  
1999), and interdisciplinary perspectives. In addition, 
the advancements in remote sensing techniques for 
mangrove monitoring have been adequately 
reviewed (Kuenzer et al. 2011; Lu and Wang 2022; 
Pham et al. 2019; Tran, Reef, and Zhu 2022; L. Wang 
et al. 2019). However, regarding degradation, several 
review papers summarized the conceptualization and 
evaluation of forest degradation (Ghazoul et al. 2015; 
Vásquez-Grandón, Donoso, and Gerding 2018). The 
challenges associated with defining and measuring 
degradation based on remote sensing have been 
reviewed for forests (Gao et al. 2020) and humid 
tropical forests (Dupuis et al. 2020). To our knowl
edge, a review focused specifically on the current 
status of mangrove degradation detection using 
remote sensing data is lacking. Therefore, we aim to 
review the current state of remote sensing applica
tions for monitoring and quantifying mangrove 
degradation. Specifically, we aim to 1) examine the 
commonly used remote sensing-derived proxies that 
serve as indicators of mangrove degradation; 2) eval
uate the primary remote sensing datasets and classi
fication methodologies that enable mapping 
mangrove degradation patterns; 3) assess the uncer
tainties and challenges in these previous publications 
and explore emerging opportunities to overcome the 
barriers of accurate mangrove degradation monitor
ing through advanced technologies.

2. Article selection and review

2.1. Article selection criteria

The literature search was conducted to identify and 
analyze peer-reviewed studies that employ remote- 
sensing data to monitor or quantify mangrove degra
dation. We utilized the Web of Science and Google 
Scholar databases to obtain relevant peer-reviewed 
journal articles published before November 2024. The 
keywords employed in the search included 
(“degraded” OR “degradation”) AND (“mangrove” OR 
“mangroves”) AND (“remotely sensed” OR “remote 
sensing” OR “satellite” OR “earth observation”). 
A total of 410 papers were initially collected. Further 

manual screening of the retrieved literature was per
formed to refine the selection based on the following 
criteria: 1) the articles must recognize the detection of 
mangrove degradation as a key research objective 
and involve quantitative analysis, rather than merely 
discussing or inferring degradation as a driver of 
mangrove change; 2) the articles must apply remote 
sensing techniques or utilize satellite data to detect 
mangrove degradation; 3) the articles must define the 
disturbance on mangrove as “degradation,” rather 
than merely labeling it as “disturbance” or 
“damage.” 4) articles that only compared remote sen
sing-derived biological parameters between selected 
sites of intact (healthy) and degraded mangroves are 
excluded from this review, as these studies identified 
degraded mangrove sites based on expert knowledge 
during the selection of study areas, rather than 
employing methodologies grounded in remote sen
sing technology to detect mangrove degradation 
over specific spatial extents. Finally, a total of 104 
peer-reviewed journal articles were selected to 
explore the current understanding and practices in 
remote sensing-based assessment of mangrove 
degradation. A potential limitation of this review is 
that our selection criteria may exclude studies utiliz
ing advanced remote sensing techniques to evaluate 
degradation-related indicators (e.g. biomass or health 
condition mapping). While such studies can provide 
valuable insights for refining precision in degradation 
indicators, they often do not explicitly target quanti
fying degradation as they lack measurement of indi
cator decline. Nevertheless, we hope that the selected 
literature could broadly reveal the current state of 
remote sensing-based mangrove degradation 
research, as it prioritizes studies explicitly linking 
remote sensing-derived proxies to degradation and 
outcomes.

2.2. Advances of the research

2.2.1. Overview of literature
Prior to 2014, research focused on mangrove degra
dation using remote sensing was relatively limited, 
comprising approximately 17% of the total studies 
on this topic (Figure 1). However, over the past dec
ade, from 2016 up to the present, there has been 
a marked rise (about 76%) in the number of publica
tions evaluating mangrove degradation using remote 
sensing techniques. This observed trend aligns with 
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the broader evolution in the publications of remote 
sensing of mangrove forests (L. Wang et al. 2019). The 
shift toward a greater emphasis on remote sensing- 
driven assessments of mangrove degradation over 
the past decade suggests that researchers and policy
makers have recognized the importance of remote 
sensing technologies in monitoring the health and 
status of mangrove ecosystems.

The literature on mangrove degradation appears 
to exhibit a geographical concentration, with 
a notable emphasis on research conducted in India 

(Figure 2). Specifically, over 37 out of 104 publications 
examined mangrove degradation in India. In addition 
to India, the research on mangrove degradation has 
also been concentrated in several other geographical 
hotspots due to the relatively large mangrove covers, 
including Bangladesh, Indonesia, Vietnam, and 
Myanmar. Many studies on mangrove degradation 
in India and Bangladesh focus on the Sundarbans, 
which is the largest contiguous mangrove ecosystem 
in the world. Furthermore, the study area of Florida in 
the United States has also emerged as a prominent 

Figure 1. Evolution of studies on remote sensing-based mangrove degradation.

Figure 2. Number of publications on remote sensing-based mangrove degradation by study area.
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focus within the literature on mangrove degradation, 
which is owing to the impact of Hurricane Irma, 
a major climatic event that occurred in 2017 and 
posed significant threats to mangrove ecosystems in 
this region (Jamaluddin et al. 2021; Lee et al. 2021; 
McCarthy, Jessen, and Barry 2020; McCarthy et al.  
2020). The assessment of mangrove degradation 
based on remote sensing has been conducted at 
various spatial scales, ranging from large-scale, regio
nal studies to pantropical and global analyses. Several 
studies have focused on large-scale analysis, such as 
Southeast Asia (Sakti et al. 2020), tropical continental 
Asia (Blasco, Aizpuru, and Gers 2001), the pantropical 
region (Vancutsem et al. 2021), and global mangrove 
ecosystems (Thomas et al. 2017).

The network visualization from VOSviewer 
(Figure 3) maps the thematic structure of remote 
sensing-based mangrove degradation research. 
Clusters of frequently co-occurring terms reveal 
dominant interconnected themes, including dataset 
preferences, study area hotspots, and key drivers. 
Node sizes reflect term prevalence, with larger 
nodes representing frequently studied topics (e.g. 
remote sensing, mangroves, conservation, 

classification, ecosystem). Landsat satellite data 
emerged as the most widely used dataset. NDVI, 
biomass, and leaf area index derived from remote 
sensing data dominate as proxies for mangrove 
degradation assessment. Bangladesh and the 
Sundarbans are hotspots of study area. It also high
lights key drivers of mangrove degradation, includ
ing tsunamis and erosion.

2.2.2. Mangrove degradation proxy derived from 
remote sensing
The primary proxies for assessing mangrove degrada
tion derived from remote sensing data can be categor
ized into three main types: health, coverage, and 
fragmentation indicators (Figure 4). Health indicators 
mainly indicate biophysical parameters (e.g. greenness, 
biomass, leaf area index, and net primary productivity). 
Coverage indicators primarily focus on the spatial 
extent and distribution of mangrove forests. They pro
vide critical information regarding the presence or 
absence of mangrove vegetation within specific pixels, 
as well as quantifying canopy density and fractional 
coverage.

Figure 3. Network visualization (from VOSviewer) on remote sensing-based mangrove degradation studies.
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2.2.3.1. Health indicators. Health indicators (which 
were the focus of 55.8% of analyzed publications) 
primarily focus on assessing the biophysical para
meters of mangrove ecosystems. The low value or 
decline of health indicators represents health status 
or health dynamics and can serve as proxies for man
grove degradation. First, these health indicators can 

be directly obtained from features of remote sensing 
imagery, such as spectral, spatial, and textural char
acteristics. The spectral signatures of mangrove vege
tation are closely linked to their biophysical and 
biochemical properties, which can change signifi
cantly due to degradation. Remote sensing images, 
such as multispectral and hyperspectral imagery, can 

Figure 4. Proxies and space/time reference of mangrove degradation based on remote sensing data.

Figure 5. Primary remote sensing data and classification methods.
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provide information on the spectral characteristics of 
mangroves. There are differences in spectral signa
tures between degraded and healthy mangroves 
caused by disparity in leaf pigments, water content, 
and canopy structure. In these studies, degraded 
mangroves were directly detected from remote sen
sing images based on spectral characteristics learned 
from training samples. For example, it is found that 
degraded mangroves in optical images appear in 
a grayish tone with coarse and rough texture, whereas 
dense/healthy mangroves exhibit a red tone due to 
the presence of chlorophyll and smooth texture 
(Thakur et al. 2021). Alternatively, health indicators 
(biophysical parameters) can be indirectly retrieved 
from the remote sensing data through spectral vege
tation indices, radar indices, and composite indices or 
further estimation.

Spectral vegetation indices have been exten
sively utilized to identify and assess degraded man
grove areas based on their reduced greenness or 
moisture content compared to healthy mangroves, 
with degraded areas exhibiting lower index values. 
Spectral vegetation indices have been widely 
applied in mangrove monitoring (Baloloy et al.  
2020; Pham et al. 2019; Tran, Reef, and Zhu 2022), 
which are typically computed by combining reflec
tance values obtained from different wavelength 
bands in the electromagnetic spectrum. NDVI is 
the most commonly adopted spectral vegetation 
index. Generally, higher NDVI values are indicative 
of increased vegetation health and greenness. In 
addition to NDVI, other commonly employed vege
tation indices in mangrove degradation studies 
include EVI, NDMoI NDWI, transformed difference 
vegetation index (TDVI), and soil-adjusted vegeta
tion indices (SAVI). In addition, some studies have 
directly utilized NDVI as a proxy for net primary 
productivity (NPP) in mangrove ecosystems 
(Marshall et al. 2018), while others have employed 
multiple vegetation indices (e.g. EVI, MSAVI, NDVI, 
NDMoI) to represent and estimate mangrove bio
mass (Aljahdali, Munawar, and Khan 2021). This 
study also compared the performance of four 
indices, suggesting that NDMoI performed better 
in identifying degradation and recovery in sparse 
mangrove regions (Aljahdali, Munawar, and Khan  
2021). The most used vegetation indices as 
a proxy of biophysical parameters due to previously 
proved correlation, some studies conducted further 

estimation on biophysical parameters. For example, 
some studies estimated the LAI of mangroves using 
linear regression models with vegetation indices 
like EVI (Halder and Pereira 2024) and NDVI 
(Kovacs et al. 2009). These empirical relationships 
allow for the indirect quantification of this impor
tant biophysical parameter, which are closely linked 
to mangrove productivity and health. Deng et al. 
(2023) utilized a machine learning regression 
approach to estimate canopy chlorophyll content 
(CCC) from vegetation indices derived from 
unmanned aerial vehicle (UAV) and Gaofen-6 satel
lite data. The chlorophyll content is a valuable indi
cator of photosynthetic capacity and can offer 
insights into the physiological conditions of man
grove canopies.

The sensitivity of radar indices from synthetic aper
ture radar (SAR) imagery to various biophysical prop
erties, such as mangrove structure and biomass, 
provides complementary information to the spectral 
vegetation indices derived from optical sensors (Lucas 
et al. 2014). Several studies have leveraged the back
scatter characteristics of HH and HV polarizations 
from L-band ALOS PALSAR and ALOS-2 PALSAR-2 
data to identify mangrove degradation (Cornforth 
et al. 2013; Datta et al. 2022; C. K. F. Lee et al.  
2021Nababa et al. 2020). Cornforth et al. (2013) and 
C. K. F. Lee et al. (2021) indicates that HV polarization 
is better correlated with mangrove structure and 
aboveground biomass than HH polarization. A study 
(Zhu, Liao, and Shen 2021) utilizing Sentinel-1 C-band 
data this study compared the efficacy of four radar 
indices in depicting mangrove degradation. These 
indices include the backscattering coefficients of VV 
and VH polarizations, σVH/VV (polarization ratio), and 
polarimetric scattering entropy H. The results demon
strated that these SAR-based metrics were consistent 
in characterizing mangrove degradation patterns 
(Zhu, Liao, and Shen 2021). Additionally, a study 
(Cardenas et al. 2022) that employed L-band JERS-1 
and ALOS PALSAR data in 1993 and 2006 showed that 
SAR imagery could effectively identify degraded man
grove areas based on textural differences in the back
scattering response. Specifically, the study noted that 
degraded mangrove areas exhibited a smoother, 
specular backscattering pattern, in contrast to the 
rough volume backscattering observed in healthy 
mangrove stands. These findings collectively high
light the value and complementarity of SAR-based 
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approaches in assessing and monitoring the condi
tion of mangrove ecosystems, offering insights that 
may not be readily captured by traditional optical 
remote sensing techniques alone.

2.2.3.2. Coverage. Among the analyzed publica
tions, 42.3% utilized coverage as a proxy for man
grove degradation, with metrics such as canopy 
density and fractional cover employed to estimate 
the proportion of each pixel occupied by mangrove 
canopy. Higher canopy density typically correlates 
with healthier mangrove ecosystems. For example, 
Nfotabong-Atheull, Din, and Dahdouh-Guebas 
(2013) differentiated degraded mangroves based on 
crown shape and size characteristics. Closed canopies 
were identified as undisturbed mangroves. The size 
and frequency of gaps within mangrove forests have 
also been used to classify degraded mangrove areas 
into varying disturbance levels. Additionally, ground 
coverage and density of the mangrove forest have 
been employed as indicators to distinguish between 
degraded and healthy mangrove stands, with lower 
ground coverage (generally less than 80%) associated 
with degraded mangroves (Blasco, Aizpuru, and Gers  
2001; Connette et al. 2016; Nfotabong-Atheull, Din, 
and Dahdouh-Guebas 2013).

In addition, the observed absence of mangrove 
pixels has been used as a proxy for mangrove degra
dation (Eddy et al. 2017). Remote sensing techniques 
have been widely employed to quantify land use and 
land cover (LULC) related to mangrove coverage. 
These spatial analyses often utilize pixel-wise differen
cing to detect and monitor the loss of mangrove 
areas, resulting from various drivers, such as defores
tation, conversion to other land uses, or coastal ero
sion. However, it is essential to note that the 
interpretation of these mangrove absences may not 
always accurately distinguish between mangrove 
degradation and deforestation. The pixel-based ana
lysis may not fully capture the complexity of man
grove canopy structure and stand dynamics. The 
inherent pixel mixture within the remote sensing 
data can obscure subtle changes in mangrove canopy 
characteristics that are indicative of degradation, in 
contrast to the total removal of mangrove cover asso
ciated with deforestation.

2.2.3.3. Fragmentation. While literature focusing 
on using fragmentation as a proxy for assessing 

mangrove degradation is limited, several studies have 
explored this approach (Hai et al. 2022; Toosi et al.  
2022). Researchers have employed fragmentation 
indices, such as patch size, shape, and connectivity, to 
characterize the spatial patterns of mangrove forests 
and identify areas undergoing degradation. In 
a notable study, Toosi et al. (2022) developed 
a spatial disturbance index (SDI) that incorporated var
ious landscape metrics, such as mean patch size, patch 
density, mean shape index, Euclidean nearest neighbor 
distance (ENND), total edge, and Shannon’s diversity 
index (SHDI). By applying principal component analy
sis, it can evaluate the spatial patterns associated with 
mangrove degradation. Furthermore, Hai et al. (2022) 
constructed a mangrove health index (MHI) using an 
analytic hierarchy process. This index comprised indi
cators related to mangrove canopy width, fragmenta
tion, density, and plant diversity. These studies 
demonstrate the potential of adopting fragmentation 
metrics combining various spatial and structural attri
butes of the mangrove to assess degradation status.

2.2.3. Space/Time references of mangrove 
degradation from remote sensing
Regarding detecting and identifying mangrove 
degradation based on remote sensing techniques, 
the existing literature is broadly categorized into 
two primary approaches based on space and time 
reference: relative to a reference state (41.3% of total 
analyzed papers) and temporal change over time 
(58.7%) (Figure 4). Mangrove degradation refers to 
the transition of the mangrove ecosystem from one 
state to another, often resulting in deteriorated con
ditions. Remote sensing provides a valuable tool for 
assessing mangrove degradation by enabling com
parisons to both spatial reference (relative to 
a reference state) and temporal reference (temporal 
change over time). When assessing mangrove condi
tions relative to a reference state, remote sensing 
techniques analyze single scenes to evaluate the cur
rent state of mangroves against a reference condition, 
which was determined using a space for time substi
tution in a single image. In contrast, assessments 
based on temporal references focus on analyzing 
changes in mangrove conditions across multiple 
time periods. This method involves the use of multi
ple remote sensing data to monitor how the man
grove ecosystem has altered or deteriorated over 
time.

8 S. WEI ET AL.



2.2.3.1. Relative to a reference state. Around 42% 
of analyzed publications employed space references 
for mangrove degradation. Mangrove health condi
tions are directly detected and mapped from single- 
date satellite imagery. The mangrove states are typi
cally classified into several distinct classes, such as 
degraded and healthy/intact mangroves. Some stu
dies compare the current condition of mangroves 
with an expected healthy condition, which serves as 
an ideal or baseline state. This reference is typically 
derived from established knowledge of the spectral 
and texture characteristics of both degraded and 
healthy mangroves in specific remote sensing ima
gery. Such knowledge can then be utilized for unsu
pervised and supervised classification (Connette et al.  
2016), as well as visual interpretation (Nfotabong- 
Atheull, Din, and Dahdouh-Guebas 2013). For exam
ple, in Hayashi et al. (2023) study, degraded man
groves were detected based on rules that identified 
areas with low development of mangroves, com
pacted sediments, and low frequency of tidal 
flooding.

Additionally, there are also papers that establish 
space references using known indices and thresholds 
to determine mangrove degradation. For instance, 
density and coverage metrics provide quantitative 
measures of mangrove extent. Known thresholds to 
determine degradation have been applied, such as 
canopy density and proportion of coverage (Nayak 
and Bahuguna 2001). Moreover, indices such as 
NDVI are commonly used to assess mangrove health, 
with specific NDVI thresholds indicating the transition 
from healthy to degraded states (Jones et al. 2015; 
Valderrama-Landeros et al. 2018).

Another type of reference state is based on the 
range of observed values, which relies on using index- 
based rules and thresholds (Sahana et al. 2022; 
Servino, de Oliveira Gomes, and Bernardino 2018). 
This method aims to delineate different levels of 
mangrove degradation, typically categorized into 
classes such as healthy, moderately degraded, and 
severely degraded. In this approach, various indices 
(satellite-derived index, landscape index, and new 
composite index) are employed as proxy indicators 
of mangrove degradation. Specifically, Meyer et al. 
(2019) developed a vegetation index-based compo
site index, forest degradation index (FDI), which is the 
sum of three components: top mean canopy height 
(TCH), large tree canopy area (LCA), and forest 

percentage cover (PC). Datta et al. (2022) applied 
a radar forest degradation index (RFDI), which is 
a normalized ratio of HH and HV backscatter, to assess 
mangrove degradation. A wetland ecosystem health 
index (WEHI) based on the pressure-state-response 
model was developed to assess wetland health across 
various levels of degradation (Sahana et al. 2022).

2.2.3.2. Temporal change over time. In addition to 
the static classification approach, an alternative 
method for mapping mangrove degradation involves 
using multi-temporal change detection analysis. This 
approach involves comparing two or more satellite 
images acquired at different time periods to detect 
changes in mangrove cover and status, including 
identifying degraded areas. Temporal information 
can help identify the underlying causes of mangrove 
degradation, such as human activities, natural distur
bances, or climate-related factors.

(1) Bi-temporal differences
This method is based on bi-temporal differ

ences in LULC or health index. By comparing 
the index values or LULC between two time 
periods, it is possible to highlight areas where 
mangrove cover has changed, including areas 
that have experienced degradation. Tracking 
the changes derived from satellite images 
over time can offer insights into the temporal 
patterns and dynamics of mangrove condi
tions. The LULC dynamic-based change detec
tion methodology involves the classification of 
mangrove cover in two satellite images 
acquired at different time periods, commonly 
referred to as the “from” and “to” images. This 
approach effectively captures the disappear
ance or conversion of mangrove areas as an 
indicator of degradation. Following the classifi
cation of mangrove cover for the two time 
periods, a pixel-wise differencing operation is 
performed to detect mangrove changes. 
Specifically, the identification of mangrove 
degradation can be approached through two 
specific schemes based on classification results 
from two distinct periods. First, pixels that exhi
bit a change from “dense” to “sparse” man
grove (Hauser et al. 2020) or a decrease in 
dense mangrove coverage alongside an 
increase in sparse mangrove coverage (Kanjin 
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and Alam 2024) are classified as areas of man
grove degradation. Second, pixels that were 
classified as mangrove in the “from” image 
but not in the “to” image are also recognized 
as areas of mangrove degradation (Jia et al.  
2014; Liman Harou et al. 2023). However, it is 
crucial to note that this conversion in 
the second scheme is sometimes perceived as 
mangrove deforestation rather than degrada
tion.

In addition to the LULC dynamic-based 
change detection approach, some of the stu
dies on mangrove degradation employ 
a change detection analysis based on man
grove health indices. These studies involve the 
classification of mangrove health conditions 
using various indices in two different time per
iods. The decrease in the health condition 
indices between the two time periods is used 
as an indicator of mangrove degradation. The 
health condition is typically assessed using 
vegetation index (e.g. NDVI, enhanced vegeta
tion index (EVI), leaf area index (LAI), gross 
primary productivity (GPP)) (Akhand et al.  
2017; Ayanlade and Drake 2016; Ayanlade and 
Howard 2016; Etemadi, Smoak, and Abbasi  
2021; Hasan et al. 2024; Rajitha et al. 2010; 
Samanta et al. 2021; Singh and Schoenmakers  
2023; Solanki et al. 2022; Toor, Tater, and 
Chandra 2024), radar indices (e.g. backscatter, 
polarimetric features) (Cornforth et al. 2013), 
landscape index (e.g. fragmentation, connectiv
ity) (Hai et al. 2022) and composite index (man
grove health index (MHI)) (Hai et al. 2022; 
Halder and Pereira 2024) to infer the greenness, 
biomass, and fragmentation of the mangrove 
ecosystem. This approach focuses on the man
grove environment’s ecological health and 
functional aspects, rather than solely on the 
areal extent or land cover changes.

(2) Time series trend
Utilizing time series satellite images to 

detect the long-term trends in mangrove con
ditions provides valuable insights into the 
degradation and recovery processes. By analyz
ing the temporal patterns and trajectories of 
mangrove-related indices or spectral character
istics, researchers can identify areas that have 
experienced gradual or abrupt changes, 

indicating degradation or recovery. Trend ana
lysis can help distinguish between temporary 
disturbances and persistent degradation of the 
mangroves. Some research has applied trend 
analysis to detect mangrove degradation 
(Aljahdali, Munawar, and Khan 2021; Hong, 
Avtar, and Fujii 2019; Thakur et al. 2021; 
Vancutsem et al. 2021; Wu et al. 2022; Zhu, 
Liao, and Shen 2021). For instance, in some 
studies (Aljahdali, Munawar, and Khan 2021; 
Vancutsem et al. 2021; Zhu, Liao, and Shen  
2021), trend analysis (e.g. Theil-Sen, Mann– 
Kendall test, Hurst exponent) or linear regres
sion (least square regression) was used to ana
lyze long-time series satellite images. The 
significant decreasing trends in vegetation 
indices (NDVI, EVI, MSAVI (modified soil- 
adjusted vegetation index), and NDMoI) repre
sent the occurrence of mangrove degradation 
over this period. The integration of time series 
analysis and trend detection methods can offer 
a more thorough and holistic understanding of 
the temporal patterns, dynamics and trajec
tories of mangrove ecosystems, thereby enhan
cing the detection and characterization of 
mangrove degradation processes. Vancutsem 
et al. (2021) achieved a high overall accuracy 
of 91.4% for its disturbance mapping, encom
passing both deforestation and degradation 
classes. This underscores the potential of inte
grating trend analysis to produce accurate 
degradation maps. Trend analysis techniques 
are primarily employed to detect changes in 
mangrove distribution or proxies like NDVI 
over various time periods, the observed decline 
trends are indicative of degradation. However, 
most trend analysis studies tend to only report 
classification accuracy for individual time 
points (Hong, Avtar, and Fujii 2019) or do not 
report accuracy as degradation was measured 
by the decreasing trend of NDVI (Aljahdali, 
Munawar, and Khan 2021), rather than the 
accuracy of the final degradation maps derived 
from trend analysis.

2.2.4. Primary remote sensing data
Remote sensing data utilized in mangrove degrada
tion research encompasses a diverse range of sensor 
platforms (Figure 5), including passive sensors 
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(multispectral and hyperspectral optical imagery, aer
ial imagery) and active sensors (SAR, light detection 
and ranging (LiDAR)).

2.2.4.1. Passive and active sensors. Among the 
commonly employed optical data sources are the 
Landsat series (TM, ETM+, OLI), Sentinel-2, and 
MODIS, with Landsat data accounting for about 60% 
of the total publications in the field. The availability of 
high-resolution satellite sensors allows high accuracy 
mangrove mapping and improved discrimination 
between healthy and degraded vegetation. High- 
resolution optical such as SPOT, WorldView-2, 
QuickBird, GaoFen-6, RapidEye, PlanetScope, 
RESURS, ALOS-1 AVNIR-2, CORONA, Resourcesat-2A 
LISS, and KeyHole-9, have been employed in local- 
scale analyses (Blasco and Aizpuru 2002; Blasco, 
Aizpuru, and Gers 2001; Deng et al. 2023; Dev Roy 
and Trivedi 2023; Giri et al. 2007; Kovacs et al. 2009; 
McCarthy, Jessen, and Barry 2020; McCarthy et al.  
2020; Toosi et al. 2022; Valderrama-Landeros et al.  
2018; Veettil 2022; Walcker et al. 2019). For example, 
Deng et al. (2023) utilized image from the Chinese 
civilian remote sensing satellite GaoFen-6, with 
a spatial resolution of 8 m, to estimate species-level 
canopy chlorophyll content and infer the degradation 
status of mangroves in the Beibu Gulf region of 
Guangxi, China. Furthermore, Valderrama-Landeros 
et al. (2018) showed that WorldView-2 imagery 
(1.6 m spatial resolution), achieved the highest accu
racy in differentiating dead mangrove and various 
mangrove species compared to SPOT-5 (10 m), 
Landsat-8 (30 m), and Sentinel-2 (10 m) data.

Moreover, hyperspectral remote sensing, which 
collects data in hundreds of narrow spectral bands, 
has shown potential for a more accurate classification 
of mangrove health status by detecting subtle differ
ences in leaf chemistry and structure (Hati et al. 2022; 
Vidhya et al. 2014). For example, Vidhya et al. (2014) 
suggested the effectiveness of hyperspectral data in 
monitoring mangrove health and distinguishing 
between degraded, healthy, and sparse mangrove 
areas. Hati et al. (2022) used airborne hyperspectral 
AVIRIS-NG data and the SAM method to separate 
healthy and degraded mangroves in India based on 
various vegetation indices.

In addition, aerial images have also been used for 
visual interpretation of degraded mangroves in 
Cameroon (Nfotabong-Atheull, Din, and Dahdouh- 

Guebas 2013) and Kenya (Dahdouh-Guebas et al.  
2004) during the 1970s, 1990s, and 2000s. These aerial 
images were scanned and enlarged to very high reso
lution, around half-meter pixel resolution, to enable 
better identification of degraded mangrove areas. In 
recent years, UAV imagery has become available and 
has been utilized to complement satellite data. 
Studies have used UAV images from DJI Phantom 4 
(Cardenas et al. 2022) and Matrice 200 (Deng et al.  
2023) platforms to assist in estimating mangrove 
canopy height and chlorophyll content information, 
which can provide additional details not easily cap
tured by satellite imagery alone.

Among active sensors, SAR data has proven 
effective in retrieving various biophysical properties 
of mangrove vegetation, such as structure and bio
mass. SAR data used in mangrove studies includes 
ALOS PALSAR, ALOS-2 PALSAR-2, Sentinel-1, and 
JERS-1 (Cardenas et al. 2022; Cornforth et al. 2013; 
Datta et al. 2022; C. K. F. Lee et al. 2021; Nababa 
et al. 2020; Thomas et al. 2017; Zhu, Liao, and Shen  
2021). The unique capabilities of SAR sensors, which 
can collect data without being hindered by cloud 
cover and time, make them invaluable for monitor
ing dynamic coastal environments like mangrove 
forests. For example, Datta et al. (2022) has utilized 
SAR data (ALOS PALSAR and ALOS-2 PALSAR-2) to 
identify mangrove degradation based on RFDI, 
which is a normalized ratio of HH and HV polariza
tions (Datta et al. 2022; Zhu, Liao, and Shen 2021). 
Several research have also shown the effectiveness 
of using the backscatter characteristics of HH and 
HV polarizations from SAR data to assess mangrove 
degradation (Cornforth et al. 2013; Datta et al. 2022; 
Lee et al. 2021; Nababa et al. 2020).

The use of LiDAR can provide additional insights 
into mangrove structure attributes (e.g. height) 
and biomass, which are essential for understanding 
degradation processes and ecosystem health 
(Salum et al. 2020; Yin and Wang 2019). In a LiDAR- 
based study (Meyer et al. 2019), a forest degrada
tion index (FDI) was constructed using LiDAR- 
derived height and biomass models, along with 
a Random Forest prediction approach. The FDI 
enabled the classification of mangrove areas into 
intact and degraded categories, demonstrating the 
potential of integrating LiDAR data for a more 
comprehensive assessment of mangrove condi
tions. Similarly, Cardenas et al. (2022) utilized 
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drone-generated point cloud data combined with 
Digital Surface Models to estimate mangrove 
canopy height, achieving high-resolution vertical 
structure mapping for mangrove degradation 
assessment.

Integrating diverse remote sensing datasets could 
enable more comprehensive characterization and 
monitoring of mangrove ecosystems. The most com
mon integration involves combining optical data (e.g. 
Sentinel-2, Landsat) with SAR data (e.g. Sentinel-1, 
ALOS PALSAR), where SAR complements optical ima
gery in cloud-prone regions (Cardenas et al. 2022) or 
is fused with optical features in Random Forest mod
els for degradation classification (Halder and Pereira  
2024; Lee et al. 2021). Additionally, LiDAR is frequently 
paired with optical data to refine mangrove extent 
mapping and provide precise height and biomass 
estimates (Meyer et al. 2019).

2.2.4.2. Pre-treatment of input data. Existing lit
erature extracted spectral, texture, spatial, and polar
ization features of input remote sensing data. Spectral 
signatures in different bands can be used to assess 
healthy versus degraded mangrove areas (L. Wang 
et al. 2019). As stated in Dev Roy and Trivedi (2023), 
the feature of degraded mangroves in optical images 
is irregular and smooth. In the panchromatic band, 
the tone of degraded mangroves is typically white or 
light gray, in contrast to the black or dark gray tone of 
healthy mangroves. In the false-color composite, the 
tone of degraded mangroves is pale red, compared to 
the bright red representation of healthy mangroves.

The modification of bands plays a critical role by 
emphasizing specific spectral or polarization charac
ters that are essential for accurately assessing man
grove health and condition. Spectral vegetation 
indices, which are mathematical combinations of mul
tiple spectral bands, are effective in enhancing vege
tation signal, such as EVI, NDVI, NDMI, and NDWI. In 
the context of mangrove degradation detection, 
Datta et al. (2022) applied RFDI to assess mangrove 
degradation, which is a normalized ratio of HH and HV 
polarizations. Moreover, C. K. F. Lee et al. (2021) and 
Nababa et al. (2020) used a combination of radar 
indices (HV, HH) and vegetation indices (NDVI, nor
malized difference moisture index (NDMoI), and nor
malized difference water index (NDWI)) as input 
features for RF classification to map mangrove 
degradation.

2.2.5. Remote sensing image classification
2.2.5.1. Object-based and pixel-based classifica
tion. Object-based classification involves dividing the 
image into homogeneous objects based on their prop
erties (such as spectral, spatial, and textural features), 
and then classifying these objects into mangrove 
classes (Kuenzer et al. 2011), including the degraded 
mangrove class. Several studies have demonstrated 
that this approach can provide more accurate results 
than traditional pixel-based classification, particularly 
in heterogeneous mangrove environments (Wang et al.  
2018). The commonly used algorithm in mangrove 
degradation studies is the multi-resolution segmenta
tion algorithm in mangrove degradation studies 
(Cardenas et al. 2022; Dev Roy and Trivedi 2023; 
Hayashi et al. 2023). It is an object-oriented image 
classification based on scale, shape, and compactness 
(Wang et al. 2018). This method considers both the 
spatial and spectral characteristics of groups of pixels, 
capturing the inherent heterogeneity and structure of 
the mangrove landscape.

In contrast, pixel-based classification combined 
with various classifiers can accurately differentiate 
between healthy and degraded mangrove classes 
due to the subtle spectral differences (Blasco, 
Aizpuru, and Gers 2001; Connette et al. 2016; 
Nfotabong-Atheull, Din, and Dahdouh-Guebas 2013). 
This method treats each pixel as an independent unit, 
analyzing its spectral information to determine 
whether it corresponds to healthy mangroves, 
degraded areas, or other land cover types. However, 
pixel-based classification may encounter mixed pixel 
issues, where a single pixel contains a combination of 
healthy and degraded mangroves.

2.2.5.2. Approaches to training classes and classi
fiers. Some studies have manually identified and 
digitized degraded mangroves based on features 
such as size, color, and texture (Eddy et al. 2017,  
2021; Khairuddin et al. 2016; Thomas et al. 2017). 
The texture and spatial patterns of the canopy can 
vary considerably between healthy and disturbed 
mangrove areas. For example, Ramachandran et al. 
(1998) characterized the features of degraded man
groves in SPOT, IRS LISS II, and Landsat 5 imagery as 
having a grayish tone, coarse, and rough texture, in 
contrast to the dense mangrove stands, which exhi
bits a red tone due to the presence of chlorophyll and 
smooth texture.
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Beyond visual interpretation, there are a variety of 
supervised and unsupervised classification approaches 
that have been employed to map degraded man
groves from satellite imagery. The unsupervised classi
fication methods include ISODATA and K-means (Beitl 
et al. 2019; Bosire et al. 2014). Supervise classification 
mainly relies on machine learning methods, such as, 
random forest (RF) (Connette et al. 2016; Senger et al.  
2021), maximum likelihood (ML) (Majumdar et al. 2019; 
Salami, Akinyede, and De Gier 2010), gaussian maxi
mum likelihood (Connette et al. 2016), support vector 
machine (SVM) (McCarthy et al. 2020), Neural Network 
(McCarthy et al. 2020), and decision tree (Kuenzer et al.  
2014; McCarthy, Jessen, and Barry 2020; McCarthy et al.  
2020). Machine learning has been widely used for 
mangrove degradation, using advanced algorithms to 
classify pixels or objects based on training data. These 
methods rely on the distinctive spectral signatures of 
different mangrove cover types, learned from training 
data, to differentiate between healthy and degraded 
mangrove areas.

In addition to machine learning, deep learning 
methods have been applied to mangrove degrada
tion detection, due to their ability to learn complex 
information and require few samples for effective 
performance. For example, Jamaluddin et al. (2021) 
applied the MDPrePost-Net deep learning method 

with vegetation indices using Sentinel-2 data to sepa
rate intact or degraded mangroves due to Hurricane 
Irma in Florida. The study demonstrated that indices 
such as NDVI, normalized difference mangrove index 
(NDMaI), combined mangrove recognition index 
(CMRI), and modular mangrove recognition index 
(MMRI) could improve the accuracy of distinguishing 
degraded mangroves from intact mangroves. 
Panuntun et al. (2024) proposed a LinkNet-Spectral- 
Spatial-Temporal Transformer model, demonstrating 
a better and more effective performance compared to 
existing deep learning and machine learning models. 
While the proposed novel deep learning model 
achieved the highest accuracy, all other deep learning 
models evaluated in the comparison (e.g. U-Net, 
LinkNet, MDPrePost-Net, SST-Former) demonstrated 
superior performance over traditional machine learn
ing approaches (RF and SVM) in terms of overall accu
racy, mean IoU, and F1-score (Panuntun et al. 2024). 
By comparing the overall accuracies of selected stu
dies that detected degraded mangroves as a distinct 
class across different classification methods (Figure 6), 
most classifiers performed well, with a mean overall 
accuracy exceeding 85%. Deep learning models 
achieved the highest accuracy, outperforming other 
machine learning approaches (e.g. RF, SVM) and 
object-based classification methods. In contrast, 

Figure 6. Box plot of overall accuracies of selected studies that detected degraded mangroves as a class based on different 
classification methods. (OBIA- Object-based image analysis; RF- Random forest; ML- Maximum likelihood; SVM- Support vector 
machine; DT- Decision tree; SAM- Spectral angle mapper; VI- visual interpretation; DL-Deep learning).
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decision tree-based classifiers and the Spectral Angle 
Mapper exhibited relatively lower performance, with 
accuracies around 80%. However, due to the variabil
ity in proxies and criteria used to define mangrove 
degradation across studies, it is challenging to deter
mine which data or methodological approach repre
sents a better practice based solely on direct 
comparisons of mapping accuracy.

3. Challenges

3.1. Difficulty in selecting optimal proxies for 
mangrove degradation

Mangrove degradation is frequently assessed using 
proxy indicators derived from remote sensing, such 
as vegetation indices (e.g. NDVI, EVI), canopy cover, 
and biomass estimates. As reviewed above, mangrove 
health conditions (Etemadi, Smoak, and Abbasi 2021; 
Thakur et al. 2021), often quantified through spectral 
vegetation indices like NDVI, are the most widely 
adopted (Marshall et al. 2018). For instance, NDVI is 
commonly used as the proxy of greenness, biomass, 
or NPP, which is then interpreted as a measure of 
mangrove degradation. However, selecting the most 
appropriate proxy remains a challenge, as each indi
cator captures only one aspect of degradation (e.g. 
vegetation health, structural changes, or ecosystem 
functions), leading to incomplete or biased assess
ments. For example, NDVI may indicate greenness 
but fail to capture structural degradation. Similarly, 
biomass proxies may overlook functional declines, 
such as reduced carbon sequestration capacity. Over- 
reliance on single proxies may oversimplify degrada
tion, leading to incomplete or misleading conclusions 
about mangrove health (Hai et al. 2022). In addition, 
variability in proxy selection complicates cross- 
regional comparisons and validation, which may hin
der policy standardization, and reliable baseline 
establishment for restoration.

3.2. Confusion between degradation and 
deforestation

Deforestation and degradation are distinct ecologi
cal processes but are often confused in remote- 
sensing studies. Deforestation refers to the com
plete removal of mangrove cover, often associated 
with land-use conversion (e.g. to aquaculture or 

urban areas), whereas degradation means 
a reduction of mangrove attributes, function, or 
ecosystem services without full removal of man
grove areas (Friess et al. 2019). For example, some 
articles define degradation as the complete conver
sion of mangrove ecosystems to other land covers, 
which closely resembles the definition of deforesta
tion (Liman Harou et al. 2023). Actually, it is difficult 
to distinguish deforestation and degradation, espe
cially in coarse-resolution remote sensing imagery. 
Pixels containing thinning mangrove canopies or 
decreased greenness might be classified as defor
ested mangroves in coarse-resolution imagery due 
to spectral averaging. Misclassification between 
degradation and deforestation (Souza et al. 2013) 
can lead to over- or underestimation of the extent 
of mangrove degradation.

3.3. Differentiating true degradation from natural 
variability

Distinguishing true degradation from the natural 
variability of mangroves remains a critical challenge 
in remote sensing assessment. Mangroves exhibit 
inherent variability due to factors such as stand age, 
seasonal changes, environmental differences or tidal 
fluctuations, all of which can mimic degradation sig
nals in spectral or structural data. For example, young 
mangrove stands in early growth stages or naturally 
sparse stands (e.g. species like Avicennia or 
Sonneratia) (Taureau et al. 2019) often exhibit lower 
canopy density or height. These traits may be misin
terpreted as degraded vegetation, despite being 
healthy. In addition, tidal inundation may alter the 
spectral properties of mangroves (Wang et al. 2019), 
leading to inaccurate assessments. Existing literature 
has often relied on single-date imagery or long-term 
(e.g. decadal) change detection approaches to iden
tify and quantify mangrove degradation (Datta et al.  
2022; Hamuna, Kalor, and Tablaseray 2019). However, 
some commonly used indicators of mangrove health, 
such as greenness and biomass, are sensitive to the 
natural phenological cycles of these ecosystems and 
can exhibit regular fluctuations over time (Pastor- 
Guzman, Dash, and Atkinson 2018). Relying on these 
indicators without sufficient temporal frequency can 
confound the distinction between seasonal changes 
and degradation trends. Remote sensing assessments 
require a sufficiently high temporal frequency of 
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observations to accurately differentiate between 
mangrove phenological changes and degradation. 
This allows for the detection of short-term changes 
and the separation of seasonal/cyclical variations 
from long-term degradation trends.

3.4. Uncertainty from varied resolutions and mixed 
pixel

The choice of spatial resolution of remote sensing 
data significantly influences mangrove degradation 
assessment, introducing uncertainties that stem 
from mixed pixels and scale-dependent misclassifica
tion. Sensors with coarse-resolution data often aggre
gate spectral signals from heterogeneous surfaces 
and lead to mixed pixels (Kuenzer et al. 2011). 
A single pixel contains a combination of both 
degraded and healthy mangroves, as well as non- 
mangrove features (L. Wang et al. 2019), obscuring 
fine-scale degradation patterns. This can introduce 
uncertainty in the classification of degraded man
grove areas. Coarse spatial resolution satellite data 
may average spectral signals and limit the ability to 
capture the fine-scale details and heterogeneity 
within mangrove ecosystems, hindering the detection 
of early stages of degradation or small patches of 
degradation. Mangrove forests often exhibit high spe
cies diversity and structural complexity (Datta et al.  
2022). Optical sensors struggle to differentiate spec
trally similar but ecologically distinct classes, such as 
stressed Avicennia vs. healthy Sonneratia. In addition, 
partial degradation in a single pixel may be misla
beled as deforestation in coarse-resolution data due 
to dominant spectral signals from water or bare soil.

4. Opportunities

4.1. Integrating multi-source datasets for holistic 
insights

Mangrove degradation monitoring is hindered by 
environmental and technical challenges as discussed 
in Section 3. Factors such as tidal cycles, cloud cover, 
and atmospheric conditions can significantly impact 
the spectral response of mangrove canopies, making 
it challenging to obtain reliable and consistent obser
vations over time from optical sensors. Emerging 
remote sensing technologies, including hyperspectral 
sensors, UAV, SAR, and LiDAR, offer synergistic 

solutions when integrated, enabling robust, multi- 
dimensional assessments of mangrove degradation.

UAV-based remote sensing can generate data with 
very high spatial resolution images, enabling the 
detailed mapping of mangrove species, canopy struc
ture, and condition at the individual tree or stand 
level (Cardenas et al. 2022; Deng et al. 2023). It is 
useful to distinguish deforestation and degradation 
caused by coarse-resolution remote sensing data. 
UAV-mounted sensors, such as RGB, multispectral, or 
thermal cameras, have been used to assess multiple 
mangrove health indicators. In addition, hyperspec
tral sensors can capture detailed spectral information, 
facilitating the differentiation of individual mangrove 
species and the detection of subtle changes in canopy 
chemistry associated with degradation. Studies have 
demonstrated hyperspectral data can effectively map 
mangrove species composition, biomass, and stress 
indicators, such as changes in chlorophyll content or 
water content (Hati et al. 2022; Vidhya et al. 2014).

Furthermore, SAR data, which uses microwave 
radiation to penetrate cloud cover and dense cano
pies, effectively maps mangrove extent, structure, and 
biomass. SAR data allows for consistent monitoring in 
tropical and cloudy regions. Researchers have utilized 
multi-temporal SAR data to detect changes in man
grove canopy structure and infer degradation 
(Cornforth et al. 2013; Datta et al. 2022), especially in 
regions with frequent cloud cover that restricts the 
use of optical satellite imagery. Advancements in 
LiDAR technologies can provide detailed information 
on mangrove canopy structure, biomass, and even 
belowground carbon stocks (Meyer et al. 2019).

Importantly, integrating multiple sources of 
remote sensing images is a vital step in achieving 
comprehensive and accurate monitoring of man
grove ecosystems (Cardenas et al. 2022; Giri et al.  
2007). By fusing data from various satellite platforms, 
sensors, and spatial resolutions, researchers can over
come the limitations of individual data sources and 
capture the spatial, temporal, and spectral complex
ities of mangrove habitats. It is possible to reduce 
reliance on single proxies and improve the accuracy 
of mangrove degradation monitoring. In addition, 
multi-source integration with ancillary spatial data 
(e.g. aquaculture development, natural disaster, pol
lution sources, and coastline erosion) could enhance 
the accuracy of mangrove condition assessment 
(Aljahdali, Munawar, and Khan 2021).
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4.2. Leveraging advanced techniques for accurate 
degradation monitoring

Recent advancements in technology, open philoso
phies, and statistical validity could enhance mangrove 
degradation monitoring, allowing researchers to 
address longstanding challenges with greater precision 
and transparency. These advancements facilitate the 
differentiation of true degradation from natural varia
bility, improve proxy-based analyses, and enhance the 
decomposition of mixed-pixel scenarios.

4.2.1. Technological advancements in remote 
sensing
Previous studies mainly relied on biological para
meters such as greenness and biomass as a proxy 
for mangrove degradation to achieve robust and 
comprehensive monitoring (Aljahdali, Munawar, 
and Khan 2021; Etemadi, Smoak, and Abbasi 2021). 
Incorporating ecosystem service indicators is also 
crucial for comprehensive mangrove degradation 
assessment. By linking the biophysical parameters 
extracted from remote sensing data to the ecosys
tem services offered by mangrove forests, such as 
coastal protection and carbon sequestration, 
a nuanced evaluation of mangrove conditions 
would be achieved. Deep learning models are cap
able of handling complex datasets and identifying 
subtle patterns that traditional methods may over
look (Jamaluddin et al. 2021). Furthermore, artificial 
intelligence-driven models can integrate mangrove 
conditions with environmental data, effectively 
resolving the confusion between degradation and 
natural variability. These approaches enhance classi
fication accuracy by identifying patterns across mul
tiple dimensions.

Platforms like Google Earth Engine store and orga
nize petabytes of satellite data into spatially aligned 
and analysis-ready formats, enabling large-scale man
grove extent mapping (Jia et al. 2023). Data cubes 
(Chen, Wang, and Gong 2023) enable the seamless 
integration of multi-temporal, multi-sensor datasets. 
These platforms could facilitate large-scale monitor
ing of mangrove degradation, making it more feasible 
and cost-effective. Additionally, advancements in 
cloud computing and computational capacity allow 
for real-time processing of dense time series data 
(Binh et al. 2024), facilitating rapid alerts for mangrove 
disturbances.

4.4.2. Transition to open philosophies
Collaborative code-sharing forums (e.g. GitHub) 
enable researchers to share open-source scripts for 
mangrove estimation (Simard et al. 2025), deep learn
ing classification algorithms, and time series analysis. 
This promotes technical exchange, accelerates meth
odological improvements, and ensures reproducibil
ity across studies. Access to free data is gradually 
increasing. The GEE platform provides free, high- 
quality, and global-scale satellite imagery, enabling 
cost-effective monitoring in resource-limited regions 
(Yang et al. 2022; Zhao et al. 2021). Local open data 
initiatives, such as those by the Hong Kong govern
ment, which provide free aerial imagery covering the 
entire territory, have demonstrated the effectiveness 
of estimating accurate mangrove cover (Zhang et al.  
2025).

Collaborative initiatives, such as the Global 
Mangrove Alliance and the International Blue 
Carbon Initiative (Herr et al. 2017) of the United 
Nations Environment Programme (UNEP), could facil
itate harmonized monitoring protocols and share best 
practices across borders. The Global Mangrove 
Alliance has launched the Global Mangrove Watch 
platform (https://www.globalmangrovewatch.org/), 
which displays interactive maps and statistics on man
grove cover, species distribution, height, and 
dynamics, serving as a critical baseline for policy
makers. For some local initiatives, integrating indigen
ous knowledge with remote sensing data could 
enable local communities to both contribute to and 
benefit from degradation assessments.

4.2.3. Improvements in statistical validity
Integrating time series analysis techniques is crucial 
for monitoring mangrove degradation (Vancutsem 
et al. 2021; X. Yang et al. 2024; Zhu, Liao, and Shen  
2021). By examining the temporal dynamics of man
grove ecosystems using high-frequency remote sen
sing data, researchers can better differentiate 
between seasonal fluctuations, disturbance-driven 
changes, and persistent degradation trends. 
Analyzing mangrove changes over multiple time 
steps to identify persistent losses (deforestation) ver
sus cyclic or fluctuating changes (degradation) 
enables a more detailed and precise representation 
of mangrove conditions across different time periods.

Approximately 59% of the studies examined or 
discussed the drivers of mangrove degradation, 
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encompassing both natural (e.g. climate change, nat
ural disasters, coastal erosion) and anthropogenic fac
tors (e.g. land use change, pollution, overexploitation, 
infrastructure development). Driver analysis of man
grove degradation could consider geographical, eco
logical, climatic, and social perspectives to develop 
a comprehensive understanding of the underlying 
causes (Yando et al. 2021). By investigating the inter
actions between factors such as land use changes, 
climate change, and socioeconomic pressures, 
researchers can better evaluate the complex drivers 
of mangrove degradation. This holistic approach is 
crucial for informing sustainable development strate
gies that address the coupled human-nature 
dynamics in mangrove-dependent regions. By brid
ging the biophysical and social dimensions, research
ers can gain a more nuanced understanding of how 
human activities, policies, and institutional arrange
ments interact with and influence the condition of 
mangrove forests (Beitl et al. 2019). Statistical 
advancements also enhance the ability to quantify 
uncertainties in degradation assessments, improving 
the scientific validity and reliability of results.

4.3. Implications of accurate mangrove 
degradation monitoring

Accurate mangrove degradation monitoring could 
offer actionable insights for conservation, climate pol
icy, and sustainable development. First, it strengthens 
evidence-based conservation and restoration strate
gies by enabling policymakers to prioritize high-risk 
areas and allocate resources efficiently (Dabalà et al.  
2023). Early detection of degradation allows timely 
interventions that reduce long-term restoration costs 
(Zimmer et al. 2022). This will bridge remote sensing 
data with actionable management strategies, ensur
ing degraded ecosystems are restored before reach
ing ecological tipping points and safeguarding 
biodiversity and coastal resilience.

In addition, the implications of mangrove degrada
tion monitoring extend beyond the immediate ecolo
gical consequences to support Environmental- 
Economic Accounting (Ramesh et al. 2023) and cli
mate action (Donato et al. 2011). Mangroves are cri
tical carbon sinks, storing more carbon per hectare 
than terrestrial forests (Donato et al. 2011). Precise 
monitoring quantification of degradation-driven car
bon emissions can inform blue carbon projects and 

international commitments related to mitigating and 
adapting to climate change (Senger et al. 2021). 
Accurate monitoring thus transforms ecological data 
into economic and policy tools, advancing equitable 
climate resilience and sustainable development, 
which is aligned with the UN Sustainable 
Development Goals (SDGs), particularly SDG 13 
(Climate Action) and SDG 14 (Life Below Water) 
(Eyzaguirre, Iwama, and Fernandes 2023).

5. Conclusions

This review provided an overview of mangrove 
degradation studies that utilized remote sensing 
techniques. We found that the specific proxies of 
mangrove degradation derived from remote sen
sing data to assess mangrove degradation predomi
nantly fall into three broad categories: health 
indicators (e.g. canopy condition, biomass, and pro
ductivity), coverage and fragmentation. Remote 
sensing enables comparisons to both spatial refer
ence (relative to a reference state) and temporal 
reference (temporal change over time). Based on 
previous publications, we detected some key chal
lenges, including difficulty in selecting optimal 
proxy, confusions between degradation and defor
estation, confusions between true degradation and 
natural variability, and uncertainty caused by coarse 
resolution. Nonetheless, the growing accessibility of 
advanced remote sensing technologies and data 
sources offers significant opportunities. Accurate 
and comprehensive monitoring of mangrove degra
dation could significantly inform and guide sustain
able coastal management and restoration efforts, 
helping to preserve the invaluable ecological and 
socioeconomic benefits provided by these critical 
ecosystems.
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