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High-dimensional anticounterfeiting
nanodiamonds authenticated with deep
metric learning

Lingzhi Wang1,4, Xin Yu1,4, Tongtong Zhang 1, Yong Hou1, Dangyuan Lei 2,
Xiaojuan Qi 1 & Zhiqin Chu 1,3

Physical unclonable function labels have emerged as a promising candidate for
achieving unbreakable anticounterfeiting. Despite their significant progress,
two challenges for developing practical physical unclonable function systems
remain, namely 1) fairly few high-dimensional encoded labels with excellent
material properties, and 2) existing authentication methods with poor noise
tolerance or inapplicability to unseen labels. Herein, we employ the linear
polarization modulation of randomly distributed fluorescent nanodiamonds
to demonstrate, for the first time, three-dimensional encoding for diamond-
based labels. Briefly, our three-dimensional encoding scheme provides digi-
tized images with an encoding capacity of 109771 and high distinguishability
under a short readout time of 7.5 s. The high photostability and inertness of
fluorescent nanodiamonds endow our labels with high reproducibility and
long-term stability. To address the second challenge, we employ a deepmetric
learning algorithm to develop an authentication methodology that computes
the similarity of deep features of digitized images, exhibiting a better noise
tolerance than the classical point-by-point comparison method. Meanwhile, it
overcomes the key limitation of existing artificial intelligence-driven classifi-
cation-based methods, i.e., inapplicability to unseen labels. Considering the
high performance of both fluorescent nanodiamonds labels and deep metric
learning authentication, our work provides the basis for developing practical
physical unclonable function anticounterfeiting systems.

Counterfeiting is a significant problem worldwide and is responsible
for serious economic losses in a wide range of everyday transactions1,2.
It can even be life-threatening when counterfeited goods such as fake
medicines are passed off as genuine3,4. To tackle this critical issue,
techniques such as watermarks or fluorescence labels have been
developed, and such techniques are used on banknotes all over the
world. However, these conventional approaches are now at risk of a
resurgence of counterfeiting, due to the deterministic fabrication
process which is prone to forgery5. To this end, the emerging physical

unclonable function (PUF) systems, based on non-predictable
responses of integrated circuits6 or random patterns of micro/
nanostructures5, serve as an effective solution for unforgeable antic-
ounterfeiting. Thanks to recent advancements in nanotechnology and
optical cryptography techniques7, PUF labels have been successfully
developed based on a large number of optical nanomaterials, includ-
ing plasmonic nanoparticles8–10, surface-enhanced Raman spectro-
scopy nanoparticles11, quantum dots12, Mie-resonant silicon
nanoparticles13, upconverting nanoparticles14, and metasurfaces15.
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In general, these nanomaterials provide a variety of optical signals like
photoluminescence, scattering and Raman signals, which can be tai-
lored to carry authentic information for encryption/decryption.

To achieve unbreakable encryption for PUF labels, it is crucial to
have a large enough encoding capacity which represents the theore-
tical maximum number of unique tags5. There are mainly two ways of
enhancing encoding capacity5: (1) improving the pixel number of the
encoded image, and/or (2) high-dimensional encoding. Compared
with the former one, high-dimensional encoding requires a relatively
short readout time and is thereby regarded as a promising solution.
However, to date, there have been only a few attempts to create high-
dimensional (≥3D) encoded PUF labels9,11,16,17. Particularly, the light has
been intensively investigated to provide multi-dimensional encrypted
information, owing to its abundant degrees of freedom such
as polarization, phase, wavelength, and frequency18. Among
them, polarization has been explored extensively in various applica-
tions such as three-dimensional display technology19, optical
communication20, optical storage21, optical encryption22, super-
resolution imaging23,24, and orientation measurements23,24. Among
the different optical polarization-sensitive emitters (e.g., fluorescent
molecules25, plasmonic nanorods26, upconverting nanorods27, carbon
nanotubes28, defects in 2Dmaterials29), nitrogen-vacancy (NV) centers,
a kind of photoluminescent defects hosted in diamond crystals, have
been hailed as among the most promising candidates for antic-
ounterfeiting labels due to their high contrast value in polarization
modulation (~89% for single NV center30), unlimited photostability31,32,
and cost-effectivemass production33, not tomention the properties of
diamond materials themselves34,35.

In a practical PUF anticounterfeiting system, the desired authen-
tication method should have a low false-positive rate, low time con-
sumption, and noise tolerance. However, prevailing techniques fall
short of meeting these criteria. Firstly, due to broad applicability and a
low false-positive rate5, the point-by-point comparison method (eval-
uated by the similarity index11 or Hamming distance36) is widely
used11,37–41. However, this method shows poor noise tolerance, due to
sensitivity to pixel level intensity information42 which is prone to being
influenced by some common noise sources. Secondly, contemporary
artificial intelligence (AI)-drivenmethods9,12,16,43 can achieve a low false-
positive rate and be noise-resilient by learning robust feature repre-
sentations with deep neural networks. Unfortunately, these approa-
ches frame authentication as an image classification problem, which
results in substantial time wastage in the training phase. Specifically,
learning classifiers12 typically requires the collection of numerous
training samples for a single PUF label and necessitates the retraining
of data from all PUF labels whenever a new PUF label is produced43.
Another AI-enhanced technique, known as deep metric learning44,
directly learns the optimal standard of comparison between data
based on deep image features, enabling it not only to authenticate
unseen objects45 but also to be noise-robust46. Therefore, metric
learning is emerging as a promising candidate to solve the existing
drawbacks of both the point-by-point comparison and classification
methods.

This paper presents the first demonstration of high-dimensional
(3D) encoding for diamond-based PUF labels, based on our previously
reported linear polarization modulation (LPM) of NV centers in fluor-
escent nanodiamonds (FNDs)47, as shown in Fig. 1a. Under the readout
time of around 7.5 s, we achieved an encoding capacity of 910× 1024

(109771) for digitized images with high distinguishability, reproduci-
bility, and long-term stability proved by a point-by-point comparison
method.Moreover,we redefine the authenticationproblemas ametric
learning task and propose a deepmetric learning algorithm for robust
authentication, based on comparing the similarity of abstracted deep
features, as illustrated in Fig. 1b. Our method is well-motivated and
allows the model to amply satisfy practical application requirements.
Specifically, noise resilience evaluation demonstrates that our metric

learning method effectively addresses the noise sensitivity issue
inherent in the point-by-point comparison method, which is com-
monly encountered during an end user’s readout. In addition, when
compared to previous AI-driven methods that formulate the authen-
tication problem as a deep classification task, our reformulation
exhibits two clear benefits: (1) a reduced requirement for training data
volume (only two sets of data are needed for a label), and (2) the
capacity to effectively authenticate data from unseen labels, rather
than necessitating retraining the whole system once a new label is
added43. These dual efficiencies significantly enhance the potential of
our method for deployment in large-scale commercial settings.

Results
LPM curves of FNDs providing feasibility for 3D
anticounterfeiting
Diamond provides promising material properties for fabricating PUF
labels, including high photostability, long-term stability, and tolerance
to physical stress. Specifically, both the Raman signal of diamond and
the fluorescent signal of NV centers can be continuously emitted
without blinking or bleaching31,32,38, which provides the basis for
maintaining the reproducibility of optical readout results. In addition,
high hardness35 and inertness34 make diamond-based labels tolerant to
physical stress and long-term storage, respectively. However, despite
the huge potential of existing diamond-based PUF labels38,39,48, it has
not yet been possible to achieve the much-desired high-dimensional
(>2D) encoding. We here propose a method to achieve a 3D encoded
diamond-based PUF label, based on the LPM47 curves of FNDs with
random orientations.

Fabricated via an electrostatic absorption approach (see section
“Methods” for details), our PUF label is composed of FNDs with both
high density and satisfactory dispersion on the cover glass (see SEM
image in Fig. 2b). Due to the above two characteristics, there are
200–450 bright spots (BSs) over 30 × 30 µm area with a high prob-
ability close to diffraction-limited size, in fluorescent images of FND
PUF labels. A typical example is given in Fig. 2a. As for the 3D antic-
ounterfeiting information from FND PUF labels, the large number of
BSs provides the basis for the distinguishability of encoded images
(see Supplementary Notes 1 for detailed analysis), and diffraction-
limited sizes of BSs are essential for sensitive optical readout (see latter
content for details). In terms of more sample information, sample
performance optimization data can be found in Supplementary
Notes 6, and characteristics of FND distribution within BSs are shown
in Fig. S6.

In the fluorescent images of our FND PUF labels, diffraction-
limited BSs with LPM curves provide the foundation for obtaining
three-dimensional anticounterfeiting information. Specifically,
basedon theoptical polarization selective excitationphenomenonof
NV centers30, the LPM curves show the relationship between the
polarization direction of linearly polarized excitation laser (β) and
fluorescent intensity of FNDs (Iβ) (Fig. 1a). In actual measurement,
when β is changed at a constant speed through rotating a half-wave
plate with an electric rotation stage, wide-fieldfluorescent images are
taken for a PUF label with a gap of β as 6° (see section “Methods” for
more details). To exactly extract the fluorescent signal correspond-
ing to diffraction-limited BS (size is around 10 pixels × 10 pixels), Iβ is
calculated via the total signal of 13 pixels × 13 pixelsmatchedwith the
identified position. Experimental results show that the LPM curves of
the identified diffraction-limited BSs can be well fitted (solid lines in
Fig. 2c) via Eq. 147 with a coefficient of determination usually larger
than 0.85.

Iβ =A1 � A2cos
2 α � βð Þ ð1Þ

Where A1,A2,α are fitting parameters (A1 > 0,A2 >0), and Iβ, β are
input parameters. Examples of six fitted LPM curves are shown in
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Fig. 2c. It should be noted that these LPM curves show different LPM
contrast values (A2

A1
) and LPM phase (the fitting result of α), corre-

sponding to different orientations of FNDs. Therefore, based on the
fluorescent images under different β values, it is possible to obtain the
3D encoded information, including LPM contrast values, LPM phases,
and the positions of the diffraction-limited BSs.

For achieving a sensitive optical readout of the above 3D antic-
ounterfeiting information, a sufficiently high LPM contrast value is
required. We define the following criteria to determine a sufficiently
high LPM contrast value: larger than 15%, which is 10 times the fluor-
escent intensity error (around 1.5%) in long-term detection (Fig. S1).
Experimental results show that diffraction-limited BSs own LPM con-
trast values usually larger than 15%, but the LPM contrast values of
bigger BSs have a high probability of less than 15% (Fig. S2). Therefore,
the crucial point to obtain a sufficiently high LPM contrast value is the
high probability of finding diffraction-limited BSs. Our PUF label is well
matched with this crucial point (see the previous description of

Fig. 2a), which causes a high ratio of obtaining high enough contrast
values. A typical example is given in Fig. 2d: 215 of 306 identified BSs
own LPM contrast values larger than 15%.

Anticounterfeiting performance of 3D encoded images
Then, based on the above-mentioned 3D anticounterfeiting informa-
tion, we proposed a 3D encoding scheme to obtain digitized images.
With the classical andwidely used authenticationmethod called point-
by-point comparison5, the anticounterfeiting performances of digi-
tized images were tested for distinguishability, reproducibility, long-
term stability, and stability under sonication.

Digitized results were obtained based on the optical images of
FND PUF labels under different β values with pixel resolution of 32 × 32
(see section “Methods” for details). To effectively show the informa-
tion in the two dimensions including LPM contrast value and LPM
phase, a feasible method is to utilize the relative change of Iβ corre-
sponding to different β. To reflect this relative change, we convert the

Fig. 1 | Extract deep features from 3D anticounterfeiting FNDs via metric learning. a Schematic illustration of obtaining 3D anticounterfeiting information based on
LPM curves of the FNDs with random orientations. b Schematic illustration of extracting deep features from 3D encoded information via a metric learning network.
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Fig. 2 | Characterization of our FND PUF labels. a A typical wide-field fluorescent
image of FNDs. Insert: an enlarged view of six marked bright spots. b A repre-
sentative SEM image of FNDs. c LPM curves corresponding to the sixmarkedbright

spots in (a). Iβ: the fluorescent intensity. β: the linear polarization direction of the
excitation laser. d Histogram of LPM contrast distribution among all the identified
bright spots in (a). All the scale bars are 2 µm.
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photon number to contrast values in the image pixels via Eq. 2:

contrastβ=n =
countsβ=n � countsβ=0

countsβ=0
ð2Þ

Where contrastβ=n and countsβ=n mean the contrast values and
photon number in image pixels, respectively, with the condition of
β=n. In the digitization process, nine contrast levels are set according
to Table S3, which is designed based on the precision and range of the
contrast value. An example of the digitized images is given in Fig. 3a:

Fig. 3 | Anticounterfeiting performance for high-dimensional encoded FND
PUF label. a Digitized results of obtained wide-field fluorescent images under
different laser polarization directions (β). Insert: the formula to calculate the
encoding capacity. Image resolution: 32 pixels × 32 pixels. b Authentication results
for two groups of digitized readouts results of 300 PUF labels. Left panel: heating
map showing pairwisematch. Color bar represents the similarity index. Right panel:

histogram showing the statistics of similarity indexes among digitized readout
results for the different PUF labels (red bars) and the same PUF labels (blue bars).
cHistogram showing the statistics of similarity indexes among digitized results for
repeated readouts of the same PUF label. d Long-term stability curves for the
readout results of 3D anticounterfeiting information.
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there are three encoding dimensions, including contrast levels,
polarization angles, and pixel position. Calculated via the inserted
formula5,11 in Fig. 3a, the encoding capacity of our PUF label can arrive
at 910× 1024 (109771), which is much larger than the commonly suggested
minimum encoding capacity (10300)5. In addition, the readout time
corresponding to these digitized images is just 7.5 s. Therefore, we
achieved a sufficiently large encoding capacity as the basis for
unbreakable encryption, within a relatively short readout time.

To demonstrate the feasibility of the above encoding method
in distinguishing different PUF labels, we applied the broadly
used authentication method called point-by-point comparison5.

Specifically, when two groups of digitized images are compared
pixel-by-pixel, the ratio of the same pixels is recorded as the
similarity index11. If there exists an evident gap between the simi-
larity indexes of the same labels and different labels, a threshold
value within the gap can be chosen to correctly distinguish the
different PUF labels. In our authentication process, the similarity
indexes are calculated among the two groups of digitized images
for 300 PUF labels. Calculation results are shown in Fig. 3b: the
similarity indexes of the same labels are always higher than 76%,
and the similarity indexes of the different labels are always less
than 70%. Therefore, we can choose the threshold value as 75%
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comparison. a Digitized images (right panel) of the same FND PUF label corre-
sponding to different optical readout conditions (left panel). b, c Authentication
results for the digitized images of 150 FND PUF labels captured under the two

optical readout conditions in (a). Heat map (b) showing the pairwise match; the
color bar reflects the similarity index. Histogram (c) displaying the statistics of
similarity indexes among digitized readout results for the different FND PUF labels
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(within the gap of 70–76%) to successfully distinguish all the 300
PUF labels.

Moreover, based on the above threshold value, we evaluated the
reproducibility, long-term stability, and stability under sonication of

the digitized readout results for our PUF label. First, for reproduci-
bility, we calculated the similarity indexes among 10 groups of digi-
tized images for the same PUF label. All the authentication results for
20 PUF labels show satisfactory reproducibility in Fig. 3c: the similarity

10%

Same labels

Different labels

Fig. 5 | Metric learning for the authentication of noise-affected digitized ima-
ges. a Schematic diagram showing the design and insight of our metric learning
framework. CNN: convolutional neural network. b Schematic diagram showing the
training process of CNN in one loop. c, d Authentication results for the 150 pairs of

digitized images used in Fig. 4b, c. Heat map (c) showing the pairwise match; the
color bar reflects the similarity score. Histogram (d) displaying the statistics of
similarity scores among digitized readout results for the different FND PUF labels
(red bars) and the same FND PUF labels (blue bars).
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indexes are always significantly higher than the threshold value (75%)
(see Fig. S3 for specific examples of the reproducibility of a specific
label). Then, long-term stability was tested based on repeated readout
results of nine PUF labels for a period of around 159 days. For each
readout date, corresponding similarity indexes are calculated between
the digitized readout results on this date and the digitized readout
results on the first day. The authentication result confirmed satisfac-
tory long-term stability: the similarity indexes are always evidently
higher than the threshold value (75%) (Fig. 3d). Finally, stability under
sonication was tested via comparing authentication results about
identical eight labels in two conditions: (1) with sonication, and (2)
without sonication. Test results (Fig. S7) show the satisfactory stability
that sonication causes a little influence on the similarity index dis-
tribution, and different labels always can be successfully distinguished
via the threshold value (75%).

Deep metric learning for authenticating noise-affected
digitized images
In terms of practical authentication for anticounterfeiting labels, the
system’s tolerance to common noise sources is crucial. Specifically, in
the practical authentication process, manufacturers provide images
taken under ideal laboratory conditions, but end users may employ
images taken in environments saturated with various additional noise
sources. Even if the optical signal from a PUF label is stable, these noise
sources influence the readout process, which might prevent the
authentication algorithms (i.e., point-by-point comparison) from
working42.

To this end, simulating the actual authentication process, we
conduct a noise resilience evaluation for point-by-point comparison
method with FND PUF label. In the noise resilience evaluation, images
of PUF labels taken under two different optical readout conditions are
used for authentication based on the similarity index, as shown in the
left panel of Fig. 4a. Specifically, our experiment mirrors the image
capture process by both themanufacturer and the end users, where an
optical readout of 150 PUF labels was conducted under ideal labora-
tory conditions and laboratory conditions contaminated with three
kinds of noise sources, respectively (refer to Supplementary Notes 3
for details). These noise sources include background light, sample
drift, and out-of-focus, all of which are common noise sources for the
readout process. Digitized images corresponding to the above two
optical readout conditions show evident differences, with a typical
example in the right panel of Fig. 4a. As shown in Fig. 4b, experimental
results show that there is an overlap between the distributions of the
similarity index for intra-digitized images and inter-digitized images.
This implies that it is impossible to find an appropriate threshold to
distinguish PUF labels. In noise resilience evaluation results for other
PUF labels based on point-by-point comparison42, negative results
have also been found andwere attributed to the widespread limitation
of the point-by-point comparisonmethod, i.e., sensitive to some noise
sources. Therefore, this highlights the need for a more robust
authentication algorithm.

To develop a more robust algorithm tolerant of noise, our key
inspiration was that it was hard, using the naked eye, to differentiate
digitized images of a PUF label in the presence of noise (such as
Fig. 4a). However, it is possible for us to recognize natural images with
the naked eye, even when they are mixed with noise49. The reason is
that most of the noise in our daily life affects information at the pixel
level, while we have seenmany natural images and have been “trained”
to recognize them based on high-level semantic information50. Thus,
to solve the challenge in noise resilience evaluation, the critical factor
is to show our machine as many PUF labels as possible at a training
stage (i.e., prior information). It is essential to provide the model with
training data, which are used to teach it to discern high-level infor-
mation crucial for distinguishing samples and enhancing noise
resilience.

Given the profound capacity of deep learning51–53 to learn prior
information and the ability of a convolutional neural network (CNN) to
extract deep patch-level features from images, we propose to exploit
these features for our authentication system. In particular, we propose
the use of deep metric learning44 to conduct anticounterfeiting
authentication. Specifically, metric learning excels at identifying
essential differences between data instances, making it well-suited for
authentication tasks. By learning a distance metric that reflects
intrinsic similarities and dissimilarities among instances, metric
learning has demonstrated effectiveness in actual applications such
as robust face verification in the wild54, variation-tolerant face
recognition46,55, and person re-identification56.

The core concept of metric learning, as shown in Fig. 5a, is to
enable the accurate clustering of images based on their content, even
when subjected to noise or distortions. In the original image space
depicted on the left side of Fig. 5a, we have an image IX , which
becomes more distant from its original position when affected by
noise, resulting in the image IX '. Consequently, if we measure the
distancewith the point-by-point comparison, image IX becomes closer
to another image IY , which could cause a wrong matching. To tackle
this issue, our metric learning framework utilizes a neural network
trained to extract noise-resistant features, allowing imageswith similar
content to be accurately categorized together, as depicted on the right
side of Fig. 5a. In other words, high-level information of the digitized
image is extracted and represented like a deep key in themetric space.
In thisway,we can comparedigitized images’ similarity by calculating a
similarity score (see section “Methods” for more details) in the metric
space, instead of a point-by-point comparison in the original
image space.

To achieve this goal, the key innovation of metric learning lies in
its unique training strategy. As shown in Fig. 5b, a deep neural network
is trained to bring features (i.e., FX and FX ') belonging to the same PUF
label closer together while pushing features (i.e., FY and FX ') from
different PUF labels further apart. Before training, features from the
same label might be far apart in the metric space (or too close to a
different label), which is contrary to our desired outcome. In such
cases, the loss function penalizes the network, forcing it to adjust its
parameters in the appropriate direction via back-propagation. After
several iterations, our network learns how to extract the key infor-
mation from images, resulting in a metric space where features of the
same label are close together, and features of different labels are far-
ther apart. Compared to similarity index based on point-by-point
comparison, neural networks typically extract patch-level structural
features, which are more resilient to noise.

Wedemonstrate the robustnessof ourmethod against a variety of
noise sources commonly encountered during the readout process.
Especially, during training, we do not assume prior knowledge about
thenoise thatmay present in practical use and apply PUFdata fromthe
ideal condition for training. This avoids introducing biased evaluation
results. For validation, we use the same 150 pairs of PUF images
employed in Fig. 4b. Notably, the PUF labels used for training are
completely different from the PUF labels in the test set, thereby pre-
venting any overfitting issue in our test results (see section “Methods”
for more details). As depicted in Fig. 5c, d, even under challenging
conditions, our method accurately distinguishes between different
pairs of PUF labels and identical pairs of PUF labels with 100% preci-
sion. It can be seen that there is a significant gap (~13%–23%) between
the similarity score distributions of intra-class PUF labels and inter-
class PUF labels. By contrast, authentication with point-by-point
comparison reveals a tendency to confusion (see Fig. 4b, c). These
results demonstrate that our algorithmcan recognize PUF labels better
than the point-by-point comparison method in the presence of the
investigated noise sources. Additionally, we provide validation results
of our method under ideal conditions in Fig. S4, highlighting even
more distinct decision boundaries. This further proves the robustness
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and reliability of our metric learning-based approach for accurate PUF
label authentication, whether under ideal conditions or in real-life
noise environments.

Characteristics ofmetric learningmethod compared to prior AI-
driven methods
Prior to our work, there have been some AI-driven methods9,12,43 for
tackling PUF label authentications. Thesemethods typically formulate
the problem as a discriminative image classification task which learns
to map a data pattern to a category. In contrast, we redefine the pro-
blem as a deep metric learning problem, focusing on learning a simi-
larity measurement between two samples using deep features to
assess whether they are from the same label or not. Here, we analyzed
the difference between our metric learning-based authentication
method and classification-based authentication methods in the train-
ing and testing stages.

First, our method is more data-efficient during the training phase.
Specifically, classification methods learn to map a data pattern to a
category by predicting the probability for each category given an
input. Since themappingdiffers across categories, this requires a lot of
data for each category for training (Fig. 6a). If there is not enough data
for a category, the model is prone to overfitting the training data and
performspoorly during testing57. The experimental demonstration can
be found in Supplementary Notes 9. Our metric learning, on the other
hand, focuses on learning a similarity measurement to evaluate whe-
ther a given pair of readout results are similar or not, specifically,
predicting a similarity score for a pair of readout results. This task can
be accomplished with pairs or triplets of samples (a reference sample,
a positive sample from the same category, and a negative sample from
a different category). Our training stage requires only two groups of
readout results from each label (Fig. 6a), because the similarity mea-
surement can be shared among different PUF labels57: with N readouts
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from PUF labels, our method derives C2
N unique pairs for training,

leading to a much larger number of data pairs than classification
methods (i.e., C2

N>>N). In sum, our method needs much less training
data, thereby saving a lot of time that wouldotherwise be consumed in
the repeated readout of PUF labels.

Second, our method can effectively authenticate new PUF labels
unseen during training (Fig. 5c, d), a capability that classification-based
methods lack9,12,43. As shown in Fig. 6b, classification methods fix the
number of categories (e.g., 10) during the training phase. In this case,
the model predicts the probabilities of 10 categories and utilizes the
highest one to determine the class to which a PUF label belongs.
Consequently, if a provider manufactures a new 11th PUF label, the
network will still only predict probabilities of 10 categories. Under
these circumstances, the method would either predict all 10 prob-
ability values to be low, thereby deeming the label to be false, or one
probability might be high, leading to an incorrect classification of the
label (see Fig. S14). Although the features learned in the penultimate
layer can indeed be utilized for unseen label authentication in a clas-
sifier, similar to the operation of deep metric learning in the testing
phase, the efficacy of this approach remains unsatisfactory. This is
supported by studies such asDeepFace58 andArcFace59, which indicate
that metric learning is still necessary, whether explicitly or implicitly,
to facilitate the learning of discriminative features for unseen label
inference through pairwise feature comparisons. A classification
model trained using basic SoftMax loss, akin to recent approaches in
the PUF authentication field, exhibits poor performance in similarity
comparison for unseen labels when using the method described
above. We confirmed these findings through additional experiments,
as detailed in Supplementary Notes 9 (Experiment 3). By contrast, our
method compares whether two readout results of PUF labels are
similar, and the learned similarity metric can be applied for new PUF
labels. Consequently, even if we only use digitized images of certain
PUF labels (such as PUF1-PUF10) during the training stage, we can still
compare two new readout results (for instance, from PUF11 and
PUF12), as shown in Fig. 6b. The experimental demonstration can be
found in Figs. 5c, d and S4, where all our experimental evaluations are
on unseen labels. Therefore, our method is well-suited for use in real-
world business situations where new PUF labels are continually being
created, while the classification technique’s requirement for retraining
makes it inconvenient to use in such conditions.

Discussion
Combining the advantages of both FNDs sample and our 3D encoding
scheme, LPM of FND is a promising candidate to achieve a useful PUF
label, which can satisfymost common requirements in both the aspects
of commercial and anticounterfeiting performances. Specifically,
common commercial requirements5 contain (1) low-cost and scalable
fabrication and (2) convenient and fast readout. As for our FND PUF
label, the estimated cost of a working label is considerably lower than
0.19 USD (Table S1). Its simple fabrication method using a mature
commercial sample (see section “Methods” for details) offers the
opportunity for scalable fabrication, and the strong optical signal of
FNDs (Fig. S5) provides thebasis for fast optical readout (inour scheme,
integration time for an image is 50ms, and total readout time is 7.5 s). In
addition, some common requirements for anticounterfeiting perfor-
mances of PUF labels are listed as (1) high encoding capacity for
achieving unbreakable encryption5, (2) reproducible authentication
results11, and (3) labels available for precise authenticationwithin a long
time. Authentication results (Fig. 3) prove that our FNDPUF label is well
able to meet these requirements: encoding capacity as high as 109771

with satisfactory distinguishability, reproducible authentication for 10
times of readout results of the same labels, and stable antic-
ounterfeiting information for a period of around 159 days.

Other two core points about FND PUF label should be stressed
here. Firstly, compared with three representative 3D encoded labels

(TableS2), our 3D encoding scheme shows two advantages: (1) a higher
encoding capacity under the same image pixel conditions; (2) simpli-
fied label fabrication requiring only one type of “ink”, i.e., FNDs. Sec-
ondly, an existing main challenge is achieving cost-effective and user-
friendly readout device, which is crucial in practical usage. Fortunately,
rapid development of portable microscopy points towards a promis-
ing solution to overcome this obstacle (see Supplementary Notes 5 for
details).

Building on the similarity score extracted from the deep features
of two sets of digitized results, we propose a metric learning authen-
tication method showing better noise resilience and higher training
efficiency than prior AI-driven methods. Specifically, unlike the pre-
vious classification method12 that uses the same artificially created
“noise” or disruptions during both the training and testing phases, our
CNN network is trained via data readout under ideal laboratory con-
ditions, but demonstrates robust noise tolerance in evaluations (refer
to Fig. 5b, c). This proves that our method potentially has a better
capability to handle data readout in a variety of real-world scenarios. In
addition, in contrast to the classification approach9,12,43, inwhicha large
amount of training data for each PUF label is needed and repeated
training is required when new labels are introduced, our method
requires only two sets of readout results for each PUF label and obvi-
ates the need for retraining in the event of encountering new objects,
thereby saving a lot of time. Our metric learning approach is flexible
and can accommodate various PUF shapes due to its learning-based
nature. We believe that our innovative approach will offer valuable
insights into the PUF authentication field, encouraging real-world
implementations and inspiring future research.

Our authentication method can also well satisfy the common
requirements in practical usage: high enough authentication velocity
and availability for product traceability. First, in our authentication
method, the timeof comparing digitized images with one set of stored
objects is 1.38ms, which is sufficiently rapid for practical use with a
well-matched design of the authentication process (see Supplemen-
tary Notes 4 for detailed analysis). Secondly, in many previously
established product traceability algorithms11,14,37, traditional point-by-
point comparison methods play a crucial role in determining whether
the two groups of encoded images belong to the same label. Seam-
lessly sharing the above role, our deep metric learning method aligns
well with these algorithms.

Methods
Experimental apparatus
All fluorescent images for the FND PUF labels were taken by a custo-
mized wide-field fluorescence microscope. In the excitation optical
path, the linear polarization direction of a continuous 532 nm laser is
changed via a half-wave plate (WPH10M-532, Thorlabs) mounted on
the electrical rotation stage (PT-GD62, PDV). Employing the above half-
wave plate and a polarizer to control and verify the initial laser polar-
ization direction (β =0), we can maintain a consistent initial laser
polarization direction. The excitation laser is then focusedon the back-
focal plane of an oil immersion objective (NA 1.45, UPLXAPO100XO,
Olympus) to illuminate the sample. The sample position can be finely
adjusted via a nanopositioning stage (P561.3CD, Physik Instrumente).
In the detectionoptical path, filteredwith a long passfilter (FELH0650,
Thorlabs), the fluorescence signal is detected via a water-cooled
EMCCD (iXon Ultra 897, Andor) with a field of view of around
30 × 30μm.

Fabrication of FND PUF label
The PUF label is fabricated by FND-COOH containing ensemble NV
centers (BR100, FND Biotech, Inc.) through electrostatic absorption.
Specifically, cover slides are activated by plasma for 10min (200W),
and then immersed into the 3-aminopropyltriethoxysilane (APTES,
Sigma) solution in ethanol (v/v,5%). After reaction for 24 h at room
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temperature, the cover slides are taken out and washed with ethanol
and water, respectively. After that, 0.02mg/mL FND solution is drop-
casted on the obtained positive-charged cover glass and incubated in
the refrigerator for 3 h. Next, the obtained samples are washed with DI
water and dried in air. Finally, a PDMS layer is coated onto the cover
glass as a protection layer. Supplementary Notes 7 shows the influence
of PDMS layer on the readout results of three encoding dimensions.

Particle location code
Weuse the peak location function (pkfind()) and spatial bandpass filter
function (bpass()) in MATLAB particle location code from Daniel Blair
and Eric Dufresne (https://site.physics.georgetown.edu/matlab/index.
html). The spatial bandpass filter function is used to filter the noise
from wide-field fluorescent images. The peak location function is then
used to identify and locate the BSs. Without special instruction, the
wide-field fluorescent images described in formal content and sup-
porting information have been processed via spatial bandpass filter.

Measurement of LPM curves
First, wide-field fluorescent images of FND PUF label are taken with 6°
gap of linear polarization direction of the excitation laser, 50ms
integration time, and around 10mW laser power. Then, with the peak
location function, we identify and locate BSs with threshold value as
3000 counts and spot size as 10 pixels. Next, the total signals of the 13
pixels × 13 pixels matched with the location of identified BSs are cal-
culated as fluorescent intensity. Finally, the LPM curve is recorded as
the relationship between fluorescent intensity and the linear polar-
ization direction of the excitation laser. The recorded LPM curve is
fitted via the curve fitting function (fit()) in MATLAB based on Eq. 1.

Optical readout and digitization
First, with parameters of 512 × 512 pixel resolution, 50ms integration
time, and around 10mW laser power, wide-field fluorescent images of
FND PUF label are taken under polarization directions of excitation
laser as 0, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144°. Next, by accu-
mulating the total signal of 16 pixels × 16 pixels into a new pixel, we
change the pixel resolution to 32 × 32. Then, contrast values for each
pixel are calculated via Eq. 2. Finally, contrast values are digitized as
shown in Table S3. Using the Lenovo Xiaoxin Pro16 laptop with i5-
13500H CPU, it takes ~0.16 s to encode a set of readout results.

Training of metric learning
As shown in Fig. S13, the network used is a Siamese network, a type of
CNN that processes two inputs concurrently and extracts their deep
features. When provided with two digitized images X and X’, the Sia-
mese network extracts their corresponding features as follows:

F =CNN Xð Þ, F' =CNNðX'Þ:

Within our metric learning framework, the objective is to max-
imize the cosine similarity between F and F’ if X and X’ belong to the
same PUF label, and to minimize the similarity if they belong to dif-
ferent PUF labels. To achieve this, the CNN needs to extract the most
notable characteristics of a PUF label that differentiate it from other
labels. These features are often patch-level, preserve robust structural
information, and exhibit greater resilience to noise. To train the net-
work, we calculate the cosine similarity of feature maps and use the
Focal loss to update the CNN. The model employs the Adam60 opti-
mizer with an initial learning rate of 0.0001. It is trained with a batch
size of 32 for up to 10,000 iterations. Further details regarding the
network architecture, cosine similarity calculation, and loss function
can be found in Supplementary Notes 8.

Our training and testing datasets are completely distinct. For
training,weutilized 240pairsof readout results under ideal conditions
from 240 different PUF labels. For testing, we employed 60 pairs of

readout results under ideal conditions from 60 unique PUF labels for
standard testing (i.e., results in Fig. S4) and 150 pairs under noisy
conditions from 150 distinct PUF labels for noise robustness testing
(i.e., results in Fig. 5c, d). Notably, these 450 PUF labels are entirely
separate from one another.

Data availability
The authors declare that the data supporting the findings of this study
are available within the article and its Supplementary Information file.
The fluorescent images of PUF labels with corresponding digitized
images used for the PUF authentication have been deposited in the
repository https://github.com/PBBlabwlz/PUF_Label, and a snapshot
of the data is provided on Zenodo61. All other data that support the
findings of the study are available from the corresponding authorupon
request.

Code availability
All codes used for encoding fluorescent images and PUF authentica-
tion are available via https://github.com/PBBlabwlz/PUF_Label, and a
snapshot of the code is provided on Zenodo61.
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