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Cloud distribution significantly impacts global climate change, ecosystem health, urban environments, and
satellite remote sensing observations. However, past research has primarily focused on the meteorological
characteristics of clouds with limitations in scale and resolution, leading to an insufficient understanding of
large-scale cloud distribution and its relationship with land surface cover and urbanization. This study in-

Urbanizati . . . . . o g . . .
L:n:nclzi;:n vestigates the cloud distribution characteristics of typical urban agglomerations in different climatic regions of
Subtropical China using high-resolution Sentinel-2 satellite imagery and the Google Earth Engine platform. A cloud proba-

bility descriptor was constructed based on three years of high spatiotemporal resolution observations. The results
revealed significant differences in cloud distribution among urban agglomerations, challenging the traditional
understanding based on climate zoning. The Northeast urban agglomeration in the temperate zone exhibited
high cloud coverage (37.54%), while the Chengdu-Chongqing urban agglomeration in the subtropical zone and
the Qinghai-Tibet Plateau urban agglomeration in the plateau climate zone had even higher average cloud
probabilities (50.72% and 43.27%, respectively). The analysis suggests land surface cover, urbanization, and
other surface factors may influence cloud distribution patterns. These findings emphasize the ubiquity of cloud
cover and highlight the importance of considering the complex interactions among geographical factors when
characterizing cloud cover diversity. This study contributes to providing new insights for enhancing meteoro-
logical models and remote sensing observation strategies in cloudy environments across different climate zones.

1. Introduction

Clouds are an important component of the atmosphere, directly
affecting solar radiation and Earth’s surface reflection of sunlight,
thereby regulating the Earth’s heat distribution, temperature, humidity,
and influencing multiple key elements such as energy balance, climate
systems, and the water cycle (Toll et al., 2019). Cloud cover directly
affects the reception of solar radiation, regulation of surface tempera-
ture, maintenance of energy balance, and formation of precipitation
patterns. Therefore, an in-depth study of cloud distribution character-
istics and their influencing factors plays a crucial role in
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comprehensively understanding global climate change, ecosystem
health, and effective environmental management (Shah et al., 2020).
Cloud formation is a complex process involving various physical
mechanisms. When water vapor in the air reaches a saturated state,
condensation occurs, forming cloud droplets. This typically happens
when air rises, cools, and reaches its dew point temperature (Wallace
and Hobbs, 2006). On a global scale, the acceleration of urbanization
has led to significant changes in local climate and cloud distribution
within cities (Shepherd et al., 2010). The unique conditions of urban
environments, including impervious surface, urban pollutants and urban
heat island can influence the cloud formation process. The spatial
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heterogeneity of urban surface characteristics may also affect local cir-
culations and atmospheric boundary layer processes, influencing cloud
formation and distribution (Shepherd, 2005). Given the complex in-
teractions between cloud formation and urban conditions, investigating
the cloud distribution characteristics in urban areas is crucial for un-
derstanding urban environments and regional climate and weather.

In addition to the meteorological field, clouds also hold significant
value in satellite remote sensing observations. Cloud cover affects the
observation of the Earth’s surface by remote sensing satellites (Ling
et al., 2021). Cloud layers obstruct optical signals, making it challenging
to obtain clear, cloud-free remote sensing images over large areas, which
greatly impacts subsequent tasks such as object recognition and moni-
toring (Shen et al., 2014; Zhang et al., 2014; Zhu et al., 2021). Therefore,
for cloud-covered regions, satellite remote sensing faces challenges in
efficiency and accuracy of surface observations (Ling and Zhang, 2023).
In this context, accurately understanding cloud distribution character-
istics will help optimize remote sensing observation strategies and
improve the efficiency and precision of surface observations.

Although research on clouds has gradually received attention over
the past few decades, it has mainly focused on aspects such as the
microphysical properties, radiative effects, and precipitation mecha-
nisms of clouds (Stewart et al., 1998). There have also been analyses of
cloud climate characteristics (Fu et al., 2020) and studies on cloud
condensation nuclei characteristics (Shen et al., 2019). However, these
studies tend to focus more on using ground-based cloud data to analyze
cloud amounts (Singh and Glennen, 2005) or focus on local-scale cloud
distribution analysis (Yang et al., 2020a). The influence of cloud height,
thickness, and morphology on near-surface air temperature has also
been widely studied (Jiang et al., 2022). Nevertheless, these studies
focus more on the physical properties and meteorological functions of
clouds and are primarily based on ground observation data such as
meteorological station records (Leena et al., 2022), thus having limita-
tions in coverage and spatial resolution. In this context, meteorological
satellite data have become an important supplement to ground obser-
vation data due to their extensive coverage, rich information content,
and high-frequency repeated observations. The use of satellite cloud
data for climate analysis and diagnosis has received widespread atten-
tion (Norris et al., 2016). Polar-orbiting meteorological satellites
observe the global surface at the same local time and can serve climate
observations and monitor large-scale natural disasters. Geostationary
meteorological satellites, on the other hand, can synchronously rotate
with the Earth and perform high-frequency observations of the fixed
area they cover, serving weather forecasting and analysis and providing
cloud image data (Bessho et al., 2016). However, there are still few
studies that use these satellite images for comprehensive quantitative
analysis of large-scale cloud distribution characteristics. For example,
global cloud distribution analysis using CloudSat satellite data
(Hagihara et al., 2010), analysis of China’s cloud amount characteristics
using Terra and Aqua satellite cloud amount data (Ma et al., 2014),
analysis of cloud characteristics using Himawari-8 satellite data (Yang
et al., 2020b), detection of convective cloud using FY-2 VISSR satellite
data (Liang et al., 2017), and exploration of the spatiotemporal distri-
bution of different cloud types in China using ISCCP cloud data (Sirui
et al., 2020). However, due to data availability and computational
processing capabilities, these studies often have issues such as low res-
olution or small research scales. Moreover, past research has focused on
the high-altitude distribution and meteorological characteristics of
clouds, with insufficient attention to the underlying surface and little
exploration of the relationship between clouds and land surface cover,
urbanization, and other factors (Ma et al., 2014; Norris et al., 2016).
Therefore, a more in-depth understanding of cloud distribution is
needed. For example, past research in the field of remote sensing earth
observation often considers subtropical regions as cloudy and rainy
areas. However, considering the vastness of China’s territory and the
diversity of its climate, there are significant differences in cloud distri-
bution in different geographical locations and climate zones, and
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traditional climate zoning may not fully describe the distribution pat-
terns of clouds. Further systematic research on the long-term, large-
scale, and high-resolution spatial distribution characteristics of clouds is
still needed.

Facing this challenge, this study selected urban agglomerations in
different geographical locations, topography, and climate zones in China
as research objects. Utilizing high-resolution Sentinel-2 satellite remote
sensing imagery and the Google Earth Engine (GEE) data processing
platform, this study leveraged three years of continuous high spatio-
temporal resolution remote sensing data to establish a cloud probability
descriptor. From a remote sensing perspective, we explored the high
spatiotemporal resolution cloud distribution characteristics of urban
agglomerations in typical climate zones of China. The main contribu-
tions of this study include: (1) presenting a novel approach for mapping
high-resolution cloud probability distribution using Sentinel-2 imagery
and GEE, investigating cloud distribution characteristics from a remote
sensing perspective; (2) conducting a comprehensive analysis of cloud
distribution characteristics across urban agglomerations in different
climatic regions of China, revealing regional differences in cloud dis-
tribution and complementing the traditional understanding based on
climate zoning; and (3) exploring the relationship between cloud dis-
tribution and multiple influencing factors, such as land surface cover
and topography. Through visual analysis models and quantitative
analysis, this study aims to deepen the understanding of the regional
differences in cloud distribution, reveal the complex interactions that
shape cloud distribution patterns, and provide scientific support for
decision-making in regional climate change, urban planning, and envi-
ronmental management.

2. Cloud probability distribution mapping method for typical
climate zones

This section will introduce the cloud distribution acquisition method
for typical climate zones in this study. Starting from data acquisition and
processing, extraction of typical climate zone urban agglomerations,
cloud probability calculation, cloud distribution mapping, and quanti-
tative analysis, this study systematically explores cloud distribution
characteristics and reveals the cloud probability distribution in different
climate zones of China. Fig. 1 shows the main workflow of the research
method.

2.1. Data acquisition and processing

This study aims to conduct a broad analysis of cloud distribution. To
this end, it requires the use of open-source satellite data with rich data
volume, and Sentinel-2 satellite data demonstrate unique advantages
compared to other satellites due to their excellent performance.
Sentinel-2 is a high-resolution multispectral imaging satellite developed
and operated by the European Space Agency (ESA), with a revisit period
of approximately 5 days. The abundant data brought by their high
temporal resolution helps to enhance the accuracy and reliability of
cloud information. Compared to traditional remote sensing satellites,
Sentinel-2 has a finer spatial resolution, which helps to more accurately
analyze cloud information. Moreover, Sentinel-2 satellite data provides
rich spectral information, including visible, near-infrared, short-wave
infrared, and other bands, which helps to accurately identify clouds in
images.

The cloud information band in Sentinel-2 imagery data, known as the
QAG60 band, is a bitmask band that provides information about cloud
presence. Bits 10 and 11 of the QA60 band represent opaque clouds and
cirrus clouds, respectively, at a spatial resolution of 60 m. The Sentinel-2
cloud detection algorithm utilizes a series of spectral reflectance
thresholds, ratios, and indices (e.g., NDSI, NDVI) to identify potential
cloud pixels. Studies have shown that the Sentinel-2 cloud product
provides a reliable source of cloud information, with an overall accuracy
exceeding 90 % in most cases (Coluzzi et al., 2018). Sentinel-2's cloud
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Fig. 1. Workflow of the cloud probability distribution mapping method. Rectangles represent processes, and parallelograms represent input data.

identification product is widely recognized for detecting clouds in
original images (Meygret et al., 2009) and is used as a recommended
routine cloud detection algorithm on the Google Earth Engine platform
(Li et al., 2022a). It is commonly used as a cloud mask for declouding to
obtain cloud-free images in various surface monitoring studies (Peterson
etal., 2020; Yang et al., 2021). Although there are other cloud detection
methods, such as Fmask (Zhu et al., 2015), temporal-based method
Tmask (Zhu and Woodcock, 2014), and automatic time-series analysis
method ATSA (Zhu and Helmer, 2018), we chose the Sentinel-2 QA band
cloud product for its reliability and its convenience, consistency, and
computational efficiency in large-scale spatiotemporal analysis, as the
cloud detection results are directly included in the Sentinel-2 data.

To ensure the reliability and accuracy of cloud probability calcula-
tions, we performed four key data processing steps. First, we acquired
Sentinel-2 imagery data covering the continuous three-year period from
January 1, 2020, to December 31, 2022, from the Google Earth Engine
platform to obtain sufficient data samples and improve statistical sig-
nificance. We then filtered the imagery data to retain only data covering
the geographical boundaries of each urban agglomeration, reducing
computational complexity and enabling efficient cloud information
extraction. Next, we performed bit operations on the QA60 band of
Sentinel-2 to identify opaque and cirrus clouds, distinguishing cloud
pixels from non-cloud pixels and generating cloud masks, following
existing practices (Yang et al., 2021; Peterson et al., 2020). Finally, for
each location, we conducted cloud probability calculation. With the help
of the cloud information band of Sentinel-2 satellites, this study can
efficiently obtain cloud distribution information and conduct a
comprehensive analysis of cloud distribution in typical climate zones
across China.

2.2. Extraction of typical climate zone urban agglomerations in China

China has a vast territory and diverse climate types. Based on the
distribution patterns of temperature, precipitation, and other meteoro-
logical elements, the China Meteorological Administration divided the
country into 10 first-level climate regions (Institute of Geographic Sci-
ences and Natural Resources, (2023)). Each region has unique climate
characteristics and ecological environments, including the northern
temperate zone, mid-temperate zone, southern temperate zone, north-
ern subtropical zone, mid-subtropical zone, southern subtropical zone,
northern tropical zone, mid-tropical zone, southern tropical zone, and
plateau climate zone.

To further investigate and verify the cloud distribution situation in
China, this study is not limited to the subtropical region but includes
multiple typical climate zones in China, aiming for a more

comprehensive cloud distribution analysis. To achieve this goal, six
representative typical climate zones in China were carefully selected,
including the mid-temperate zone, southern temperate zone, northern
subtropical zone, mid-subtropical zone, southern subtropical zone, and
plateau climate zone. Within each typical climate zone, 9 representative
urban agglomerations were further delineated (Institute, 2022) to
ensure coverage of cities with similar climate characteristics, providing
a regional basis for subsequent cloud distribution analysis.

Fig. 2 shows the climate zoning map of China and marks the distri-
bution of the 9 research areas selected in this study. Through the overlay
of the climate zone layer and the research area boundaries, it intuitively
presents the relationship between the covered urban agglomerations
and their corresponding typical climate zones. The selected research
areas are relatively evenly distributed across China, covering various
typical regions of China and having a relatively comprehensive repre-
sentative role. It can be observed that the mid-temperate zone, southern
temperate zone, and mid-subtropical climate zone each include two
urban agglomerations. This is because the same climate zone covers a
wide range, and the regions within it may have huge differences in land
surface cover, resulting in different cloud characteristics. Therefore, for
specific climate zones with diverse topography, this study selected
multiple representative urban agglomerations to more comprehensively
analyze the relationship between cloud distribution and various factors.
For example, although the Beijing-Tianjin-Hebei urban agglomeration is
one of the representative urban agglomerations in the southern
temperate climate zone, the Southern Xinjiang urban agglomeration,
located in the same southern temperate zone, may exhibit significantly
different cloud cover performance due to its distinctive desert land
surface cover. Therefore, the southern temperate zone includes these
two representative urban agglomerations. Table 1 lists the representa-
tive urban agglomerations covered in each typical climate zone, as well
as the specific cities included.

2.3. Cloud probability calculation

With the help of the GEE platform and Sentinel-2 satellite imagery
data, this study performed cloud probability calculations for each
geographical location within the urban agglomerations across China.
Referring to the practices in existing research (Yang et al., 2021;
Peterson et al., 2020), this study performs bitwise operations on the
QA60 band of Sentinel-2 to identify clouds. Next, for each pixel location,
a time series analysis is performed using all the images covering that
specific location. The cloud probability P at each pixel is calculated by
dividing the number of times the pixel is labeled as cloudy (N.) by the
total number of images (Ny) covering that pixel location:
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Fig. 2. Geographical distribution of urban agglomerations studied in China’s typical climate zones.
Table 1

Representative urban clusters covered in typical climatic zones.

Climate Zone Urban Agglomeration

Cities

Mid-Temperate  Northeast Urban Agglomeration

Inner Mongolia Urban

Changchun, Jilin, Yanbian Korean Autonomous Prefecture, Harbin, Mudanjiang
Hohhot, Baotou, Ordos

Agglomeration
South Beijing-Tianjin-Hebei Urban Beijing, Tianjin, Baoding, Tangshan, Langfang, Shijiazhuang, Qinhuangdao, Zhangjiakou, Chengde, Cangzhou, Hengshui,
Temperate Agglomeration Xingtai, Handan, Anyang
South Xinjiang Urban Kashgar, Hotan
Agglomeration
North Yangtze River Delta Urban Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, Taizhou, Hangzhou, Ningbo,
Subtropical Agglomeration Jiaxing, Huzhou, Shaoxing, Jinhua, Zhoushan, Taizhou, Hefei, Wuhu, Ma’anshan, Tongling, Anging, Chuzhou, Chizhou,
Xuancheng
Mid- Chengdu-Chonggqing Urban Chengdu, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Nanchong, Meishan, Yibin, Guang’an, Dazhou,
Subtropical Agglomeration Ya’an, Ziyang, Chongging
Yunnan Urban Agglomeration Kunming, Lijiang, Chuxiong Yi Autonomous Prefecture, Dali Bai Autonomous Prefecture
South Greater Bay Area Urban Hong Kong, Macau, Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen, Zhaoging
Subtropical Agglomeration
Plateau Qinghai-Tibet Plateau Urban Lhasa, Shigatse, Nagqu
Climate Agglomeration
P = N./N; (@D research scope. This complete process provided remote sensing-based

This percentage represents the cloud probability value for each pixel
location, reflecting the frequency of cloud occurrence at that specific
point over the entire time series.

Through the above steps, this study utilized the GEE platform and
Sentinel-2 satellite data to achieve cloud probability calculations at a
spatial resolution of 60 m for each geographical location within the

information for this study, enabling the exploration of cloud distribu-
tion characteristics in different climate regions of China and providing
strong support for cloud distribution analysis.
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2.4. Cloud distribution mapping and quantitative analysis of typical
climate zones in China

To gain a deeper understanding of the cloud distribution in typical
climate zones of China, this study conducted research from the per-
spectives of visualization and quantitative analysis of large-scale cloud
distribution.

By processing the obtained three-year cloud probability data, this
study first converted it into cloud cover percentage data, reflecting the
degree to which each geographical location was covered by clouds over
the three years. Then, a color gradient legend was used to map the cloud
cover percentage onto the cloud distribution map, allowing different
cloud probability regions to be displayed in different colors. To better
locate the positions of various urban agglomerations, this study overlaid
the climate zoning map of China on the cloud distribution map to show
the spatial geographical distribution of different climate regions and
urban agglomerations.

In addition to visual display of cloud distribution, this study con-
ducted quantitative statistical analysis to obtain more in-depth infor-
mation. Specifically, this study plotted cloud probability distribution
histograms for each urban agglomeration, revealing the cloud distribu-
tion by counting the number of pixels in different cloud probability in-
tervals. The study further calculated the mean and standard deviation of
cloud probability for each urban agglomeration within different climate
zones, aiding in the quantitative assessment of the concentration and

Gi“E 70°E 7ﬁ°E Sq“E 85°E 9q°E 9%“5 IOPCE

10?”5
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variability of cloud distribution. These quantitative analysis results will
provide accurate data support and further deepen this study’s under-
standing of the cloud distribution characteristics of urban agglomera-
tions in different climate zones.

3. Cloud probability distribution analysis of subtropical regions
in China

3.1. Differences in cloud probability distribution between subtropical and
other climate zones

Through detailed analysis of the experimental results obtained using
the above research methods, Fig. 3 presents the cloud probability dis-
tribution of 9 typical climate zone urban agglomerations in China. This
visual cloud probability map allows the study to reveal significant dif-
ferences in cloud distribution among different urban agglomerations.
The color gradient approach used in the figure, transitioning from blue
to red, intuitively displays the different levels of cloud cover probability,
highlighting the diversity and regional differences in cloud distribution
among different urban agglomerations.

Previous environmental remote sensing observation studies consid-
ered subtropical regions as cloudy and rainy areas. However, the results
of this study indicate that although the Chengdu-Chongging urban
agglomeration in the mid-subtropical region exhibits the highest cloud
coverage rate, not all subtropical regions are cloudy zones. Take the
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Fig. 3. Cloud probability distribution of urban agglomerations in typical climate regions.
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Yunnan urban agglomeration as an example, its cloud coverage proba-
bility is relatively low, appearing in dark blue and light blue. In contrast,
the Northeast urban agglomeration in the temperate region shows
higher cloud coverage on its eastern side, appearing in red. However, the
Inner Mongolia urban agglomeration, which also belongs to the mid-
temperate zone, exhibits a lower cloud coverage rate. It is worth
noting that the Qinghai-Tibet Plateau urban agglomeration, as a plateau
climate region, also displays a relatively high cloud coverage rate.
When focusing on urban agglomerations within different climate
zones across China, it can be seen that there are huge spatial differences
in cloud distribution above the urban agglomerations. Even urban ag-
glomerations with similar geographical locations may present
completely different cloud cover situations. Although China is divided
into multiple climate zones, urban agglomerations within the same
climate zone may still exhibit significant differences. Overall, although
climate zoning reflects some cloud distribution characteristics, for
example, most temperate regions have relatively low cloud probability
while most subtropical regions have relatively high cloud probability,
there are still some situations that cannot be explained by a single

(A) Northeast

Temperate climate zone

(C) Beijing-Tianjin-Hebei

Subtropical climate zone

Plateau Climate zone

(I) Qinghai-Tibet Plateau
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climatic factor alone. For instance, the Yunnan urban agglomeration,
despite being located in the subtropical climate zone, shows low cloud
coverage probability. On one hand, Yunnan’s location in the monsoon
climate zone and the Indian Ocean water vapor channel path results in
high wind speeds, hindering atmospheric moisture accumulation and
cloud cluster formation (Chen, 2008). On the other hand, central and
northern Yunnan’s leeward slope location decreases water vapor con-
tent and relative humidity during air descent, making cloud formation
difficult (Zhu et al., 2022). Moreover, Yunnan’'s complex terrain and
diverse landforms may also influence cloud formation and distribution
(Li et al., 2022b). Therefore, cloud distribution may be influenced by
multiple factors, and climate zoning alone is not sufficient to fully
summarize cloud distribution characteristics.

Furthermore, it is worth noting that regions at higher latitudes tend
to exhibit lower cloud coverage rates. For example, compared to the
Yangtze River Delta urban agglomeration and the Chengdu-Chongqing
urban agglomeration in the south, the Inner Mongolia urban agglom-
eration and the Beijing-Tianjin-Hebei urban agglomeration have lower
cloud coverage rates. This phenomenon may be the result of a

A

&

(H) Greater Bay Area

Cloud Probability
I |

P

Fig. 4. Urban agglomeration cloud probability detail distribution map and underlying surface cover map.
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combination of various factors. Firstly, the cold climate conditions in
high-latitude regions lead to lower water vapor content, thereby
reducing cloud formation. Secondly, different airflows and wind di-
rections may also influence cloud distribution, and high-latitude regions
may be affected by dry airflows. Additionally, high-latitude regions may
have large areas of grasslands, deserts, or snow-covered areas, and these
surface features may impact local temperatures, humidity, and cloud
formation. Low solar radiation angles, surface characteristics, and
shorter daylight hours may also influence cloud distribution.

Previous studies have generally suggested that coastal regions have
higher cloud coverage due to abundant water vapor supply (Lee et al.,
2020). However, our results indicate that in some cases, coastal regions
may exhibit lower cloud coverage compared to inland areas, such as in
the Yangtze River Delta and the Greater Bay Area urban agglomerations.
This phenomenon may be related to the regulating effect of the ocean,
which has stable temperature, humidity, and flat terrain, influencing
local airflows and water vapor transport.

In summary, the result suggests that the cloud probability of urban
agglomeration regions is influenced by a combination of multiple
geographical and meteorological factors, resulting in significant differ-
ences in cloud distribution between different regions.

3.2. Influence of underlying surface and topographic factors on cloud
distribution

To more comprehensively discuss the influence of underlying surface
and topographic factors on cloud distribution, Fig. 4 presents cloud
probability detail distribution maps for each urban agglomeration, along
with corresponding underlying surface cover maps for visual analysis.

For the four urban agglomerations in the temperate climate zone, the
Inner Mongolia urban agglomeration has the lowest cloud coverage
probability. The terrain here is relatively flat, with land cover types
including grasslands, deserts, and water bodies. Some areas may be arid
grasslands, and there are desert regions such as the Ordos Desert, one of
the deserts in Inner Mongolia. These factors may suppress cloud for-
mation, resulting in lower cloud coverage in the region. The Beijing-
Tianjin-Hebei region also exhibits a low cloud coverage probability.
The Beijing-Tianjin-Hebei region has relatively flat terrain, with an
overall hilly and plain landform, and coexisting land cover types such as
cities, farmlands, grasslands, some mountains, and water bodies. It can
be observed that highly urbanized areas like Beijing and Tianjin show
lower cloud coverage, which might be due to the influence of human
activities, buildings, and transportation in urban areas on cloud distri-
bution. In contrast, suburban and farmland areas may have more cloud
coverage because large open lands and vegetation contribute to water
vapor evaporation and airflow generation, thereby promoting cloud
formation. Therefore, the southern open plains and agricultural lands
here have relatively higher cloud coverage rates. The Northeast urban
agglomeration presents a complex cloud probability distribution, with
lower rates in the west and higher rates in the east. This distribution is
related to its diverse surface features such as terrain undulations, plains,
hills, mountains, and lakes. The west is mainly plains, similar to the
Beijing-Tianjin-Hebei region, while the east has higher mountains and
hills, higher vegetation coverage, which may influence air movement
and humidity distribution, thereby affecting cloud formation. The
Southern Xinjiang urban agglomeration shows a huge difference in
cloud distribution, with extremely low cloud coverage in the northern
desert region and significantly higher cloud probability in the southern
plateau region. Despite the adjacent geographical locations in the north
and south, they exhibit vastly different cloud distributions. This is due to
significant differences in topography and altitude. The northern region
is a desert zone with relatively flat terrain, dry climate, and less pre-
cipitation, and the air is relatively lacking in water vapor. The southern
plateau region has high altitude, complex terrain, frequent air rising and
falling, which is conducive to water vapor condensation into clouds.
Moreover, the southern plateau region has a relatively humid climate,
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with water bodies such as lakes, rivers, and alpine glaciers, as well as
high mountain vegetation cover, which helps to provide more water
vapor and promote cloud formation. The formation of cloud distribution
differences in the Southern Xinjiang urban agglomeration is the result of
the combined effects of multiple geographical and meteorological fac-
tors. Topography, altitude, climate, surface characteristics, and other
factors are intertwined, forming the pattern of north-south cloud dis-
tribution differences. The Qinghai-Tibet Plateau urban agglomeration,
located in the plateau climate zone, is in the same plateau as the
southern part of Southern Xinjiang, and also exhibits similar high cloud
coverage probability spatial distribution characteristics for the same
reasons. In the cloud distribution map of the Qinghai-Tibet Plateau
urban agglomeration, it can be clearly observed that the cloud proba-
bility above lakes is far lower than the surrounding areas, and the
location of lakes can be determined even from the cloud map.

The urban agglomerations in the subtropical climate zone also
exhibit different cloud distribution characteristics. The most obvious
contrast is between the adjacent Yunnan urban agglomeration and the
Chengdu-Chongqing urban agglomeration. The former shows medium
to low cloud probability, while the latter has the highest cloud proba-
bility among all urban agglomerations, reaching 62.18 %. This differ-
ence may be related to various factors such as climate, topography, and
land cover. The Yunnan region has a greater terrain undulation, with
diverse landforms including high mountains, plateaus, and valleys, and
the vegetation coverage is not as high as the Chengdu-Chongqing urban
agglomeration. The complexity of its terrain may influence the flow and
rise of air currents, thereby affecting cloud formation. In contrast, the
Chengdu-Chongqing urban agglomeration is located within the Sichuan
Basin, belonging to the subtropical monsoon climate, with relatively
humid climate characteristics. Moreover, the Sichuan Basin has rela-
tively flat terrain and low altitude, making it easy for humid air to gather
here, which is conducive to cloud formation. Additionally, the Chengdu-
Chongqing urban agglomeration is influenced by monsoon airflows,
with humid airflows transported from the ocean to the Sichuan Basin,
providing sufficient water vapor for cloud formation. Furthermore, the
land cover of the Chengdu-Chongqing urban agglomeration is mainly
plains and hills, with high vegetation coverage and relatively high sur-
face humidity, which is conducive to water vapor evaporation and
release. These factors collectively contribute to the extremely high cloud
coverage probability in the region, making it a typical area with frequent
cloud and rain cover in China. The Yangtze River Delta urban agglom-
eration and the Greater Bay Area urban agglomeration show similar
distributions, with lower cloud probability in coastal and highly ur-
banized areas, while the mountainous areas with high vegetation
coverage near inland regions exhibit significantly higher cloud proba-
bility. Overall, although subtropical regions are considered cloudy and
rainy areas in environmental remote sensing observations, in reality,
each urban agglomeration often varies due to factors such as topography
and land cover, and areas with less clouds and rain are not uncommon.

In general, the underlying surface may have a significant influence
on cloud formation. Cloud distribution is not only influenced by climatic
and geographical factors but also by the combined effects of various
complex surface and meteorological factors, providing a novel
perspective for further in-depth research on cloud distribution and its
impact on the environment. At the same time, this study also found that
not all subtropical regions have high cloud coverage rates, while
temperate regions may have more cloud cover, and plateau regions also
exhibit high cloud coverage rates. This indicates that the impact of cloud
obstruction on remote sensing earth observations should not only be a
focus in subtropical regions. In fact, remote sensing surface monitoring
activities in most regions are affected by cloud cover. This finding em-
phasizes the prevalence of cloud cover in remote sensing earth obser-
vations and deepens the understanding of cloudy environments in the
field of environmental remote sensing observations.
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3.3. Quantitative assessment of cloud distribution differences in urban
agglomerations

To more accurately analyze the cloud distribution characteristics of
urban agglomerations in each climate zone, Fig. 5 presents cloud
probability distribution histograms for each urban agglomeration. The
horizontal axis represents the cloud probability value, and the vertical
axis represents the number of locations with the corresponding cloud
probability.

Urban agglomerations in the temperate climate zone show similar
histogram distribution shapes but differ in specific values. The cloud
probability of the Inner Mongolia urban agglomeration is mainly
concentrated around 26 %, with the number of locations with higher or
lower cloud probabilities decreasing progressively. The highest cloud
probability does not exceed 35 %. In comparison, the cloud probability
distribution of the Beijing-Tianjin-Hebei urban agglomeration is higher,
with most locations having a cloud probability of around 32 %, fluctu-
ating mainly between 20 % and 40 %, with minimum and maximum
cloud probabilities of 10 % and 48 %, respectively. The Northeast urban
agglomeration is more prone to cloud cover, with the most common
cloud probability value being around 38 %, rarely below 30 %, and the
highest value being around 54 %. The huge internal cloud distribution
difference in the Southern Xinjiang urban agglomeration is also reflected
in the histogram, showing two peaks. The cloud probability in the desert
region is generally around 24 %, while the cloud probability in the
southern plateau region is mostly as high as 45 %. In the subtropical
climate zone, the histogram distribution of the Yunnan urban agglom-
eration is similar to that of the Beijing-Tianjin-Hebei urban agglomer-
ation, concentrated around 33 %, mainly distributed between 18 % and
51 %. In contrast, the Chengdu-Chongqing urban agglomeration, despite
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having a similar shape, has a significantly larger cloud probability dis-
tribution, with the cloud probability in the vast majority of regions being
as high as 48 %, with a maximum of even 63 % and usually not lower
than 42 %, indicating that the Chengdu-Chongqing urban agglomeration
is one of the regions with high-frequency cloud cover. The Yangtze River
Delta urban agglomeration and the Greater Bay Area urban agglomer-
ation also experience frequent cloud cover, with cloud coverage prob-
abilities mostly between 30 % and 48 %, and up to 57 %. At the same
time, the plateau region also exhibits high cloud probability, mainly
distributed between 36 % and 51 %, with a maximum of 66 %.

Fig. 6 shows the average cloud coverage probability and its standard
deviation for each urban agglomeration, intuitively displaying the dif-
ferences between different urban agglomerations. The Chengdu-
Chongqing urban agglomeration ranks first with an average cloud
probability value of 50.72 %, closely followed by the Qinghai-Tibet
Plateau urban agglomeration with an average cloud probability of
43.27 %. The average cloud probabilities of the Yangtze River Delta
urban agglomeration and the Greater Bay Area urban agglomeration do
not differ much. Overall, except for the Yunnan urban agglomeration,
which has a relatively low average cloud probability of 31.93 %, the
urban agglomerations in the subtropical climate zone tend to have
slightly higher average cloud probabilities than those in the temperate
climate zone. In the temperate climate zone, the Inner Mongolia urban
agglomeration has the lowest average cloud probability of 26.32 %,
while the Northeast urban agglomeration has the highest average cloud
probability of 37.54 %. Although the average cloud probability of the
Southern Xinjiang urban agglomeration is relatively high at 31.93 %, its
standard deviation is very high, indicating that its cloud probability
distribution is the most uneven, consistent with the histogram distri-
bution in Fig. 5.
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3.4. Discussion and analysis

This study obtained many findings through qualitative and quanti-
tative assessment analysis of cloud distribution in typical climate zones
of China. Firstly, this study noticed significant differences in cloud dis-
tribution among urban agglomerations in different climate zones.
Although the field of environmental remote sensing observations
traditionally considers subtropical regions to have cloudy and rainy
characteristics, the results of this study indicate that the cloud cover
situation of subtropical urban agglomerations is not entirely consistent.
This indicates that cloud distribution is not only influenced by climate
zoning but may also be affected by factors such as topography, land
cover, and altitude. Urban aerosols, pollutants, and the urban heat island
effect may suppress cloud formation, resulting in relatively lower cloud
coverage over cities. Vegetation may contribute to water vapor evapo-
ration and airflow generation, thereby promoting cloud formation.
These findings are consistent with the mechanistic understanding and
observational evidence provided by previous studies (Shepherd et al.,
2010; Williams et al., 2015; Xu et al., 2022). This provides some refer-
ence for urban planning and construction, as urban layout and vegeta-
tion coverage have a certain impact on cloud formation and distribution.
Overall, the complexity of cloud distribution is the result of the joint
shaping of geographical environments, meteorological conditions, and
surface characteristics. Therefore, for the study of cloud distribution
characteristics, it is not possible to simply rely on the classification of
climate zones, but should comprehensively consider multiple factors
such as topography, altitude, land cover, and urbanization degree. It is
important to recognize that the relationship between cloud cover and
factors such as land surface cover, and urbanization is a complex and
multifaceted issue. Qualitative observations in this study suggest po-
tential impacts of the geographical factors. Strict quantification of these
relationships would require conducting in-depth quantitative analyses
involving extensive data collection, advanced statistical modeling, and
consideration of potential confounding factors, which necessitates
future research.

The findings of this study have potential applications in enhancing
meteorological models, urban solar energy development, and remote
sensing observation strategies. The high-resolution cloud probability
distribution data can be assimilated into numerical weather prediction

models, which incorporates cloud-related parameters such as cloud
cover, to improve initial conditions and boundary conditions related to
cloud distribution (Forbes et al., 2011; Skamarock, 2008). Furthermore,
the insights into the relationship between cloud distribution and
geographical factors can inform the development of more accurate
parameterization schemes for cloud processes in these models, such as
weather research and forecasting model’s urban canopy model and land
surface model (Chen et al., 2011). Moreover, the revealed cloud distri-
bution characteristics in different climate zones of China provide crucial
data support for developing solar energy resources in cities. Cloud cover
significantly affects the solar energy potential of urban areas. Therefore,
a systematic analysis of cloud distribution patterns over urban areas can
provide a scientific basis for estimating the solar radiation intensity in
cities. Ji et al. (2024) demonstrated that accurately assessing the solar
energy potential of cities is a prerequisite for optimizing the layout of
rooftop photovoltaics (Ji et al., 2024). Understanding the patterns of
cloud distribution in cities can provide important theoretical support
and practical guidance for promoting urban energy transition and
building green and low-carbon cities. In addition, the vast majority of
urban agglomerations show average cloud probability values exceeding
30 %, highlighting that cloud cover is a common phenomenon in urban
environments. While previous research often emphasizes the prevalence
of clouds in tropical and subtropical regions, this study reveals spatial
variability in cloud cover across different climate zones. This finding can
guide the development of adaptive remote sensing observation plans. In
regions with high cloud frequency, increasing the temporal resolution of
satellite observations, prioritizing radar remote sensing, and integrating
multi-source data can help overcome the limitations of optical remote
sensing in cloudy conditions. It is essential to consider the unique sur-
face and environmental conditions of different climate zones when
formulating effective remote sensing observation strategies.

This study still has certain limitations. Firstly, the Sentinel-2 satellite,
which serves as the data source for this study, has a transit time of
around 10:30 a.m. local time. Consequently, the analysis may not fully
capture the diurnal variations in cloud distribution, as it is based on
instantaneous conditions at the satellite’s transit time. It is also impor-
tant to acknowledge that cloud frequency can vary significantly across
different seasons, as demonstrated by previous studies (Tian et al.,
2021). While the present study focuses on characterizing the overall
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cloud distribution patterns in urban agglomerations across different
climate zones and their potential relationships with geographical fac-
tors, we recognize the value of investigating monthly or seasonal cloud
probabilities. Future research could build upon the comprehensive un-
derstanding of general cloud distribution patterns established in this
study to explore the temporal dynamics of cloud distribution at finer
scales.

Additionally, the accuracy of the Sentinel-2 cloud product has
certain limitations, and air pollution can potentially impact cloud
detection. Previous studies have shown that it has an acceptable accu-
racy, with an overall average accuracy of 86.5 % (Coluzzi et al., 2018).
In plateau regions above 2500 m, the accuracy is about 90 % (Wang
et al., 2020). For the purpose of exploring cloud probability in this study,
the error in cloud identification of a single image is within an acceptable
range. Moreover, the QA60 band of Sentinel-2 satellites utilizes multiple
spectral bands for cloud detection, and the near-infrared and short-wave
infrared bands help mitigate the impact of air pollution on cloud
detection, as they are less sensitive to atmospheric aerosols (Zhu et al.,
2015). Given that this study utilized all Sentinel-2 images over a three-
year time span for statistical analysis of cloud distribution, while severe
pollution events at individual time points may affect cloud detection,
these short-term pollution events are unlikely to significantly influence
the overall cloud probability distribution when considering the entire
three-year time scale. Moreover, relevant literature on cloud distribu-
tion indicates that its cloud probability results are generally consistent
with this study (Li et al., 2022b; Shuai et al., 2022; Wang et al., 2019;
Yang et al., 2020b). Considering the ultra-high computational efficiency
of the Sentinel-2 cloud product on the Google Earth Engine platform, as
well as the requirement for large-scale, high-resolution, and large-data
cloud probability calculations, the Sentinel-2 cloud product is still an
appropriate choice at present. In the future, the integration of more
efficient and accurate cloud detection algorithms and additional data
sources to account for the impact of air pollution will further enhance
such research.

4. Conclusions

This study provides a comprehensive understanding of the cloud
distribution characteristics across urban agglomerations in typical
climate zones of China. By utilizing high-resolution Sentinel-2 satellite
imagery and the Google Earth Engine platform, we revealed the complex
nature of cloud cover patterns and their potential influencing factors.
The results challenged the traditional understanding of cloud distribu-
tion based on climate zoning alone. Significant variations in cloud
probability were observed among urban agglomerations, even within
the same climate zone. The analysis suggested that factors such as
topography, terrain, and urbanization level may influence cloud distri-
bution patterns. The diversity of cloud cover patterns across different
regions is likely the result of complex interactions among these factors.
This study contributes to advancing the knowledge of regional climate,
environmental management, and remote sensing earth observations by
providing new insights into the complex and diverse nature of cloud
distribution across urban agglomerations in China. However, it is
important to acknowledge the limitations of this study, such as the
specific overpass times of Sentinel-2 satellites and potential accuracy
issues in cloud detection. Future work could explore the quantitative
relationships between cloud distribution and various geographical fac-
tors using advanced statistical modeling techniques and integrate cloud
probability distribution information into meteorological and remote
sensing models. As the complexities of cloud distribution and its driving
factors continue to be unraveled, more effective strategies can be
developed for monitoring and adapting to changing atmospheric con-
ditions in various contexts.
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