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A B S T R A C T

Cloud distribution significantly impacts global climate change, ecosystem health, urban environments, and 
satellite remote sensing observations. However, past research has primarily focused on the meteorological 
characteristics of clouds with limitations in scale and resolution, leading to an insufficient understanding of 
large-scale cloud distribution and its relationship with land surface cover and urbanization. This study in
vestigates the cloud distribution characteristics of typical urban agglomerations in different climatic regions of 
China using high-resolution Sentinel-2 satellite imagery and the Google Earth Engine platform. A cloud proba
bility descriptor was constructed based on three years of high spatiotemporal resolution observations. The results 
revealed significant differences in cloud distribution among urban agglomerations, challenging the traditional 
understanding based on climate zoning. The Northeast urban agglomeration in the temperate zone exhibited 
high cloud coverage (37.54%), while the Chengdu-Chongqing urban agglomeration in the subtropical zone and 
the Qinghai-Tibet Plateau urban agglomeration in the plateau climate zone had even higher average cloud 
probabilities (50.72% and 43.27%, respectively). The analysis suggests land surface cover, urbanization, and 
other surface factors may influence cloud distribution patterns. These findings emphasize the ubiquity of cloud 
cover and highlight the importance of considering the complex interactions among geographical factors when 
characterizing cloud cover diversity. This study contributes to providing new insights for enhancing meteoro
logical models and remote sensing observation strategies in cloudy environments across different climate zones.

1. Introduction

Clouds are an important component of the atmosphere, directly 
affecting solar radiation and Earth’s surface reflection of sunlight, 
thereby regulating the Earth’s heat distribution, temperature, humidity, 
and influencing multiple key elements such as energy balance, climate 
systems, and the water cycle (Toll et al., 2019). Cloud cover directly 
affects the reception of solar radiation, regulation of surface tempera
ture, maintenance of energy balance, and formation of precipitation 
patterns. Therefore, an in-depth study of cloud distribution character
istics and their influencing factors plays a crucial role in 

comprehensively understanding global climate change, ecosystem 
health, and effective environmental management (Shah et al., 2020).

Cloud formation is a complex process involving various physical 
mechanisms. When water vapor in the air reaches a saturated state, 
condensation occurs, forming cloud droplets. This typically happens 
when air rises, cools, and reaches its dew point temperature (Wallace 
and Hobbs, 2006). On a global scale, the acceleration of urbanization 
has led to significant changes in local climate and cloud distribution 
within cities (Shepherd et al., 2010). The unique conditions of urban 
environments, including impervious surface, urban pollutants and urban 
heat island can influence the cloud formation process. The spatial 

* Corresponding author.
E-mail addresses: jingling@connect.hku.hk (J. Ling), rhysliu@connect.hku.hk (R. Liu), shanw@connect.hku.hk (S. Wei), 2020803203@stu.njau.edu.cn (S. Chen), 

jily@mail.ustc.edu.cn (L. Ji), ofcours_sure@sina.com.cn (Y. Zhao), zhanghs@hku.hk (H. Zhang). 

Contents lists available at ScienceDirect

International Journal of Applied Earth  
Observation and Geoinformation

journal homepage: www.elsevier.com/locate/jag

https://doi.org/10.1016/j.jag.2024.104254
Received 26 July 2024; Received in revised form 18 October 2024; Accepted 3 November 2024  

International Journal of Applied Earth Observation and Geoinformation 135 (2024) 104254 

Available online 9 November 2024 
1569-8432/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:jingling@connect.hku.hk
mailto:rhysliu@connect.hku.hk
mailto:shanw@connect.hku.hk
mailto:2020803203@stu.njau.edu.cn
mailto:jily@mail.ustc.edu.cn
mailto:ofcours_sure@sina.com.cn
mailto:zhanghs@hku.hk
www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2024.104254
https://doi.org/10.1016/j.jag.2024.104254
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2024.104254&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


heterogeneity of urban surface characteristics may also affect local cir
culations and atmospheric boundary layer processes, influencing cloud 
formation and distribution (Shepherd, 2005). Given the complex in
teractions between cloud formation and urban conditions, investigating 
the cloud distribution characteristics in urban areas is crucial for un
derstanding urban environments and regional climate and weather.

In addition to the meteorological field, clouds also hold significant 
value in satellite remote sensing observations. Cloud cover affects the 
observation of the Earth’s surface by remote sensing satellites (Ling 
et al., 2021). Cloud layers obstruct optical signals, making it challenging 
to obtain clear, cloud-free remote sensing images over large areas, which 
greatly impacts subsequent tasks such as object recognition and moni
toring (Shen et al., 2014; Zhang et al., 2014; Zhu et al., 2021). Therefore, 
for cloud-covered regions, satellite remote sensing faces challenges in 
efficiency and accuracy of surface observations (Ling and Zhang, 2023). 
In this context, accurately understanding cloud distribution character
istics will help optimize remote sensing observation strategies and 
improve the efficiency and precision of surface observations.

Although research on clouds has gradually received attention over 
the past few decades, it has mainly focused on aspects such as the 
microphysical properties, radiative effects, and precipitation mecha
nisms of clouds (Stewart et al., 1998). There have also been analyses of 
cloud climate characteristics (Fu et al., 2020) and studies on cloud 
condensation nuclei characteristics (Shen et al., 2019). However, these 
studies tend to focus more on using ground-based cloud data to analyze 
cloud amounts (Singh and Glennen, 2005) or focus on local-scale cloud 
distribution analysis (Yang et al., 2020a). The influence of cloud height, 
thickness, and morphology on near-surface air temperature has also 
been widely studied (Jiang et al., 2022). Nevertheless, these studies 
focus more on the physical properties and meteorological functions of 
clouds and are primarily based on ground observation data such as 
meteorological station records (Leena et al., 2022), thus having limita
tions in coverage and spatial resolution. In this context, meteorological 
satellite data have become an important supplement to ground obser
vation data due to their extensive coverage, rich information content, 
and high-frequency repeated observations. The use of satellite cloud 
data for climate analysis and diagnosis has received widespread atten
tion (Norris et al., 2016). Polar-orbiting meteorological satellites 
observe the global surface at the same local time and can serve climate 
observations and monitor large-scale natural disasters. Geostationary 
meteorological satellites, on the other hand, can synchronously rotate 
with the Earth and perform high-frequency observations of the fixed 
area they cover, serving weather forecasting and analysis and providing 
cloud image data (Bessho et al., 2016). However, there are still few 
studies that use these satellite images for comprehensive quantitative 
analysis of large-scale cloud distribution characteristics. For example, 
global cloud distribution analysis using CloudSat satellite data 
(Hagihara et al., 2010), analysis of China’s cloud amount characteristics 
using Terra and Aqua satellite cloud amount data (Ma et al., 2014), 
analysis of cloud characteristics using Himawari-8 satellite data (Yang 
et al., 2020b), detection of convective cloud using FY-2 VISSR satellite 
data (Liang et al., 2017), and exploration of the spatiotemporal distri
bution of different cloud types in China using ISCCP cloud data (Sirui 
et al., 2020). However, due to data availability and computational 
processing capabilities, these studies often have issues such as low res
olution or small research scales. Moreover, past research has focused on 
the high-altitude distribution and meteorological characteristics of 
clouds, with insufficient attention to the underlying surface and little 
exploration of the relationship between clouds and land surface cover, 
urbanization, and other factors (Ma et al., 2014; Norris et al., 2016). 
Therefore, a more in-depth understanding of cloud distribution is 
needed. For example, past research in the field of remote sensing earth 
observation often considers subtropical regions as cloudy and rainy 
areas. However, considering the vastness of China’s territory and the 
diversity of its climate, there are significant differences in cloud distri
bution in different geographical locations and climate zones, and 

traditional climate zoning may not fully describe the distribution pat
terns of clouds. Further systematic research on the long-term, large- 
scale, and high-resolution spatial distribution characteristics of clouds is 
still needed.

Facing this challenge, this study selected urban agglomerations in 
different geographical locations, topography, and climate zones in China 
as research objects. Utilizing high-resolution Sentinel-2 satellite remote 
sensing imagery and the Google Earth Engine (GEE) data processing 
platform, this study leveraged three years of continuous high spatio
temporal resolution remote sensing data to establish a cloud probability 
descriptor. From a remote sensing perspective, we explored the high 
spatiotemporal resolution cloud distribution characteristics of urban 
agglomerations in typical climate zones of China. The main contribu
tions of this study include: (1) presenting a novel approach for mapping 
high-resolution cloud probability distribution using Sentinel-2 imagery 
and GEE, investigating cloud distribution characteristics from a remote 
sensing perspective; (2) conducting a comprehensive analysis of cloud 
distribution characteristics across urban agglomerations in different 
climatic regions of China, revealing regional differences in cloud dis
tribution and complementing the traditional understanding based on 
climate zoning; and (3) exploring the relationship between cloud dis
tribution and multiple influencing factors, such as land surface cover 
and topography. Through visual analysis models and quantitative 
analysis, this study aims to deepen the understanding of the regional 
differences in cloud distribution, reveal the complex interactions that 
shape cloud distribution patterns, and provide scientific support for 
decision-making in regional climate change, urban planning, and envi
ronmental management.

2. Cloud probability distribution mapping method for typical 
climate zones

This section will introduce the cloud distribution acquisition method 
for typical climate zones in this study. Starting from data acquisition and 
processing, extraction of typical climate zone urban agglomerations, 
cloud probability calculation, cloud distribution mapping, and quanti
tative analysis, this study systematically explores cloud distribution 
characteristics and reveals the cloud probability distribution in different 
climate zones of China. Fig. 1 shows the main workflow of the research 
method.

2.1. Data acquisition and processing

This study aims to conduct a broad analysis of cloud distribution. To 
this end, it requires the use of open-source satellite data with rich data 
volume, and Sentinel-2 satellite data demonstrate unique advantages 
compared to other satellites due to their excellent performance. 
Sentinel-2 is a high-resolution multispectral imaging satellite developed 
and operated by the European Space Agency (ESA), with a revisit period 
of approximately 5 days. The abundant data brought by their high 
temporal resolution helps to enhance the accuracy and reliability of 
cloud information. Compared to traditional remote sensing satellites, 
Sentinel-2 has a finer spatial resolution, which helps to more accurately 
analyze cloud information. Moreover, Sentinel-2 satellite data provides 
rich spectral information, including visible, near-infrared, short-wave 
infrared, and other bands, which helps to accurately identify clouds in 
images.

The cloud information band in Sentinel-2 imagery data, known as the 
QA60 band, is a bitmask band that provides information about cloud 
presence. Bits 10 and 11 of the QA60 band represent opaque clouds and 
cirrus clouds, respectively, at a spatial resolution of 60 m. The Sentinel-2 
cloud detection algorithm utilizes a series of spectral reflectance 
thresholds, ratios, and indices (e.g., NDSI, NDVI) to identify potential 
cloud pixels. Studies have shown that the Sentinel-2 cloud product 
provides a reliable source of cloud information, with an overall accuracy 
exceeding 90 % in most cases (Coluzzi et al., 2018). Sentinel-2′s cloud 
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identification product is widely recognized for detecting clouds in 
original images (Meygret et al., 2009) and is used as a recommended 
routine cloud detection algorithm on the Google Earth Engine platform 
(Li et al., 2022a). It is commonly used as a cloud mask for declouding to 
obtain cloud-free images in various surface monitoring studies (Peterson 
et al., 2020; Yang et al., 2021). Although there are other cloud detection 
methods, such as Fmask (Zhu et al., 2015), temporal-based method 
Tmask (Zhu and Woodcock, 2014), and automatic time-series analysis 
method ATSA (Zhu and Helmer, 2018), we chose the Sentinel-2 QA band 
cloud product for its reliability and its convenience, consistency, and 
computational efficiency in large-scale spatiotemporal analysis, as the 
cloud detection results are directly included in the Sentinel-2 data.

To ensure the reliability and accuracy of cloud probability calcula
tions, we performed four key data processing steps. First, we acquired 
Sentinel-2 imagery data covering the continuous three-year period from 
January 1, 2020, to December 31, 2022, from the Google Earth Engine 
platform to obtain sufficient data samples and improve statistical sig
nificance. We then filtered the imagery data to retain only data covering 
the geographical boundaries of each urban agglomeration, reducing 
computational complexity and enabling efficient cloud information 
extraction. Next, we performed bit operations on the QA60 band of 
Sentinel-2 to identify opaque and cirrus clouds, distinguishing cloud 
pixels from non-cloud pixels and generating cloud masks, following 
existing practices (Yang et al., 2021; Peterson et al., 2020). Finally, for 
each location, we conducted cloud probability calculation. With the help 
of the cloud information band of Sentinel-2 satellites, this study can 
efficiently obtain cloud distribution information and conduct a 
comprehensive analysis of cloud distribution in typical climate zones 
across China.

2.2. Extraction of typical climate zone urban agglomerations in China

China has a vast territory and diverse climate types. Based on the 
distribution patterns of temperature, precipitation, and other meteoro
logical elements, the China Meteorological Administration divided the 
country into 10 first-level climate regions (Institute of Geographic Sci
ences and Natural Resources, (2023)). Each region has unique climate 
characteristics and ecological environments, including the northern 
temperate zone, mid-temperate zone, southern temperate zone, north
ern subtropical zone, mid-subtropical zone, southern subtropical zone, 
northern tropical zone, mid-tropical zone, southern tropical zone, and 
plateau climate zone.

To further investigate and verify the cloud distribution situation in 
China, this study is not limited to the subtropical region but includes 
multiple typical climate zones in China, aiming for a more 

comprehensive cloud distribution analysis. To achieve this goal, six 
representative typical climate zones in China were carefully selected, 
including the mid-temperate zone, southern temperate zone, northern 
subtropical zone, mid-subtropical zone, southern subtropical zone, and 
plateau climate zone. Within each typical climate zone, 9 representative 
urban agglomerations were further delineated (Institute, 2022) to 
ensure coverage of cities with similar climate characteristics, providing 
a regional basis for subsequent cloud distribution analysis.

Fig. 2 shows the climate zoning map of China and marks the distri
bution of the 9 research areas selected in this study. Through the overlay 
of the climate zone layer and the research area boundaries, it intuitively 
presents the relationship between the covered urban agglomerations 
and their corresponding typical climate zones. The selected research 
areas are relatively evenly distributed across China, covering various 
typical regions of China and having a relatively comprehensive repre
sentative role. It can be observed that the mid-temperate zone, southern 
temperate zone, and mid-subtropical climate zone each include two 
urban agglomerations. This is because the same climate zone covers a 
wide range, and the regions within it may have huge differences in land 
surface cover, resulting in different cloud characteristics. Therefore, for 
specific climate zones with diverse topography, this study selected 
multiple representative urban agglomerations to more comprehensively 
analyze the relationship between cloud distribution and various factors. 
For example, although the Beijing-Tianjin-Hebei urban agglomeration is 
one of the representative urban agglomerations in the southern 
temperate climate zone, the Southern Xinjiang urban agglomeration, 
located in the same southern temperate zone, may exhibit significantly 
different cloud cover performance due to its distinctive desert land 
surface cover. Therefore, the southern temperate zone includes these 
two representative urban agglomerations. Table 1 lists the representa
tive urban agglomerations covered in each typical climate zone, as well 
as the specific cities included.

2.3. Cloud probability calculation

With the help of the GEE platform and Sentinel-2 satellite imagery 
data, this study performed cloud probability calculations for each 
geographical location within the urban agglomerations across China. 
Referring to the practices in existing research (Yang et al., 2021; 
Peterson et al., 2020), this study performs bitwise operations on the 
QA60 band of Sentinel-2 to identify clouds. Next, for each pixel location, 
a time series analysis is performed using all the images covering that 
specific location. The cloud probability P at each pixel is calculated by 
dividing the number of times the pixel is labeled as cloudy (Nc) by the 
total number of images (Nt) covering that pixel location: 

Fig. 1. Workflow of the cloud probability distribution mapping method. Rectangles represent processes, and parallelograms represent input data.
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P = Nc/Nt (1) 

This percentage represents the cloud probability value for each pixel 
location, reflecting the frequency of cloud occurrence at that specific 
point over the entire time series.

Through the above steps, this study utilized the GEE platform and 
Sentinel-2 satellite data to achieve cloud probability calculations at a 
spatial resolution of 60 m for each geographical location within the 

research scope. This complete process provided remote sensing-based 
information for this study, enabling the exploration of cloud distribu
tion characteristics in different climate regions of China and providing 
strong support for cloud distribution analysis.

Fig. 2. Geographical distribution of urban agglomerations studied in China’s typical climate zones.

Table 1 
Representative urban clusters covered in typical climatic zones.

Climate Zone Urban Agglomeration Cities

Mid-Temperate Northeast Urban Agglomeration Changchun, Jilin, Yanbian Korean Autonomous Prefecture, Harbin, Mudanjiang
Inner Mongolia Urban 
Agglomeration

Hohhot, Baotou, Ordos

South 
Temperate

Beijing-Tianjin-Hebei Urban 
Agglomeration

Beijing, Tianjin, Baoding, Tangshan, Langfang, Shijiazhuang, Qinhuangdao, Zhangjiakou, Chengde, Cangzhou, Hengshui, 
Xingtai, Handan, Anyang

South Xinjiang Urban 
Agglomeration

Kashgar, Hotan

North 
Subtropical

Yangtze River Delta Urban 
Agglomeration

Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, Taizhou, Hangzhou, Ningbo, 
Jiaxing, Huzhou, Shaoxing, Jinhua, Zhoushan, Taizhou, Hefei, Wuhu, Ma’anshan, Tongling, Anqing, Chuzhou, Chizhou, 
Xuancheng

Mid- 
Subtropical

Chengdu-Chongqing Urban 
Agglomeration

Chengdu, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Nanchong, Meishan, Yibin, Guang’an, Dazhou, 
Ya’an, Ziyang, Chongqing

Yunnan Urban Agglomeration Kunming, Lijiang, Chuxiong Yi Autonomous Prefecture, Dali Bai Autonomous Prefecture
South 

Subtropical
Greater Bay Area Urban 
Agglomeration

Hong Kong, Macau, Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen, Zhaoqing

Plateau 
Climate

Qinghai-Tibet Plateau Urban 
Agglomeration

Lhasa, Shigatse, Nagqu
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2.4. Cloud distribution mapping and quantitative analysis of typical 
climate zones in China

To gain a deeper understanding of the cloud distribution in typical 
climate zones of China, this study conducted research from the per
spectives of visualization and quantitative analysis of large-scale cloud 
distribution.

By processing the obtained three-year cloud probability data, this 
study first converted it into cloud cover percentage data, reflecting the 
degree to which each geographical location was covered by clouds over 
the three years. Then, a color gradient legend was used to map the cloud 
cover percentage onto the cloud distribution map, allowing different 
cloud probability regions to be displayed in different colors. To better 
locate the positions of various urban agglomerations, this study overlaid 
the climate zoning map of China on the cloud distribution map to show 
the spatial geographical distribution of different climate regions and 
urban agglomerations.

In addition to visual display of cloud distribution, this study con
ducted quantitative statistical analysis to obtain more in-depth infor
mation. Specifically, this study plotted cloud probability distribution 
histograms for each urban agglomeration, revealing the cloud distribu
tion by counting the number of pixels in different cloud probability in
tervals. The study further calculated the mean and standard deviation of 
cloud probability for each urban agglomeration within different climate 
zones, aiding in the quantitative assessment of the concentration and 

variability of cloud distribution. These quantitative analysis results will 
provide accurate data support and further deepen this study’s under
standing of the cloud distribution characteristics of urban agglomera
tions in different climate zones.

3. Cloud probability distribution analysis of subtropical regions 
in China

3.1. Differences in cloud probability distribution between subtropical and 
other climate zones

Through detailed analysis of the experimental results obtained using 
the above research methods, Fig. 3 presents the cloud probability dis
tribution of 9 typical climate zone urban agglomerations in China. This 
visual cloud probability map allows the study to reveal significant dif
ferences in cloud distribution among different urban agglomerations. 
The color gradient approach used in the figure, transitioning from blue 
to red, intuitively displays the different levels of cloud cover probability, 
highlighting the diversity and regional differences in cloud distribution 
among different urban agglomerations.

Previous environmental remote sensing observation studies consid
ered subtropical regions as cloudy and rainy areas. However, the results 
of this study indicate that although the Chengdu-Chongqing urban 
agglomeration in the mid-subtropical region exhibits the highest cloud 
coverage rate, not all subtropical regions are cloudy zones. Take the 

Fig. 3. Cloud probability distribution of urban agglomerations in typical climate regions.
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Yunnan urban agglomeration as an example, its cloud coverage proba
bility is relatively low, appearing in dark blue and light blue. In contrast, 
the Northeast urban agglomeration in the temperate region shows 
higher cloud coverage on its eastern side, appearing in red. However, the 
Inner Mongolia urban agglomeration, which also belongs to the mid- 
temperate zone, exhibits a lower cloud coverage rate. It is worth 
noting that the Qinghai-Tibet Plateau urban agglomeration, as a plateau 
climate region, also displays a relatively high cloud coverage rate.

When focusing on urban agglomerations within different climate 
zones across China, it can be seen that there are huge spatial differences 
in cloud distribution above the urban agglomerations. Even urban ag
glomerations with similar geographical locations may present 
completely different cloud cover situations. Although China is divided 
into multiple climate zones, urban agglomerations within the same 
climate zone may still exhibit significant differences. Overall, although 
climate zoning reflects some cloud distribution characteristics, for 
example, most temperate regions have relatively low cloud probability 
while most subtropical regions have relatively high cloud probability, 
there are still some situations that cannot be explained by a single 

climatic factor alone. For instance, the Yunnan urban agglomeration, 
despite being located in the subtropical climate zone, shows low cloud 
coverage probability. On one hand, Yunnan’s location in the monsoon 
climate zone and the Indian Ocean water vapor channel path results in 
high wind speeds, hindering atmospheric moisture accumulation and 
cloud cluster formation (Chen, 2008). On the other hand, central and 
northern Yunnan’s leeward slope location decreases water vapor con
tent and relative humidity during air descent, making cloud formation 
difficult (Zhu et al., 2022). Moreover, Yunnan’s complex terrain and 
diverse landforms may also influence cloud formation and distribution 
(Li et al., 2022b). Therefore, cloud distribution may be influenced by 
multiple factors, and climate zoning alone is not sufficient to fully 
summarize cloud distribution characteristics.

Furthermore, it is worth noting that regions at higher latitudes tend 
to exhibit lower cloud coverage rates. For example, compared to the 
Yangtze River Delta urban agglomeration and the Chengdu-Chongqing 
urban agglomeration in the south, the Inner Mongolia urban agglom
eration and the Beijing-Tianjin-Hebei urban agglomeration have lower 
cloud coverage rates. This phenomenon may be the result of a 

Fig. 4. Urban agglomeration cloud probability detail distribution map and underlying surface cover map.
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combination of various factors. Firstly, the cold climate conditions in 
high-latitude regions lead to lower water vapor content, thereby 
reducing cloud formation. Secondly, different airflows and wind di
rections may also influence cloud distribution, and high-latitude regions 
may be affected by dry airflows. Additionally, high-latitude regions may 
have large areas of grasslands, deserts, or snow-covered areas, and these 
surface features may impact local temperatures, humidity, and cloud 
formation. Low solar radiation angles, surface characteristics, and 
shorter daylight hours may also influence cloud distribution.

Previous studies have generally suggested that coastal regions have 
higher cloud coverage due to abundant water vapor supply (Lee et al., 
2020). However, our results indicate that in some cases, coastal regions 
may exhibit lower cloud coverage compared to inland areas, such as in 
the Yangtze River Delta and the Greater Bay Area urban agglomerations. 
This phenomenon may be related to the regulating effect of the ocean, 
which has stable temperature, humidity, and flat terrain, influencing 
local airflows and water vapor transport.

In summary, the result suggests that the cloud probability of urban 
agglomeration regions is influenced by a combination of multiple 
geographical and meteorological factors, resulting in significant differ
ences in cloud distribution between different regions.

3.2. Influence of underlying surface and topographic factors on cloud 
distribution

To more comprehensively discuss the influence of underlying surface 
and topographic factors on cloud distribution, Fig. 4 presents cloud 
probability detail distribution maps for each urban agglomeration, along 
with corresponding underlying surface cover maps for visual analysis.

For the four urban agglomerations in the temperate climate zone, the 
Inner Mongolia urban agglomeration has the lowest cloud coverage 
probability. The terrain here is relatively flat, with land cover types 
including grasslands, deserts, and water bodies. Some areas may be arid 
grasslands, and there are desert regions such as the Ordos Desert, one of 
the deserts in Inner Mongolia. These factors may suppress cloud for
mation, resulting in lower cloud coverage in the region. The Beijing- 
Tianjin-Hebei region also exhibits a low cloud coverage probability. 
The Beijing-Tianjin-Hebei region has relatively flat terrain, with an 
overall hilly and plain landform, and coexisting land cover types such as 
cities, farmlands, grasslands, some mountains, and water bodies. It can 
be observed that highly urbanized areas like Beijing and Tianjin show 
lower cloud coverage, which might be due to the influence of human 
activities, buildings, and transportation in urban areas on cloud distri
bution. In contrast, suburban and farmland areas may have more cloud 
coverage because large open lands and vegetation contribute to water 
vapor evaporation and airflow generation, thereby promoting cloud 
formation. Therefore, the southern open plains and agricultural lands 
here have relatively higher cloud coverage rates. The Northeast urban 
agglomeration presents a complex cloud probability distribution, with 
lower rates in the west and higher rates in the east. This distribution is 
related to its diverse surface features such as terrain undulations, plains, 
hills, mountains, and lakes. The west is mainly plains, similar to the 
Beijing-Tianjin-Hebei region, while the east has higher mountains and 
hills, higher vegetation coverage, which may influence air movement 
and humidity distribution, thereby affecting cloud formation. The 
Southern Xinjiang urban agglomeration shows a huge difference in 
cloud distribution, with extremely low cloud coverage in the northern 
desert region and significantly higher cloud probability in the southern 
plateau region. Despite the adjacent geographical locations in the north 
and south, they exhibit vastly different cloud distributions. This is due to 
significant differences in topography and altitude. The northern region 
is a desert zone with relatively flat terrain, dry climate, and less pre
cipitation, and the air is relatively lacking in water vapor. The southern 
plateau region has high altitude, complex terrain, frequent air rising and 
falling, which is conducive to water vapor condensation into clouds. 
Moreover, the southern plateau region has a relatively humid climate, 

with water bodies such as lakes, rivers, and alpine glaciers, as well as 
high mountain vegetation cover, which helps to provide more water 
vapor and promote cloud formation. The formation of cloud distribution 
differences in the Southern Xinjiang urban agglomeration is the result of 
the combined effects of multiple geographical and meteorological fac
tors. Topography, altitude, climate, surface characteristics, and other 
factors are intertwined, forming the pattern of north–south cloud dis
tribution differences. The Qinghai-Tibet Plateau urban agglomeration, 
located in the plateau climate zone, is in the same plateau as the 
southern part of Southern Xinjiang, and also exhibits similar high cloud 
coverage probability spatial distribution characteristics for the same 
reasons. In the cloud distribution map of the Qinghai-Tibet Plateau 
urban agglomeration, it can be clearly observed that the cloud proba
bility above lakes is far lower than the surrounding areas, and the 
location of lakes can be determined even from the cloud map.

The urban agglomerations in the subtropical climate zone also 
exhibit different cloud distribution characteristics. The most obvious 
contrast is between the adjacent Yunnan urban agglomeration and the 
Chengdu-Chongqing urban agglomeration. The former shows medium 
to low cloud probability, while the latter has the highest cloud proba
bility among all urban agglomerations, reaching 62.18 %. This differ
ence may be related to various factors such as climate, topography, and 
land cover. The Yunnan region has a greater terrain undulation, with 
diverse landforms including high mountains, plateaus, and valleys, and 
the vegetation coverage is not as high as the Chengdu-Chongqing urban 
agglomeration. The complexity of its terrain may influence the flow and 
rise of air currents, thereby affecting cloud formation. In contrast, the 
Chengdu-Chongqing urban agglomeration is located within the Sichuan 
Basin, belonging to the subtropical monsoon climate, with relatively 
humid climate characteristics. Moreover, the Sichuan Basin has rela
tively flat terrain and low altitude, making it easy for humid air to gather 
here, which is conducive to cloud formation. Additionally, the Chengdu- 
Chongqing urban agglomeration is influenced by monsoon airflows, 
with humid airflows transported from the ocean to the Sichuan Basin, 
providing sufficient water vapor for cloud formation. Furthermore, the 
land cover of the Chengdu-Chongqing urban agglomeration is mainly 
plains and hills, with high vegetation coverage and relatively high sur
face humidity, which is conducive to water vapor evaporation and 
release. These factors collectively contribute to the extremely high cloud 
coverage probability in the region, making it a typical area with frequent 
cloud and rain cover in China. The Yangtze River Delta urban agglom
eration and the Greater Bay Area urban agglomeration show similar 
distributions, with lower cloud probability in coastal and highly ur
banized areas, while the mountainous areas with high vegetation 
coverage near inland regions exhibit significantly higher cloud proba
bility. Overall, although subtropical regions are considered cloudy and 
rainy areas in environmental remote sensing observations, in reality, 
each urban agglomeration often varies due to factors such as topography 
and land cover, and areas with less clouds and rain are not uncommon.

In general, the underlying surface may have a significant influence 
on cloud formation. Cloud distribution is not only influenced by climatic 
and geographical factors but also by the combined effects of various 
complex surface and meteorological factors, providing a novel 
perspective for further in-depth research on cloud distribution and its 
impact on the environment. At the same time, this study also found that 
not all subtropical regions have high cloud coverage rates, while 
temperate regions may have more cloud cover, and plateau regions also 
exhibit high cloud coverage rates. This indicates that the impact of cloud 
obstruction on remote sensing earth observations should not only be a 
focus in subtropical regions. In fact, remote sensing surface monitoring 
activities in most regions are affected by cloud cover. This finding em
phasizes the prevalence of cloud cover in remote sensing earth obser
vations and deepens the understanding of cloudy environments in the 
field of environmental remote sensing observations.
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3.3. Quantitative assessment of cloud distribution differences in urban 
agglomerations

To more accurately analyze the cloud distribution characteristics of 
urban agglomerations in each climate zone, Fig. 5 presents cloud 
probability distribution histograms for each urban agglomeration. The 
horizontal axis represents the cloud probability value, and the vertical 
axis represents the number of locations with the corresponding cloud 
probability.

Urban agglomerations in the temperate climate zone show similar 
histogram distribution shapes but differ in specific values. The cloud 
probability of the Inner Mongolia urban agglomeration is mainly 
concentrated around 26 %, with the number of locations with higher or 
lower cloud probabilities decreasing progressively. The highest cloud 
probability does not exceed 35 %. In comparison, the cloud probability 
distribution of the Beijing-Tianjin-Hebei urban agglomeration is higher, 
with most locations having a cloud probability of around 32 %, fluctu
ating mainly between 20 % and 40 %, with minimum and maximum 
cloud probabilities of 10 % and 48 %, respectively. The Northeast urban 
agglomeration is more prone to cloud cover, with the most common 
cloud probability value being around 38 %, rarely below 30 %, and the 
highest value being around 54 %. The huge internal cloud distribution 
difference in the Southern Xinjiang urban agglomeration is also reflected 
in the histogram, showing two peaks. The cloud probability in the desert 
region is generally around 24 %, while the cloud probability in the 
southern plateau region is mostly as high as 45 %. In the subtropical 
climate zone, the histogram distribution of the Yunnan urban agglom
eration is similar to that of the Beijing-Tianjin-Hebei urban agglomer
ation, concentrated around 33 %, mainly distributed between 18 % and 
51 %. In contrast, the Chengdu-Chongqing urban agglomeration, despite 

having a similar shape, has a significantly larger cloud probability dis
tribution, with the cloud probability in the vast majority of regions being 
as high as 48 %, with a maximum of even 63 % and usually not lower 
than 42 %, indicating that the Chengdu-Chongqing urban agglomeration 
is one of the regions with high-frequency cloud cover. The Yangtze River 
Delta urban agglomeration and the Greater Bay Area urban agglomer
ation also experience frequent cloud cover, with cloud coverage prob
abilities mostly between 30 % and 48 %, and up to 57 %. At the same 
time, the plateau region also exhibits high cloud probability, mainly 
distributed between 36 % and 51 %, with a maximum of 66 %.

Fig. 6 shows the average cloud coverage probability and its standard 
deviation for each urban agglomeration, intuitively displaying the dif
ferences between different urban agglomerations. The Chengdu- 
Chongqing urban agglomeration ranks first with an average cloud 
probability value of 50.72 %, closely followed by the Qinghai-Tibet 
Plateau urban agglomeration with an average cloud probability of 
43.27 %. The average cloud probabilities of the Yangtze River Delta 
urban agglomeration and the Greater Bay Area urban agglomeration do 
not differ much. Overall, except for the Yunnan urban agglomeration, 
which has a relatively low average cloud probability of 31.93 %, the 
urban agglomerations in the subtropical climate zone tend to have 
slightly higher average cloud probabilities than those in the temperate 
climate zone. In the temperate climate zone, the Inner Mongolia urban 
agglomeration has the lowest average cloud probability of 26.32 %, 
while the Northeast urban agglomeration has the highest average cloud 
probability of 37.54 %. Although the average cloud probability of the 
Southern Xinjiang urban agglomeration is relatively high at 31.93 %, its 
standard deviation is very high, indicating that its cloud probability 
distribution is the most uneven, consistent with the histogram distri
bution in Fig. 5.

Fig. 5. Cloud probability distribution histogram of urban agglomeration, where the abscissa represents the cloud probability value and the ordinate represents the 
number of pixels with corresponding cloud probability.
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3.4. Discussion and analysis

This study obtained many findings through qualitative and quanti
tative assessment analysis of cloud distribution in typical climate zones 
of China. Firstly, this study noticed significant differences in cloud dis
tribution among urban agglomerations in different climate zones. 
Although the field of environmental remote sensing observations 
traditionally considers subtropical regions to have cloudy and rainy 
characteristics, the results of this study indicate that the cloud cover 
situation of subtropical urban agglomerations is not entirely consistent. 
This indicates that cloud distribution is not only influenced by climate 
zoning but may also be affected by factors such as topography, land 
cover, and altitude. Urban aerosols, pollutants, and the urban heat island 
effect may suppress cloud formation, resulting in relatively lower cloud 
coverage over cities. Vegetation may contribute to water vapor evapo
ration and airflow generation, thereby promoting cloud formation. 
These findings are consistent with the mechanistic understanding and 
observational evidence provided by previous studies (Shepherd et al., 
2010; Williams et al., 2015; Xu et al., 2022). This provides some refer
ence for urban planning and construction, as urban layout and vegeta
tion coverage have a certain impact on cloud formation and distribution. 
Overall, the complexity of cloud distribution is the result of the joint 
shaping of geographical environments, meteorological conditions, and 
surface characteristics. Therefore, for the study of cloud distribution 
characteristics, it is not possible to simply rely on the classification of 
climate zones, but should comprehensively consider multiple factors 
such as topography, altitude, land cover, and urbanization degree. It is 
important to recognize that the relationship between cloud cover and 
factors such as land surface cover, and urbanization is a complex and 
multifaceted issue. Qualitative observations in this study suggest po
tential impacts of the geographical factors. Strict quantification of these 
relationships would require conducting in-depth quantitative analyses 
involving extensive data collection, advanced statistical modeling, and 
consideration of potential confounding factors, which necessitates 
future research.

The findings of this study have potential applications in enhancing 
meteorological models, urban solar energy development, and remote 
sensing observation strategies. The high-resolution cloud probability 
distribution data can be assimilated into numerical weather prediction 

models, which incorporates cloud-related parameters such as cloud 
cover, to improve initial conditions and boundary conditions related to 
cloud distribution (Forbes et al., 2011; Skamarock, 2008). Furthermore, 
the insights into the relationship between cloud distribution and 
geographical factors can inform the development of more accurate 
parameterization schemes for cloud processes in these models, such as 
weather research and forecasting model’s urban canopy model and land 
surface model (Chen et al., 2011). Moreover, the revealed cloud distri
bution characteristics in different climate zones of China provide crucial 
data support for developing solar energy resources in cities. Cloud cover 
significantly affects the solar energy potential of urban areas. Therefore, 
a systematic analysis of cloud distribution patterns over urban areas can 
provide a scientific basis for estimating the solar radiation intensity in 
cities. Ji et al. (2024) demonstrated that accurately assessing the solar 
energy potential of cities is a prerequisite for optimizing the layout of 
rooftop photovoltaics (Ji et al., 2024). Understanding the patterns of 
cloud distribution in cities can provide important theoretical support 
and practical guidance for promoting urban energy transition and 
building green and low-carbon cities. In addition, the vast majority of 
urban agglomerations show average cloud probability values exceeding 
30 %, highlighting that cloud cover is a common phenomenon in urban 
environments. While previous research often emphasizes the prevalence 
of clouds in tropical and subtropical regions, this study reveals spatial 
variability in cloud cover across different climate zones. This finding can 
guide the development of adaptive remote sensing observation plans. In 
regions with high cloud frequency, increasing the temporal resolution of 
satellite observations, prioritizing radar remote sensing, and integrating 
multi-source data can help overcome the limitations of optical remote 
sensing in cloudy conditions. It is essential to consider the unique sur
face and environmental conditions of different climate zones when 
formulating effective remote sensing observation strategies.

This study still has certain limitations. Firstly, the Sentinel-2 satellite, 
which serves as the data source for this study, has a transit time of 
around 10:30 a.m. local time. Consequently, the analysis may not fully 
capture the diurnal variations in cloud distribution, as it is based on 
instantaneous conditions at the satellite’s transit time. It is also impor
tant to acknowledge that cloud frequency can vary significantly across 
different seasons, as demonstrated by previous studies (Tian et al., 
2021). While the present study focuses on characterizing the overall 

Fig. 6. Average cloud coverage probability and its standard deviation of urban agglomeration.
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cloud distribution patterns in urban agglomerations across different 
climate zones and their potential relationships with geographical fac
tors, we recognize the value of investigating monthly or seasonal cloud 
probabilities. Future research could build upon the comprehensive un
derstanding of general cloud distribution patterns established in this 
study to explore the temporal dynamics of cloud distribution at finer 
scales.

Additionally, the accuracy of the Sentinel-2 cloud product has 
certain limitations, and air pollution can potentially impact cloud 
detection. Previous studies have shown that it has an acceptable accu
racy, with an overall average accuracy of 86.5 % (Coluzzi et al., 2018). 
In plateau regions above 2500 m, the accuracy is about 90 % (Wang 
et al., 2020). For the purpose of exploring cloud probability in this study, 
the error in cloud identification of a single image is within an acceptable 
range. Moreover, the QA60 band of Sentinel-2 satellites utilizes multiple 
spectral bands for cloud detection, and the near-infrared and short-wave 
infrared bands help mitigate the impact of air pollution on cloud 
detection, as they are less sensitive to atmospheric aerosols (Zhu et al., 
2015). Given that this study utilized all Sentinel-2 images over a three- 
year time span for statistical analysis of cloud distribution, while severe 
pollution events at individual time points may affect cloud detection, 
these short-term pollution events are unlikely to significantly influence 
the overall cloud probability distribution when considering the entire 
three-year time scale. Moreover, relevant literature on cloud distribu
tion indicates that its cloud probability results are generally consistent 
with this study (Li et al., 2022b; Shuai et al., 2022; Wang et al., 2019; 
Yang et al., 2020b). Considering the ultra-high computational efficiency 
of the Sentinel-2 cloud product on the Google Earth Engine platform, as 
well as the requirement for large-scale, high-resolution, and large-data 
cloud probability calculations, the Sentinel-2 cloud product is still an 
appropriate choice at present. In the future, the integration of more 
efficient and accurate cloud detection algorithms and additional data 
sources to account for the impact of air pollution will further enhance 
such research.

4. Conclusions

This study provides a comprehensive understanding of the cloud 
distribution characteristics across urban agglomerations in typical 
climate zones of China. By utilizing high-resolution Sentinel-2 satellite 
imagery and the Google Earth Engine platform, we revealed the complex 
nature of cloud cover patterns and their potential influencing factors. 
The results challenged the traditional understanding of cloud distribu
tion based on climate zoning alone. Significant variations in cloud 
probability were observed among urban agglomerations, even within 
the same climate zone. The analysis suggested that factors such as 
topography, terrain, and urbanization level may influence cloud distri
bution patterns. The diversity of cloud cover patterns across different 
regions is likely the result of complex interactions among these factors. 
This study contributes to advancing the knowledge of regional climate, 
environmental management, and remote sensing earth observations by 
providing new insights into the complex and diverse nature of cloud 
distribution across urban agglomerations in China. However, it is 
important to acknowledge the limitations of this study, such as the 
specific overpass times of Sentinel-2 satellites and potential accuracy 
issues in cloud detection. Future work could explore the quantitative 
relationships between cloud distribution and various geographical fac
tors using advanced statistical modeling techniques and integrate cloud 
probability distribution information into meteorological and remote 
sensing models. As the complexities of cloud distribution and its driving 
factors continue to be unraveled, more effective strategies can be 
developed for monitoring and adapting to changing atmospheric con
ditions in various contexts.
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