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Mangroves, critical for ecological sustainability, are challenging to map accurately due to their fragmented
nature and difficult accessibility. Existing datasets, often constrained to 10 m or above resolutions, could
misrepresent fragmented mangrove regions and suffer from sampling biases, limiting their regional applicability.
Furthermore, scale conversion’s spatial and statistical implications on mangrove mapping accuracy and area
estimation remain largely unexplored. This study proposes a novel framework that leverages UHR (0.2 m) aerial
photos and the DeepLabV3+ model for fine-scale mapping and systematically simulates and quantifies scale-
induced effects. The resultant 20 cm-resolution mangrove map of Hong Kong achieved an overall accuracy
(OA) of 92.1 %, with up to 53 % improvement compared to various existing datasets. It delineates complex
boundaries in diverse coastal settings while preserving the structural integrity of fragmented patches. The total
mangrove area in Hong Kong is estimated at ~720 ha, with Deep Bay comprising 77.5 %. The scale effects
analysis revealed pronounced sensitivity in fragmented habitats, where each 1 m increase in resolution could
result in an average area underestimation of 5000 m? and up to 25 % OA degradation when transitioning from
0.2 m to 30 m. Moreover, integrating patch geometry and scale responses indicated that 6 m is the optimal scale
for monitoring. Beyond this, OA could sharply decline to below 82 % at the commonly used 10 m resolution and
drop as low as 66 % at 30 m. These findings highlight the critical importance of fine-scale mapping using UHR
images for effective mangrove conservation and management.

1. Introduction accessibility, cost, and labor. Remote sensing has addressed these chal-
lenges, providing a crucial tool for large-scale mangrove mapping(Friess
etal., 2019; Giri et al., 2011; Wang et al., 2019; Wei et al., 2024). Global

datasets, including the 30 m Landsat-based MFW2000(Giri et al., 2011)

Mangroves thrive in tropical and subtropical intertidal zones, play-
ing vital roles in climate regulation, habitat stabilization, and shoreline

protection. These ecosystems, composed of shrubs and small trees,
support biodiversity and act as significant carbon sinks. They also offer
natural protection against hurricanes, storms, and flooding, potentially
preventing billions in damages (Bryan-Brown et al., 2020; Goldberg
et al., 2020; Jia et al., 2023). Despite their ecological importance,
mangroves are declining at a rate of 1-2 % annually, with a cumulative
loss of 35 % over the past two decades due to sea-level rise, deforesta-
tion, land-use changes, and urban and agricultural expansion (Feller
et al., 2017; Goldberg et al., 2020; Lovelock et al., 2015; Romanach
et al., 2018). Therefore, accurate quantification of mangrove distribu-
tion is crucial for conservation, restoration, and risk assessment efforts.

Traditional field-based mapping methods are limited by

and the Sentinel-2-based HGMF_2020 (Jia et al., 2023), have enhanced
our understanding of mangrove distributions. However, these datasets
often miss smaller or newly formed patches and are limited in their
ability to differentiate between mangroves and other vegetation, due to
coarse resolution (Wang et al., 2020; Zhang et al., 2021; Zhao and Qin,
2020).

In recent years, ultra-high-resolution (UHR) mapping, enabled by
commercial satellites and UAVs, has significantly improved mangrove
mapping at local and regional scales. Resolutions finer than 5 m from
platforms such as WorldView-2, QuickBird, and IKONOS offer detailed
mapping, especially for smaller mangrove patches(Guo et al., 2021;
Mahdianpari et al., 2021). National-scale studies in China have shown
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the advantages of sub-meter resolution for mangrove mapping, signifi-
cantly improving accuracy and spatial detail compared to coarser global
datasets (Tian et al., 2024; Zhang et al., 2021). While these fine-scale
datasets address many limitations of global maps, they remain con-
strained by the cost, labor, and time required for data acquisition and
ground truth validation, particularly in underrepresented coastal re-
gions such as Hong Kong. Existing mangrove mapping efforts have
largely relied on traditional machine learning techniques such as SVM
and random forests, which depend on manual feature extraction from
satellite or lidar data. While these methods have been widely used, they
often struggle with spectrally similar classes, leading to accuracy drops
in complex coastal environments(Jia et al., 2023; Mallick et al., 2021).

In recent years, deep learning-based mangrove mapping has ach-
ieved remarkable progress in wetland and coastal mangrove mapping. Y.
Guo et al. (2021) utilized time-series Landsat data as input and inte-
grated the classic Unet semantic segmentation with new network mod-
ules for large-scale mangrove mapping. Wang et al. (2023) proposed the
Swin-UperNet model, which uses high-resolution optical images in
Hainan to segment Spartina alterniflora and mangroves for invasive
species studies. M. Guo et al. (2021) applied CNN for local reserve-scale
mangrove mapping, using raw bands and extracted indices from
Sentinel-2, outperforming traditional machine learning and pixel-based
classification methods. A key advantage of deep learning methods is
their ability to automatically learn features from data, eliminating
manual extraction and simplifying training while effectively handling
raw imagery(Zhao et al., 2024). However, these models are often
restricted to multispectral data and face challenges such as slow training
speeds and difficulties in fine boundary segmentation.

DeepLabV3+, a semantic segmentation algorithm introduced by
Google in 2018, improves segmentation by adding a decoder structure to
fuse shallow and deep features, refining the output. Compared to models
such as Unet and SegNet, the main advantage of DeepLabV3+ lies in its
use of atrous convolution, which expands the receptive field without
losing information, enabling each convolution output to cover a larger
area (Chen et al., 2017). This model has been successfully applied in
classifying land cover types through detailed texture analysis, shape
recognition, and edge reconstruction in complex imagery (Du et al.,
2021; Gonzalez-Perez et al., 2022; He et al., 2024; Yao et al., 2019; Yu
et al,, 2022). However, its application in tropical and subtropical
mangrove mapping remains limited. Recent studies have also shown the
potential for handling large datasets using only RGB data while main-
taining high classification accuracy. Fine-scale data from airborne sen-
sors provide sufficient detail to differentiate mangroves from other
coastal land cover types, overcoming the spectral similarity limitations
of traditional methods(Carbonneau et al., 2020; Onishi and Ise, 2021).
Nonetheless, applying the DeepLabV3+ model to segment mangroves
from ultra-high-resolution RGB data remains largely unexplored.

The continued refinement of semantic segmentation techniques,
alongside the integration of ultra-high-resolution (UHR) imagery, is
poised to advance the study of scale effects in remote sensing. In this
context, ’scale’ refers to spatial resolution—the smallest distinguishable
feature a sensor can detect (Aplin, n.d.; Feng et al., 2017; Marceau and
Hay, 1999; Weng, n.d.; Woodcock and Strahler, 1987). According to
Lam and Quattrochi (1992), scale operates on four levels: mapping,
observation, measurement, and operation, each impacting remote
sensing data application and analysis. Our study focuses on spatial res-
olution, crucial for accurate feature delineation in mangrove mapping.
Scale effect, defined by the variability in features across different spatial
resolutions, is a nuanced challenge in geoscience research. It gains sig-
nificance as remote sensing data ranges from fine-scale to coarse reso-
lution. Statistical methods show potential for addressing scale effects in
vegetation mapping, yet remain underexplored. Our research introduces
a novel approach to calculating and evaluating scale effects in mangrove
mapping, employing fine-scale RGB imagery processed through deep
learning-based segmentation to explore scale aggregation and transition
implications.
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The refinement of semantic segmentation techniques and the inte-
gration of ultra-high-resolution (UHR) imagery have the potential to
advance the study of scale effects in remote sensing. In this context, scale
refers to spatial resolution or the smallest distinguishable feature a
sensor can detect (Aplin, n.d.; Feng et al., 2017; Lam and Quattrochi,
1992; Marceau and Hay, 1999). As Lam and Quattrochi (1992) noted,
scale operates at four levels: mapping, observation, measurement, and
operation, each influencing remote sensing applications. This study fo-
cuses on spatial resolution, critical for accurately delineating mangrove
features, as scale effects—variations in feature detection across different
resolutions—pose a significant challenge in geoscience. While statistical
methods have been used to examine scale effects in vegetation mapping,
few studies have explored these effects in the context of mangrove
ecosystems(Lam and Quattrochi, 1992; Marceau and Hay, 1999). This
study offers a novel approach to quantifying scale effects, employing
fine-scale RGB imagery and deep learning-based segmentation to assess
the spatial distribution and accuracy of mangrove mapping.

Despite the availability of existing mangrove datasets with varying
map extents, their accuracy and performance at the regional level
remain largely unvalidated, and the impact of scale on these products is
still unclear. Hong Kong, as an important region with mangrove distri-
bution, has long lacked comprehensive, high-resolution mangrove data.
Our study aims to address this gap by leveraging 20 cm-resolution aerial
imagery and advanced deep learning techniques to produce an updated
and detailed mangrove map (UHRHKM) and investigate how scale in-
fluences classification results. Specifically, we aim to (1) evaluate the
performance of DeepLabV3+ through accuracy assessments; (2) analyze
the effects of scale based on fine-scale segmentation results; and (3)
compare the UHRHKM map with the existing mangrove dataset. By
addressing the need for high-resolution data and the challenges of scale,
our study aims to deepen the understanding of mangrove spatial dis-
tribution and examines the impact of scales on segmentation accuracy.
Through these efforts, we seek to facilitate the creation of more effective
conservation and management strategies, while enabling further appli-
cations biophysical characteristics mapping applications.

2. Study area and data preparation
2.1. Study area

The study area focuses on the coastal regions of Hong Kong, located
in southeastern China at the mouth of the Pearl River Delta, near major
cities such as Shenzhen and Guangzhou (Fig. 1). Hong Kong, a key
component of the Greater Bay Area, is characterized by around 60
mangrove stands across six districts: Sai Kung, Northeast New Terri-
tories, Tolo Harbour, Deep Bay, Lantau Island, and Hong Kong Island.
The region’s varied topography, including mountainous areas and flat
coastal plains, influences the distribution and health of mangrove eco-
systems. These coastal environments are affected by the Pearl River and
South China Sea, impacting salinity levels and sediment deposition.
Hong Kong’s subtropical climate, with hot, humid summers and mild,
dry winters, supports mangrove growth. These forests are crucial coastal
wetlands, providing habitats, biodiversity conservation, carbon
sequestration, and coastal defense. Despite their importance, mangroves
in Hong Kong face threats from urban development and pollution.

2.2. Data preparation

2.2.1. Reprocessing of ultra-high-resolution (UHR) images

In this study, we utilized a subset of the DOP5000 series, an
orthorectified aerial photography dataset produced by the Lands
Department of Hong Kong. DOP5000 provides a high-resolution ground
sample distance of 0.2 m per pixel, derived from aerial photographs
taken at altitudes of 2,000 to 9,000 feet. The dataset is geographically
referenced to the Hong Kong 1980 Grid system and provided in GeoTIFF
format, with each tile consisting of 18,750 by 15,000 pixels and a file
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Fig. 1. Location and distribution of validation points of the study.

size of approximately 810 MB. Employing digital photogrammetry and
geometric correction techniques, DOP5000 ensures images are free from
distortions due to camera tilt and topographic relief. For our study, we
acquired 81 tiles covering Hong Kong’s coastal areas, capturing regions
with potential mangrove and mudflat distributions. These images,
captured in three RGB bands, offer detailed visual data conducive to
thorough vegetation analysis and fine-scale mangrove mapping. The
selected images and study area are shown in Fig. 1, with 90.1 % of the
images taken between 2019 and 2023. Detailed acquisition dates and
year distribution are provided in Table 1.

2.2.2. Sample dataset preparation

Labels were annotated from two sources: ground truth surveys in
accessible mangrove areas and UHR image interpretation for inacces-
sible regions, both verified by experts. This labeling process was
essential for training accurate semantic segmentation models.

Samples were collected from across Hong Kong, representing diverse
habitat characteristics such as species composition and different
mangrove patch types. Special attention was given to ecologically sig-
nificant and protected areas, including the Mai Po Ramsar Site in Deep
Bay, as well as three Sites of Special Scientific Interest (SSSI): Lai Chi Wo
within the Yankee Chau Tong Marine Park, Ting Kok in Tolo Harbour,
and Hoi Ha Wan mangroves in Hoi Ha Wan Marine Park. These areas
were prioritized to capture representative features of Hong Kong’s
mangroves (Fig. 1). In this study, the sampling was designed to cover the
majority of the 60+ officially recorded mangrove sites by the govern-
ment (https://www.afcd.gov.hk/), ensuring a balanced and spatially
even distribution across the entire study area.

To account for the complexity and variability of the dataset, data
augmentation techniques such as cropping, rotating, scaling, and

Table 1

Acquired dates of the applied UHR aerial photo dataset.

Acquisition year Number of tiles Percentage
2017 8 9.9 %
2019 8 9.9 %
2021 2 25%
2020 26 321 %
2023 37 45.7 %
Sum 81 100 %

normalization were applied (Gonzalez-Perez et al., 2022; Guo et al.,
2021). Training tiles were generated by extracting 256 x 256 pixel
image-label pairs with a 128-pixel stride and 90°, 180°, and 270° rota-
tion angles. The dataset was then split into training, validation, and test
sets in a ratio of 8:1:1, resulting in a total of 3959 images for compre-
hensive model evaluation.

3. Methodology
3.1. Deep learning semantic segmentation models

3.1.1. DeepLabv3+ model and training

The DeepLabv3-+ model, introduced in 2018, is widely recognized
for its effectiveness in semantic segmentation tasks, particularly in land-
use classification, due to its encoder-decoder structure and enhanced
multi-scale contextual feature fusion (Chen et al., 2018; Du et al., 2021).
In this study, we adopted DeepLabv3+ with a key enhancement:
replacing the original Xception backbone with MobileNetV2 for
improved computational efficiency and faster training (Howard et al.,
2018; Gonzalez-Perez et al., 2022). MobileNetV2, designed for light-
weight applications, utilizes depthwise separable convolutions, inverted
residuals, and a linear bottleneck structure to reduce the model’s
parameter count while maintaining high accuracy, making it suitable for
large-scale mapping tasks. For training, the backbone parameters were
frozen after accuracy plateaued to optimize resource use. The model was
trained for 200 epochs with a batch size of 16 and an initial learning rate
of 0.001, managed dynamically across epochs. The Adam optimizer was
employed to balance computational efficiency and performance (Guo
et al., 2021). As the model takes 256 x 256 pixel images, the structure
and parameter settings of the used backbone model are presented in
Fig. 2 and Table 2.

Then we applied a frozen-stage strategy, where the backbone re-
mains fixed once accuracy plateaus to optimize resource use. The model
was trained for 200 epochs with a batch size of 16. An initial learning
rate of 0.001 was set, and controlled automatically by training epochs
(Hong et al., 2024; Vieilledent et al., 2018; Yao et al., 2019). The Adam
optimizer was chosen for its computational efficiency and low memory
requirements (Guo et al., 2021; Wang et al., 2023).
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Fig. 2. Diagram of the applied DeepLabV3+ network.

Table 2

MobileNetV2 network structure.
Input Operator t c n H
256x x256 x 3 Conv2d — 32 1 2
128 x 128 x 32 Bottleneck 1 16 1 1
128 x 128 x 16 Bottleneck 6 24 2 2
64 x 64 x 24 Bottleneck 6 32 3 2
32 x 32 x 32 Bottleneck 6 64 4 2
16 x 16 x 64 Bottleneck 6 96 3 1
16 x 16 x 96 Bottleneck 6 160 3 2
8 x 8 x 160 Bottleneck 6 320 1 1
8 x 8 x 320 Conv2d 1 x 1 - 1280 1 1
8 x 8 x 1280 Avgpool 8 x 8 - - 1 -
1x1xk Conv2d 1 x 1 - k - -

3.1.2. Comparison models

To evaluate segmentation performance, this study selected U-Net
and PSPNet as benchmark models alongside the proposed DeepLabV3+
model.

U-Net is a widely used convolutional neural network designed for
semantic segmentation tasks, particularly effective in biomedical and
environmental applications. Its encoder-decoder structure facilitates the
extraction of multiscale features, while skip connections ensure that
spatial information from earlier layers is preserved during upsampling.
U-Net is known for its simplicity and adaptability, making it a standard
benchmark for segmentation tasks in various domains. For this study,
the structural details of U-Net are omitted for brevity.

PSPNet (Pyramid Scene Parsing Network) is another prominent
model designed to enhance feature extraction through its pyramid
pooling module, which captures contextual information at multiple
scales. This architecture allows PSPNet to excel in identifying large-scale
objects and distinguishing between closely related classes. Despite its
strength in handling multiscale features, PSPNet often struggles with
fine-grained segmentation tasks, particularly in scenarios involving
fragmented or narrow structures. The technical details of Unet and
PSPNet’s architecture are not elaborated in this study to maintain a
focus on comparative analysis.

3.2. Post-classification processing and validation

3.2.1. Post-classification processing

After generating the initial mangrove classification maps using the
DeepLabv3+ model, we adopted several post-processing steps o refine
the results and improve classification consistency. Morphological op-
erations were applied to consolidate mangrove patches by filling small
gaps and removing isolated noise elements. For areas where class
confusion between mangroves and other vegetation occurred, we

0o
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employed a context-driven relabeling process based on the spatial pat-
terns characteristic of mangrove ecosystems.

3.2.2. Performance evaluation

This study also includes a comparison of accuracy with existing
mangrove maps. Since the focus is on mangrove mapping precision, all
non-mangrove classes were merged into a single category for the vali-
dation points. Specifically, we randomly generated 1,500 validation
points each for mangroves and non-mangroves, both within the model
results and within a 10 m buffer zone near the edges of mangrove
patches, considering the common resolution of fine-scale mangrove
maps. These points were evenly distributed across different types of
coastal areas with varying regional characteristics. The distribution of
the validation samples is shown in Fig. 1. We then evaluate the perfor-
mance of our mangrove segmentation and recognition model using
several key metrics: Overall Accuracy (OA), Precision, Recall, F1 Score,
and Cohen’s Kappa.

3.3. Scale effect analysis

The scale effects analysis in this study comprises three components:
input data, the scaling calculation process, and the evaluation of scaled
mangrove distribution layers. The input data originate from the ultra-
high-resolution (20 cm per pixel) mangrove segmentation raster pro-
duced by the deep learning model described in Section 3.2. We then
generate a series of scale-transformed mangrove distribution layers
through spatial aggregation analysis of neighborhoods using various
scale factors. The spatial aggregation process follows the formula:

L Lo
R@, j) = N Zn:1

where R(i,j) represents the resampled value at the new scale for the
pixel at (i,j), N is the total number of original high-resolution pixels
within the new coarse pixel, and I(n) is the binary indicator for

mangrove presence in the n™ high-resolution pixel. The scale factor S
adjusts the neighborhood size for aggregation:

I(n) ®

__ desired scale resolution
" original scale resolution

©)]

The variable S is used to adjust the size of the neighborhood for
aggregation, thereby transforming the original high-resolution data to
the desired coarser scale. For each round of transformation, a series of
threshold T is applied to the area percentage of mangrove presence:

1 ifR(i,j)>T, T€{0.1,0.2,..,1.0}

M(ij) = {o i R(Lj) < T an

where M(i,j) represents the final classification of mangrove presence
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in a coarse pixel, determined by the most dominant class within that
pixel. T reflects the proportion of mangrove coverage within a scale-
transformed cell, with values ranging from O to 1. Higher T values
indicate a greater likelihood of the cell being classified as mangrove,
with T = 1 requiring full coverage to classify as mangrove, and T =
0 requiring full coverage to classify as non-mangrove. To balance
computational efficiency with the objectives of this analysis, we applied
threshold intervals of 0.1 (i.e., 10 %, 20 %, ... 100 %). The average value
was used to represent overall mangrove distribution and explore the
impact of different thresholds on classification accuracy (Camacho
Olmedo et al., 2017; Feng et al., 2017; Weng, n.d.).

The scaling process was standardized from 20 cm to 1 m, then
increased in 1 m intervals up to 30 m, the typical upper limit in
mangrove remote sensing. To assess scale effects, we quantified the
impact on mangrove classification using four metrics: area, OA, UA, and
PA, based on previously described validation points. The optimal
observational scale was identified at the inflection point where a
noticeable slope change indicated the most effective resolution for
mangrove analysis.

4. Results
4.1. Accuracy assessment of the mangrove map of Hong Kong in 2024

The confusion matrix and accuracy assessment of the ultra-high-
resolution Hong Kong mangrove map (UHRHKM) for 2024 demon-
strate excellent performance (Fig. 3). All evaluation metrics, including
overall accuracy (OA), precision, recall, F1 score, and Kappa coefficient,
exceed 0.90. The OA for the entire Hong Kong map reaches 0.921, with
regional validation showing that most areas achieve OA values above
0.90, except for Lantau Island with a slightly lower OA of 0.869. Addi-
tionally, the model proves highly reliable in areas with limited samples.
For example, in Tai Tam, where only a single mangrove habitat exists,
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the OA remains high at 0.919 (Fig. 3). The Kappa coefficient of 0.941
indicates strong agreement between mapped pixels and ground-truth
data, affirming the high accuracy of UHRHKM. These results demon-
strate robustness and consistency across varied conditions in Hong
Kong.

4.2. Areas and spatial distribution of Hong Kong mangroves in 2024

The study mapped mangrove distribution across Hong Kong in 2024,
revealing a total mangrove area of 720.2 ha(Fig. 4). Deep Bay hosts the
largest share, accounting for 77.5 % of the total mangrove area, followed
by Sai Kung, the Northeast New Territories, Lantau Island, and Tolo. On
Hong Kong Island, Tai Tam is the only mangrove habitat, covering just
0.2 % of the total area (Fig. 4(a)). We then calculated patch numbers and
median patch areas for the six regions. Median patch areas were used
instead of mean values to minimize the influence of extremely large
patches, predominantly found in Mai Po, ensuring an objective reflec-
tion of patch characteristics (Fig. 4(b)). Patch counts were sorted in
descending order to highlight differences in patch abundance and area
across regions. Additionally, Fig. 4(c) illustrates the spatial distribution
of patches categorized by area classes. The results reveal that Sai Kung
exhibits the largest median patch size (449.8 mz), with patch counts
comparable to those in Deep Bay(329 compared to 328 patches).
Interestingly, the three eastern regions—Northeast New Territories,
Tolo, and Sai Kung—where mangroves thrive on sandier coasts and
ports with less sediment deposition, have larger average patch areas
compared to Deep Bay (381.2 m? compared to 346.3 m?). This finding is
particularly noteworthy as Deep Bay is traditionally regarded as the
most mangrove-rich region in Hong Kong. In contrast, mangroves along
the east coast have received less attention and are often
underappreciated.

Mangroves in Hong Kong are mainly found in estuaries and bays
(Fig. 5). We selected one representative region of interest from each of

(b)
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! Overall 0.921
g Precision 0.945
g Recall 0.910
z F1 score 0.927
= Kappa 0.941
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1 0.932
E 2 0.906
: 3 0.869
3 4 0.931
- 5 0.934
Low 6 0.919

Fig. 3. Accuracy assessment across six regions: (a) Confusion matrix by region (1 — Tolo, 2 — Deep Bay, 3 — Lantau Island, 4 — Northeast New Territories, 5 — Sai Kung,
6 — Tai Tam); (b) Summary of OA, precision, recall, F1 score, kappa, and regional accuracies.
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the six mangrove regions in Hong Kong. Each of the selected sites
showcases unique habitat characteristics or holds special conservation
value to offer a clear view of mangrove distribution across varied en-
vironments. Ting Kok, near Tolo Harbour, is one of the largest mangrove
areas in Hong Kong. It has been designated a Site of Special Scientific
Interest (SSSI) since 1985 due to its ecological importance, coarse sandy
substrate, and high salinity environment (Fig. 5(a)). Mai Po, a Ramsar-
listed wetland, is a globally significant mangrove habitat (Fig. 5(b)). Tai
O’s mangroves, surrounding traditional stilt houses, highlight the
interaction between mangroves and human activities (Fig. 5(c)). The
mangroves in Lai Chi Wo are near Yan Chau Tong Marine Park (Fig. 5
(d)). Sai Keng, located in the Kat O Hoi area, benefits from significant
freshwater inflow (Fig. 5(e)). Tai Tam, on Hong Kong Island, is the last
remaining mangrove stand in this region and grows on rocky marshes
and sandy beaches. It is also designated as an SSSI. The segmentation
results confirm that the 0.2 m-resolution map effectively identifies
mangrove patches across different habitats. The map maintains clear
and accurate boundaries in complex areas such as mudflats, sandy
beaches, marshes, and built-up zones (Fig. 5). It also captures fine details
within large patches, including internal creek networks and fragmented
habitats. These results highlight the map’s precision and ability to

represent mangrove spatial characteristics with high accuracy.

4.3. Scale effects based on fine-scale segmentation

4.3.1. Accuracy trends and area estimation

Accuracy metrics (OA, UA, PA) across six regions, shown in Fig. 6,
highlight the distinct scale-dependent responses of mangrove habitats.
Fragmented regions such as Tolo and Northeast New Territories exhibit
pronounced accuracy declines as resolution coarsens. OA of 91.9-93.4
% at fine scales in these areas drops sharply to 68.8-72.1 % at 30 m,
indicating significant challenges in classifying fragmented mangrove
patches at coarser scales. Area estimation trends, presented in Fig. 7,
further emphasize the scale sensitivity of fragmented regions. Sai Kung
experiences substantial area underestimation, with a loss of 27-38 % at
30 m. By comparison, Deep Bay shows a much smaller reduction of 3.47
%. Regression analysis confirms that fragmented regions experience
faster area loss rates (e.g., Sai Kung: y = — 0.88x + 66.68) compared to
continuous areas (e.g., Deep Bay: y = — 0.73x + 556.65).

4.3.2. Patch geometric characteristics and optimal observation scale
Patch width, as a key geometric characteristic of mangroves
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Fig. 5. Regional examples of aerial photos and segmentation results across Hong Kong. (a) Ting Kok in Tolo, (b) Mai Po and adjacent mangrove stands in Deep Bay,
(c) Tai O in Lantau Island, (d) Lai Chi Wo in Northeast New Territories, (e) Sai Keng in Sai Kung, and (f) Tai Tam in Hong Kong Island.

distributed stretching the coastlines, could explain the scale sensitivity
observed in mangrove mapping across regions. To minimize the influ-
ence of extremely large patches, the median patch width was used as the
representative metric. In fragmented regions like Tai Tam (3.8 m) and
Northeast New Territories (5.1 m), the median patch widths are com-
parable to or smaller than pixel sizes at coarser resolutions, likely
resulting in patch merging and misclassification. In contrast, regions
with wider patches, such as Sai Kung (6.5 m) and Deep Bay (5.6 m),
retain higher segmentation accuracy at 6 m resolution. However, over-
generalization becomes apparent at resolutions of 10 m and beyond,
leading to a loss of spatial detail and classification reliability. These
geometric insights align with accuracy trends in Fig. 6, where 6 m
emerges as a critical threshold across all regions. Below this scale, seg-
mentation retains sufficient detail to capture fragmented and linear
features. However, beyond 6 m, accuracy deteriorates rapidly and drops
by 10-15 % from descending to 10 m-scale.

4.3.3. Habitat-specific scale responses

To further illustrate these scale effects, we analyzed three repre-
sentative sites: fragmented patches in Chek Keng, pond-based man-
groves in Ha Pak Nai, and linear mangroves in Tsim Bei Tsui (Fig. 8(a)-
(c)). Accuracy and area changes for these sites are summarized in
Table 3. These sites highlight the spatial and accuracy effects of scale

conversion at 6 m, 10 m, and 30 m. At 6 m resolution, mapping main-
tains acceptable accuracy, with OA ranging from 92.4 % to 95.2 %,
reflecting moderate losses in edge sharpness. However, at 10 m resolu-
tion, OA declines to 82.4 %-86.1 %, and area errors become noticeable.
For example, Chek Keng shows an area decrease of 2994.5 m?, while Ha
Pak Nai experiences a decrease of 133.6 m2 At 30 m resolution, over-
generalization leads to further spatial distortions. Chek Keng exhibits
a substantial OA reduction of 66.4 %, while Tsim Bei Tsui’s area is
overestimated by 5652.3 m2 due to linear features being misrepresented
as blocky structures.

4.4. Comparisons with existing mangrove datasets

The comparative analysis (Table 4, Fig. 9) highlights variations in
mapping performance across global, national, and regional datasets
when applied to selected ecologically complex regions. Omission errors
are prevalent in global datasets such as GMW_V3 (30 m resolution),
which struggle to delineate mangrove boundaries in tidal flats and creek
systems, exemplified by the challenges in accurately mapping the Mai Po
Wetland (Fig. 10(a)). These limitations are likely due to mixed pixel
effects and insufficient spatial resolution. National datasets, such as
MC2018 (2 m resolution), show improved performance but still fail to
capture fragmented habitats effectively, especially in remote areas such
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Fig. 8. Spatial demonstrations of effects of scale conversion mangrove mapping at typical sites: (a) Chek Keng, (b) Ha Pak Nai, and (c) Tsim Bei Tsui. The red line
indicates mangrove extraction boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Accuracy and area response to scale changes in mangrove mapping at selected
sites.
Chek Keng Ha Pak Nai Tsim Bei Tsui
OA Area change OA Area change OA Area change
@ ) @ @ @) @)
0.2m 98.4 0.0 96.7 0.0 98.8 0.0
6m 92.4 —2098.5 93.3 -1.6 95.2 —359.7
10 m 83.6 —2994.5 82.4 —133.6 86.1 —847.7
30 m 66.4 2905.5 66.2 —433.6 67.3 5652.3
Table 4
Overview of mangrove datasets used in comparative analysis.
Map product Year  Authors Map Scale
extent (m)
GMW_V3 2022 Bunting et al. Global 30
WorldCover_V2 2021 European Space Global 10
Agency
HGMF 2020 Jiaetal. Global 10
LREIS_ GLOBALMANGROVE 2020 Xiao et al. Global 10
Zhao&Qin 2020  Zhao et al. National 10
MC2018 2018  Zhang et al. National 2
LSMM 2024  Tian et al. National 0.9
LUMHK RasterGrid_2022 2022 Planning Regional 10
Department of
Hong Kong
UHRHKM (This study) 2024  Zhang et al. Regional 0.2
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Fig. 9. Comparative analysis of accuracy and area in mangrove map-
ping datasets.

as Sam Nga Hau (Fig. 10(d)). Misclassification errors remain an issue
even in finer-resolution datasets. For example, while LSMM (0.9 m
resolution) improves patch continuity, it occasionally fragments con-
nected patches in areas with complex terrain. This indicates persistent
difficulties in representing heterogeneous mangrove landscapes. The
UHRHKM map (0.2 m resolution) produced in this study addresses these
challenges. It captures fragmented habitats and intricate tidal creeks
with greater detail, maintaining edge sharpness and patch completeness,
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Fig. 10. Comparison of mangrove distribution maps from various sources in typical regions.

particularly along the east coast. These advantages provide a more
reliable spatial representation and improve the accuracy of area esti-
mates in ecologically diverse mangrove regions.

5. Discussion
5.1. Scale-induced errors in mangrove mapping and its possible reasons

This study proposes a systematic quantification framework to
examine the effects of scale changes on mangrove mapping accuracy and
spatial area. By systematically aggregating ultra-high-resolution (0.2 m)
binary classification results to coarser resolutions (e.g., 1 m, 6 m, 10 m,
30 m) using a majority aggregation method, the framework simulates
lower-resolution distributions and evaluates how scale influences map-
ping outcomes. Majority aggregation ensures the preservation of the
dominant land-cover class within each resampling window, minimizing
distortions caused by mixed pixels and ensuring consistency in binary
classifications. By approximating real-world mapping challenges, this
approach highlights the critical issues of spatial detail loss, precision
degradation, and area estimation errors at coarser scales. Through this
approach, we demonstrated the high sensitivity of mangrove mapping to
scale changes, with significant accuracy loss and area misestimation
observed at lower resolutions, particularly in fragmented habitats
(Figs. 6-8, Table 3).

Through integrating ecological perspectives, such as patch geometry,
the framework identifies key thresholds where spatial detail and clas-
sification reliability begin to degrade. For instance, in fragmented hab-
itats where mangrove patch widths approach or fall below pixel sizes,
boundary-blurring and patch merging become prominent due to
mixed pixel effects (Fig. 8). These findings underscore the importance of
high-resolution monitoring to retain critical spatial detail and classifi-
cation accuracy. The observed trends (e.g., accuracy degradation by
10-15 % from 1 m to 10 m resolution, as shown in Fig. 6) emphasize the
need for a balanced approach in selecting observation scales, particu-
larly for ecologically fragmented regions. At selected sites, spatial
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comparisons (Table 3) demonstrate how scale effects influence area and
accuracy, highlighting the variability in mangrove patch characteristics
across regions.

While this framework proposes new insights into scale-induced ef-
fects, further refinements could address the remaining challenges.
Incorporating advanced aggregation algorithms, such as weighted
methods based on patch morphology, and integrating additional data
types, such as spectral or structural features, would improve the preci-
sion of scale-effect analyses. These advancements could provide a more
comprehensive understanding of how scale affects mangrove distribu-
tions and lead to improved models that better support ecological con-
servation and management efforts.

5.2. Model performance, challenges, and future work

This study is the first attempt to apply deep learning methods for
mangrove segmentation in Hong Kong, achieving great improvements
over existing datasets. The DeepLabV3+ model demonstrated strong
performance, with overall accuracy (OA), precision, and F1 scores
reaching 92.1 %, 94.5 %, and 92.7 %, respectively. Compared to other
models like UNet, PSPNet, and DeeplabV2, it achieved significant im-
provements in precision, surpassing DeeplabV2 by 24.83 %, PSPNet by
16.4 %, and UNet by 9.1 %. However, slightly lower PA values highlight
areas where further refinement is needed (Table 5).

Examples of segmentation results across various models in Fig. 11
highlight the spatial advantages of the DeepLabV3-+ model. Four sites
with distinct environmental settings were analyzed: a sediment-rich

Table 5

Accuracy comparison of different mangrove segmentation models.
Model OA Precision Recall F1 score
DeeplabVv2 0.916 0.757 0.937 0.853
Unet 0.903 0.854 0.97 0.845
PSPnet 0.92 0.786 0.975 0.87
Improved DeeplabV3+ 0.921 0.945 0.91 0.927
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Fig. 11. Spatial comparisons of segmentation results across different models.

estuary, brackish zones near aquaculture ponds, bays, and islands
(Fig. 11(a)-(d)). Referring to ground-truth labels, the DeepLabV3+
model consistently outperformed its counterparts, particularly in
boundary refinement and detail preservation. For instance, PSPNet
showed evident misclassification in regions such as islands (Fig. 11(d)),
where mangroves were entirely undetected, leading to omission errors.
Similarly, DeeplabV2 struggled with mangroves along Hong Kong’s east
coast (Fig. 11(b)), resulting in overly smoothed edges or jagged artifacts.
In contrast, the DeepLabV3+ model significantly mitigated these issues,
delivering better accuracy in complex, fragmented, or linear mangrove
habitats.

Nevertheless, mangrove classification still poses inherent challenges
due to complex edge structures, fragmented habitats, and intertidal
dynamics, which require robust models to ensure accurate boundary
delineation. While the DeepLabV3+ model effectively mitigated many
of these issues, challenges such as edge misclassification and over-
segmentation of similar vegetation types, including reed beds and
fragmented mangrove patches, persist. Future improvements could
focus on enhancing feature extraction through advanced techniques
such as attention mechanisms, incorporating additional data like spec-
tral bands and structural parameters (e.g., tree height), and improving
feature fusion between shallow and deep layers. By addressing these
aspects, the model could better capture the intricate details of mangrove
patches in ecologically complex environments, ensuring more reliable
classification and enhanced adaptability to intertidal conditions.

6. Conclusions

This study represents the first effort to apply deep learning methods
for mangrove mapping in Hong Kong, achieving remarkable results with
the DeepLabV3+ model. The model attained an overall accuracy (OA) of
92.1 %, with user accuracy (UA) and producer accuracy (PA) reaching
94.5 % and 92.7 %, respectively. The improved DeepLabV3+ out-
performed UNet and PSPNet, particularly in precision, with improve-
ments of 24 %, 16 %, and 19 %, respectively. Compared to existing
datasets, the results showcased significant advancements in spatial
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detail, including boundary reconstruction, background delineation in
complex natural and human-modified settings, and the preservation of
internal patch structures.

A novel framework was proposed to quantify scale effects, revealing
insights into accuracy and area estimation at various scales. Analysis of
patch width indicated 6 m as the optimal scale, with its ecological sig-
nificance supported by better resolution alignment to fragmented
mangrove habitats. Beyond 6 m, accuracy dropped sharply, first within
the 10 m range and then accelerating when transitioning to 30 m, where
accuracy fell to as low as 0.7 across the study area and 0.66 in frag-
mented regions. In habitats dominated by fragmented mangroves, each
1 m increase in resolution resulted in an average underestimation of
5000 m? in area and up to 38 % loss in accuracy. While resolutions finer
than 10 m can reduce accuracy loss overall, some mangrove habitats still
experience > 15 % accuracy degradation.

This study underscores the importance of fine-scale mapping in
accurately representing mangroves and the necessity of addressing
scale-induced uncertainties. The results offer implications for ecosystem
conservation, sustainable management, and policy-making.
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