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A B S T R A C T

Mangroves, critical for ecological sustainability, are challenging to map accurately due to their fragmented 
nature and difficult accessibility. Existing datasets, often constrained to 10 m or above resolutions, could 
misrepresent fragmented mangrove regions and suffer from sampling biases, limiting their regional applicability. 
Furthermore, scale conversion’s spatial and statistical implications on mangrove mapping accuracy and area 
estimation remain largely unexplored. This study proposes a novel framework that leverages UHR (0.2 m) aerial 
photos and the DeepLabV3+ model for fine-scale mapping and systematically simulates and quantifies scale- 
induced effects. The resultant 20 cm-resolution mangrove map of Hong Kong achieved an overall accuracy 
(OA) of 92.1 %, with up to 53 % improvement compared to various existing datasets. It delineates complex 
boundaries in diverse coastal settings while preserving the structural integrity of fragmented patches. The total 
mangrove area in Hong Kong is estimated at ~720 ha, with Deep Bay comprising 77.5 %. The scale effects 
analysis revealed pronounced sensitivity in fragmented habitats, where each 1 m increase in resolution could 
result in an average area underestimation of 5000 m2 and up to 25 % OA degradation when transitioning from 
0.2 m to 30 m. Moreover, integrating patch geometry and scale responses indicated that 6 m is the optimal scale 
for monitoring. Beyond this, OA could sharply decline to below 82 % at the commonly used 10 m resolution and 
drop as low as 66 % at 30 m. These findings highlight the critical importance of fine-scale mapping using UHR 
images for effective mangrove conservation and management.

1. Introduction

Mangroves thrive in tropical and subtropical intertidal zones, play
ing vital roles in climate regulation, habitat stabilization, and shoreline 
protection. These ecosystems, composed of shrubs and small trees, 
support biodiversity and act as significant carbon sinks. They also offer 
natural protection against hurricanes, storms, and flooding, potentially 
preventing billions in damages (Bryan-Brown et al., 2020; Goldberg 
et al., 2020; Jia et al., 2023). Despite their ecological importance, 
mangroves are declining at a rate of 1–2 % annually, with a cumulative 
loss of 35 % over the past two decades due to sea-level rise, deforesta
tion, land-use changes, and urban and agricultural expansion (Feller 
et al., 2017; Goldberg et al., 2020; Lovelock et al., 2015; Romañach 
et al., 2018). Therefore, accurate quantification of mangrove distribu
tion is crucial for conservation, restoration, and risk assessment efforts.

Traditional field-based mapping methods are limited by 

accessibility, cost, and labor. Remote sensing has addressed these chal
lenges, providing a crucial tool for large-scale mangrove mapping(Friess 
et al., 2019; Giri et al., 2011; Wang et al., 2019; Wei et al., 2024). Global 
datasets, including the 30 m Landsat-based MFW2000(Giri et al., 2011) 
and the Sentinel-2-based HGMF_2020 (Jia et al., 2023), have enhanced 
our understanding of mangrove distributions. However, these datasets 
often miss smaller or newly formed patches and are limited in their 
ability to differentiate between mangroves and other vegetation, due to 
coarse resolution (Wang et al., 2020; Zhang et al., 2021; Zhao and Qin, 
2020).

In recent years, ultra-high-resolution (UHR) mapping, enabled by 
commercial satellites and UAVs, has significantly improved mangrove 
mapping at local and regional scales. Resolutions finer than 5 m from 
platforms such as WorldView-2, QuickBird, and IKONOS offer detailed 
mapping, especially for smaller mangrove patches(Guo et al., 2021; 
Mahdianpari et al., 2021). National-scale studies in China have shown 
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the advantages of sub-meter resolution for mangrove mapping, signifi
cantly improving accuracy and spatial detail compared to coarser global 
datasets (Tian et al., 2024; Zhang et al., 2021). While these fine-scale 
datasets address many limitations of global maps, they remain con
strained by the cost, labor, and time required for data acquisition and 
ground truth validation, particularly in underrepresented coastal re
gions such as Hong Kong. Existing mangrove mapping efforts have 
largely relied on traditional machine learning techniques such as SVM 
and random forests, which depend on manual feature extraction from 
satellite or lidar data. While these methods have been widely used, they 
often struggle with spectrally similar classes, leading to accuracy drops 
in complex coastal environments(Jia et al., 2023; Mallick et al., 2021).

In recent years, deep learning-based mangrove mapping has ach
ieved remarkable progress in wetland and coastal mangrove mapping. Y. 
Guo et al. (2021) utilized time-series Landsat data as input and inte
grated the classic Unet semantic segmentation with new network mod
ules for large-scale mangrove mapping. Wang et al. (2023) proposed the 
Swin-UperNet model, which uses high-resolution optical images in 
Hainan to segment Spartina alterniflora and mangroves for invasive 
species studies. M. Guo et al. (2021) applied CNN for local reserve-scale 
mangrove mapping, using raw bands and extracted indices from 
Sentinel-2, outperforming traditional machine learning and pixel-based 
classification methods. A key advantage of deep learning methods is 
their ability to automatically learn features from data, eliminating 
manual extraction and simplifying training while effectively handling 
raw imagery(Zhao et al., 2024). However, these models are often 
restricted to multispectral data and face challenges such as slow training 
speeds and difficulties in fine boundary segmentation.

DeepLabV3+, a semantic segmentation algorithm introduced by 
Google in 2018, improves segmentation by adding a decoder structure to 
fuse shallow and deep features, refining the output. Compared to models 
such as Unet and SegNet, the main advantage of DeepLabV3+ lies in its 
use of atrous convolution, which expands the receptive field without 
losing information, enabling each convolution output to cover a larger 
area (Chen et al., 2017). This model has been successfully applied in 
classifying land cover types through detailed texture analysis, shape 
recognition, and edge reconstruction in complex imagery (Du et al., 
2021; Gonzalez-Perez et al., 2022; He et al., 2024; Yao et al., 2019; Yu 
et al., 2022). However, its application in tropical and subtropical 
mangrove mapping remains limited. Recent studies have also shown the 
potential for handling large datasets using only RGB data while main
taining high classification accuracy. Fine-scale data from airborne sen
sors provide sufficient detail to differentiate mangroves from other 
coastal land cover types, overcoming the spectral similarity limitations 
of traditional methods(Carbonneau et al., 2020; Onishi and Ise, 2021). 
Nonetheless, applying the DeepLabV3+ model to segment mangroves 
from ultra-high-resolution RGB data remains largely unexplored.

The continued refinement of semantic segmentation techniques, 
alongside the integration of ultra-high-resolution (UHR) imagery, is 
poised to advance the study of scale effects in remote sensing. In this 
context, ’scale’ refers to spatial resolution—the smallest distinguishable 
feature a sensor can detect (Aplin, n.d.; Feng et al., 2017; Marceau and 
Hay, 1999; Weng, n.d.; Woodcock and Strahler, 1987). According to 
Lam and Quattrochi (1992), scale operates on four levels: mapping, 
observation, measurement, and operation, each impacting remote 
sensing data application and analysis. Our study focuses on spatial res
olution, crucial for accurate feature delineation in mangrove mapping. 
Scale effect, defined by the variability in features across different spatial 
resolutions, is a nuanced challenge in geoscience research. It gains sig
nificance as remote sensing data ranges from fine-scale to coarse reso
lution. Statistical methods show potential for addressing scale effects in 
vegetation mapping, yet remain underexplored. Our research introduces 
a novel approach to calculating and evaluating scale effects in mangrove 
mapping, employing fine-scale RGB imagery processed through deep 
learning-based segmentation to explore scale aggregation and transition 
implications.

The refinement of semantic segmentation techniques and the inte
gration of ultra-high-resolution (UHR) imagery have the potential to 
advance the study of scale effects in remote sensing. In this context, scale 
refers to spatial resolution or the smallest distinguishable feature a 
sensor can detect (Aplin, n.d.; Feng et al., 2017; Lam and Quattrochi, 
1992; Marceau and Hay, 1999). As Lam and Quattrochi (1992) noted, 
scale operates at four levels: mapping, observation, measurement, and 
operation, each influencing remote sensing applications. This study fo
cuses on spatial resolution, critical for accurately delineating mangrove 
features, as scale effects—variations in feature detection across different 
resolutions—pose a significant challenge in geoscience. While statistical 
methods have been used to examine scale effects in vegetation mapping, 
few studies have explored these effects in the context of mangrove 
ecosystems(Lam and Quattrochi, 1992; Marceau and Hay, 1999). This 
study offers a novel approach to quantifying scale effects, employing 
fine-scale RGB imagery and deep learning-based segmentation to assess 
the spatial distribution and accuracy of mangrove mapping.

Despite the availability of existing mangrove datasets with varying 
map extents, their accuracy and performance at the regional level 
remain largely unvalidated, and the impact of scale on these products is 
still unclear. Hong Kong, as an important region with mangrove distri
bution, has long lacked comprehensive, high-resolution mangrove data. 
Our study aims to address this gap by leveraging 20 cm-resolution aerial 
imagery and advanced deep learning techniques to produce an updated 
and detailed mangrove map (UHRHKM) and investigate how scale in
fluences classification results. Specifically, we aim to (1) evaluate the 
performance of DeepLabV3+ through accuracy assessments; (2) analyze 
the effects of scale based on fine-scale segmentation results; and (3) 
compare the UHRHKM map with the existing mangrove dataset. By 
addressing the need for high-resolution data and the challenges of scale, 
our study aims to deepen the understanding of mangrove spatial dis
tribution and examines the impact of scales on segmentation accuracy. 
Through these efforts, we seek to facilitate the creation of more effective 
conservation and management strategies, while enabling further appli
cations biophysical characteristics mapping applications.

2. Study area and data preparation

2.1. Study area

The study area focuses on the coastal regions of Hong Kong, located 
in southeastern China at the mouth of the Pearl River Delta, near major 
cities such as Shenzhen and Guangzhou (Fig. 1). Hong Kong, a key 
component of the Greater Bay Area, is characterized by around 60 
mangrove stands across six districts: Sai Kung, Northeast New Terri
tories, Tolo Harbour, Deep Bay, Lantau Island, and Hong Kong Island. 
The region’s varied topography, including mountainous areas and flat 
coastal plains, influences the distribution and health of mangrove eco
systems. These coastal environments are affected by the Pearl River and 
South China Sea, impacting salinity levels and sediment deposition. 
Hong Kong’s subtropical climate, with hot, humid summers and mild, 
dry winters, supports mangrove growth. These forests are crucial coastal 
wetlands, providing habitats, biodiversity conservation, carbon 
sequestration, and coastal defense. Despite their importance, mangroves 
in Hong Kong face threats from urban development and pollution.

2.2. Data preparation

2.2.1. Reprocessing of ultra-high-resolution (UHR) images
In this study, we utilized a subset of the DOP5000 series, an 

orthorectified aerial photography dataset produced by the Lands 
Department of Hong Kong. DOP5000 provides a high-resolution ground 
sample distance of 0.2 m per pixel, derived from aerial photographs 
taken at altitudes of 2,000 to 9,000 feet. The dataset is geographically 
referenced to the Hong Kong 1980 Grid system and provided in GeoTIFF 
format, with each tile consisting of 18,750 by 15,000 pixels and a file 
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size of approximately 810 MB. Employing digital photogrammetry and 
geometric correction techniques, DOP5000 ensures images are free from 
distortions due to camera tilt and topographic relief. For our study, we 
acquired 81 tiles covering Hong Kong’s coastal areas, capturing regions 
with potential mangrove and mudflat distributions. These images, 
captured in three RGB bands, offer detailed visual data conducive to 
thorough vegetation analysis and fine-scale mangrove mapping. The 
selected images and study area are shown in Fig. 1, with 90.1 % of the 
images taken between 2019 and 2023. Detailed acquisition dates and 
year distribution are provided in Table 1.

2.2.2. Sample dataset preparation
Labels were annotated from two sources: ground truth surveys in 

accessible mangrove areas and UHR image interpretation for inacces
sible regions, both verified by experts. This labeling process was 
essential for training accurate semantic segmentation models.

Samples were collected from across Hong Kong, representing diverse 
habitat characteristics such as species composition and different 
mangrove patch types. Special attention was given to ecologically sig
nificant and protected areas, including the Mai Po Ramsar Site in Deep 
Bay, as well as three Sites of Special Scientific Interest (SSSI): Lai Chi Wo 
within the Yankee Chau Tong Marine Park, Ting Kok in Tolo Harbour, 
and Hoi Ha Wan mangroves in Hoi Ha Wan Marine Park. These areas 
were prioritized to capture representative features of Hong Kong’s 
mangroves (Fig. 1). In this study, the sampling was designed to cover the 
majority of the 60+ officially recorded mangrove sites by the govern
ment (https://www.afcd.gov.hk/), ensuring a balanced and spatially 
even distribution across the entire study area.

To account for the complexity and variability of the dataset, data 
augmentation techniques such as cropping, rotating, scaling, and 

normalization were applied (Gonzalez-Perez et al., 2022; Guo et al., 
2021). Training tiles were generated by extracting 256 × 256 pixel 
image-label pairs with a 128-pixel stride and 90◦, 180◦, and 270◦ rota
tion angles. The dataset was then split into training, validation, and test 
sets in a ratio of 8:1:1, resulting in a total of 3959 images for compre
hensive model evaluation.

3. Methodology

3.1. Deep learning semantic segmentation models

3.1.1. DeepLabv3+ model and training
The DeepLabv3+ model, introduced in 2018, is widely recognized 

for its effectiveness in semantic segmentation tasks, particularly in land- 
use classification, due to its encoder-decoder structure and enhanced 
multi-scale contextual feature fusion (Chen et al., 2018; Du et al., 2021). 
In this study, we adopted DeepLabv3+ with a key enhancement: 
replacing the original Xception backbone with MobileNetV2 for 
improved computational efficiency and faster training (Howard et al., 
2018; Gonzalez-Perez et al., 2022). MobileNetV2, designed for light
weight applications, utilizes depthwise separable convolutions, inverted 
residuals, and a linear bottleneck structure to reduce the model’s 
parameter count while maintaining high accuracy, making it suitable for 
large-scale mapping tasks. For training, the backbone parameters were 
frozen after accuracy plateaued to optimize resource use. The model was 
trained for 200 epochs with a batch size of 16 and an initial learning rate 
of 0.001, managed dynamically across epochs. The Adam optimizer was 
employed to balance computational efficiency and performance (Guo 
et al., 2021). As the model takes 256 × 256 pixel images, the structure 
and parameter settings of the used backbone model are presented in 
Fig. 2 and Table 2.

Then we applied a frozen-stage strategy, where the backbone re
mains fixed once accuracy plateaus to optimize resource use. The model 
was trained for 200 epochs with a batch size of 16. An initial learning 
rate of 0.001 was set, and controlled automatically by training epochs 
(Hong et al., 2024; Vieilledent et al., 2018; Yao et al., 2019). The Adam 
optimizer was chosen for its computational efficiency and low memory 
requirements (Guo et al., 2021; Wang et al., 2023).

Fig. 1. Location and distribution of validation points of the study.

Table 1 
Acquired dates of the applied UHR aerial photo dataset.

Acquisition year Number of tiles Percentage

2017 8 9.9 %
2019 8 9.9 %
2021 2 2.5 %
2020 26 32.1 %
2023 37 45.7 %
Sum 81 100 %
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3.1.2. Comparison models
To evaluate segmentation performance, this study selected U-Net 

and PSPNet as benchmark models alongside the proposed DeepLabV3+
model.

U-Net is a widely used convolutional neural network designed for 
semantic segmentation tasks, particularly effective in biomedical and 
environmental applications. Its encoder-decoder structure facilitates the 
extraction of multiscale features, while skip connections ensure that 
spatial information from earlier layers is preserved during upsampling. 
U-Net is known for its simplicity and adaptability, making it a standard 
benchmark for segmentation tasks in various domains. For this study, 
the structural details of U-Net are omitted for brevity.

PSPNet (Pyramid Scene Parsing Network) is another prominent 
model designed to enhance feature extraction through its pyramid 
pooling module, which captures contextual information at multiple 
scales. This architecture allows PSPNet to excel in identifying large-scale 
objects and distinguishing between closely related classes. Despite its 
strength in handling multiscale features, PSPNet often struggles with 
fine-grained segmentation tasks, particularly in scenarios involving 
fragmented or narrow structures. The technical details of Unet and 
PSPNet’s architecture are not elaborated in this study to maintain a 
focus on comparative analysis.

3.2. Post-classification processing and validation

3.2.1. Post-classification processing
After generating the initial mangrove classification maps using the 

DeepLabv3+ model, we adopted several post-processing steps o refine 
the results and improve classification consistency. Morphological op
erations were applied to consolidate mangrove patches by filling small 
gaps and removing isolated noise elements. For areas where class 
confusion between mangroves and other vegetation occurred, we 

employed a context-driven relabeling process based on the spatial pat
terns characteristic of mangrove ecosystems.

3.2.2. Performance evaluation
This study also includes a comparison of accuracy with existing 

mangrove maps. Since the focus is on mangrove mapping precision, all 
non-mangrove classes were merged into a single category for the vali
dation points. Specifically, we randomly generated 1,500 validation 
points each for mangroves and non-mangroves, both within the model 
results and within a 10 m buffer zone near the edges of mangrove 
patches, considering the common resolution of fine-scale mangrove 
maps. These points were evenly distributed across different types of 
coastal areas with varying regional characteristics. The distribution of 
the validation samples is shown in Fig. 1. We then evaluate the perfor
mance of our mangrove segmentation and recognition model using 
several key metrics: Overall Accuracy (OA), Precision, Recall, F1 Score, 
and Cohen’s Kappa.

3.3. Scale effect analysis

The scale effects analysis in this study comprises three components: 
input data, the scaling calculation process, and the evaluation of scaled 
mangrove distribution layers. The input data originate from the ultra- 
high-resolution (20 cm per pixel) mangrove segmentation raster pro
duced by the deep learning model described in Section 3.2. We then 
generate a series of scale-transformed mangrove distribution layers 
through spatial aggregation analysis of neighborhoods using various 
scale factors. The spatial aggregation process follows the formula: 

R(i, j) =
1
N

∑N

n=1
I(n) (8) 

where R(i,j) represents the resampled value at the new scale for the 
pixel at (i,j), N is the total number of original high-resolution pixels 
within the new coarse pixel, and I(n) is the binary indicator for 
mangrove presence in the nth high-resolution pixel. The scale factor S 
adjusts the neighborhood size for aggregation: 

S =
desired scale resolution
original scale resolution

(9) 

The variable S is used to adjust the size of the neighborhood for 
aggregation, thereby transforming the original high-resolution data to 
the desired coarser scale. For each round of transformation, a series of 
threshold T is applied to the area percentage of mangrove presence: 

M(i, j) =
{

1 if R(i, j)⩾T, T ∈ {0.1,0.2, ...,1.0}
0 if R(i, j) < T (10) 

where M(i,j) represents the final classification of mangrove presence 

Fig. 2. Diagram of the applied DeepLabV3+ network.

Table 2 
MobileNetV2 network structure.

Input Operator t c n s

256××256 × 3 Conv2d − 32 1 2
128 × 128 × 32 Bottleneck 1 16 1 1
128 × 128 × 16 Bottleneck 6 24 2 2
64 × 64 × 24 Bottleneck 6 32 3 2
32 × 32 × 32 Bottleneck 6 64 4 2
16 × 16 × 64 Bottleneck 6 96 3 1
16 × 16 × 96 Bottleneck 6 160 3 2
8 × 8 × 160 Bottleneck 6 320 1 1
8 × 8 × 320 Conv2d 1 × 1 − 1280 1 1
8 × 8 × 1280 Avgpool 8 × 8 − − 1 −

1 × 1 × k Conv2d 1 × 1 − k − −
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in a coarse pixel, determined by the most dominant class within that 
pixel. T reflects the proportion of mangrove coverage within a scale- 
transformed cell, with values ranging from 0 to 1. Higher T values 
indicate a greater likelihood of the cell being classified as mangrove, 
with T = 1 requiring full coverage to classify as mangrove, and T =
0 requiring full coverage to classify as non-mangrove. To balance 
computational efficiency with the objectives of this analysis, we applied 
threshold intervals of 0.1 (i.e., 10 %, 20 %, … 100 %). The average value 
was used to represent overall mangrove distribution and explore the 
impact of different thresholds on classification accuracy (Camacho 
Olmedo et al., 2017; Feng et al., 2017; Weng, n.d.).

The scaling process was standardized from 20 cm to 1 m, then 
increased in 1 m intervals up to 30 m, the typical upper limit in 
mangrove remote sensing. To assess scale effects, we quantified the 
impact on mangrove classification using four metrics: area, OA, UA, and 
PA, based on previously described validation points. The optimal 
observational scale was identified at the inflection point where a 
noticeable slope change indicated the most effective resolution for 
mangrove analysis.

4. Results

4.1. Accuracy assessment of the mangrove map of Hong Kong in 2024

The confusion matrix and accuracy assessment of the ultra-high- 
resolution Hong Kong mangrove map (UHRHKM) for 2024 demon
strate excellent performance (Fig. 3). All evaluation metrics, including 
overall accuracy (OA), precision, recall, F1 score, and Kappa coefficient, 
exceed 0.90. The OA for the entire Hong Kong map reaches 0.921, with 
regional validation showing that most areas achieve OA values above 
0.90, except for Lantau Island with a slightly lower OA of 0.869. Addi
tionally, the model proves highly reliable in areas with limited samples. 
For example, in Tai Tam, where only a single mangrove habitat exists, 

the OA remains high at 0.919 (Fig. 3). The Kappa coefficient of 0.941 
indicates strong agreement between mapped pixels and ground-truth 
data, affirming the high accuracy of UHRHKM. These results demon
strate robustness and consistency across varied conditions in Hong 
Kong.

4.2. Areas and spatial distribution of Hong Kong mangroves in 2024

The study mapped mangrove distribution across Hong Kong in 2024, 
revealing a total mangrove area of 720.2 ha(Fig. 4). Deep Bay hosts the 
largest share, accounting for 77.5 % of the total mangrove area, followed 
by Sai Kung, the Northeast New Territories, Lantau Island, and Tolo. On 
Hong Kong Island, Tai Tam is the only mangrove habitat, covering just 
0.2 % of the total area (Fig. 4(a)). We then calculated patch numbers and 
median patch areas for the six regions. Median patch areas were used 
instead of mean values to minimize the influence of extremely large 
patches, predominantly found in Mai Po, ensuring an objective reflec
tion of patch characteristics (Fig. 4(b)). Patch counts were sorted in 
descending order to highlight differences in patch abundance and area 
across regions. Additionally, Fig. 4(c) illustrates the spatial distribution 
of patches categorized by area classes. The results reveal that Sai Kung 
exhibits the largest median patch size (449.8 m2), with patch counts 
comparable to those in Deep Bay(329 compared to 328 patches). 
Interestingly, the three eastern regions—Northeast New Territories, 
Tolo, and Sai Kung—where mangroves thrive on sandier coasts and 
ports with less sediment deposition, have larger average patch areas 
compared to Deep Bay (381.2 m2 compared to 346.3 m2). This finding is 
particularly noteworthy as Deep Bay is traditionally regarded as the 
most mangrove-rich region in Hong Kong. In contrast, mangroves along 
the east coast have received less attention and are often 
underappreciated.

Mangroves in Hong Kong are mainly found in estuaries and bays 
(Fig. 5). We selected one representative region of interest from each of 

Fig. 3. Accuracy assessment across six regions: (a) Confusion matrix by region (1 – Tolo, 2 – Deep Bay, 3 – Lantau Island, 4 – Northeast New Territories, 5 – Sai Kung, 
6 – Tai Tam); (b) Summary of OA, precision, recall, F1 score, kappa, and regional accuracies.
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the six mangrove regions in Hong Kong. Each of the selected sites 
showcases unique habitat characteristics or holds special conservation 
value to offer a clear view of mangrove distribution across varied en
vironments. Ting Kok, near Tolo Harbour, is one of the largest mangrove 
areas in Hong Kong. It has been designated a Site of Special Scientific 
Interest (SSSI) since 1985 due to its ecological importance, coarse sandy 
substrate, and high salinity environment (Fig. 5(a)). Mai Po, a Ramsar- 
listed wetland, is a globally significant mangrove habitat (Fig. 5(b)). Tai 
O’s mangroves, surrounding traditional stilt houses, highlight the 
interaction between mangroves and human activities (Fig. 5(c)). The 
mangroves in Lai Chi Wo are near Yan Chau Tong Marine Park (Fig. 5
(d)). Sai Keng, located in the Kat O Hoi area, benefits from significant 
freshwater inflow (Fig. 5(e)). Tai Tam, on Hong Kong Island, is the last 
remaining mangrove stand in this region and grows on rocky marshes 
and sandy beaches. It is also designated as an SSSI. The segmentation 
results confirm that the 0.2 m-resolution map effectively identifies 
mangrove patches across different habitats. The map maintains clear 
and accurate boundaries in complex areas such as mudflats, sandy 
beaches, marshes, and built-up zones (Fig. 5). It also captures fine details 
within large patches, including internal creek networks and fragmented 
habitats. These results highlight the map’s precision and ability to 

represent mangrove spatial characteristics with high accuracy.

4.3. Scale effects based on fine-scale segmentation

4.3.1. Accuracy trends and area estimation
Accuracy metrics (OA, UA, PA) across six regions, shown in Fig. 6, 

highlight the distinct scale-dependent responses of mangrove habitats. 
Fragmented regions such as Tolo and Northeast New Territories exhibit 
pronounced accuracy declines as resolution coarsens. OA of 91.9–93.4 
% at fine scales in these areas drops sharply to 68.8–72.1 % at 30 m, 
indicating significant challenges in classifying fragmented mangrove 
patches at coarser scales. Area estimation trends, presented in Fig. 7, 
further emphasize the scale sensitivity of fragmented regions. Sai Kung 
experiences substantial area underestimation, with a loss of 27–38 % at 
30 m. By comparison, Deep Bay shows a much smaller reduction of 3.47 
%. Regression analysis confirms that fragmented regions experience 
faster area loss rates (e.g., Sai Kung: y = − 0.88x + 66.68) compared to 
continuous areas (e.g., Deep Bay: y = − 0.73x + 556.65).

4.3.2. Patch geometric characteristics and optimal observation scale
Patch width, as a key geometric characteristic of mangroves 

Fig. 4. Area and patch characteristics of Hong Kong’s mangroves in 2024.(a) Proportional area distribution of mangroves by region, (b) patch count and median 
patch area for the six regions, and (c) spatial distribution of patches with symbols indicating different habitat area ranges.
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distributed stretching the coastlines, could explain the scale sensitivity 
observed in mangrove mapping across regions. To minimize the influ
ence of extremely large patches, the median patch width was used as the 
representative metric. In fragmented regions like Tai Tam (3.8 m) and 
Northeast New Territories (5.1 m), the median patch widths are com
parable to or smaller than pixel sizes at coarser resolutions, likely 
resulting in patch merging and misclassification. In contrast, regions 
with wider patches, such as Sai Kung (6.5 m) and Deep Bay (5.6 m), 
retain higher segmentation accuracy at 6 m resolution. However, over- 
generalization becomes apparent at resolutions of 10 m and beyond, 
leading to a loss of spatial detail and classification reliability. These 
geometric insights align with accuracy trends in Fig. 6, where 6 m 
emerges as a critical threshold across all regions. Below this scale, seg
mentation retains sufficient detail to capture fragmented and linear 
features. However, beyond 6 m, accuracy deteriorates rapidly and drops 
by 10–15 % from descending to 10 m-scale.

4.3.3. Habitat-specific scale responses
To further illustrate these scale effects, we analyzed three repre

sentative sites: fragmented patches in Chek Keng, pond-based man
groves in Ha Pak Nai, and linear mangroves in Tsim Bei Tsui (Fig. 8(a)- 
(c)). Accuracy and area changes for these sites are summarized in 
Table 3. These sites highlight the spatial and accuracy effects of scale 

conversion at 6 m, 10 m, and 30 m. At 6 m resolution, mapping main
tains acceptable accuracy, with OA ranging from 92.4 % to 95.2 %, 
reflecting moderate losses in edge sharpness. However, at 10 m resolu
tion, OA declines to 82.4 %-86.1 %, and area errors become noticeable. 
For example, Chek Keng shows an area decrease of 2994.5 m2, while Ha 
Pak Nai experiences a decrease of 133.6 m2. At 30 m resolution, over- 
generalization leads to further spatial distortions. Chek Keng exhibits 
a substantial OA reduction of 66.4 %, while Tsim Bei Tsui’s area is 
overestimated by 5652.3 m2 due to linear features being misrepresented 
as blocky structures.

4.4. Comparisons with existing mangrove datasets

The comparative analysis (Table 4, Fig. 9) highlights variations in 
mapping performance across global, national, and regional datasets 
when applied to selected ecologically complex regions. Omission errors 
are prevalent in global datasets such as GMW_V3 (30 m resolution), 
which struggle to delineate mangrove boundaries in tidal flats and creek 
systems, exemplified by the challenges in accurately mapping the Mai Po 
Wetland (Fig. 10(a)). These limitations are likely due to mixed pixel 
effects and insufficient spatial resolution. National datasets, such as 
MC2018 (2 m resolution), show improved performance but still fail to 
capture fragmented habitats effectively, especially in remote areas such 

Fig. 5. Regional examples of aerial photos and segmentation results across Hong Kong. (a) Ting Kok in Tolo, (b) Mai Po and adjacent mangrove stands in Deep Bay, 
(c) Tai O in Lantau Island, (d) Lai Chi Wo in Northeast New Territories, (e) Sai Keng in Sai Kung, and (f) Tai Tam in Hong Kong Island.
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Fig. 6. Accuracy metrics by scale for mangrove classification in Hong Kong.

Fig. 7. Scale-dependent variations in mangrove area across six regions of the study area. The blue lines indicate the average mangrove area at each scale, with the 
blue-shaded regions representing the standard deviation STD range. The red dashed lines represent the fitted linear regression equations for the average area changes. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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as Sam Nga Hau (Fig. 10(d)). Misclassification errors remain an issue 
even in finer-resolution datasets. For example, while LSMM (0.9 m 
resolution) improves patch continuity, it occasionally fragments con
nected patches in areas with complex terrain. This indicates persistent 
difficulties in representing heterogeneous mangrove landscapes. The 
UHRHKM map (0.2 m resolution) produced in this study addresses these 
challenges. It captures fragmented habitats and intricate tidal creeks 
with greater detail, maintaining edge sharpness and patch completeness, 

Fig. 8. Spatial demonstrations of effects of scale conversion mangrove mapping at typical sites: (a) Chek Keng, (b) Ha Pak Nai, and (c) Tsim Bei Tsui. The red line 
indicates mangrove extraction boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3 
Accuracy and area response to scale changes in mangrove mapping at selected 
sites.

Chek Keng Ha Pak Nai Tsim Bei Tsui

OA 
(%)

Area change 
(m2)

OA 
(%)

Area change 
(m2)

OA 
(%)

Area change 
(m2)

0.2 m 98.4 0.0 96.7 0.0 98.8 0.0
6 m 92.4 − 2098.5 93.3 − 1.6 95.2 − 359.7
10 m 83.6 − 2994.5 82.4 − 133.6 86.1 − 847.7
30 m 66.4 2905.5 66.2 − 433.6 67.3 5652.3

Table 4 
Overview of mangrove datasets used in comparative analysis.

Map product Year Authors Map 
extent

Scale 
(m)

GMW_V3 2022 Bunting et al. Global 30
WorldCover_V2 2021 European Space 

Agency
Global 10

HGMF 2020 Jia et al. Global 10
LREIS_GLOBALMANGROVE 2020 Xiao et al. Global 10
Zhao&Qin 2020 Zhao et al. National 10
MC2018 2018 Zhang et al. National 2
LSMM 2024 Tian et al. National 0.9
LUMHK_RasterGrid_2022 2022 Planning 

Department of 
Hong Kong

Regional 10

UHRHKM (This study) 2024 Zhang et al. Regional 0.2

Fig. 9. Comparative analysis of accuracy and area in mangrove map
ping datasets.
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particularly along the east coast. These advantages provide a more 
reliable spatial representation and improve the accuracy of area esti
mates in ecologically diverse mangrove regions.

5. Discussion

5.1. Scale-induced errors in mangrove mapping and its possible reasons

This study proposes a systematic quantification framework to 
examine the effects of scale changes on mangrove mapping accuracy and 
spatial area. By systematically aggregating ultra-high-resolution (0.2 m) 
binary classification results to coarser resolutions (e.g., 1 m, 6 m, 10 m, 
30 m) using a majority aggregation method, the framework simulates 
lower-resolution distributions and evaluates how scale influences map
ping outcomes. Majority aggregation ensures the preservation of the 
dominant land-cover class within each resampling window, minimizing 
distortions caused by mixed pixels and ensuring consistency in binary 
classifications. By approximating real-world mapping challenges, this 
approach highlights the critical issues of spatial detail loss, precision 
degradation, and area estimation errors at coarser scales. Through this 
approach, we demonstrated the high sensitivity of mangrove mapping to 
scale changes, with significant accuracy loss and area misestimation 
observed at lower resolutions, particularly in fragmented habitats 
(Figs. 6–8, Table 3).

Through integrating ecological perspectives, such as patch geometry, 
the framework identifies key thresholds where spatial detail and clas
sification reliability begin to degrade. For instance, in fragmented hab
itats where mangrove patch widths approach or fall below pixel sizes, 
boundary-blurring and patch merging become prominent due to 
mixed pixel effects (Fig. 8). These findings underscore the importance of 
high-resolution monitoring to retain critical spatial detail and classifi
cation accuracy. The observed trends (e.g., accuracy degradation by 
10–15 % from 1 m to 10 m resolution, as shown in Fig. 6) emphasize the 
need for a balanced approach in selecting observation scales, particu
larly for ecologically fragmented regions. At selected sites, spatial 

comparisons (Table 3) demonstrate how scale effects influence area and 
accuracy, highlighting the variability in mangrove patch characteristics 
across regions.

While this framework proposes new insights into scale-induced ef
fects, further refinements could address the remaining challenges. 
Incorporating advanced aggregation algorithms, such as weighted 
methods based on patch morphology, and integrating additional data 
types, such as spectral or structural features, would improve the preci
sion of scale-effect analyses. These advancements could provide a more 
comprehensive understanding of how scale affects mangrove distribu
tions and lead to improved models that better support ecological con
servation and management efforts.

5.2. Model performance, challenges, and future work

This study is the first attempt to apply deep learning methods for 
mangrove segmentation in Hong Kong, achieving great improvements 
over existing datasets. The DeepLabV3+ model demonstrated strong 
performance, with overall accuracy (OA), precision, and F1 scores 
reaching 92.1 %, 94.5 %, and 92.7 %, respectively. Compared to other 
models like UNet, PSPNet, and DeeplabV2, it achieved significant im
provements in precision, surpassing DeeplabV2 by 24.83 %, PSPNet by 
16.4 %, and UNet by 9.1 %. However, slightly lower PA values highlight 
areas where further refinement is needed (Table 5).

Examples of segmentation results across various models in Fig. 11
highlight the spatial advantages of the DeepLabV3+ model. Four sites 
with distinct environmental settings were analyzed: a sediment-rich 

Fig. 10. Comparison of mangrove distribution maps from various sources in typical regions.

Table 5 
Accuracy comparison of different mangrove segmentation models.

Model OA Precision Recall F1 score

DeeplabV2 0.916 0.757 0.937 0.853
Unet 0.903 0.854 0.97 0.845
PSPnet 0.92 0.786 0.975 0.87
Improved DeeplabV3þ 0.921 0.945 0.91 0.927
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estuary, brackish zones near aquaculture ponds, bays, and islands 
(Fig. 11(a)-(d)). Referring to ground-truth labels, the DeepLabV3+
model consistently outperformed its counterparts, particularly in 
boundary refinement and detail preservation. For instance, PSPNet 
showed evident misclassification in regions such as islands (Fig. 11(d)), 
where mangroves were entirely undetected, leading to omission errors. 
Similarly, DeeplabV2 struggled with mangroves along Hong Kong’s east 
coast (Fig. 11(b)), resulting in overly smoothed edges or jagged artifacts. 
In contrast, the DeepLabV3+ model significantly mitigated these issues, 
delivering better accuracy in complex, fragmented, or linear mangrove 
habitats.

Nevertheless, mangrove classification still poses inherent challenges 
due to complex edge structures, fragmented habitats, and intertidal 
dynamics, which require robust models to ensure accurate boundary 
delineation. While the DeepLabV3+ model effectively mitigated many 
of these issues, challenges such as edge misclassification and over- 
segmentation of similar vegetation types, including reed beds and 
fragmented mangrove patches, persist. Future improvements could 
focus on enhancing feature extraction through advanced techniques 
such as attention mechanisms, incorporating additional data like spec
tral bands and structural parameters (e.g., tree height), and improving 
feature fusion between shallow and deep layers. By addressing these 
aspects, the model could better capture the intricate details of mangrove 
patches in ecologically complex environments, ensuring more reliable 
classification and enhanced adaptability to intertidal conditions.

6. Conclusions

This study represents the first effort to apply deep learning methods 
for mangrove mapping in Hong Kong, achieving remarkable results with 
the DeepLabV3+ model. The model attained an overall accuracy (OA) of 
92.1 %, with user accuracy (UA) and producer accuracy (PA) reaching 
94.5 % and 92.7 %, respectively. The improved DeepLabV3+ out
performed UNet and PSPNet, particularly in precision, with improve
ments of 24 %, 16 %, and 19 %, respectively. Compared to existing 
datasets, the results showcased significant advancements in spatial 

detail, including boundary reconstruction, background delineation in 
complex natural and human-modified settings, and the preservation of 
internal patch structures.

A novel framework was proposed to quantify scale effects, revealing 
insights into accuracy and area estimation at various scales. Analysis of 
patch width indicated 6 m as the optimal scale, with its ecological sig
nificance supported by better resolution alignment to fragmented 
mangrove habitats. Beyond 6 m, accuracy dropped sharply, first within 
the 10 m range and then accelerating when transitioning to 30 m, where 
accuracy fell to as low as 0.7 across the study area and 0.66 in frag
mented regions. In habitats dominated by fragmented mangroves, each 
1 m increase in resolution resulted in an average underestimation of 
5000 m2 in area and up to 38 % loss in accuracy. While resolutions finer 
than 10 m can reduce accuracy loss overall, some mangrove habitats still 
experience > 15 % accuracy degradation.

This study underscores the importance of fine-scale mapping in 
accurately representing mangroves and the necessity of addressing 
scale-induced uncertainties. The results offer implications for ecosystem 
conservation, sustainable management, and policy-making.
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