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Next‑Generation Desalination Membranes 
Empowered by Novel Materials: Where Are We 
Now?
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HIGHLIGHTS

•	 The theoretical separation performance and practical separation performance of various membranes were collected and compared.

•	 An up-to-date holistic and systematic evaluation of membranes from five dimensions (i.e., water permeance, water/NaCl selectivity, 
membrane cost, scale of development, and stability) is provided and visualized by radar charts.

•	 The critical deficiencies revealed in the review are important in guiding the development of next-generation reverse osmosis mem-
branes.

ABSTRACT  Membrane desalination is an economical and energy-efficient method 
to meet the current worldwide water scarcity. However, state-of-the-art reverse osmo-
sis membranes are gradually being replaced by novel membrane materials as a result 
of ongoing technological advancements. These novel materials possess intrinsic pore 
structures or can be assembled to form lamellar membrane channels for selective 
transport of water or solutes (e.g., NaCl). Still, in real applications, the results fall 
below the theoretical predictions, and a few properties, including large-scale fabrica-
tion, mechanical strength, and chemical stability, also have an impact on the overall 
effectiveness of those materials. In view of this, we develop a new evaluation framework in the form of radar charts with five dimensions (i.e., 
water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) to assess the advantages, disadvantages, and 
potential of state-of-the-art and newly developed desalination membranes. In this framework, the reported thin film nanocomposite membranes 
and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes. This review will dem-
onstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes. In this review, 
we also point out the prospects and challenges of next-generation membranes for desalination applications. We believe that this comprehensive 
framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and 
development in the field of membrane technology, leading to new insights and advancements.
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Abbreviations
2D	� Two-dimensional
AAO	� Anodic aluminium oxide
AQPs	� Aquaporins
AQPZ	� Aquaporin-Z
AWCs	� Artificial water channels
BSA	� Bovine serum albumin
BWRO	� Brackish water reverse osmosis
CNTs	� Carbon nanotubes
COFs	� Covalent-organic frameworks
CVD	� Chemical vapor deposition
G1	� First-generation
G2	� Second-generation
G2.5	� Transitional generation
G3	� Emerging generation
GO	� Graphene oxide
I-quartets	� Imidazole-quartet channels
IP	� Interfacial polymerization
MD	� Molecular dynamics
MOFs	� Metal–organic frameworks
MPD	� m-Phenylenediamine
PAN	� Polyacrylonitrile
PAPs	� Peptide-appended pillar[5]arenes
PDA	� Polydopamine
PEI	� Polyetherimide
PES	� Polyethersulfone
PDMS	� Polydimethylsiloxane
PVA	� Polyvinyl alcohol
PSF	� Polysulfone
RO	� Reverse osmosis
SLB	� Supported lipid bilayer
SWRO	� Seawater reverse osmosis
TFC	� Thin-film composite
TFWC	� Thin-film water channel
TFN	� Thin-film nanocomposite
TMC	� Trimesoyl chloride
VA-CNT	� Vertically aligned CNT

1  Introduction

Water scarcity is an unavoidable challenge due to the global 
population explosion, industrialization, and climate change 
[1, 2]. To mitigate this crisis, desalination and water reuse by 
reverse osmosis (RO) technology [3, 4] have been increas-
ingly adopted. RO technology relies on membrane materials 
that can selectively remove small solutes, even monovalent 
salts, from aqueous solutions [5]. Currently, the thin-film 
composite (TFC) membranes being used in RO processes 

are predominately composed of polyamide-based materi-
als. These polyamide membranes are limited by permeance 
selectivity trade-off [6–9], chlorine attack [10–12], and 
membrane fouling [12–14], which can be attributed to the 
inherent material properties of polyamide chemistry. There-
fore, alternative advanced membrane materials are highly 
desired to further develop RO membranes.

A wide variety of novel materials have been explored for 
making high-performance RO membranes. For example, 
the naturally occurring aquaporins (AQPs), when incor-
porated into amphiphilic triblock-polymer vesicles, exhib-
ited a water permeance of 167 μm s−1 bar−1, which is two 
orders of magnitude higher than the water permeance of 
the current polyamide-based TFC membranes [15]. Inspired 
by AQPs, artificial water channels (AWCs) constructed by 
simpler synthetic compounds when embedded in the poly-
amide layer demonstrated their effectiveness in improving 
separation performance and fouling resistance of membranes 
[16, 17]. Many other materials, such as carbon nanotubes 
(CNTs) [18, 19], nanoporous graphene [20], and stacked 
two-dimensional (2D) materials [21, 22], also have good 
implications in separation performance, chemical stability, 
and/or fouling resistance.

Although many research papers have reported the excit-
ing performance of novel materials, they may not accurately 
reflect the overall separation performance in the RO process, 
and some critical characteristics of the membrane materials 
(e.g., cost, scale, stability) were overlooked. For instance, the 
results are not comparable in some situations because these 
materials were tested in a concentration-driven process [23] 
or thermal-driven process [24] instead of the pressure-driven 
RO process. In other cases, simulation has provided excit-
ing results of materials, but some traits of these materials 
which can greatly influence the performance were ignored, 
such as the flexibility of metal–organic frameworks (MOFs) 
[25–27]. On the other hand, certain membrane fabrication 
processes, like the preparation of vertically aligned CNT 
(VA-CNT) membranes, which involve chemical vapor depo-
sition (CVD) and complicated fabrication procedures [28], 
are difficult to scale up for industrial uses. Thus, we require 
a standard framework to assess various membrane materials 
and contrast them in all relevant dimensions.

There exist several review papers [8, 29, 30] that pro-
vide qualitative narrations on membrane materials, but a 
more quantitative framework is still needed. Pendergast 
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et al. [31] provided a useful semi-quantitative assessment of 
water treatment membranes based on performance enhance-
ment and commercial readiness, but the work was done one 
decade ago, and membrane technology has advanced much 
since then. In this paper, we will first briefly introduce the 
status of novel materials for RO membranes. Then, we will 
provide our critical evaluations of these materials based on 
their separation performance and further benchmark them 
from all-around dimensions. Finally, we will provide sug-
gestions for future RO membrane development. In short, 
we intend to provide an up-to-date holistic and systematic 
evaluation of emerging membrane materials. The critical 
deficiencies of these membrane materials revealed in this 
review call for more attention from future research, which 
will be of great importance in guiding the development of 
next-generation high-performance RO membranes.

2 � Novel Materials with Potential for RO 
Membranes

Historically, the first-generation (G1) of practically selec-
tive cellulose acetate RO membranes–with an asymmet-
ric structure (Fig. 1a)–was introduced in the 1960s [32]. 
Despite achieving NaCl rejection of up to 99%, cellulose 
acetate membranes generally have low water permeance, 
narrow operation range (e.g., pH within 4–6), and poor 
resistance to biodegradation [31, 33]. Due to these critical 
limitations, the G1 cellulose acetate membranes were soon 
replaced by TFC polyamide membranes [34], the second-
generation (G2) RO membranes (Fig. 1b). TFC polyamide 
membranes produced by interfacial polymerization (IP) 
represent the state-of-the-art desalination membranes, with 
modern commercially available TFC RO membranes fea-
turing water permeance of ~ or > 1 L m−2 h−1 bar−1, NaCl 
rejection of > 99%, and a typical operational pH range of 
3–10 (with wider pH ranges possible for tailor-designed 
TFC membranes). Nevertheless, the polyamide-based TFC 
RO membranes are still constrained by a strong permeance-
selectivity trade-off [6–9], generally showing compromised 
selectivity for membranes with greater water permeance. 
Key factors in the trade-off behavior are the structure and 
properties of the polyamide selective layer, such as pore size 
distribution and crosslinking density. For example, increas-
ing the crosslinking degree reduces the effective pore size, 
which tends to improve membrane rejection and selectivity 

at the expense of reduced water permeance. The polyam-
ide active layer, an irregularly crosslinked amides network, 
typically contains unevenly distributed pores, including 
both smaller network pores and larger aggregate pores [35]. 
This mal-distribution of pore size for polyamide, in con-
trast to the well-defined and uniformly-distributed pores for 
many emerging porous materials such as AQPs and MOFs 
(Table 1), tends to adversely affect membrane rejection and 
ultimately limit the selectivity of polyamide G2 membranes. 
In addition, these G2 membranes are prone to chlorine attack 
[10–12] and membrane fouling [12–14], causing decreased 
performance and lifespan of the membranes. More specifi-
cally, polyamide membranes can degrade when exposed to 
chlorine, as chlorine can break down the amide groups in 
the polyamide structure, leading to reduced effectiveness in 
removing salt and other impurities.

2.1 � Porous/Non‑Porous Nanofillers

A huge wave of exciting studies searching for next-
generation desalination materials has surged in the new 
millennium [8, 29–31, 36]. These novel materials often 
feature intrinsic pore structures with well-defined indi-
vidual channels (e.g., AQPs and CNTs) or highly porous 
structures (e.g., MOFs and nanoporous graphene). For 
example, CNTs have a hydrophobic channel that can trans-
port water molecules in a “ballistic motion” with minimal 
friction [37]. Alternatively, some nanomaterials may be 
assembled to construct nanoscale lamellar flow channels, 
e.g., by the stacking of 2D nanosheets where water flows 
laterally between the sheets. In this section, we will pro-
vide a brief overview of the emerging generation (G3) 
of materials for desalination–their structures and the rel-
evant mechanisms for desalination (Table 1). As a side 
note, these novel materials can also be incorporated into 
polyamide rejection layers as nanofillers for synthesiz-
ing so-called thin-film nanocomposite (TFN) membranes 
(Fig. 1c). The TFN structure, first introduced by Hoek and 
co-workers [38] in 2007, combines the advantages of the 
polyamide matrix and the nanofillers. Indeed, many novel 
materials–though featuring interesting pore structures–are 
difficult to form into a continuous separation layer, and 
the TFN approach provides an alternative way to utilize 
the intrinsic pore structures of nanofillers (e.g., for boost-
ing membrane permeance) while maintaining membrane 
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mechanical integrity using the polyamide matrix. Further-
more, the TFN approach also allows the use of non-porous 
materials, such as TiO2 [39, 40], Ag [41, 42], silica nano-
particles [43, 44], and graphene oxide (GO) nanosheets 
[45, 46]. These non-porous nanofillers could improve the 
separation performance by enhancing the hydrophilicity 
of membranes [47] or creating selective nanochannels at 
the filler-matrix interface [41]. In addition, some of these 
non-porous materials, e.g., TiO2 [39, 48], Ag nanoparticles 
[49, 50], and GO nanosheets [45], may endow membranes 
with additional properties, such as biofouling resistance 
and chlorine resistance. Nevertheless, at a fundamental 
level, the permeance and selectivity of TFN membranes 

are still constrained by the performance of the polyamide 
matrix. For this reason, TFN membranes can be viewed as 
the transitional generation (G2.5) between the TFC mem-
branes (G2) and the next-generation RO membranes (G3) 
featuring the emerging desalination materials (Fig. 1).

2.2 � Individual Channels

The construction of pores or channels with tailored geome-
try and chemistry is the core of next-generation desalination 
materials. In general, these porous materials can be divided 
into materials with intrinsic pores and materials which 
form lamellar channels by assembly (Fig. 1d, Table 1). The 

Fig. 1   Development of RO membrane materials. Schematic illustration of a cellulose acetate membrane, b polyamide-based TFC membrane, 
and c TFN membranes with porous/non-porous nanofillers. d Novel materials with potential for RO membranes: (I) AQP subunit; (II) I-quartet 
water channels that selectively accommodate water-wires, adapted with permission from Ref. [51], copyright  © 2013, American Chemical 
Society; (III) CNT; (IV) zeolite ZSM-5 crystal structure [52]; (V) UiO-66 (Zr, O, C, and H atoms are in red, blue, gray, and white respec-
tively), reproduced with permission from ref. [53], copyright © 2008, American Chemical Society; (VI) COF TpPa-1 (C, O, and H atoms are in 
grey, red, and blue, respectively), reproduced with permission from ref. [54], copyright © 2012, American Chemical Society; (VII) nanoporous 
graphene, reproduced with permission from Ref. [55], copyright © 2019, The American Association for the Advancement of Science; (VIII) 
stacked GO nanosheets, reproduced with permission from Ref. [56], copyright © 2020 Elsevier Inc.; (IX) stacked MXenes nanosheets (Ti, C, 
O, and H atoms are in grey, black, blue, and pink, respectively), reproduced with permission from Ref. [57], copyright © 2011, WILEY–VCH 
Verlag GmbH & Co. KGaA, Weinheim; (X) stacked MoS2 nanosheets (Mo and S atoms are in blue and yellow respectively), reproduced with 
permission from Ref. [58], copyright © 2022, Wiley–VCH GmbH
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intrinsic pores can be further classified into individual chan-
nels and multiple pores. Individual channels refer to materi-
als that possess intrinsic channels but do not form regular 
continuous films by themselves. For instance, AQPs [59–61], 
a large family of proteins existing in biological membranes 
for water transport, possess a central pore of 2.8 Å in each 
subunit (Fig. 1d(I)). The fine pore circumscribed by hydro-
phobic residues only allows water molecules to go through 
in a single file. The combined effect of size restriction, water 
dipole reorientation, and electrostatic repulsion within the 
pore prevents the transport of species other than water. In 
order to mimic AQPs, AWCs constructed by simpler com-
pounds have been investigated for desalination [62, 63]. Sev-
eral kinds of AWCs have been reported, including dendritic 
dipeptides [64, 65], imidazole-quartet channels (I-quartets) 
[66, 67], pillar [5], arenes [68, 69], and polymeric foldamer-
based AWCs [70, 71]. Among them, I-quartets have demon-
strated promising desalination performance: when they are 
incorporated in a polyamide thin film, the resulting thin-film 
water channel (TFWC) membranes show 99.5% rejection 
of NaCl with a water permeance of 2.8 L m−2 h−1 bar−1 
under seawater RO (SWRO) conditions (35,000 ppm NaCl 
at an applied pressure of 65 bar) [16, 17]. I-quartet chan-
nels [66], which are self-assemblies of imidazoles through 
noncovalent bonding, are stabilized by water-wires within 
the channels (Fig. 1d(II)). According to stopped-flow light 
scattering experiments, I-quartet channels have high water 
permeance and total ion rejection except for protons [67]. 
Analogous to AWCs, CNTs have inherent channels within 
the cylinders of carbon atom sheets (Fig. 1d(III)). The size 
[72] and functionality [73] of CNTs can influence the trans-
port of water and ions, as shown by molecular dynamics 
(MD) simulations. Once water molecules enter the smooth 
and hydrophobic nano-channels of CNTs, the transport is 
frictionless [37]. CNTs with appropriate sizes could have an 
even higher water permeability [74] than AQPs (Table 1). 
Moreover, CNTs have good antimicrobial properties [75], 
which can benefit the biofouling resistance of membranes. 
Since these individual channels cannot directly form con-
tinuous mechanically stable films, they are commonly incor-
porated into continuous matrices that are able to resist harsh 
pressure conditions used for RO processes. Apart from TFN 
membranes with polyamide as the matrix, other continu-
ous matrices may be adopted. For instance, the supported 
lipid bilayer containing AQPs or AQP-incorporated vesicles 
(AQP SLB membrane) [76, 77] and polymeric or inorganic 

matrices (e.g., polystyrene [18, 78], epoxy [28], silicon 
nitride [19]) filling up the spaces between nanotubes in VA-
CNT have been investigated for desalination.

2.3 � Porous Crystalline Materials

Different from materials with individual channels, porous 
crystalline materials and porous 2D materials containing 
multiple channels not only can be incorporated into TFN 
membranes but also may form continuous films on their 
own, though their mechanical stability remains an impor-
tant controversial issue. Porous crystalline materials, such as 
zeolites, MOFs, and covalent-organic frameworks (COFs), 
can be applied in desalination due to their high porosity and 
defined pore size [30, 126–130]. MD simulations show that 
they can achieve high water permeance and complete salt 
rejection (Table 1). These three porous crystalline frame-
works have different structural components. Specifically, 
zeolites are inorganic aluminosilicates made up of SiO4 and 
AlO4 tetrahedra [131] (Fig. 1d(IV)). MOFs are inorganic/
organic hybrid materials formed by the coordination of metal 
ions or clusters with organic likers [132] (Fig. 1d(V)). COFs 
are organic materials composed of light atoms (i.e., C, H, N, 
O, B) [133] connected via covalent bonds (Fig. 1d(VI)). The 
transport of water and ions through these porous frameworks 
is governed by the size of the pore and the functional groups 
attached to the pores [26, 126, 134–136]. The pore sizes 
of MOFs and zeolites are typically sub-1 nm, while COFs 
typically have pore sizes in the range of 1–5 nm, which are 
unfavorable towards water/NaCl separation. To make COFs 
suitable for desalination, a common strategy is to reduce 
their pore sizes by the addition of functional groups or a 
special stacking fashion (Table 1). Unfortunately, some 
of these materials degrade in water, such as boroxine and 
boronate ester-linked COFs [133] and most kinds of MOFs 
[137]. However, researchers have found water-stable types, 
for example, COFs based on imine, beta-keto-enamine, or 
azine linkages [138], and MOFs made by high valence metal 
ions [139] or imidazolate-based organic linkers [140]. These 
water-stable porous materials have huge potential for desali-
nation and water treatment, subject to scalability of fabrica-
tion (see Sect. 4).
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2.4 � Porous 2D Materials

Several 2D materials with multiple nanoscale pores also 
show good potential for desalination. The most famous 
example of 2D materials is graphene, a single layer of 
sp2-bonded carbon atoms [141, 142]. Since graphene is 
impermeable to water, nanoscale pores could be created onto 
graphene by oxygen plasma or ion bombardment to prepare 
nanoporous graphene [96, 97, 143, 144] (Fig. 1d(VII)). 
Nanoporous graphene is ideal for desalination because of 
its one-atomic ultra-thin thickness, which can facilitate 
high water permeance. Meanwhile, graphene has outstand-
ing antifouling properties and high chlorine tolerance [114, 
145], both of which are advantages for next-generation RO 
membranes. Apart from nanoporous graphene, nanoporous 
MXene and nanoporous MoS2 have also been investigated 
for desalination. MXenes are early transition metal carbides 
and/or carbonitrides [57, 146] (Fig. 1d(IX)). They have 
graphene-like morphology, hence the name MXenes [57]. 
MoS2 is a layered metal chalcogenide composed of one sheet 
of Mo atoms sandwiched between two sheets of S atoms 
[58] (Fig. 1d(X)). Both single-layer MXene and single-
layer MoS2 can be made by exfoliation [57, 121, 147, 148]. 
Nevertheless, the investigation of nanoporous MXene and 
nanoporous MoS2 for pressure-driven desalination is still 
in the stage of simulation (Table 1). In principle, ultra-thin 
2D MOFs and 2D COFs can also be classified as porous 2D 
materials.

2.5 � Assembly of Materials with Lamellar Channels

In contrast to materials with intrinsic pores, nanosheets 
of 2D materials, such as GO [149, 150] (Fig. 1d(VIII)), 
MXene [117, 151] (Fig. 1d(IX)), MoS2 nanosheets [58, 121] 
(Fig. 1d(X)), can form lamellar channels by assembly/stack-
ing. The lamellar channels in these stacked 2D materials 
allow water to flow through and retard hydrated ions and 
other solutes. Therefore, the interlayer distance and the sur-
face functional groups of these 2D nanosheets regulate the 
separation performance of these membranes [21, 112, 152, 
153]. Table 1 provides a comparison of these 2D materials 
on the basis of MD simulations. MoS2 nanosheets have sta-
ble interlayer spacing because of the absence of hydrophilic 
groups and strong van der Waals forces between layers [122, 
123]. In contrast, the interlayer distance of GO nanosheets 

and MXene nanosheets are often altered by operation param-
eters of filtration, such as pH [154, 155], pressure [156], 
and solute concentration of feed solutions [113, 115]. To 
mitigate this issue, intercalation with high-valent metal ions 
(e.g., Al3+ [116]) and crosslinking via covalent bonds [22] 
have demonstrated some degree of success. It is also worth-
while to note that MoS2 [124] and MXenes [118] can easily 
get oxidized in ambient conditions, which could limit their 
practical applications.

3 � Separation Performance of RO Membranes

Water permeance and selectivity are two key indicators for 
RO membrane performance. To evaluate membrane perfor-
mance, a plot of water/NaCl permselectivity (A/B) versus 
water permeance (A) is adopted following the approach of 
Yang et al. [6, 7]. A/B and A are preferred over intrinsic 
water/NaCl permeability selectivity (Pw/Ps) and intrinsic 
water permeability (Pw) because Pw and Ps are dependent 
on membrane thickness that is often unavailable or inaccu-
rately measured in many published papers. In addition, the 
water permeance A value better reflects the available water 
flux under a given pressure driving force. Figure 2 summa-
rizes the separation performance of RO membranes made 
of various novel materials. For benchmarking purposes, 
data points for conventional lab-made polyamide-based 
TFC membranes (empty light grey symbols) and commer-
cially available RO membranes (solid light grey symbols) 
are included. Furthermore, the “2019 upper bound” (black 
line in Fig. 2) [6], representing the highest performance of 
TFC membranes, is also superimposed in Fig. 2. In gen-
eral, TFN membranes with various nanofillers show similar 
or sometimes slightly better separation performance com-
pared with existing TFC polyamide membranes and the 
“2019 upper bound” (Fig. 2b). As discussed in Sect. 2, these 
G2.5 membranes generally rely on the polyamide matrix to 
maintain membrane integrity (and thus to minimize mem-
brane defects), such that their separation performances are 
strongly influenced by the polyamide backbone. At the same 
time, TFN membranes offer opportunities for permeance/
selectivity enhancement by taking advantage of the raised 
permeability of the intrinsic pore structures of nanofillers or 
interfacial selective channels induced by the nanomaterials 
[41]. Enhancing the incorporation density of the nanoma-
terials within the polyamide backbone and the alignment of 
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nanochannels (e.g., CNTs [157]) to facilitate the transport 
of water molecules could lead to an additional improvement 
in the performance of TFN membranes.

Surprisingly, many G3 membranes, made of novel materi-
als without a polyamide matrix, do not appear to offer com-
petitive separation performances in pressure-driven desali-
nation experiments (Fig. 2). Indeed, the experimental results 
reported in the literature are often far below the theoretical 
predictions (Table 1). This mismatch can be ascribed to 
the thickness and/or defects in these novel membranes. For 
example, zeolite membranes, hampered by their microm-
eter-level thickness [159–163] (in contrast to 10–20 nm 
for RO polyamide layers [164]), generally have low water 
permeance (< 0.5 L m−2 h−1 bar−1) (Fig. 2a). Their avail-
able selectivity is also moderate (< 10 bar−1), which is not 
in consonance with the theoretical NaCl rejection derived 
from simulation [84] (Table 1). Similarly, AQP SLB mem-
branes and stacked MXene membranes commonly present 
low selectivity (Fig. 2a) due to their unavoidable defects 
[165–169]. COF membranes have low selectivity (Fig. 2a) 
not only because their typical pore size is in the range of 
nanofiltration/ultrafiltration [138] but some defects and 
amorphous regions can harm selectivity [129, 169]. Even 
though the selectivity of COF membranes can be theoreti-
cally boosted by some special stacking fashions [90] or uni-
form functionalization [89, 91], it often cannot be easily 
achieved in practice. Nevertheless, it is also worthwhile not-
ing some exceptional cases of G3 membranes, e.g., nanopo-
rous graphene with optimal pore size supported by a single-
walled CNT network [20]. This membrane offers a thin and 
defect-free structure, demonstrating extremely attractive 
separation performance (Fig. 2a) that is in accordance with 
the simulation results [98, 170] (Table 1). The salient exam-
ple of nanoporous graphene demonstrates the huge potential 
of the next-generation G3 membranes for simultaneously 
boosting permeance and selectivity, provided that membrane 
thickness and defect formation can be well controlled.

4 � Multi‑Dimension Evaluation of Novel RO 
Membranes

To facilitate the application of novel RO membranes, dif-
ferent dimensions of membranes should be considered. 
Apart from the basic separation performance, additional 
aspects, including membrane cost, scale, and stability, could 

significantly affect their commercialization. For example, 
although nanoporous graphene, described above, has out-
standing separation performance [20], its high fabrication 
cost, difficulty in scaling up, and poor mechanical properties 
could be decisive factors limiting its commercial success 
[171, 172]. Therefore, a systematic re-evaluation of litera-
ture demonstrating the strengths, weaknesses, and poten-
tial of novel RO membranes is necessary to figure out their 
development directions. In this section, five dimensions (i.e., 
permeance, selectivity, membrane cost, scale, and stability) 
are scored in radar charts to provide a holistic evaluation of 
novel RO membranes (TFN membranes in Fig. 3 and various 
G3 membranes in Fig. 4), with a higher score (on a scale of 
5) indicating a better membrane attribute according to the 
detailed rubrics in Online Appendix C.

4.1 � TFN Membranes

Figure 3 evaluates TFN (G2.5) membranes fabricated 
using different novel materials. The currently available 
permeance and selectivity are scored based on the value 
of A and A/B (or NaCl rejection if A/B is not available) of 
TFN membranes tabulated in Table S2 together with the 
rubrics in Online Appendix C. Conventional TFC (G2) 
membranes are represented by the grey-shaded polygon 
in the same figure for benchmarking purpose. Based on 
their typical water permeance (1–5 L m−2 h−1 bar−1) and 
water/NaCl selectivity (5–30 bar−1), the state-of-the-art 
TFC membranes are scored 3 for permeance and 4 for 
selectivity. TFN membranes can achieve slightly improved 
separation performance compared to TFC membranes due 
to the intrinsic pore structures of nanofillers or interfa-
cial selective channels induced by nanomaterials in the 
polyamide matrix [41]. However, the dispersion of nano-
fillers in polyamide matrices can be a concern since the 
aggregation of nanofillers may result in defects that ham-
per membrane selectivity [173]. For example, in I-quartet-
based TFWC membranes, the assembly of I-quartet on 
the substrate before the IP process [16] is a challenging 
step, which may significantly affect the separation per-
formance. To better disperse nanofillers, it is crucial to 
carefully choose the dispersion solution (aqueous vs. 
organic solution), nanofiller concentration, and surface 
modification of nanofillers (e.g., polydopamine (PDA) 
coating to increase the hydrophilicity of CNTs [157]). In 
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addition, in-situ fabrication of TFN membranes could be 
a promising strategy to uniformly distribute nanofillers 
without requiring additional processes for nanomaterial 
synthesis (e.g., Ag nanoparticles reduced from AgNO3 by 
m-phenylenediamine (MPD) [42] and silica nanoparticles 
polymerized from tetramethoxysilane [43]).

Figure 3 also systematically evaluates additional dimen-
sions of TFN membranes in comparison with TFC mem-
branes (see detailed rubrics in Online Appendix C). Mem-
brane cost is scored based on the material fabrication and 
membrane synthesis (Fig. S2), and the scale of the current 
development is scored based on the reported membrane area 
(Table S2). Meanwhile, the stability score reflects the over-
all considerations of mechanical stability, thermal stability, 
chemical stability, and fouling resistance of membranes 
(Tables S3 and S4). Conventional TFC membranes, serv-
ing as the benchmark, receive a full score of 5 with respect 
to both cost and scale of development due to their mature 
commercialization and large-scale applications worldwide. 
On the other hand, their poor chlorine resistance [10, 11] 
and high fouling propensity [13, 14] are responsible for 
the relatively low score of 3 with respect to stability. Since 
TFN membranes typically adopt a polyamide matrix, their 
chemical and thermal stability would be largely constrained 
by those of the polyamide material. Nevertheless, some 

nanofillers could potentially enhance antifouling perfor-
mance [17, 41] or chlorine resistance [174, 175], thereby 
leading to slightly improved scores for stability in the cor-
responding TFN membranes (Table S2). In terms of cost, 
TFN membranes are often slightly more expensive due to 
the additional costs associated with nanofillers. Neverthe-
less, the typical low dosage of nanofillers does not appear 
to be a major obstacle to their commercialization. To date, 
several types of TFN membranes have already been com-
mercialized, such as LG Chem’s NanoH2O™ [176] and 
Aquaporin Inside® membranes [177], incorporating zeolites 
and AQPs as nanofillers, respectively. Therefore, these TFN 
membranes are scored favorably with respect to the scale of 
development. Many other types of TFN membranes, such as 
MXene TFN and MoS2 TFN membranes, are still at bench 
scale (Table S2), and their full-scale production has yet to 
be demonstrated.

For large-scale applications, some commercial TFN 
membranes (e.g., AQP TFN [177] and zeolite TFN [176]) 
have already been used in water treatment processes such 
as desalination, wastewater treatment, and water purifica-
tion to efficiently remove salts and other impurities from 
water [176, 178]. However, for some emerging TFN mem-
branes that involve expensive or poorly-dispersed nano-
fillers, fabricating a standard spiral wound module with 

Fig. 2   Permeance and water/NaCl selectivity of a RO membranes and b TFN membranes. More details of the calculation of A/B and A are pro-
vided in Online Appendix A. Data of A and A/B for novel RO membranes were collected from literature (Online Appendix B). For comparison, 
the data for lab-made polyamide-based TFC membranes obtained from the Open Membrane Database [158] accessed on October 26th, 2024, 
with “Polyamide”, “Polymeric TFC”, and “No modification” as filters (empty light grey symbols), the data for commercially available RO mem-
branes [6] (solid light grey symbols), and the “2019 upper bound” of TFC membranes for desalination [6] (black line) have been included in the 
figure. Membranes without well-established data of A/B and A (e.g., VA-CNT, MOF thin film, stacked GO, and stacked MoS2) were not included
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a relatively large membrane area (~ 40 m2 [179]) is still a 
daunting challenge. Nevertheless, such TFN membranes 
might still find niche applications that demand a rela-
tively small membrane area (e.g., biomedical applications 
such as drug delivery [180]). Another challenge for TFN 
membranes is the potential leaching of nanomaterials, 
which can negatively impact the life span of membranes 
[47]. The leached nanomaterials may also cause toxicity 
to aquatic organisms [181, 182], raising potential threats 
to ecology and human health [183].

Another interesting example of TFN is TFWC mem-
branes containing I-quartet water channels (Online 
Appendix D, Fig. S4). With optimally dispersed densely 
packed AWCs within a polyamide matrix, the resulting 
TFWC-RO biomimetic membrane provides an appar-
ent NaCl rejection of 99.5% and with a water flux of 
75 L m−2 h−1 at SWRO testing conditions, i.e., 65 bar 
applied pressure with 35,000 ppm NaCl [16]. This cor-
responds to a water permeance of 2.5 L m−2 h−1 bar−1, 
an intrinsic NaCl rejection of 99.8%, and a water/NaCl 
selectivity of 22.8%, which is far better compared to the 
control TFC polyamide membrane without the inclusion 
of I-quartets. Indeed, this water permeance is compa-
rable to some brackish water RO (BWRO) membranes 
and far superior to commercial SWRO membranes (~ 1 
L m−2 h−1 bar−1). At the same time, its NaCl rejection is 
as good as that of typical SWRO membranes. The com-
bination of these separation properties makes the TFWC 
membrane a favorable candidate compared to both SWRO 
and BWRO (Online Appendix D, Fig. S4). This TFWC 
membrane shows remarkable mechanical stability, mak-
ing it a good candidate for both SWRO desalination and 
water reuse applications. On the other hand, its chemi-
cal stability (e.g., chlorine resistance and pH stability) 
would be largely constrained by its polyamide matrix. To 
date, the production of TFWC membranes is still at the 
bench scale, resulting in a relatively low score of 3 with 
respect to the scale of development. Nevertheless, since 
most of the fabrication procedures are compatible with 
commercial TFC production lines, large-scale production 
of TFWC membranes should be feasible at a cost slightly 
higher than their TFC benchmarks. In addition, the sepa-
ration performance and stability of TFWC might be fur-
ther enhanced to better unleash the intrinsic material 
properties of AWCs, provided that a more suitable matrix 
can be developed to overcome the current limitations of 

polyamide. Similar future potential developments are also 
applicable to other TFN membranes shown in Fig. 3.

4.2 � Novel G3 Membranes

Figure 4a-j systematically benchmarks different novel G3 
RO membranes against conventional TFC membranes 
(shown as the empty grey polygon). To differentiate their 
current development status and the ultimate potential, we 
adopt the dark-red region to represent the current state 
(based on available experimental data) and the light-red 
region to show the fundamental limits (based on theory and 
simulation) for each G3 membrane type. For example, in 
contrast to the currently available permeance and selectivity 
that are scored based on experimental membrane perfor-
mance (Table S1), the corresponding ultimate potentials are 
scored based on the theoretical performance of materials 
(Table 1). Since all the novel materials listed in Table 1 show 
highly attractive intrinsic separation properties, they receive 
scores of 5 for both theoretical permeance and theoretical 
selectivity. Therefore, the differences between the cur-
rently reported membrane separation performance and the 
ultimate material potential reveal the critical development 
gaps. Similarly, while the current scale of development is 
evaluated based on the experimentally fabricated membrane 
area (Table S1), the ultimate potential in scaling up is scored 
according to the difficulty level of fabrication techniques.

Fig. 3   Radar chart for TFN membranes. As a benchmark, conven-
tional TFC membranes are represented by the grey polygon (based on 
typical BWRO properties). Details for the evaluation and rubrics are 
provided in Table S2 and Online Appendix C, respectively. Separate 
radar charts for each TFN membrane are provided in Fig. S3 (Online 
Appendix D)
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The radar charts reveal certain Achilles’ heels that 
can restrict the practical applications of many G3 mem-
branes. For instance, despite the high water permeance 

and potentially high selectivity of AQP SLB membranes, 
they have problematic stability issues (Fig. 4a) due to the 
mobility and potential degradation of the lipid layer and the 
denaturation of proteins [76, 77]. The demanding fabrica-
tion process for these membranes, involving expression and 
purification of AQPs, preparation of proteoliposomes, and 
vesicle rupture [80, 184, 185], further causes a low score 
for membrane cost and scale of development. Similarly, the 
high fabrication cost is the main constraint for many other 
G3 membranes, such as nanoporous graphene (Fig. 4f) and 
VA-CNT membranes (Fig. 4b). These membranes typically 
involve CVD or other complex procedures in their fabrica-
tion processes (Fig. 5), leading to high membrane cost and 
limited scale of development. Therefore, developing more 
scalable and cost-effective fabrication strategies is critically 
needed for such membrane development. Potential revolu-
tions in fabrication methods, e.g., replacing CVD deposi-
tion of CNTs by filtration-based loading for VA-CNT mem-
branes or by emerging 3D printing strategies [186], might 
dramatically reduce the membrane cost and promote their 
future scale-up. In addition to cost and scale-up, practical 
applications of ultra-thin nanoporous graphene could be fur-
ther restricted by its poor mechanical strength [171, 172]. 
Addressing this mechanical weakness issue, e.g., by design-
ing advanced supporting structures, might greatly improve 
the stability score of nanoporous graphene, particularly in 
view of its tolerance for high-temperature feed water, chlo-
rine attack, and acidic or basic solutions. Therefore, the criti-
cal constraints revealed by these radar charts could be used 
to prioritize future research efforts to make the respective 
membranes more competitive.

In the radar charts, G3 membranes made of porous 
crystalline materials (i.e., zeolite film, MOF film, COF 
film, Fig. 4c-e) represent an interesting group. These mem-
branes can be typically fabricated by a range of relatively 
simple methods, paving the way for future scale-up. Spe-
cifically, zeolite films can be synthesized by seeded assem-
bly and secondary growth [188]; MOF films can be fab-
ricated by in-situ solvothermal synthesis [139, 189, 190] 
or secondary seeded-growth [127, 191, 192]; COF films 
can be made by polymerization at free-interface [193, 
194], counter-diffusion [169, 195], or secondary growth 
[196] (Fig. 6). In addition, they can be incorporated onto 
porous inorganic hollow fibers or tubes [139, 161–163, 
187, 191, 192, 197], which are also beneficial for their 
scaling up. Moreover, their mechanical problems can be 

Fig. 4   Radar charts for the multi-dimension evaluation of a AQP 
SLB membrane, b VA-CNT membrane, c zeolite film, d MOF film, 
e COF film, f nanoporous graphene membrane, g stacked GO mem-
brane, h stacked nanoporous GO membrane, i stacked MXene mem-
brane, and j stacked MoS2 membrane. The status and potential of 
novel RO membranes are represented by the dark-red and light-red 
regions, respectively. The status of conventional TFC membranes 
is represented by the empty grey polygon as a benchmark. Details 
for the evaluation and rubrics are provided in Table  S1 and Online 
Appendix C, respectively
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improved by compositing with suitable substrates. For 
example, ultra-thin COF films [198, 199] can be supported 
by polyacrylonitrile (PAN) [194, 200], anodic aluminium 
oxide (AAO) [201], polysulfone (PSF) [202] substrates, 
etc. With a proper choice of material (Tables 1 and S1, 
S4), these porous crystalline membranes could also offer 
good thermal and chemical stability and fouling resistance. 
For example, zeolite films can withstand high tempera-
tures as high as 80 °C [203]. COF films, benefiting from 
their covalent bonds, can also be thermal-stable and pH-
stable [196, 204–207] under harsh operational conditions. 
Additionally, in contrast to the poor chlorine resistance 
of typical polyamide-based membranes, many of these 
porous crystalline membranes are stable in NaClO solu-
tion [175, 188, 208], which is advantageous for membrane 
(bio)fouling control and cleaning. It is interesting to note 
that, despite their excellent intrinsic separation properties 
shown in Table 1, the state-of-the-art membranes made 
of zeolite, MOF, and COF films generally show limited 
water permeance and water/salt selectivity under typical 
pressure-driven membrane tests. For example, UiO-66 
membrane has a permeance of 0.14 L m−2 h−1 bar−1 and a 
NaCl rejection < 50% [139], far below its theoretical per-
formance (a permeance of 51 L m−2 h−1 bar−1 and a NaCl 
rejection of 100% [86]). This huge gap in separation per-
formance is often caused by the relatively high thickness 
of rejection layers and defects in the membranes. If these 
issues could be tackled, zeolite/MOF/COF-based porous 
crystalline G3 membranes could potentially perform well 
in all five dimensions—serving as pentagon warriors for 
next-generation desalination membranes. Therefore, to 
fully realize their potential, more research efforts should 
be put into the manipulation of the thickness, pore size, 
defects, and framework flexibility of these membranes [25, 
209–212].

2D materials such as GO, MXene, and MoS2 represent 
another category of competitive candidates for synthe-
sizing next-generation desalination membranes. These 
materials can be easily vacuum-filtrated onto a porous 
substrate to prepare membranes featuring stacked 2D 
nanosheets. Many stacked 2D membranes have high 
chlorine tolerance [116, 120]. Nevertheless, for MXenes 
and MoS2, their oxidation, even under ambient condi-
tions, could be a critical barrier to their commercializa-
tion. In addition, stacked 2D membranes show limited 
interlayer stability: their interlayer spacing can be altered 

by pressure [156] and solution chemistry during the fil-
tration process [113, 115, 116, 154, 155]. The adhesion 
between 2D nanosheets and substrates is another concern. 
To address these issues, different crosslinking strategies 
have been applied to stabilize the interlayer distance 
[116, 117, 120, 154, 156] and/or to improve the adhesion 
between the 2D materials and the substrates [213]. For 
separation properties, existing stacked GO membranes 
(Fig. 4g) could achieve comparable (or even potentially 
better) water permeance compared to conventional TFC 
membranes (Table  S1). Stacked MXene (Fig.  4i) and 
stacked MoS2 (Fig. 4j) membranes also exhibit high water 
permeance. Nevertheless, stacked 2D membranes com-
monly suffer low water/salt selectivity due to defects and 
large interlayer distances [113, 121, 151, 153, 154, 156, 
168]. In order to further improve the separation prop-
erties of stacked 2D membranes, one potential strategy 
is to adopt 2D nanosheets containing selective pores, 
which improve the transport of water molecules while 
retaining solutes. For instance, stacked nanoporous GO 
membranes (Fig. 4h) provide more water transport path-
ways and shorten their transport distance (Fig. 7), lead-
ing to simultaneously increased selectivity and water 
permeance [108, 214] in comparison with the stacked 
GO without nanopores (Fig. 4g). Similarly, 2D MOF and 
COF nanosheets with high porosity [215, 216] are also 
competitive candidates for fabricating high performance 
stacked 2D membranes.

5 � Conclusions and Outlook for Future 
Development of RO Membranes

This review provides a comprehensive summary and sys-
tematic evaluation of RO membranes made by novel mate-
rials, including both (1) transitional generation (G2.5) 
TFN membranes that incorporate novel materials into a 
polyamide matrix and (2) next-generation (G3) membranes 
featuring emerging materials without a polyamide matrix. 
Despite the superior separation properties for many materi-
als, the reported separation performance of corresponding 
membranes (in the form of an A/B versus A upper-bound 
plot) is often not ideal when benchmarked against existing 
conventional TFC membranes, highlighting critical develop-
ment gaps, particularly with respect to defect management. 
The defects of TFN membranes commonly arise from the 
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aggregation of nanofillers, which can be partially mitigated 
by proper surface modification of nanofillers [157]. In addi-
tion, some recent studies [42, 43] also report the in-situ for-
mation of nanofillers as an effective strategy to overcome 
this issue. For G3 membranes, potential strategies to mitigate 
defects and increase stability include the use of crosslinkers 
[116, 213], enhanced crystallization via thermal treatment 
[159, 161], and surface coating for sealing defects [168]. We 

further established a comprehensive framework, adopting 
five dimensions, including stability, cost, and scalability, in 
addition to water permeance and selectivity, for evaluating 
the present development and future potential of these novel 
membranes. The state-of-the-art TFN membranes are com-
petitive in all dimensions, yet their ultimate performance is 
generally limited by their polyamide matrix. On the other 
hand, many G3 membranes could be greatly constrained by 

Fig. 5   Schematic illustration of the fabrication process of a VA-CNT membrane adapted from Ref. [187]; b nanoporous graphene, reproduced 
from Ref. [20], copyright  © 2019, The American Association for the Advancement of Science

Fig. 6   Schematic illustration of the fabrication of a MOF film by an in-situ solvothermal method, reproduced with permission from Ref. [139], 
copyright  © 2015, American Chemical Society; b COF film by an IP reaction, reproduced with permission from Ref. [193], copyright © 2017, 
American Chemical Society; c COF film by counter-diffusion, reproduced with permission from Ref. [169], copyright © 2022 Elsevier B.V
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their problematic stability, high cost, and/or poor scalabil-
ity (e.g., AQP SLB membrane, VA-CNT membrane, nano-
porous graphene). These critical deficiencies revealed by 
5-dimensional radar charts require revolutionary technique 
changes (e.g., filtration-based loading for VA-CNT mem-
branes in the replacement of CVD deposition and design 
of suitable supporting structures for nanoporous graphene 
[144]) for further development of these membranes. Among 
G3 membranes, porous crystalline membranes (i.e., zeolite 
film, MOF film, and COF film) are advantageous in their 
scale-up and stability but require research efforts (e.g., opti-
mization of reaction conditions to reduce membrane thick-
ness) to improve their practical water permeance and water/
salt selectivity. Stacked 2D membranes are deficient in their 
stability and water/salt selectivity. Their stability may be 
enhanced by different crosslinking strategies, while their 
selectivity can be potentially improved by the introduction 
of selective pores.

The current work largely focuses on RO membranes for 
desalination, with a key emphasis on separation perfor-
mance with respect to water permeance and salt removal. It 
is important to note that the competitiveness of novel mem-
branes will depend on the application scenarios. For exam-
ple, membranes with high water permeance offer few bene-
fits for highly saline feedwater whose energy consumption is 
dictated by the transmembrane osmotic pressure [217–220], 
yet they can greatly reduce energy consumption when treat-
ing low-salinity feedwater [7, 217]. Ultra-permeable mem-
branes (with a permeance of 50–100 L m−2 h−1 bar−1) may 
even enable new process development, such as vacuum-
driven submerged RO/nanofiltration [217, 221], and their 
hollow fiber module configurations could be potentially 

adopted to enhance membrane packing and improve mass 
transfer over traditional spiral wound modules. Therefore, it 
is important to consider membranes, processes, and applica-
tions in a holistic manner to fully realize the benefits of next-
generation membranes, and application-specific weighting 
factors may be applied to relevant dimensions for the selec-
tion of the most desirable membranes/materials. Indeed, 
membranes have been widely used far beyond desalination, 
which may require tailored properties (e.g., high Li+/Mg2+ 
selectivity for lithium extraction from salt lakes [222, 223], 
high solvent resistance and solvent permeance for organic 
solvent filtration [224, 225]). Many G3 membranes, even 
though they may not be competitive for desalination, may 
offer great advantages in other applications. For example, 
membrane cost may be less concern in some niche and 
high-value-added applications such as hemodialysis [180], 
batteries and fuel cells [226, 227], or even recycling water 
in space stations [228]. The comprehensive framework pre-
sented in the current work could offer holistic evaluation and 
benchmarking for future membrane development and may 
be further extended/adapted to cover more materials and a 
wide range of applications.
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