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HIGHLIGHTS

® The theoretical separation performance and practical separation performance of various membranes were collected and compared.

® An up-to-date holistic and systematic evaluation of membranes from five dimensions (i.e., water permeance, water/NaCl selectivity,

membrane cost, scale of development, and stability) is provided and visualized by radar charts.

e The critical deficiencies revealed in the review are important in guiding the development of next-generation reverse osmosis mem-

branes.

ABSTRACT Membrane desalination is an economical and energy-efficient method

lers fl nanofillers

to meet the current worldwide water scarcity. However, state-of-the-art reverse osmo-

sis membranes are gradually being replaced by novel membrane materials as a result

of ongoing technological advancements. These novel materials possess intrinsic pore

structures or can be assembled to form lamellar membrane channels for selective

transport of water or solutes (e.g., NaCl). Still, in real applications, the results fall

below the theoretical predictions, and a few properties, including large-scale fabrica-

/ ost
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tion, mechanical strength, and chemical stability, also have an impact on the overall
effectiveness of those materials. In view of this, we develop a new evaluation framework in the form of radar charts with five dimensions (i.e.,
water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) to assess the advantages, disadvantages, and
potential of state-of-the-art and newly developed desalination membranes. In this framework, the reported thin film nanocomposite membranes
and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes. This review will dem-
onstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes. In this review,
we also point out the prospects and challenges of next-generation membranes for desalination applications. We believe that this comprehensive
framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and

development in the field of membrane technology, leading to new insights and advancements.
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Abbreviations

2D Two-dimensional

AAO Anodic aluminium oxide
AQPs Aquaporins

AQPZ Aquaporin-Z

AWCs Artificial water channels
BSA Bovine serum albumin
BWRO Brackish water reverse osmosis
CNTs Carbon nanotubes

COFs Covalent-organic frameworks
CVD Chemical vapor deposition
Gl First-generation

G2 Second-generation

G2.5 Transitional generation

G3 Emerging generation

GO Graphene oxide

I-quartets Imidazole-quartet channels
1P Interfacial polymerization
MD Molecular dynamics
MOFs Metal-organic frameworks
MPD m-Phenylenediamine

PAN Polyacrylonitrile

PAPs Peptide-appended pillar[S]arenes
PDA Polydopamine

PEI Polyetherimide

PES Polyethersulfone

PDMS Polydimethylsiloxane

PVA Polyvinyl alcohol

PSF Polysulfone

RO Reverse osmosis

SLB Supported lipid bilayer
SWRO Seawater reverse osmosis
TFC Thin-film composite
TFWC Thin-film water channel
TFN Thin-film nanocomposite
T™™C Trimesoyl chloride
VA-CNT  Vertically aligned CNT

1 Introduction

Water scarcity is an unavoidable challenge due to the global
population explosion, industrialization, and climate change
[1, 2]. To mitigate this crisis, desalination and water reuse by
reverse osmosis (RO) technology [3, 4] have been increas-
ingly adopted. RO technology relies on membrane materials
that can selectively remove small solutes, even monovalent
salts, from aqueous solutions [5]. Currently, the thin-film
composite (TFC) membranes being used in RO processes

© The authors

are predominately composed of polyamide-based materi-
als. These polyamide membranes are limited by permeance
selectivity trade-off [6-9], chlorine attack [10-12], and
membrane fouling [12-14], which can be attributed to the
inherent material properties of polyamide chemistry. There-
fore, alternative advanced membrane materials are highly
desired to further develop RO membranes.

A wide variety of novel materials have been explored for
making high-performance RO membranes. For example,
the naturally occurring aquaporins (AQPs), when incor-
porated into amphiphilic triblock-polymer vesicles, exhib-

! which is two

ited a water permeance of 167 pm s™! bar™
orders of magnitude higher than the water permeance of
the current polyamide-based TFC membranes [15]. Inspired
by AQPs, artificial water channels (AWCs) constructed by
simpler synthetic compounds when embedded in the poly-
amide layer demonstrated their effectiveness in improving
separation performance and fouling resistance of membranes
[16, 17]. Many other materials, such as carbon nanotubes
(CNTs) [18, 19], nanoporous graphene [20], and stacked
two-dimensional (2D) materials [21, 22], also have good
implications in separation performance, chemical stability,
and/or fouling resistance.

Although many research papers have reported the excit-
ing performance of novel materials, they may not accurately
reflect the overall separation performance in the RO process,
and some critical characteristics of the membrane materials
(e.g., cost, scale, stability) were overlooked. For instance, the
results are not comparable in some situations because these
materials were tested in a concentration-driven process [23]
or thermal-driven process [24] instead of the pressure-driven
RO process. In other cases, simulation has provided excit-
ing results of materials, but some traits of these materials
which can greatly influence the performance were ignored,
such as the flexibility of metal-organic frameworks (MOFs)
[25-27]. On the other hand, certain membrane fabrication
processes, like the preparation of vertically aligned CNT
(VA-CNT) membranes, which involve chemical vapor depo-
sition (CVD) and complicated fabrication procedures [28],
are difficult to scale up for industrial uses. Thus, we require
a standard framework to assess various membrane materials
and contrast them in all relevant dimensions.

There exist several review papers [8, 29, 30] that pro-
vide qualitative narrations on membrane materials, but a
more quantitative framework is still needed. Pendergast
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Nano-Micro Lett. (2025) 17:91

Page 30f24 91

et al. [31] provided a useful semi-quantitative assessment of
water treatment membranes based on performance enhance-
ment and commercial readiness, but the work was done one
decade ago, and membrane technology has advanced much
since then. In this paper, we will first briefly introduce the
status of novel materials for RO membranes. Then, we will
provide our critical evaluations of these materials based on
their separation performance and further benchmark them
from all-around dimensions. Finally, we will provide sug-
gestions for future RO membrane development. In short,
we intend to provide an up-to-date holistic and systematic
evaluation of emerging membrane materials. The critical
deficiencies of these membrane materials revealed in this
review call for more attention from future research, which
will be of great importance in guiding the development of
next-generation high-performance RO membranes.

2 Novel Materials with Potential for RO
Membranes

Historically, the first-generation (G1) of practically selec-
tive cellulose acetate RO membranes—with an asymmet-
ric structure (Fig. la)-was introduced in the 1960s [32].
Despite achieving NaCl rejection of up to 99%, cellulose
acetate membranes generally have low water permeance,
narrow operation range (e.g., pH within 4-6), and poor
resistance to biodegradation [31, 33]. Due to these critical
limitations, the G1 cellulose acetate membranes were soon
replaced by TFC polyamide membranes [34], the second-
generation (G2) RO membranes (Fig. 1b). TFC polyamide
membranes produced by interfacial polymerization (IP)
represent the state-of-the-art desalination membranes, with
modern commercially available TFC RO membranes fea-
turing water permeance of ~or>1 L m™> h™! bar~!, NaCl
rejection of >99%, and a typical operational pH range of
3-10 (with wider pH ranges possible for tailor-designed
TFC membranes). Nevertheless, the polyamide-based TFC
RO membranes are still constrained by a strong permeance-
selectivity trade-off [6-9], generally showing compromised
selectivity for membranes with greater water permeance.
Key factors in the trade-off behavior are the structure and
properties of the polyamide selective layer, such as pore size
distribution and crosslinking density. For example, increas-
ing the crosslinking degree reduces the effective pore size,
which tends to improve membrane rejection and selectivity
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at the expense of reduced water permeance. The polyam-
ide active layer, an irregularly crosslinked amides network,
typically contains unevenly distributed pores, including
both smaller network pores and larger aggregate pores [35].
This mal-distribution of pore size for polyamide, in con-
trast to the well-defined and uniformly-distributed pores for
many emerging porous materials such as AQPs and MOFs
(Table 1), tends to adversely affect membrane rejection and
ultimately limit the selectivity of polyamide G2 membranes.
In addition, these G2 membranes are prone to chlorine attack
[10-12] and membrane fouling [12—-14], causing decreased
performance and lifespan of the membranes. More specifi-
cally, polyamide membranes can degrade when exposed to
chlorine, as chlorine can break down the amide groups in
the polyamide structure, leading to reduced effectiveness in
removing salt and other impurities.

2.1 Porous/Non-Porous Nanofillers

A huge wave of exciting studies searching for next-
generation desalination materials has surged in the new
millennium [8, 29-31, 36]. These novel materials often
feature intrinsic pore structures with well-defined indi-
vidual channels (e.g., AQPs and CNTSs) or highly porous
structures (e.g., MOFs and nanoporous graphene). For
example, CNTs have a hydrophobic channel that can trans-
port water molecules in a “ballistic motion” with minimal
friction [37]. Alternatively, some nanomaterials may be
assembled to construct nanoscale lamellar flow channels,
e.g., by the stacking of 2D nanosheets where water flows
laterally between the sheets. In this section, we will pro-
vide a brief overview of the emerging generation (G3)
of materials for desalination—their structures and the rel-
evant mechanisms for desalination (Table 1). As a side
note, these novel materials can also be incorporated into
polyamide rejection layers as nanofillers for synthesiz-
ing so-called thin-film nanocomposite (TFN) membranes
(Fig. 1¢). The TFEN structure, first introduced by Hoek and
co-workers [38] in 2007, combines the advantages of the
polyamide matrix and the nanofillers. Indeed, many novel
materials—though featuring interesting pore structures—are
difficult to form into a continuous separation layer, and
the TFN approach provides an alternative way to utilize
the intrinsic pore structures of nanofillers (e.g., for boost-
ing membrane permeance) while maintaining membrane

@ Springer
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Fig.1 Development of RO membrane materials. Schematic illustration of a cellulose acetate membrane, b polyamide-based TFC membrane,
and ¢ TFN membranes with porous/non-porous nanofillers. d Novel materials with potential for RO membranes: (I) AQP subunit; (II) I-quartet
water channels that selectively accommodate water-wires, adapted with permission from Ref. [51], copyright © 2013, American Chemical
Society; (III) CNT; (IV) zeolite ZSM-5 crystal structure [52]; (V) UiO-66 (Zr, O, C, and H atoms are in red, blue, gray, and white respec-
tively), reproduced with permission from ref. [53], copyright © 2008, American Chemical Society; (VI) COF TpPa-1 (C, O, and H atoms are in
grey, red, and blue, respectively), reproduced with permission from ref. [54], copyright © 2012, American Chemical Society; (VII) nanoporous
graphene, reproduced with permission from Ref. [55], copyright © 2019, The American Association for the Advancement of Science; (VIII)
stacked GO nanosheets, reproduced with permission from Ref. [56], copyright © 2020 Elsevier Inc.; (IX) stacked MXenes nanosheets (Ti, C,
O, and H atoms are in grey, black, blue, and pink, respectively), reproduced with permission from Ref. [57], copyright © 2011, WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim; (X) stacked MoS, nanosheets (Mo and S atoms are in blue and yellow respectively), reproduced with
permission from Ref. [58], copyright © 2022, Wiley—VCH GmbH

mechanical integrity using the polyamide matrix. Further-
more, the TFN approach also allows the use of non-porous
materials, such as TiO, [39, 40], Ag [41, 42], silica nano-
particles [43, 44], and graphene oxide (GO) nanosheets
[45, 46]. These non-porous nanofillers could improve the
separation performance by enhancing the hydrophilicity
of membranes [47] or creating selective nanochannels at
the filler-matrix interface [41]. In addition, some of these
non-porous materials, e.g., TiO, [39, 48], Ag nanoparticles
[49, 50], and GO nanosheets [45], may endow membranes
with additional properties, such as biofouling resistance
and chlorine resistance. Nevertheless, at a fundamental
level, the permeance and selectivity of TFN membranes

© The authors

are still constrained by the performance of the polyamide
matrix. For this reason, TFN membranes can be viewed as
the transitional generation (G2.5) between the TFC mem-
branes (G2) and the next-generation RO membranes (G3)
featuring the emerging desalination materials (Fig. 1).

2.2 Individual Channels

The construction of pores or channels with tailored geome-
try and chemistry is the core of next-generation desalination
materials. In general, these porous materials can be divided
into materials with intrinsic pores and materials which
form lamellar channels by assembly (Fig. 1d, Table 1). The

https://doi.org/10.1007/s40820-024-01606-y
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intrinsic pores can be further classified into individual chan-
nels and multiple pores. Individual channels refer to materi-
als that possess intrinsic channels but do not form regular
continuous films by themselves. For instance, AQPs [59-61],
a large family of proteins existing in biological membranes
for water transport, possess a central pore of 2.8 A in each
subunit (Fig. 1d(I)). The fine pore circumscribed by hydro-
phobic residues only allows water molecules to go through
in a single file. The combined effect of size restriction, water
dipole reorientation, and electrostatic repulsion within the
pore prevents the transport of species other than water. In
order to mimic AQPs, AWCs constructed by simpler com-
pounds have been investigated for desalination [62, 63]. Sev-
eral kinds of AWCs have been reported, including dendritic
dipeptides [64, 65], imidazole-quartet channels (I-quartets)
[66, 67], pillar [5], arenes [68, 69], and polymeric foldamer-
based AWCs [70, 71]. Among them, I-quartets have demon-
strated promising desalination performance: when they are
incorporated in a polyamide thin film, the resulting thin-film
water channel (TFWC) membranes show 99.5% rejection
of NaCl with a water permeance of 2.8 L m~2 h~! bar™!
under seawater RO (SWRO) conditions (35,000 ppm NaCl
at an applied pressure of 65 bar) [16, 17]. I-quartet chan-
nels [66], which are self-assemblies of imidazoles through
noncovalent bonding, are stabilized by water-wires within
the channels (Fig. 1d(II)). According to stopped-flow light
scattering experiments, I-quartet channels have high water
permeance and total ion rejection except for protons [67].
Analogous to AWCs, CNTs have inherent channels within
the cylinders of carbon atom sheets (Fig. 1d(IIl)). The size
[72] and functionality [73] of CNTs can influence the trans-
port of water and ions, as shown by molecular dynamics
(MD) simulations. Once water molecules enter the smooth
and hydrophobic nano-channels of CNTs, the transport is
frictionless [37]. CNTs with appropriate sizes could have an
even higher water permeability [74] than AQPs (Table 1).
Moreover, CNTs have good antimicrobial properties [75],
which can benefit the biofouling resistance of membranes.
Since these individual channels cannot directly form con-
tinuous mechanically stable films, they are commonly incor-
porated into continuous matrices that are able to resist harsh
pressure conditions used for RO processes. Apart from TFN
membranes with polyamide as the matrix, other continu-
ous matrices may be adopted. For instance, the supported
lipid bilayer containing AQPs or AQP-incorporated vesicles
(AQP SLB membrane) [76, 77] and polymeric or inorganic

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

matrices (e.g., polystyrene [18, 78], epoxy [28], silicon
nitride [19]) filling up the spaces between nanotubes in VA-
CNT have been investigated for desalination.

2.3 Porous Crystalline Materials

Different from materials with individual channels, porous
crystalline materials and porous 2D materials containing
multiple channels not only can be incorporated into TFN
membranes but also may form continuous films on their
own, though their mechanical stability remains an impor-
tant controversial issue. Porous crystalline materials, such as
zeolites, MOFs, and covalent-organic frameworks (COFs),
can be applied in desalination due to their high porosity and
defined pore size [30, 126—130]. MD simulations show that
they can achieve high water permeance and complete salt
rejection (Table 1). These three porous crystalline frame-
works have different structural components. Specifically,
zeolites are inorganic aluminosilicates made up of SiO, and
AlO, tetrahedra [131] (Fig. 1d(IV)). MOFs are inorganic/
organic hybrid materials formed by the coordination of metal
ions or clusters with organic likers [132] (Fig. 1d(V)). COFs
are organic materials composed of light atoms (i.e., C, H, N,
O, B) [133] connected via covalent bonds (Fig. 1d(VI)). The
transport of water and ions through these porous frameworks
is governed by the size of the pore and the functional groups
attached to the pores [26, 126, 134-136]. The pore sizes
of MOFs and zeolites are typically sub-1 nm, while COFs
typically have pore sizes in the range of 1-5 nm, which are
unfavorable towards water/NaCl separation. To make COFs
suitable for desalination, a common strategy is to reduce
their pore sizes by the addition of functional groups or a
special stacking fashion (Table 1). Unfortunately, some
of these materials degrade in water, such as boroxine and
boronate ester-linked COFs [133] and most kinds of MOFs
[137]. However, researchers have found water-stable types,
for example, COFs based on imine, beta-keto-enamine, or
azine linkages [138], and MOFs made by high valence metal
ions [139] or imidazolate-based organic linkers [140]. These
water-stable porous materials have huge potential for desali-
nation and water treatment, subject to scalability of fabrica-
tion (see Sect. 4).
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2.4 Porous 2D Materials

Several 2D materials with multiple nanoscale pores also
show good potential for desalination. The most famous
example of 2D materials is graphene, a single layer of
sp>-bonded carbon atoms [141, 142]. Since graphene is
impermeable to water, nanoscale pores could be created onto
graphene by oxygen plasma or ion bombardment to prepare
nanoporous graphene [96, 97, 143, 144] (Fig. 1d(VID)).
Nanoporous graphene is ideal for desalination because of
its one-atomic ultra-thin thickness, which can facilitate
high water permeance. Meanwhile, graphene has outstand-
ing antifouling properties and high chlorine tolerance [114,
145], both of which are advantages for next-generation RO
membranes. Apart from nanoporous graphene, nanoporous
MXene and nanoporous MoS, have also been investigated
for desalination. MXenes are early transition metal carbides
and/or carbonitrides [57, 146] (Fig. 1d(IX)). They have
graphene-like morphology, hence the name MXenes [57].
MoS, is a layered metal chalcogenide composed of one sheet
of Mo atoms sandwiched between two sheets of S atoms
[58] (Fig. 1d(X)). Both single-layer MXene and single-
layer MoS, can be made by exfoliation [57, 121, 147, 148].
Nevertheless, the investigation of nanoporous MXene and
nanoporous MoS, for pressure-driven desalination is still
in the stage of simulation (Table 1). In principle, ultra-thin
2D MOFs and 2D COFs can also be classified as porous 2D
materials.

2.5 Assembly of Materials with Lamellar Channels

In contrast to materials with intrinsic pores, nanosheets
of 2D materials, such as GO [149, 150] (Fig. 1d(VIID)),
MXene [117, 151] (Fig. 1d(IX)), MoS, nanosheets [58, 121]
(Fig. 1d(X)), can form lamellar channels by assembly/stack-
ing. The lamellar channels in these stacked 2D materials
allow water to flow through and retard hydrated ions and
other solutes. Therefore, the interlayer distance and the sur-
face functional groups of these 2D nanosheets regulate the
separation performance of these membranes [21, 112, 152,
153]. Table 1 provides a comparison of these 2D materials
on the basis of MD simulations. MoS, nanosheets have sta-
ble interlayer spacing because of the absence of hydrophilic
groups and strong van der Waals forces between layers [122,
123]. In contrast, the interlayer distance of GO nanosheets
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and MXene nanosheets are often altered by operation param-
eters of filtration, such as pH [154, 155], pressure [156],
and solute concentration of feed solutions [113, 115]. To
mitigate this issue, intercalation with high-valent metal ions
(e.g., AP [116]) and crosslinking via covalent bonds [22]
have demonstrated some degree of success. It is also worth-
while to note that MoS, [124] and MXenes [118] can easily
get oxidized in ambient conditions, which could limit their
practical applications.

3 Separation Performance of RO Membranes

Water permeance and selectivity are two key indicators for
RO membrane performance. To evaluate membrane perfor-
mance, a plot of water/NaCl permselectivity (A/B) versus
water permeance (A) is adopted following the approach of
Yang et al. [6, 7]. A/B and A are preferred over intrinsic
water/NaCl permeability selectivity (P,/P;) and intrinsic
water permeability (P,,) because P,, and P, are dependent
on membrane thickness that is often unavailable or inaccu-
rately measured in many published papers. In addition, the
water permeance A value better reflects the available water
flux under a given pressure driving force. Figure 2 summa-
rizes the separation performance of RO membranes made
of various novel materials. For benchmarking purposes,
data points for conventional lab-made polyamide-based
TFC membranes (empty light grey symbols) and commer-
cially available RO membranes (solid light grey symbols)
are included. Furthermore, the “2019 upper bound” (black
line in Fig. 2) [6], representing the highest performance of
TFC membranes, is also superimposed in Fig. 2. In gen-
eral, TFN membranes with various nanofillers show similar
or sometimes slightly better separation performance com-
pared with existing TFC polyamide membranes and the
“2019 upper bound” (Fig. 2b). As discussed in Sect. 2, these
G2.5 membranes generally rely on the polyamide matrix to
maintain membrane integrity (and thus to minimize mem-
brane defects), such that their separation performances are
strongly influenced by the polyamide backbone. At the same
time, TFN membranes offer opportunities for permeance/
selectivity enhancement by taking advantage of the raised
permeability of the intrinsic pore structures of nanofillers or
interfacial selective channels induced by the nanomaterials
[41]. Enhancing the incorporation density of the nanoma-
terials within the polyamide backbone and the alignment of
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nanochannels (e.g., CNTs [157]) to facilitate the transport
of water molecules could lead to an additional improvement
in the performance of TFN membranes.

Surprisingly, many G3 membranes, made of novel materi-
als without a polyamide matrix, do not appear to offer com-
petitive separation performances in pressure-driven desali-
nation experiments (Fig. 2). Indeed, the experimental results
reported in the literature are often far below the theoretical
predictions (Table 1). This mismatch can be ascribed to
the thickness and/or defects in these novel membranes. For
example, zeolite membranes, hampered by their microm-
eter-level thickness [159-163] (in contrast to 10-20 nm
for RO polyamide layers [164]), generally have low water
permeance (<0.5 L m~2h~! bar ) (Fig. 2a). Their avail-
able selectivity is also moderate (< 10 bar‘l), which is not
in consonance with the theoretical NaCl rejection derived
from simulation [84] (Table 1). Similarly, AQP SLB mem-
branes and stacked MXene membranes commonly present
low selectivity (Fig. 2a) due to their unavoidable defects
[165-169]. COF membranes have low selectivity (Fig. 2a)
not only because their typical pore size is in the range of
nanofiltration/ultrafiltration [138] but some defects and
amorphous regions can harm selectivity [129, 169]. Even
though the selectivity of COF membranes can be theoreti-
cally boosted by some special stacking fashions [90] or uni-
form functionalization [89, 91], it often cannot be easily
achieved in practice. Nevertheless, it is also worthwhile not-
ing some exceptional cases of G3 membranes, e.g., nanopo-
rous graphene with optimal pore size supported by a single-
walled CNT network [20]. This membrane offers a thin and
defect-free structure, demonstrating extremely attractive
separation performance (Fig. 2a) that is in accordance with
the simulation results [98, 170] (Table 1). The salient exam-
ple of nanoporous graphene demonstrates the huge potential
of the next-generation G3 membranes for simultaneously
boosting permeance and selectivity, provided that membrane
thickness and defect formation can be well controlled.

4 Multi-Dimension Evaluation of Novel RO
Membranes

To facilitate the application of novel RO membranes, dif-
ferent dimensions of membranes should be considered.
Apart from the basic separation performance, additional
aspects, including membrane cost, scale, and stability, could
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significantly affect their commercialization. For example,
although nanoporous graphene, described above, has out-
standing separation performance [20], its high fabrication
cost, difficulty in scaling up, and poor mechanical properties
could be decisive factors limiting its commercial success
[171, 172]. Therefore, a systematic re-evaluation of litera-
ture demonstrating the strengths, weaknesses, and poten-
tial of novel RO membranes is necessary to figure out their
development directions. In this section, five dimensions (i.e.,
permeance, selectivity, membrane cost, scale, and stability)
are scored in radar charts to provide a holistic evaluation of
novel RO membranes (TFN membranes in Fig. 3 and various
G3 membranes in Fig. 4), with a higher score (on a scale of
5) indicating a better membrane attribute according to the
detailed rubrics in Online Appendix C.

4.1 TFN Membranes

Figure 3 evaluates TFN (G2.5) membranes fabricated
using different novel materials. The currently available
permeance and selectivity are scored based on the value
of A and A/B (or NaCl rejection if A/B is not available) of
TFN membranes tabulated in Table S2 together with the
rubrics in Online Appendix C. Conventional TFC (G2)
membranes are represented by the grey-shaded polygon
in the same figure for benchmarking purpose. Based on
their typical water permeance (1-5 L m~2 h~! bar™!) and
water/NaCl selectivity (5-30 bar™!), the state-of-the-art
TFC membranes are scored 3 for permeance and 4 for
selectivity. TFN membranes can achieve slightly improved
separation performance compared to TFC membranes due
to the intrinsic pore structures of nanofillers or interfa-
cial selective channels induced by nanomaterials in the
polyamide matrix [41]. However, the dispersion of nano-
fillers in polyamide matrices can be a concern since the
aggregation of nanofillers may result in defects that ham-
per membrane selectivity [173]. For example, in I-quartet-
based TFWC membranes, the assembly of I-quartet on
the substrate before the IP process [16] is a challenging
step, which may significantly affect the separation per-
formance. To better disperse nanofillers, it is crucial to
carefully choose the dispersion solution (aqueous vs.
organic solution), nanofiller concentration, and surface
modification of nanofillers (e.g., polydopamine (PDA)
coating to increase the hydrophilicity of CNTs [157]). In
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addition, in-situ fabrication of TFN membranes could be
a promising strategy to uniformly distribute nanofillers
without requiring additional processes for nanomaterial
synthesis (e.g., Ag nanoparticles reduced from AgNO; by
m-phenylenediamine (MPD) [42] and silica nanoparticles
polymerized from tetramethoxysilane [43]).

Figure 3 also systematically evaluates additional dimen-
sions of TFN membranes in comparison with TFC mem-
branes (see detailed rubrics in Online Appendix C). Mem-
brane cost is scored based on the material fabrication and
membrane synthesis (Fig. S2), and the scale of the current
development is scored based on the reported membrane area
(Table S2). Meanwhile, the stability score reflects the over-
all considerations of mechanical stability, thermal stability,
chemical stability, and fouling resistance of membranes
(Tables S3 and S4). Conventional TFC membranes, serv-
ing as the benchmark, receive a full score of 5 with respect
to both cost and scale of development due to their mature
commercialization and large-scale applications worldwide.
On the other hand, their poor chlorine resistance [10, 11]
and high fouling propensity [13, 14] are responsible for
the relatively low score of 3 with respect to stability. Since
TFN membranes typically adopt a polyamide matrix, their
chemical and thermal stability would be largely constrained
by those of the polyamide material. Nevertheless, some

nanofillers could potentially enhance antifouling perfor-
mance [17, 41] or chlorine resistance [174, 175], thereby
leading to slightly improved scores for stability in the cor-
responding TFN membranes (Table S2). In terms of cost,
TFN membranes are often slightly more expensive due to
the additional costs associated with nanofillers. Neverthe-
less, the typical low dosage of nanofillers does not appear
to be a major obstacle to their commercialization. To date,
several types of TFN membranes have already been com-
mercialized, such as LG Chem’s NanoH,0O™ [176] and
Aquaporin Inside® membranes [177], incorporating zeolites
and AQPs as nanofillers, respectively. Therefore, these TFN
membranes are scored favorably with respect to the scale of
development. Many other types of TFN membranes, such as
MXene TFN and MoS, TFN membranes, are still at bench
scale (Table S2), and their full-scale production has yet to
be demonstrated.

For large-scale applications, some commercial TFN
membranes (e.g., AQP TFN [177] and zeolite TFN [176])
have already been used in water treatment processes such
as desalination, wastewater treatment, and water purifica-
tion to efficiently remove salts and other impurities from
water [176, 178]. However, for some emerging TFN mem-
branes that involve expensive or poorly-dispersed nano-
fillers, fabricating a standard spiral wound module with
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Fig. 2 Permeance and water/NaCl selectivity of a RO membranes and b TFN membranes. More details of the calculation of A/B and A are pro-
vided in Online Appendix A. Data of A and A/B for novel RO membranes were collected from literature (Online Appendix B). For comparison,
the data for lab-made polyamide-based TFC membranes obtained from the Open Membrane Database [158] accessed on October 26th, 2024,
with “Polyamide”, “Polymeric TFC”, and “No modification” as filters (empty light grey symbols), the data for commercially available RO mem-
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a relatively large membrane area (~40 m? [179]) is still a
daunting challenge. Nevertheless, such TFN membranes
might still find niche applications that demand a rela-
tively small membrane area (e.g., biomedical applications
such as drug delivery [180]). Another challenge for TFN
membranes is the potential leaching of nanomaterials,
which can negatively impact the life span of membranes
[47]. The leached nanomaterials may also cause toxicity
to aquatic organisms [181, 182], raising potential threats
to ecology and human health [183].

Another interesting example of TFN is TFWC mem-
branes containing I-quartet water channels (Online
Appendix D, Fig. S4). With optimally dispersed densely
packed AWCs within a polyamide matrix, the resulting
TFWC-RO biomimetic membrane provides an appar-
ent NaCl rejection of 99.5% and with a water flux of
75 L m~2 h™! at SWRO testing conditions, i.e., 65 bar
applied pressure with 35,000 ppm NaCl [16]. This cor-
responds to a water permeance of 2.5 L m~2 h™! bar™!,
an intrinsic NaCl rejection of 99.8%, and a water/NaCl
selectivity of 22.8%, which is far better compared to the
control TFC polyamide membrane without the inclusion
of I-quartets. Indeed, this water permeance is compa-
rable to some brackish water RO (BWRO) membranes
and far superior to commercial SWRO membranes (~ 1
L m~2h~! bar!). At the same time, its NaCl rejection is
as good as that of typical SWRO membranes. The com-
bination of these separation properties makes the TFWC
membrane a favorable candidate compared to both SWRO
and BWRO (Online Appendix D, Fig. S4). This TFWC
membrane shows remarkable mechanical stability, mak-
ing it a good candidate for both SWRO desalination and
water reuse applications. On the other hand, its chemi-
cal stability (e.g., chlorine resistance and pH stability)
would be largely constrained by its polyamide matrix. To
date, the production of TFWC membranes is still at the
bench scale, resulting in a relatively low score of 3 with
respect to the scale of development. Nevertheless, since
most of the fabrication procedures are compatible with
commercial TFC production lines, large-scale production
of TFWC membranes should be feasible at a cost slightly
higher than their TFC benchmarks. In addition, the sepa-
ration performance and stability of TFWC might be fur-
ther enhanced to better unleash the intrinsic material
properties of AWCs, provided that a more suitable matrix
can be developed to overcome the current limitations of
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Fig. 3 Radar chart for TFN membranes. As a benchmark, conven-
tional TFC membranes are represented by the grey polygon (based on
typical BWRO properties). Details for the evaluation and rubrics are
provided in Table S2 and Online Appendix C, respectively. Separate
radar charts for each TFN membrane are provided in Fig. S3 (Online
Appendix D)

polyamide. Similar future potential developments are also
applicable to other TFN membranes shown in Fig. 3.

4.2 Novel G3 Membranes

Figure 4a-j systematically benchmarks different novel G3
RO membranes against conventional TFC membranes
(shown as the empty grey polygon). To differentiate their
current development status and the ultimate potential, we
adopt the dark-red region to represent the current state
(based on available experimental data) and the light-red
region to show the fundamental limits (based on theory and
simulation) for each G3 membrane type. For example, in
contrast to the currently available permeance and selectivity
that are scored based on experimental membrane perfor-
mance (Table S1), the corresponding ultimate potentials are
scored based on the theoretical performance of materials
(Table 1). Since all the novel materials listed in Table 1 show
highly attractive intrinsic separation properties, they receive
scores of 5 for both theoretical permeance and theoretical
selectivity. Therefore, the differences between the cur-
rently reported membrane separation performance and the
ultimate material potential reveal the critical development
gaps. Similarly, while the current scale of development is
evaluated based on the experimentally fabricated membrane
area (Table S1), the ultimate potential in scaling up is scored
according to the difficulty level of fabrication techniques.
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Fig. 4 Radar charts for the multi-dimension evaluation of a AQP
SLB membrane, b VA-CNT membrane, ¢ zeolite film, d MOF film,
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brane, h stacked nanoporous GO membrane, i stacked MXene mem-
brane, and j stacked MoS, membrane. The status and potential of
novel RO membranes are represented by the dark-red and light-red
regions, respectively. The status of conventional TFC membranes
is represented by the empty grey polygon as a benchmark. Details
for the evaluation and rubrics are provided in Table S1 and Online
Appendix C, respectively

The radar charts reveal certain Achilles’ heels that
can restrict the practical applications of many G3 mem-
branes. For instance, despite the high water permeance
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and potentially high selectivity of AQP SLB membranes,
they have problematic stability issues (Fig. 4a) due to the
mobility and potential degradation of the lipid layer and the
denaturation of proteins [76, 77]. The demanding fabrica-
tion process for these membranes, involving expression and
purification of AQPs, preparation of proteoliposomes, and
vesicle rupture [80, 184, 185], further causes a low score
for membrane cost and scale of development. Similarly, the
high fabrication cost is the main constraint for many other
G3 membranes, such as nanoporous graphene (Fig. 4f) and
VA-CNT membranes (Fig. 4b). These membranes typically
involve CVD or other complex procedures in their fabrica-
tion processes (Fig. 5), leading to high membrane cost and
limited scale of development. Therefore, developing more
scalable and cost-effective fabrication strategies is critically
needed for such membrane development. Potential revolu-
tions in fabrication methods, e.g., replacing CVD deposi-
tion of CNTs by filtration-based loading for VA-CNT mem-
branes or by emerging 3D printing strategies [186], might
dramatically reduce the membrane cost and promote their
future scale-up. In addition to cost and scale-up, practical
applications of ultra-thin nanoporous graphene could be fur-
ther restricted by its poor mechanical strength [171, 172].
Addressing this mechanical weakness issue, e.g., by design-
ing advanced supporting structures, might greatly improve
the stability score of nanoporous graphene, particularly in
view of its tolerance for high-temperature feed water, chlo-
rine attack, and acidic or basic solutions. Therefore, the criti-
cal constraints revealed by these radar charts could be used
to prioritize future research efforts to make the respective
membranes more competitive.

In the radar charts, G3 membranes made of porous
crystalline materials (i.e., zeolite film, MOF film, COF
film, Fig. 4c-e) represent an interesting group. These mem-
branes can be typically fabricated by a range of relatively
simple methods, paving the way for future scale-up. Spe-
cifically, zeolite films can be synthesized by seeded assem-
bly and secondary growth [188]; MOF films can be fab-
ricated by in-situ solvothermal synthesis [139, 189, 190]
or secondary seeded-growth [127, 191, 192]; COF films
can be made by polymerization at free-interface [193,
194], counter-diffusion [169, 195], or secondary growth
[196] (Fig. 6). In addition, they can be incorporated onto
porous inorganic hollow fibers or tubes [139, 161-163,
187, 191, 192, 197], which are also beneficial for their
scaling up. Moreover, their mechanical problems can be
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improved by compositing with suitable substrates. For
example, ultra-thin COF films [198, 199] can be supported
by polyacrylonitrile (PAN) [194, 200], anodic aluminium
oxide (AAOQ) [201], polysulfone (PSF) [202] substrates,
etc. With a proper choice of material (Tables 1 and S1,
S4), these porous crystalline membranes could also offer
good thermal and chemical stability and fouling resistance.
For example, zeolite films can withstand high tempera-
tures as high as 80 °C [203]. COF films, benefiting from
their covalent bonds, can also be thermal-stable and pH-
stable [196, 204—207] under harsh operational conditions.
Additionally, in contrast to the poor chlorine resistance
of typical polyamide-based membranes, many of these
porous crystalline membranes are stable in NaClO solu-
tion [175, 188, 208], which is advantageous for membrane
(bio)fouling control and cleaning. It is interesting to note
that, despite their excellent intrinsic separation properties
shown in Table 1, the state-of-the-art membranes made
of zeolite, MOF, and COF films generally show limited
water permeance and water/salt selectivity under typical
pressure-driven membrane tests. For example, UiO-66
membrane has a permeance of 0.14 Lm~2h~! bar ! and a
NaCl rejection < 50% [139], far below its theoretical per-
formance (a permeance of 51 L m~2 h™! bar™! and a NaCl
rejection of 100% [86]). This huge gap in separation per-
formance is often caused by the relatively high thickness
of rejection layers and defects in the membranes. If these
issues could be tackled, zeolite/MOF/COF-based porous
crystalline G3 membranes could potentially perform well
in all five dimensions—serving as pentagon warriors for
next-generation desalination membranes. Therefore, to
fully realize their potential, more research efforts should
be put into the manipulation of the thickness, pore size,
defects, and framework flexibility of these membranes [25,
209-212].

2D materials such as GO, MXene, and MoS, represent
another category of competitive candidates for synthe-
sizing next-generation desalination membranes. These
materials can be easily vacuum-filtrated onto a porous
substrate to prepare membranes featuring stacked 2D
nanosheets. Many stacked 2D membranes have high
chlorine tolerance [116, 120]. Nevertheless, for MXenes
and MoS,, their oxidation, even under ambient condi-
tions, could be a critical barrier to their commercializa-
tion. In addition, stacked 2D membranes show limited
interlayer stability: their interlayer spacing can be altered
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by pressure [156] and solution chemistry during the fil-
tration process [113, 115, 116, 154, 155]. The adhesion
between 2D nanosheets and substrates is another concern.
To address these issues, different crosslinking strategies
have been applied to stabilize the interlayer distance
[116, 117,120, 154, 156] and/or to improve the adhesion
between the 2D materials and the substrates [213]. For
separation properties, existing stacked GO membranes
(Fig. 4g) could achieve comparable (or even potentially
better) water permeance compared to conventional TFC
membranes (Table S1). Stacked MXene (Fig. 41) and
stacked MoS, (Fig. 4j) membranes also exhibit high water
permeance. Nevertheless, stacked 2D membranes com-
monly suffer low water/salt selectivity due to defects and
large interlayer distances [113, 121, 151, 153, 154, 156,
168]. In order to further improve the separation prop-
erties of stacked 2D membranes, one potential strategy
is to adopt 2D nanosheets containing selective pores,
which improve the transport of water molecules while
retaining solutes. For instance, stacked nanoporous GO
membranes (Fig. 4h) provide more water transport path-
ways and shorten their transport distance (Fig. 7), lead-
ing to simultaneously increased selectivity and water
permeance [108, 214] in comparison with the stacked
GO without nanopores (Fig. 4g). Similarly, 2D MOF and
COF nanosheets with high porosity [215, 216] are also
competitive candidates for fabricating high performance
stacked 2D membranes.

5 Conclusions and Outlook for Future
Development of RO Membranes

This review provides a comprehensive summary and sys-
tematic evaluation of RO membranes made by novel mate-
rials, including both (1) transitional generation (G2.5)
TFN membranes that incorporate novel materials into a
polyamide matrix and (2) next-generation (G3) membranes
featuring emerging materials without a polyamide matrix.
Despite the superior separation properties for many materi-
als, the reported separation performance of corresponding
membranes (in the form of an A/B versus A upper-bound
plot) is often not ideal when benchmarked against existing
conventional TFC membranes, highlighting critical develop-
ment gaps, particularly with respect to defect management.
The defects of TFN membranes commonly arise from the
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aggregation of nanofillers, which can be partially mitigated
by proper surface modification of nanofillers [157]. In addi-
tion, some recent studies [42, 43] also report the in-situ for-
mation of nanofillers as an effective strategy to overcome
this issue. For G3 membranes, potential strategies to mitigate
defects and increase stability include the use of crosslinkers
[116, 213], enhanced crystallization via thermal treatment
[159, 161], and surface coating for sealing defects [168]. We

A Wiss
ﬂ_‘

 ———

Hollow fiber
with sealed ends

PE
support
silicone O-ring 5

membrane holder

E—
Heating

further established a comprehensive framework, adopting
five dimensions, including stability, cost, and scalability, in
addition to water permeance and selectivity, for evaluating
the present development and future potential of these novel
membranes. The state-of-the-art TFN membranes are com-
petitive in all dimensions, yet their ultimate performance is
generally limited by their polyamide matrix. On the other
hand, many G3 membranes could be greatly constrained by

BDC: 1,4-benzenedicarboxylic acid

In-situ growth Wash Hollow fiber
—_— supported
Dry MOF membrane

<

Fig. 6 Schematic illustration of the fabrication of a MOF film by an in-situ solvothermal method, reproduced with permission from Ref. [139],
copyright © 2015, American Chemical Society; b COF film by an IP reaction, reproduced with permission from Ref. [193], copyright © 2017,
American Chemical Society; ¢ COF film by counter-diffusion, reproduced with permission from Ref. [169], copyright © 2022 Elsevier B.V
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Fig. 7 Schematic illustrations of the water transport pathways in the stacked GO and stacked nanoporous GO membranes, adapted with permis-

sion from Ref. [108], copyright © 2019, American Chemical Society

their problematic stability, high cost, and/or poor scalabil-
ity (e.g., AQP SLB membrane, VA-CNT membrane, nano-
porous graphene). These critical deficiencies revealed by
5-dimensional radar charts require revolutionary technique
changes (e.g., filtration-based loading for VA-CNT mem-
branes in the replacement of CVD deposition and design
of suitable supporting structures for nanoporous graphene
[144]) for further development of these membranes. Among
G3 membranes, porous crystalline membranes (i.e., zeolite
film, MOF film, and COF film) are advantageous in their
scale-up and stability but require research efforts (e.g., opti-
mization of reaction conditions to reduce membrane thick-
ness) to improve their practical water permeance and water/
salt selectivity. Stacked 2D membranes are deficient in their
stability and water/salt selectivity. Their stability may be
enhanced by different crosslinking strategies, while their
selectivity can be potentially improved by the introduction
of selective pores.

The current work largely focuses on RO membranes for
desalination, with a key emphasis on separation perfor-
mance with respect to water permeance and salt removal. It
is important to note that the competitiveness of novel mem-
branes will depend on the application scenarios. For exam-
ple, membranes with high water permeance offer few bene-
fits for highly saline feedwater whose energy consumption is
dictated by the transmembrane osmotic pressure [217-220],
yet they can greatly reduce energy consumption when treat-
ing low-salinity feedwater [7, 217]. Ultra-permeable mem-
branes (with a permeance of 50-100 L m~2 h~! bar™!) may
even enable new process development, such as vacuum-
driven submerged RO/nanofiltration [217, 221], and their
hollow fiber module configurations could be potentially

| SHANGHAI JIAO TONG UNIVERSITY PRESS

adopted to enhance membrane packing and improve mass
transfer over traditional spiral wound modules. Therefore, it
is important to consider membranes, processes, and applica-
tions in a holistic manner to fully realize the benefits of next-
generation membranes, and application-specific weighting
factors may be applied to relevant dimensions for the selec-
tion of the most desirable membranes/materials. Indeed,
membranes have been widely used far beyond desalination,
which may require tailored properties (e.g., high Lit/Mg>*
selectivity for lithium extraction from salt lakes [222, 223],
high solvent resistance and solvent permeance for organic
solvent filtration [224, 225]). Many G3 membranes, even
though they may not be competitive for desalination, may
offer great advantages in other applications. For example,
membrane cost may be less concern in some niche and
high-value-added applications such as hemodialysis [180],
batteries and fuel cells [226, 227], or even recycling water
in space stations [228]. The comprehensive framework pre-
sented in the current work could offer holistic evaluation and
benchmarking for future membrane development and may
be further extended/adapted to cover more materials and a
wide range of applications.
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